NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI

60851-4

Edition 2.1

1997-11

Edition 2:1996 consolidée par l'amendement 1:1997 Edition 2:1996 consolidated with amendment 1:1997

Fils de bobinage - Méthodes d'essai -

Partie 4:

Propriétés chimiques

Winding wires - Test methods -

Part 4:

Chemical properties

Numéros des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000.

Publications consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

Validité de la présente publication

Le contenu technique des publications de la CEI est constamment revu par l a CEI afin qu'il reflète l'état actuel de la technique.

Des renseignements relatifs à l a date de reconfirmation de la publication sont disponibles dans le Catalogue de la CEI.

Les renseignements relatifs à ces révisions, à l'établissement des éditions révisées et aux amendements peuvent être obtenus auprès des Comités nationaux de la CEI et dans les documents ci-dessous:

- Bulletin de la CEI
- Annuaire de la CEI Accès en ligne*
- Catalogue des publications de la CEI
 Publié annuellement et mis à jour régulièrement (Accès en ligne)*

Terminologie, symboles graphiques et littéraux

En ce qui concerne la terminologie générale, le lecteur se reportera à l a CEI 60050: Vocabulaire Electrotechnique International (VEI).

Pour les symboles graphiques, les symboles littéraux et les signes d'usage général approuvés par la CEI, le lecteur consultera la CEI 60027: Symboles littéraux à utiliser en électrotechnique, la CEI 60417: Symboles graphiques utilisables sur le matériel. Index, relevé et compilation des feuilles individuelles, et la CEI 60617: Symboles graphiques pour schémas.

Publications de la CEI établies par le même comité d'études

L'attention du lecteur est attirée sur les listes figurant à la fin de c ette publication, qui énumèrent les publications de la CEI préparées par l e comité d'études qui a établi la présente publication.

* Voir adresse «site web» sur la page de titre.

Numbering

As from the 1st January 1997 all IEC publications are issued with a designation in the 60000 series.

Consolidated publications

Consolidated versions of some IEC publications including amendments are available. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Validity of this publication

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology.

Information relating to the date of the reconfirmation of the publication is available in the IEC catalogue.

Information on the revision work, the issue of revised editions and amendments may be obtained from TEC National Committees and from the following IEC sources

- IEC Bulletin
- IEC Yearbook

 Qn-line access*
- Catalogue of IEC publications
 Published yearly with regular updates
 (On-line access)*

Terminology, graphical and letter symbols

For general terminology, readers are ref erred to IEC 60050: International Electrotechnical Vocabulary (IEV).

For graphical symbols, and letter symbols and signs approved by the IEC for general use, readers are referred to publications IEC 60027: Letter symbols to be used in electrical technology, IEC 60417: Graphical symbols for use on equipment. Index, survey and compilation of the single sheets and IEC 60617: Graphical symbols for diagrams.

IEC publications prepared by the same technical committee

The attention of readers is drawn to the end pages of this publication which list the IEC publications issued by the technical committee which has prepared the present publication.

* See web site address on title page.

NORME INTERNATIONALE INTERNATIONAL STANDARD

CEI IEC 60851-4

Edition 2.1

1997-11

Edition 2:1996 consolidée par l'amendement 1:1997 Edition 2:1996 consolidated with amendment 1:1997

Fils de bobinage - Méthodes d'essai -

Partie 4:

Propriétés chimiques

Winding wires - Test methods -

Part 4:

Chemical properties

© IEC 1997 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soi t et par aucun procédé, électronique ou mécanique, y com pris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or ut ilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission
Telefax: +41 22 919 0300 e

n 3, rue de Varembé Geneva, Switzerland e-mail: inmail@iec.ch IEC web site http://www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

CODE PRIX
PRICE CODE

CD

Pour prix, voir catalogue en vigueur For price, see current catalogue

SOMMAIRE

		Pages
Α١	VANT-PROPOS	4
IN	ITRODUCTION	6
Art	ticles	100
1	Domaine d'application	8
2	Références normatives	8
3	Essai 12: Résistance aux solvants (applicable au fil de section circulaire émaillé de diamètre nominal de conducteur supérieur à 0,250 mm et au fil de section rectangulaire émaillé)	8
4	Essai 16: Résistance aux réfrigérants (applicable au fil de section circulaire émaillé)	10
5	Essai 17: Brasabilité (applicable au fil de section circulaire émaillé et au fil toronné)	14
6	Essai 20: Résistance à l'hydrolyse et à l'huile de transformateur (applicable au fil de bobinage émaillé)	16
Fi	gures	24

CONTENTS

		Page
FC	DREWORD	5
IN	TRODUCTION	7
Cla	ause	S
1	Scope	9
2	Normative references	9
3	Test 12: Resistance to solvents (applicable to enamelled round wire with a nominal conductor diameter over 0,250 mm and to enamelled rectangular wire)	9
4	Test 16: Resistance to refrigerants (applicable to enamelled round wire)	11
5	Test 17: Solderability (applicable to enamelled round wire and bunched wire)	15
6	Test 20: Resistance to hydrolysis and to transformer of (applicable to enamelled wire)	17
Fig	guresdi	25

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

FILS DE BOBINAGE - MÉTHODES D'ESSAI -

Partie 4: Propriétés chimiques

AVANT-PROPOS

- 1) La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composée de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités publie des Normes internationales. Leur él aboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en liaison avec la CEI, participent également aux travaux. La CE I collabore étroitement avec l'Organisation Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.
- 2) Les décisions ou ac cords officiels de la CEI concernant des questions techniques, représentent, dans la mesure du possible, un ac cord international sur les sujets étudies étant donné que les Comités nationaux intéressés sont représentés dans chaque comité d'études.
- 3) Les documents produits se présentent sous la forme de recommandations internationales; ils sont publiés comme normes, rapports techniques ou guides et agréés comme tels par les Comités nationaux.
- 4) Dans le but d'encourager l'unification internationale, les comités nationaux de la CEI s'engagent à appliquer de façon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale correspondante doit être indiquée en termes clairs dans cette dernière.
- 5) La CEI n'a fixé aucune procédure concernant le marquage comme indication d'approbation et sa responsabilité n'est pas engagée quand un matériel est déclare conforme à l'une de ses normes.
- 6) L'attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent faire l'objet de droi ts de propri été intellectuelle ou de droi ts analogues. La CEI ne saurait être tenue pour responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La Norme internationale CEL 60851-4 à été établie par le comité d'études 55 de la CEI: Fils de bobinage.

Cette deuxième édition annule et remplace la première édition parue en 1985 et l'amendement 1 (1992), et constitue une révision technique.

La présente version consolidée de la CEI 60851- 4 est issue de la deuxième édition (1996) [documents 55/473A/FDIS et 55/514/RVD] et de s on amendement 1 (1997) [documents 55/597/FDIS et 55/614/RVD].

Elle porte le numéro d'édition 2.1.

Une ligne ver ticale dans la marge indique où la publication de base a été modifiée par l'amendement 1.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Part 4: Chemical properties

WINDING WIRES - TEST METHODS -

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes International Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates dosely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreem ents of the IEC on technical matters express, as nearly as possible an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested National Committees.
- 3) The documents produced have the form of recommendations for international use and are published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.
- 6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject of patent rights. The IEC shall not be need responsible for identifying any or all such patent rights.

International Standard IEC 60851-4 has been pr epared by IEC technical committee 55: Winding wires.

This second edition cancels and replaces the first edition published in 1985 and its amendment 1 (1992), and constitutes a technical revision.

This consolidated version of IEC 60851-4 is based on the s econd edition of IEC 60851-4 (1996) [documents 55/473A/FDIS and 55/514/RVD] and its amendment 1 (1997) [documents 55/597/FDIS and 55/614/RVD].

It bears the edition number 2.1.

A vertical line in the m argin shows where the bas e publication has been m odified by amendment 1.

INTRODUCTION

La présente partie de la CEI 60851 constitue un élément d'une série de normes traitant des fils isolés utilisés dans les enroulements des appareils électriques. Cette s'érie comporte trois groupes définissant respectivement:

- a) les méthodes d'essai (CEI 60851);
- b) les spécifications (CEI 60317);
- c) le conditionnement (CEI 60264).

INTRODUCTION

This part of IEC 60851 forms an element of a series of standards which deals with insulated wires used for windings in electrical equipment. The series has three groups describing:

- a) methods of test (IEC 60851);
- b) specifications (IEC 60317);
- c) packaging (IEC 60264).

FILS DE BOBINAGE – MÉTHODES D'ESSAI – Partie 4: Propriétés chimiques

1 Domaine d'application

La présente partie de la CEI 60851 donne les méthodes d'essai suivantes:

- Essai 12: Résistance aux solvants;
- Essai 16: Résistance aux fluides réfrigérants;
- Essai 17: Brasabilité;
- Essai 20: Résistance à l'huile de transformateur.

Pour les définitions, les généralités concernant les méthodes d'essai et les séries complètes des méthodes d'essai des fils de bobinage, voir la CEI 60851-1.

2 Références normatives

Les documents normatifs suivants contiennent des dispositions qui, par suite de la référence qui y est faite, constituent des dispositions valables pour la présente partie de la CEI 60851. Au moment de la publication, les éditions indiquées étaient en vigueur. Tout document normatif est sujet à révision et les parties prenantes aux accords fondes sur la présente partie de la CEI 60851 sont invitées à rechercher la possibilité d'appliquer les éditions les plus récentes des documents normatifs indiqués ci-après. Les membres de la CEI et de l'ISO possèdent le registre des Normes internationales en vigueur.

CEI 60296: 1982, Spécification des huiles minérales isolantes neuves pour transformateurs et appareillage de connexion

CEI 60554-1: 1977, Spécification pour papiers cellulosiques à usages électriques – Première partie: Définitions et conditions générales

CEI 60851-1: 1996, Fils de bobinage - Méthodes d'essai - Partie 1: Généralités

CEI 60851-3: 1996, Fils de bobinage – Méthodes d'essai – Partie 3: Propriétés mécaniques

CEI 60851-5: 1996, Fils de bobinage – Méthodes d'essai – Partie 5: Propriétés électriques

3 Essai 12: Résistance aux solvants (applicable au fil de section circulaire émaillé de diamètre nominal de conducteur supérieur à 0,250 mm et au fil de section rectangulaire émaillé)

La mesure de l'action du solvant sur l'émail n'est pas réalisable sur les fils jusqu'à et y compris 0,250 mm. L'essai ne sera appliqué que sur les fils supérieurs à 0,250 mm.

La résistance aux solvants est exprimée par la dureté-crayon du fil après l'action du solvant.

3.1 Equipement

Les solvants suivants doivent être utilisés:

- solvant normalisé comme spécifié ci-dessous, ou
- solvant agréé entre acheteur et fournisseur.

WINDING WIRES – TEST METHODS – Part 4: Chemical properties

1 Scope

This part of IEC 60851 specifies the following tests:

- Test 12: Resistance to solvents;
- Test 16: Resistance to refrigerants;
- Test 17: Solderability;
- Test 20: Resistance to transformer oil.

For definitions, general notes on methods of test and the complete series of methods of test for winding wires see IEC 60851-1.

2 Normative references

The following normative documents contain provisions which through reference in this text, constitute provisions of this part of IEC 60851. At the time of publication, the editions indicated were valid. All normative documents are subject to revision, and parties to agreements based on this part of IEC 60851 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. Members of the IEC and ISO maintain registers of currently valid International Standards.

IEC 60296: 1982, Specification for unused mineral insulating oils for transformers and switchgear

IEC 60554-1: 1977, Specification for cellulosic papers for electrical purposes – Par t 1: Definitions and general requirements

IEC 60851-1: 1996, Winding wires - Test methods - Part 1: General

IEC 60851-3: 1996, Winding wires Test methods - Part 3: Mechanical properties

IEC 60851-5: 1996, Winding wires - Test methods - Part 5: Electrical properties

3 Test 12: Resistance to solvents (applicable to enamelled round wire with a nominal conductor diameter over 0.250 mm and to enamelled rectangular wire)

The effect of solvent on enamel is not practicable for wires up to and including 0,250 mm. The test should only be applicable to wires over 0,250 mm.

Resistance to solvents is expressed by the pencil hardness of the wire after solvent treatment.

3.1 Equipment

The following solvents shall be used:

- standard solvent as specified below, or
- solvent as agreed between purchaser and supplier.

Le solvant normalisé doit être un mélange de:

- 60 % en volume de white spirit contenant un maximum de 18 % d'aromatique;
- 30 % en volume de xylène;
- 10 % en volume de butanol.

Le crayon utilisé doit avoir une mine de la dur eté spécifiée dans la norme appropriée. Avant chaque essai, la pointe du crayon utilisé doit être affûtée avec une lime douce pour former un angle de 60° symétriquement par rapport à l'axe de la mine conformément à la figure 1.

3.2 Procédure

Une longueur de fil droit de 150 mm environ doit être préconditionnée pendant 10 min à (130 ± 3) °C dans une étuve à ventilation forcée. Une longueur substantielle du fil doît alors être immergée dans le s olvant normalisé contenu dans un récipient cylindrique en verre; elle doit y être maintenue à (60 ± 3) °C pendant 30 min. Le fil doit alors être retiré du solvant. La dureté de la surface du fil doit alors être mesurée comme indiqué ci-après. Le temps écoulé entre la sortie du solvant et la mesure ne doit pas dépasser 30 s.

L'éprouvette à essayer doit être placée sur une surface lisse et duce conformément à la figure 1. Dans le cas de fils de section rectangulaire, l'essai doit être réalisé sur le côté plat du fil. La mine de crayon doit être placée suivant un angle d'environ 60 sur la surface du fil et la pointe affûtée du crayon doit être pressée lentement le long de la surface du fil avec une force d'environ 5 N.

Trois essais doivent être réalisés. On doit noter si le révêtement est enlevé et si le conducteur nu est visible.

NOTE 1 - Cette méthode peut aussi être employée pour verifier la résistance à d'autres fluides, par exemple l'huile.

NOTE 2 – Si on désire déterminer la dureté de l'isolant, l'indice de dureté de l'émail doit être pris égal à celui de la mine de plus grande dureté avec laquelle en ne peut enlever l'émail, exprimé par la dureté-crayon. La série des duretés-crayon est la suivante.

6B	5B	4B	3B 2B	в нв н	2H	3H	4H	5H	6H	7H	8H	9H
4	5	6	7 8	9 10 11	12	13	14	15	16	17	18	19

4 Essai 16: Résistance aux réfrigérants (applicable au fil de section circulaire émaillé)

La résistance au réfrigérant 22 est exprimée par la quantité de matière extraite du revêtement du fil et par la tension de claquage après exposition au réfrigérant.

NOTE 1 – Des fluides retrigérants autres que le monochlorodifluorométhane (réfrigérant R 22) peuvent être utilisés. Dans ce cas on veillera aux données critiques de tels fluides, et les conditions de pression dans le récipient satisferent aux autres conditions d'essai.

NOTE 2 – Des fluides réfrigérants comme le monochlorodifluorométhane et des fluides de rinçage comme le trichlorotrifluoréthane (réfrigérant R 113) sont des produits chimiques réducteurs d'ozone (PRCO). Il sera donc nécessaire de réviser cette méthode d'essai dès que des produits de substitution seront connus.

4.1 Extraction

4.1.1 Principe

Une coupe avec siphon contenant le fil est placée dans un récipient sous pression. La matière extraite est déterminée après exposition du fil au réfrigérant sous pression à température élevée.

The standard solvent shall be a mixture of:

- 60 % by volume white spirit with maximum aromatic content of 18 %;
- 30 % by volume xylene;
- 10 % by volume butanol.

The pencil to be used shall be a lead pencil of a hardness as specified in the relevant standard. Before each test, the point of the pencil shall be sharpened with a smooth-cut file to form an angle of 60° symmetrical about the axis of the lead according to figure 1.

3.2 Procedure

A straight piece of wire, approximately 150 mm in length, shall be preconditioned for 10 min at (130 ± 3) °C in an oven with forced air circulation. A substantial length of the wire shall then be immersed in standard solvent contained in a glass cylinder, and shall be maintained therein at a temperature of (60 ± 3) °C for a period of 30 min. The wire shall then be removed from the solvent. The hardness of the wire surface shall then be determined, in the following manner, within a period of 30 s after removal from the solvent.

The specimen to be tested shall be laid on a smooth hard surface according to figure 1. In the case of rectangular wires, the test shall be carried out on the flat side of the wire. The pencil shall be placed on the surface of the wire at an angle of approximately 60° and the sharpened edge shall be pressed slowly along the surface of the wire with a force of approximately 5 N.

Three tests shall be made. It shall be reported, if the coating is removed with exposure of the bare conductor.

NOTE 1 - This method can also be used for testing resistance to other fluids, for example oil.

NOTE 2 – Where it is desired to determine the hardness of the insulation, the hardness of the lead pencil which just fails to remove the coating from the surface of the conductor shall be taken as the hardness of the wire surface, expressed by the pencil hardness. The pencil hardness series is as follows:

6B	5B	4B	3B	2B	B \	HB	H	2H	3H	4H	5H	6H	7H	8H	9H
4	5	6	7/	\8	9	1/10	1,1	12	13	14	15	16	17	18	19

4 Test 16: Resistance to refrigerants (applicable to enamelled round wire)

Resistance to refrigerant 22 is expressed by the quantity of matter extracted from the coating of the wire and by the breakdown voltage after exposure to a refrigerant.

NOTE 1 – Refrigerants other than monochlorodifluoromethane (refrigerant R 22) m ay be used. In this case, the critical data of such fluid should be observed and the layout of the pressure vessel should comply with the test altered conditions.

NOTE 2 Refrigerants like monochlorodifluoromethane and rinsing fluids like trichlorotrifluorethane (refrigerant R 113) are ozone depleting chemicals (ODC). Therefore, it will be necessary to revise this method of test as soon as substitute materials are identified.

4.1 Extraction

4.1.1 Principle

A siphon cup containing the wire sample is placed in the pressure vessel. The extractable matter is determined after exposure of the wire sample to the refrigerant under pressure and at elevated temperature.

4.1.2 Equipement

L'équipement suivant doit être utilisé:

- une coupe avec siphon conforme à la figure 2, d'une capacité de 450 m l jusqu'au point de siphonage;
- un récipient sous pression d'une capacité de 2 000 m l, d'un diamètre intérieur approximatif de 100 mm permettant une pression d'utilisation de 200 bars (20 MPa), de construction non soudée de préférence et équipé d'un système de chauffage régulé;
- le couvercle supérieur du récipient comprend un condenseur conforme à la figure 3;
- une étuve à ventilation forcée.

4.1.3 Eprouvette

Huit bobinages de 70 s pires doivent être réalisés avec des échaptillons de fit avec chacun (0.6 ± 0.1) g d'isolant. Les éprouvettes doivent être dégraissées et conditionnées en étuve à ventilation forcée à (150 ± 3) °C pendant 15 m in. Après refroidissement de 30 m in, les huit éprouvettes doivent être pesées ensemble à 0.0001 g près: cela constitue la masse initiale M_1 .

4.1.4 Procédure

Les huit éprouvettes doivent être placées dans la coupe avec siphon qui est suspendue à (25 ± 5) mm au-dessous du condenseur placé sous le couvercle du récipient sous pression. Le récipient de pression doit être fermé et chargé de (700 ± 25) g de réfrigérant 22. L'alimentation en eau et l'écoulement du condenseur doivent être branchés et le récipient de pression doit être chauffé entre 70 °C et 80 °C au moyen d'un système de chauffage régulé. Le débit d'eau dans le condenseur doit être ajusté de façon à réaliser de 20 à 25 s iphonages à l'heure de la coupe avec siphon. La durée de l'extraction doit être de 6 h.

La pression de vapeur du réfrigérant 22 pour la gamme de température spécifiée ci-dessus est comprise entre 30 bars et 37 bars (3 MPa à 3,7 MPa). La pression critique du réfrigérant 22 est de 50 bars (5 MPa). La pression du récipient ne doit pas dépasser 40 bars (4 MPa). Avant son utilisation, on doit vérifier que la soupage de sécurité fonctionne correctement.

NOTE – Il est recommande de couper automatiquement le chauffage si la pression dépasse 40 bars (4 MPa) ou si le débit d'eau du condenseur s'interrompt.

A la fin du temps d'extraction, le récipient sous pression doit être refroidi à l'aide de neige carbonique pour liquétier le réfrigérant; on doit alor s faire tomber la pr ession et ouvrir le récipient. Les éprouvettes et la coupe avec siphon doivent être rincées avec du trichlorofrifluoréthane distillé (R 113 dés huilé) (voir la note 2 de c et article). Le produit de rinçage doit être verse dans le récipient de pression. Le réfrigérant doit alors être évaporé jusqu'à 5 mm environ du fond du récipient de pression. Les parois du récipient de pression doivent être nettoyées à l'aide de deux rinçages successifs de 100 m l de c hlorure de méthylène chacun et les solvants doivent être évaporés sous une hotte ou dans un espace bien aéré jusqu'à 5 mm du fond du récipient de pression.

Le liquide doit êtr e transféré dans une capsule d'aluminium préalablement séchée et tar ée avec 15 ml de chlorure de méthylène de rinçage puis évaporé à sec à (150 ± 3) °C pendant 1 h. La capsule doit être refroidie à la tem pérature ambiante dans un des siccateur. La capsule d'aluminium avec le résidu doit être pesée à 0,0001 g pr ès et la tar e de la c apsule est soustraite. La différence est la masse de résidu totale M_2 de matière extraite pour les huit éprouvettes.

L'isolant des bobinages doit être retiré à l'aide d'un moyen chimique approprié qui n'affecte pas le conducteur, les conducteurs nus doivent être séchés à (150 ± 3) °C pendant (15 ± 1) min et refroidis à la tem pérature ambiante dans un des siccateur. Les huit bobinages doivent être pesés ensemble à 0,0001 g près, et leur masse est la masse totale du conducteur M_3 .

4.1.2 Equipment

The following equipment shall be used:

- siphon cup according to figure 2, of 450 ml volume up to the siphoning level;
- pressure vessel of 2 000 ml volume with an internal diameter of approximately 100 mm and a pressure capacity of 200 bar (20 MPa), preferably of unwelded construction and provided with a controlled heating system;
- top closure of the vessel containing a condenser coil according to figure 3;
- oven with forced air circulation.

4.1.3 Specimen

Eight wire samples each containing (0.6 ± 0.1) g of insulation shall be wound into coils of 70 turns. The specimens shall be degreased and conditioned in an oven with forced air circulation at (150 ± 3) °C for 15 min. After 30 min cooling, the eight specimens shall be weighed together to the nearest 0,0001 g, resulting in the total initial mass M_1 .

4.1.4 Procedure

The eight specimens shall be placed in the siphon cup, which is suspended (25 ± 5) mm below the condenser coil on the pressure vessel cover. The pressure vessel shall be assembled and charged with (700 ± 25) g of refrigerant 22. The condenser water supply and drain line shall be connected and the pressure vessel shall be heated by means of a controlled heating system with the temperature set between 70 °C and 80 °C. The water flowing through the condenser shall be adjusted to maintain a reflux rate of 20 to 25 discharges per hour from the siphon cup. The extraction period shall be 6 h.

The vapour pressure of refrigerant 22 corresponding to the tem perature range as specified above is 30 bar to 37 bar (3 MPa to 3,7 MPa). The critical pressure of refrigerant 22 is 50 bar (5 MPa). The pressure in the vessel shall not exceed 40 bar (4 MPa). Therefore, prior to use the over-pressure control valve shall be checked to ensure its proper functioning.

NOTE – It is recommended that the heating system is automatically deactivated, if the pressure exceeds 40 bar (4 MPa) or if the water flow through the condenser coil is interrupted.

At the end of the extraction period, the pressure vessel shall be cooled by means of solid carbon dioxide to liquify the refrigerant, the pressure shall be released and the pressure vessel opened. The specimens and siphon cup shall be rinsed with distilled trichlorotrifluor-ethane (oil-free R 113) (see note 2 of this clause). The rinse shall be poured into the pressure vessel. The refrigerant shall then be evaporated to approximately 5 mm of the bottom of the pressure vessel. The walls of the pressure vessel shall be washed with two successive rinses each of 100 ml methylene chloride and the solvents shall then be evaporated under a hood or in a well-ventilated area to approximately 5 mm from the bottom of the pressure vessel.

The liquid sample shall be transferred to a pr e-dried tared aluminium weighing dish with a 15 ml methylene chloride rinse and then evaporated to dryness at (150 ± 3) °C for 1 h. The weighing dish shall then be cooled to room temperature in a desiccator. The dish with the residue shall be weighed to the near est 0,0001 g and the or iginal tared mass of the same dish subtracted. The difference is the total residue mass M_2 of the matter extracted from the eight specimens.

The insulation on the c oils shall be removed by suitable chemical means not affecting the conductor, and the bare conductors shall be dried at (150 ± 3) °C for (15 ± 1) min and cooled to room temperature in a desiccator. They shall be weighed to the nearest 0,0001 g and the mass of the eight conductors together is the total conductor mass M_3 .

4.1.5 Résultats

La matière extraite doit être déterminée par l'équation suivante:

Matière extraite =
$$\frac{M_2}{M_1 - M_3} \times 100 \%$$

- 14 -

Un essai doit être réalisé. On doit noter les masses M_1 , M_2 et M_3 , la température et la pression du récipient, ainsi que la matière extraite.

4.2 Tension de claquage

4.2.1 Principe

Une éprouvette préparée selon 4.4.1 de la CEI 60851-5 est placée dans le récipient sous pression selon les modalités de 4.2.2. La tension de claquage est déterminée après exposition de l'éprouvette au réfrigérant sous pression et à température élevée.

4.2.2 Procédure

L'éprouvette doit être conditionnée en étuve à (150 ± 3) °C pendant 4 h puis placée dans le récipient de pression qui doit être fermé et rempli de (1400 ± 50) g de réfrigérant. Le récipient sous pression doit être chauffé selon 4.1.4 de la présente norme, mais pendant (72 ± 1) h.

A la fin du temps d'exposition, le récipient sous pression doit être refroidi et vidé comme décrit en 4.1.4. Lorsque la pression absolue à l'intérieur du tube est inférieure à 2 bars (0,2 MPa), le récipient de pression doit être ouvert et l'éprouvette doit être transférée dans une étuve à (150 \pm 3) °C en un temps compris entre 25 s et 30 s. L'éprouvette doit être maintenue dans l'étuve pendant (10 \pm 1) min. Après avoir sorti l'éprouvette de l'étuve et l'avoir laissée refroidir à la température ambiante, la tension de claquage doit être déterminée selon 4.4.1 de la CEI 60851-5.

4.2.3 Résultats

Cinq éprouvettes doivent être essayées. Les cinq valeurs individuelles doivent être notées.

5 Essai 17: Brasabilité (applicable au fil de section circulaire émaillé et au fil toronné)

La brasabilité est exprimée par le temps d'immersion nécessaire pour enlever le revêtement et recouvrir de brasure le conducteur d'une éprouvette plongée dans un bain de brasure.

5.1 Equipement

L'équipement suivant doit être utilisé:

- un bain de br asure à tem pérature régulée d'un volum e suffisant pour en m aintenir la température constante quand on immerge l'éprouvette à la tem pérature spécifiée dans la norme appropriée. La composition de la br asure doit être d'un rapport de masse de 60 parties d'étain pour 40 parties de plomb;
- un porte-éprouvette qui laisse le fil libre sur au moins 20 mm entre les points d'appui quand il est immergé dans la brasure. Le matériel utilisé pour le porte-éprouvette ne doit pas contaminer le bain de brasure et les dimensions du support ne doivent pas modifier sensiblement la température du bain de brasure pendant l'immersion.

NOTE - Une contamination de la brasure par l'oxydation ou la présence de cuivre peut affecter le résultat.

4.1.5 Result

The extractable matter shall be determined according to the following equation:

Extractable matter =
$$\frac{M_2}{M_1 - M_3} \times 100 \%$$

One test shall be made. The masses M_1 , M_2 , M_3 , the temperature and the pressure of the pressure vessel and the extractable matter shall be reported.

4.2 Breakdown voltage

4.2.1 Principle

A specimen prepared according to 4.4.1 of IEC 60851-5 is placed in a pressure vessel according to 4.2.2. The breakdown voltage is determined after exposure of the specimen to the refrigerant under pressure and at elevated temperature.

4.2.2 Procedure

The specimen shall be conditioned in the oven (150 ± 3) °C for 4 h and then placed in the pressure vessel, which shall be assembled and charged with (1400 \pm 50) g of refrigerant. The pressure vessel shall be heated according to 4.1.4 of this standard but for a period of (72 \pm 1) h.

At the end of the ex posure period, the pressure vessel shall be cooled and discharged as described under 4.1.4. When the pressure inside the tube is less than 2 bar (0,2 MPa) absolute, the pressure vessel shall be opened and the specimen, within a period of 25 s to 30 s, transferred to the oven at a temperature of (150 \pm 3) °C. The specimen shall remain in the oven for (10 \pm 1) min. After the specimen is removed from the oven and allowed to cool to room temperature, the breakdown voltage shall be determined according to 4.4.1 of IEC 60851-5.

4.2.3 Result

Five specimens shall be tested. The five single values shall be reported.

5 Test 17: Solderability applicable to enamelled round wire and bunched wire)

Solderability is expressed by the time of immersion of the specimen in a solder bath required to remove the coating and to coat the conductor with solder.

5.1 Equipment

The following equipment shall be used:

- temperature controlled solder bath of sufficient volume to maintain a constant solder temperature when immersing the specimen at any temperature specified in the relevant standard. Solder composition shall be of a mass ratio of 60 parts tin to 40 parts lead;
- any specimen holder that holds the wire under test free for at least 20 mm between the points of support when immersed into the solder. The material used for the specimen holder shall be such that the solder does not undergo any contamination and the dimensions of the holder shall not lead to significant change of the bath temperature during immersion.

NOTE - Contamination of the solder due to oxidation or from copper may affect the results.

5.2 Spécimen

5.2.1 Diamètre nominal du conducteur jusqu'à 0,050 mm inclus

Huit longueurs de fil droit doivent être torsadées ensemble sans tension excessive et doivent être bobinées sur le porte-éprouvette.

5.2.2 Diamètre nominal du conducteur supérieur à 0,050 jusqu'à 0,100 mm inclus

Une longueur de fil droit doit être bobinée sur le porte-éprouvette.

5.2.3 Diamètre nominal du conducteur supérieur à 0,100 mm

Une longueur de fil droit de 200 mm est nécessaire.

5.2.4 Fil toronné de diamètre extérieur jusqu'à 0,250 mm inclus

Une longueur de fil toronné doit être bobiné sur une distance de 15 mm à 20 mm à l'extrémité d'un fil droit de cuivre étamé propre de diamètre nominal du conducteur de 0.800 mm et de 200 mm de long. Il doit y avoir entre cinq et dix spires légèrement espacées.

5.2.5 Fil toronné de diamètre extérieur supérieur à 0,250 mm

Une longueur de fil toronné droit de 200 mm approximativement est nécessaire.

5.3 Procédure

L'éprouvette doit être tenue verticalement au-dessus du c entre du bain m aintenu à la température spécifiée dans la norme appropriée. L'extrémité inférieure doit être abaissée à 20 mm au-dessous de la s urface. La position à laquelle l'éprouvette est immergée doit être à une distance d'environ 10 mm du point où la tem pérature est mesurée. Après avoir été immergée pendant le temps donné dans la feuille de spécification appropriée, l'éprouvette doit subir un mouvement latéral dans le bain avant d'être retirée de la brasure.

On doit examiner la surface du fil étamé avec un grossissement de six à dix fois. Dans le cas de fil de diamètre nominal du conducteur jusqu'à 0,100 mm inclus, l'examen doit être limité à la partie libre de l'éprouvette.

Trois éprouvettes doivent être essayées. On doit noter l'état de surface du fil.

6 Essai 20: Résistance à l'hydrolyse et à l'huile de transformateur (applicable au fil de bobinage émaillé)

La résistance à l'hy drolyse est exprimée par l'aspect et l'adhér ence des éprouvettes après exposition à l'huile de transformateur en présence d'eau sous pression et à température élevée.

La résistance à l'huile de transformateur est exprimée par la tension de claquage et la souplesse des éprouvettes après exposition à l'huile de transformateur sous pression et à température élevée.

NOTE – L'eau peut affecter le revêtement par dégradation hydrolytique et/ou par absorption. Si l'absorption seule apparaît, un séchage de l'éprouvette à 125 ° C ± 3 ° C pendant 30 m in avant l'essai de t ension de c laquage permettra à l'éprouvette de retrouver ses performances. Un fil de diamètre nominal du conducteur compris entre 0,800 mm et 1,500 mm a généralement été jugé convenable pour les manipulations et pour l'essai.

5.2 Specimen

5.2.1 Nominal conductor diameter up to and including 0,050 mm

Eight straight pieces of wires shall be twisted together without undue tension and shall be wound on the specimen holder.

5.2.2 Nominal conductor diameter over 0,050 mm up to and including 0,100 mm

A straight piece of wire shall be wound on a specimen holder.

5.2.3 Nominal conductor diameter over 0,100 mm

A straight piece of wire 200 mm in length is required.

5.2.4 Bunched wire with overall diameter up to and including 0.250 mm

A piece of bunched wire shall be wound for a distance of 15 mm to 20 mm around the end of a straight piece of clean tinned copper wire of a nominal conductor diameter of 0,800 mm and 200 mm in length. There shall be a minimum of five turns and a maximum of ten turns with a slight spacing between the turns.

5.2.5 Bunched wire with overall diameter over 0,250 mm.

A straight piece of bunched wire approximately 200 mm in length is required.

5.3 Procedure

The specimen shall be held vertically over the centre of the bath maintained at the temperature as specified in the relevant standard. The bottom end shall be lowered to 20 mm below the surface of the bath. The position at which the specimen is immersed shall be within 10 mm of the point where the temperature is measured. After immersion for the time specified in the relevant specification sheet, the specimen shall be moved sideways in the bath bef ore it is withdrawn from the solder.

The surface of the tinned wire shall be examined with a magnification of from six to ten times. In the case of wire up to and including 0,100 mm nominal conductor diameter, the examination shall be restricted to the free length of the specimen.

Three specimens shall be tested. The condition of the surface of the wire shall be reported.

6 Test 20 Resistance to hydrolysis and to transformer oil (applicable to enamelled wire)

Resistance to hydrolysis is expressed by appearance and adherence after exposure of the specimens to transformer oil in the presence of water under pressure and at elevated temperature.

Resistance to transformer oil is expressed by breakdown voltage and flexibility after exposure of the specimens to transformer oil under pressure and at elevated temperature.

NOTE – The water may affect the coating by hydrolytic degradation and/or by absorption. If only absorption has occurred, drying the specimen at 125 °C \pm 3 °C for 30 m in prior to the breakdown voltage test will produce a recovery of the specimen. Wire with a nominal conductor diameter between 0,800 mm and 1,500 mm has been generally found convenient to handle and to test.

6.1 Fil de section circulaire

6.1.1 Equipement

L'équipement suivant est utilisé:

- deux tubes en verre de diamètre 25 mm et de longueur 300 mm qui peuvent être scellés;
- un récipient en acier inoxydable de volume 400 ml à 500 ml, pouvant supporter une pression de 6 x 10⁶ Pa, de préférence sans soudure et équipé d'une régulation de chauffage;
- de l'huile de transformateur conforme à la CEI 60296;
- du papier conforme à la CEI 60554-1, type 1.

6.1.2 Eprouvettes

Les éprouvettes suivantes sont préparées:

- 12 longueurs droites de fil d'environ 200 mm de long;
- 10 éprouvettes torsadées préparées conformément à 4.4,1 de la CEI 60851-5,
- trois éprouvettes enroulées sur mandrin préparées conformément à 5.1.1 de la CEI 60851-3.

6.1.3 Procédure

6.1.3.1 Résistance à l'hydrolyse

Chacun des tubes est chargé avec six longueurs droites de fil conformes à 6.1.2 et avec 80 ml d'huile de transformateur séchée et désaérée. Dans l'un des tubes on ajoute 0.24 ml \pm 0.01 ml d'eau distillée. Les deux tubes sont scellés et placés dans une étuve pendant 24 h à 150 °C \pm 3 °C. Les tubes sont alors retirés de l'étuve et laisses refroidir à température ambiante puis ouverts. Les éprouvettes sont examinées en vision normale.

Un seul essai est effectué. Les changements d'aspect et d'adhérence sont notés.

6.1.3.2 Résistance à l'huile de transformateur

Le récipient supportant la pression sera chargé avec les éléments indiqués au tableau 1, sauf autres conditions conformes à l'accord préalable entre utilisateur et fournisseur.

Tableau 1 – Volume des éléments

Elément	Volume %						
Huile de transformateur	65 ± 1						
Papier	4 ± 0,01						
Revêtement	0.26 ± 0.002						
Acier	*						
* Selon accord entre utilisateur et fournisseur.							

6.1 Round wire

6.1.1 Equipment

The following equipment shall be used:

- two glass tubes of 25 mm diameter and 300 mm length capable of being sealed;
- stainless steel pressure vessel of 400 m l to 500 m l volume with a pressure capacity of 6 x 10 6 Pa, preferably of unwelded construction and provided with a controlled heating system;
- transformer oil according to IEC 60296;
- paper according to IEC 60554-1, type 1.

6.1.2 Specimens

The following specimens shall be prepared:

- 12 straight pieces of wire about 200 mm in length;
- 10 twisted pair specimens prepared in accordance with 4.1 of EC 60851-5;
- three mandrel wound specimens prepared in accordance with 5.1.1 of IEC 60851-3.

6.1.3 Procedure

6.1.3.1 Resistance to hydrolysis

Each of the tubes shall be charged with six straight pieces of wire according to 6.1.2 and 80 ml de-aerated dry transformer oil. To one of the tubes, 0,24 ml \pm 0,01 ml of distilled water shall be added. The two tubes shall be sealed and placed in an oven f or 24 h at 150 °C \pm 3 °C. The tubes shall then be removed from the oven allowed to cool down to room temperature and opened. The specimens shall be examined with normal vision.

One test shall be made. Any changes in appearance and adherence shall be reported.

6.1.3.2 Resistance to transformer oil

The pressure vessel shall be charged with components according to table 1 unles s otherwise agreed between purchaser and supplier.

Table 1 - Volume of components

Component	Volume %						
Transformer oil	65 ± 1						
Paper	4 ± 0,01						
Coating	0,26 ± 0,002						
Steel	*						
* By agreement between purchaser and supplier.							

Le récipient supportant la pression est chargé de 10 éprouvettes torsadées, trois éprouvettes enroulées sur mandrin et de m orceaux de f il supplémentaires pour obtenir le volum e de revêtement $^{1)}$ spécifié dans le tableau 1. Le papier aura été séché sous pression maximale de 20 Pa à 90 °C \pm $\,$ 3 °C pendant 16 h ou bien à 105 °C \pm $\,$ 3 °C pendant 4 h. Après ce traitement de préconditionnement, le récipient supportant la pression est chargé avec l'huile sèche désaérée conformément au tableau 1.

- 20 -

Le récipient fermé supportant la pression est chauffé à 150 °C \pm 3 °C pendant 1 000 h \pm 10 h. Le récipient supportant la pression est ensuite laissé refroidir à la tem pérature ambiante, ramené à la pression ordinaire et ouvert. Cinq des éprouvettes torsadées sont contrôlées pour la tension de claquage à 105 °C \pm 3 °C s elon 4.4.2 de la CEI 60851- 5, les éprouvettes étant immergées dans l'huile. Les cinq éprouvettes torsadées restantes sont séchées à 125 °C \pm 3 °C pendant environ 30 min, puis laissées refroidir à la tem pérature ambiante et alors contrôlées pour la tension de claquage à 105 °C \pm 3 °C s elon 4.4.2 de la CEI 60851-5, les éprouvettes étant immergées dans l'huile.

Les éprouvettes enroulées sur mandrin sont examinées en vue de déceler les craquelures éventuelles selon 5.1.1.1 de la CEI 60851-3.

Un seul essai est effectué. Les valeurs individuelles de tension de chaquage ainsi que les craquelures éventuelles sont notées.

6.2 Fil de section rectangulaire

6.2.1 Equipement

L'équipement décrit en 6.1.1 est utilisé.

6.2.2 Eprouvettes

Les éprouvettes suivantes sont préparées;

- 10 longueurs droites de fil d'environ 200 mm de long;
- quatre éprouvettes en forme de Univéparées conformément à 4.6.1 de la CEI 60851-5;
- deux éprouvettes enroulées surmandrin préparées conformément à 5.1.2 de la CEI 60851-3.

6.2.3 Procédure

6.2.3.1 Résistance à l'hydrolyse

Chacun des tubes est chargé avec cinq longueurs droites de fil conformes à 6.2.2 et avec 80 ml d'huile de transformateur séchée et désaérée. Dans l'un des tubes on ajoute 0,24 ml ± 0,01 ml d'eau distillée. Les deux tubes sont scellés et placés dans une étuve pendant 24 h à 150 °C ± 3 °C. Les tubes sont alors retirés de l'étuve et laissés refroidir à température ambiante puis ouverts. Les éprouvettes sont examinées en vision normale.

Un seul essai est effectué. Les changements d'aspect et d'adhérence sont notés.

$$M = \frac{Y \times V}{600 \times \delta \times D}$$

οù

V est le volume du récipient sous pression en millilitres;

Y est la masse de 1 m de fil en grammes;

 δ est l'accroissement de diamètre dû à l'émail en millimètres;

D est le diamètre extérieur du fil en millimètres.

¹⁾ La masse totale de fil en grammes qui donne le volume exigé d'émail peut être calculée approximativement par la formule:

The pressure vessel shall contain 10 twisted pair specimens, three mandrel wound specimens and extra pieces of wire to arrive at the volum e of coating $^{1)}$ specified in table 1. The paper shall be dried at a pressure of maximum 20 Pa at 90 $^{\circ}$ C \pm 3 $^{\circ}$ C for 16 h or at 105 $^{\circ}$ C \pm 3 $^{\circ}$ C for 4 h. Af ter this preconditioning treatment the pr essure vessel shall be charged with deaerated dry oil according to table 1.

The sealed pressure vessel shall be heated at 150 °C \pm 3 °C for 1 000 h \pm 10 h. The pressure vessel shall then be allowed to cool to room temperature, discharged and opened. Five of the twisted pair specimens shall be tested at 105 °C \pm 3 °C for breakdown voltage in accordance with 4.4.2 of IEC 60851-5 with the specimens under oil. The remaining five of the twisted pair specimens shall be dried at 125 °C \pm 3 °C for about 30 m in, allowed to cool to room temperature and then tested at 105 °C \pm 3 °C for breakdown voltage in accordance with 4.4.2 of IEC 60851-5 with the specimens under oil.

The mandrel wound specimens shall be examined for cracks according to 5.1.1.1 of IEC 60851-3.

One test shall be made. The single values of breakdown voltage and any cracks shall be reported.

6.2 Rectangular wire

6.2.1 Equipment

Equipment according to 6.1.1 shall be used.

6.2.2 Specimens

The following specimens shall be prepared:

- 10 straight pieces of wire about 200 mm in length;
- four U-shaped specimens prepared in accordance with 4.6.1 of IEC 60851-5;
- two mandrel bent specimens prepared in accordance with 5.1.2 of IEC 60851-3.

6.2.3 Procedure

6.2.3.1 Resistance to hydrolysis

Each of the tubes shall be charged with five straight pieces of wire according to 6.2.2 and 80 ml de-aerated dry transformer oil. To one of the tubes, 0,24 ml \pm 0,01 ml of distilled water shall be added. The two tubes shall be sealed and placed in an oven for 24 h at 150 °C \pm 3 °C. The tubes shall then be r emoved from the oven, and then allow ed to cool down to room temperature and opened. The specimens shall be examined with normal vision.

One test shall be made. Any changes in appearance and adherence shall be reported.

$$M = \frac{Y \times V}{600 \times \delta \times D}$$

where

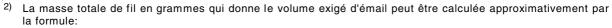
V is the volume of the pressure vessel in millilitres;

Y is the mass of 1 m of wire in grams;

 δ is the increase in diameter due to the coating in millimetres;

D is the overall diameter of the wire in millimetres.

¹⁾ The total mass of wire in grams to provide the required volume of enamel can be calculated approximately by:


6.2.3.2 Résistance à l'huile de transformateur

Le récipient supportant la pression est chargé avec les quatre éprouvettes en forme de U, avec les deux éprouvettes enroulées sur mandrin et avec des morceaux de fil supplémentaires pour obtenir le volume de revêtement ²⁾ spécifié dans le tableau 1. Le papier aura été séché sous pression maximale de 20 Pa à 90 °C ± 3 °C pendant 16 h ou bien à 105 °C ± 3 °C pendant 4 h. Après ce traitement de préconditionnement, le récipient supportant la pression est chargé avec l'huile sèche désaérée conformément au tableau 1.

Le récipient fermé supportant la pression est chauffé à 150 °C \pm 3 °C pendant 1 000 h \pm 10 h. Le récipient supportant la pression est ensuite laissé refroidir à la tem pérature ambiante, ramené à la pression ordinaire et ouvert. Deux des éprouvettes en forme de U sont contrôlées pour la tension de claquage à 105 °C \pm 3 °C s elon 4.6.2 de la CEI 60851-5, les éprouvettes étant immergées dans l'huile. Les deux éprouvettes en forme de U r estantes sont séchées à 125 °C \pm 3 °C pendant environ 30 min, puis laissées refroidir à la tem pérature ambiante et alors contrôlées pour la tension de claquage à 105 °C \pm 3 °C s elon 4.6.2 de la CEI 60851-5, les éprouvettes étant immergées dans l'huile.

Les éprouvettes enroulées sur mandrin sont examinées en vue de déceler les craquelures éventuelles selon 5.1.2 de la CEI 60851-3.

Un seul essai est effectué. Les valeurs individuelles de tension de claquage ainsi que les craquelures éventuelles sont notées.

$$M = \frac{Y \times V}{385 \times \delta \times (W + T)}$$

οù

V est le volume du récipient sous pression en millilitres;

Y est la masse de 1 m de fil en grammes;

 δ est l'accroissement de diamètre dû à l'émail en millimètres;

W est la largeur extérieure du fil en millimètres;

T est l'épaisseur extérieure du fil en millimètres.

6.2.3.2 Resistance to transformer oil

The pressure vessel shall contain four U-shaped specimens, two mandrel bent specimens and extra pieces of wire to arrive at the volume of coating 2) specified in table 1. The paper shall be dried at a pressure of maximum 20 Pa at 90 °C \pm 3 °C for 16 h or at 105 °C \pm 3 °C for 4 h. After this preconditioning treatment, the pressure vessel shall be charged with de-aerated dry oil according to table 1.

The sealed pressure vessel shall be heated at 150 °C \pm 3 °C for 1 000 h \pm 10 h. The pressure vessel shall then be allowed to cool to room temperature, discharged and opened. Two of the U-shaped specimens shall be tested at 105 °C \pm 3 °C f or breakdown voltage in ac cordance with 4.6.2 of IEC 60851-5 with the specimens under oil. The remaining two of the U-shaped specimens shall be dried at 125 °C \pm 3 °C f or about 30 m in, allowed to cool to room temperature and then tested at 105 °C \pm 3 °C f or breakdown voltage ac cording to 4.6.2 of IEC 60851-5 with the specimens under oil.

The mandrel bent specimens shall be examined for cracks according to 5.1.2 of IEC 60851-3.

One test shall be made. The single values of breakdown voltage and any cracks shall be reported.

2) The total mass of wire in grams to provide the required volume of enamel can be calculated approximately by:

$$M = \frac{Y \times V}{385 \times \delta \times (W + T)}$$

where

 ${\it V}\$ is the volume of the pressure vessel in millilitres;

Y is the mass of 1 m of wire in grams;

 δ is the increase in thickness due to the coating in millimetres;

W is the overall width of the wire in millimetres;

T is the overall thickness of the wire in millimetres.

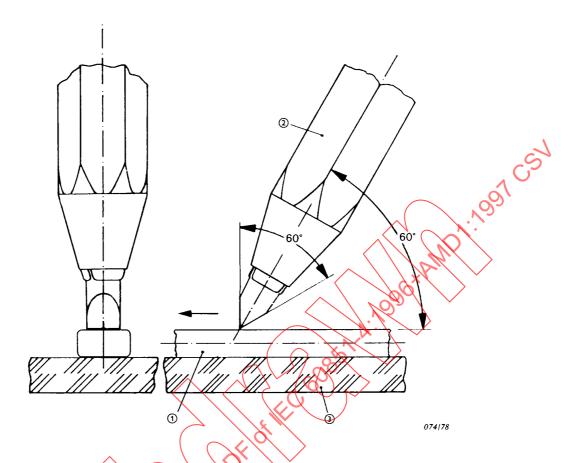


Figure 1 - Essai aux solvants: crayon et éprouvette

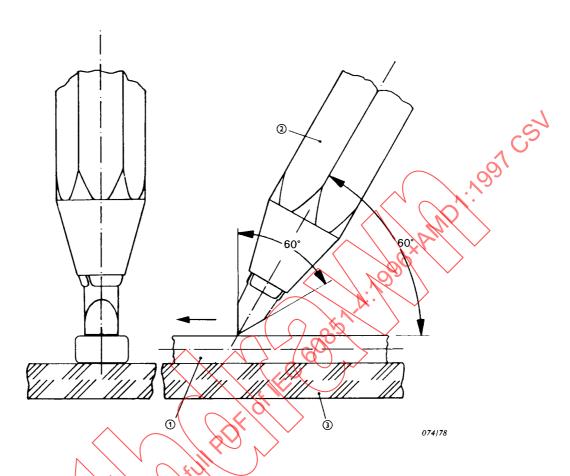


Figure 1 - Pencil and specimen for solvent test

Figure 2 – Récipient à siphon pour extraction par un réfrigérant

CCHORM

Figure 2 – Refrigerant extractable test siphon cup

Figure 3 – Condenseur

Figure 3 – Condenser coils

We at the IEC want to know how our standards are used once they are published.

The answers to this survey will help us to improve IEC standards and standard related information to meet your future needs

Would you please take a minute to answer the survey on the other side and mail or fax to:

Customer Service Centre (CSC)

International Electrotechnical Commission

3, rue de Varembé

Case postale 131

1211 Geneva 20 Switzerland

or

Fax to: CSC at +41 22 919 03 00

Thank you for your contribution to the standards making process.

A Prioritaire

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé
Case postale 131
1211 GENEVA 20
Switzerland