INTERNATIONAL STANDARD

1EC 904-9

First edition 1995-09

Photovoltaic devices

Part 9:

Solar simulator performance requirements

Dispositifs photovoltaiques

Partie 9: Exigences pour le fonctionnement des simulateurs solaires

Numbering

As from 1 January 1997 all IEC publications are issued with a designation in the $60000 \ \text{series}$.

Consolidated publications

Consolidated versions of some IEC publications including amendments are available. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Validity of this publication

The technical content of IEC publications is kept under constant review by the IEC thus ensuring that the content reflects current technology.

Information relating to the date of the reconfirmation of the publication is available in the IEC catalogue.

Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is to be found at the following IEC sources.

- IEC web site*
- Catalogue of IEC publications
 Published yearly with regular updates
 (On-line catalogue)*
- IEC Bulletin

 Available both at the IEC web site and as a printed periodical

Terminology, graphical and letter symbols

For general terminology, readers are referred to IEC 60050: International Electrotechnical Vocabulary (IEV)

For graphical symbols, and letter symbols and signs approved by the IEC for general use, readers are referred to publications IEC 60027: Letter symbols to be used in electrical technology, IEC 60417: Graphical symbols for use on equipment. Index, survey and compilation of the single sheets and IEC 60617: Graphical symbols for diagrams.

See web site address on title page.

INTERNATIONAL STANDARD

1EC 904-9

First edition 1995-09

Photovoltaic devices

Part 9:

Solar simulator performance requirements

Dispositifs photovoltaïques

Partie 9: Exigences pour le fonctionnement des simulateurs solaires

© CEI 1995 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

Bureau Central de la Commission Electrotechnique Internationale 3, rue de Varembé Genève, Suisse

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

CODE PRIX
PRICE CODE

_

Pour prix, voir catalogue en vigueur For price, see current catalogue THE ROLL OF THE RO

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PHOTOVOLTAIC DEVICES -

Part 9: Solar simulator performance requirements

FOREWORD

- 1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, the IEC publishes international Standards. Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. The IEC collaborates closely with the international Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of the IEC on technical matters, prepared by technical committees on which all the National Committees having a special interest therein are represented, express as nearly as possible, an international consensus of opinion on the subjects dealt with
- 3) They have the form of recommendations for international use published in the form of standards, technical reports or guides and they are accepted by the National Committees in that sense.
- 4) In order to promote international unification, IEC National Committees undertake to apply IEC International Standards transparently to the maximum extent possible in their national and regional standards. Any divergence between the IEC Standard and the corresponding national or regional standard shall be clearly indicated in the latter.
- 5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with one of its standards.

International Standard IEC 904-9 has been prepared by IEC technical committee 82: Solar photovoltaic energy systems.

The text of this standard is based on the following documents:

92/00/15 92/00/22	DIS	Report on voting
82(00)13 82(00)22	82(CO)15	82(CO)22

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

PHOTOVOLTAIC DEVICES -

Part 9: Solar simulator performance requirements

1 Scope

This part of IEC 904 gives requirements for solar simulators used for indoor testing of terrestrial flat plate (non-concentrating) photovoltaic devices in conjunction with a spectrally matched reference device. The output of a solar cell is a strong function of the wavelength of the incident spectral irradiance distribution. To reduce measurement errors, this standard specifies the acceptable match to the reference spectral irradiance distribution, but it should be noted that the magnitude of the error is also affected by the spectral response mismatch between the reference device and the test specimen.

This part of IEC 904 covers both pulsed and steady-state simulators.

2 Normative reference

The following normative document contains provisions which through reference in this text, constitute provisions of this part of IEC 904. At the time of publication, the edition indicated was valid. All normative documents are subject to revision, and parties to agreements based on this part of IEC 904 are encouraged to investigate the possibility of applying the most recent edition of the normative document indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

IEC 904-3: 1989, Photovoltaic devices - Part 3: Measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data

3 Type of simulators

Two types of solar simulators are commercially available for photovoltaic performance testing. The "steady-state" type (for example, filtered xenon, dichroic filtered tungsten - ELH or modified mercury vapour with tungsten electrodes) is suitable for single cells and small modules. The pulsed type, consisting of one or two long-arc xenon flash lamps, is better for large modules as it can irradiate large areas uniformly. Another advantage of this type is that there is negligible heat input to the test cells, so that they remain uniformly at the ambient temperature which can be easily and accurately measured. The pulse-forming network and the data acquisition and processing equipment are generally supplied as part of the simulator.

4 Simulator requirements

4.1 Total irradiance

The simulator shall be capable of producing the standard irradiance of 1000 W \cdot m⁻² (as measured with a reference device) at the test plane, and higher or lower irradiance levels as may be required.

4.2 Spectral match

The spectral irradiance distribution of the simulator shall match the reference spectral irradiance distribution to the extent indicated for the relevant class of simulator in table 1.

4.3 Uniformity

The irradiance in the test plane over the full extent of the designated test area, as measured with a suitable detector(s), shall be uniform to the degree specified for the relevant class of simulator in table 1.

For single cell and sub-assembly testing, the largest dimension of the detector shall be less than one-half of the smallest dimension of the cell.

In the case of a module, the detector shall be no bigger than a single component cell.

where the maximum and minimum irradiance is that measured with the detector(s) over the designated test area (corrected for temporal instability).

4.4 Temporal stability

During the time of data acquisition, the irradiance shall be stable to the degree specified for the relevant class of simulator in table 1.

where the maximum and minimum irradiance is that measured with the detector at any particular point on the test plane during the time of data acquisition.

NOTE - For the special case of polsed simulators, the temporal stability requirements apply only to the irradiance levels present during the actual measurement of each data point.

4.5 Characteristics check

The characteristics described in 4.1 to 4.4 shall be checked whenever there is any change in class A or B simulators (including aging) which could affect these characteristics beyond acceptable limits. The detectors used shall have an angle of view sufficient to accept all the incident light at any point on the test plane.

5 Data sheet

The following information shall be recorded on a data sheet that shall accompany each simulator:

- date of issue of data sheet;
- date of measurement;
- manufacturer;
- type;
- class (determined by the lowest classification of an individual characteristic);

- location of test plane;
- nominal test area;
- nominal lamp current;
- nominal irradiance;
- spectral irradiance distribution;
- non-uniformity of irradiance over the nominated area;
- maximum angle subtended by the light source (including reflected light) at any point on the test plane;
- temporal instability;
- for pulsed simulators, the characteristics of the pulse;
- for pulsed simulators, the time intervals between data points.

Table 1 – Simulator classification

Characteristic		Class A	Class B	Class C
Spectral match (ratio of the actual perc irradiance to the required percentage s for each wavelength interval)	•	0,75 - 1,25	0,6-1,4	0,4 - 2,0
Non-uniformity of irradiance		≥ ±2 %	≥±5 %	≤±10 %
Temporal instability		≤±2 %	≤ ±5 %	≤ ±10 %

Table 2 - Reference spectral irradiance distribution*

Wavelength (λ) interval.	Percentage of total irradiance between 0,4 and 1,1 µm
0,4 to 0,5	18,5
0,5 to 0,6	20,1
0.6 % 0.7	18,3
0,7 to 0,8	14,8
0,8 to 0,9	12,2
0,9 to 1,1	16,1

^{*} In accordance with the global reference solar spectral irradiance distribution given in IEC 904-3.