Edition 3.0 2010-01 # INTERNATIONAL STANDARD Multicore and symmetrical pair/quad cables for digital communications – Part 6: Symmetrical pair/quad cables with transmission characteristics up to 1 000 MHz - Work area wiring - Sectional specification # THIS PUBLICATION IS COPYRIGHT PROTECTED # Copyright © 2010 IEC, Geneva, Switzerland All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information. IEC Central Office 3, rue de Varembé CH-1211 Geneva 20 Switzerland Email: inmail@iec.ch About the IEC Web: www.iec.ch The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies. # **About IEC publications** The technical content of IEC publications is kept under constant review by the IEC. Rease make sure that you have the latest edition, a corrigenda or an amendment might have been published. ■ Catalogue of IEC publications: www.iec.ch/searchpub The IEC on-line Catalogue enables you to search by a variety of criteria reference number, text, technical committee,...). It also gives information on projects, withdrawn and replaced publications/ ■ IEC Just Published: www.iec.ch/online news/justpub Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available on-line and also by email. ■ Electropedia: www.electropedia.org The world's leading online dictionary of electronic and electrical serms containing more than 20 000 terms and definitions in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical Vocabulary online. ■ Customer Service Centre: www.ies hstore/custsery If you wish to give us your feedback on this publication of need further assistance, please visit the Customer Service Centre FAQ or contact us: Email: csc@iec.ch Tel.: +41 22 919 02 11 Fax: +41 22 919 03 00 Edition 3.0 2010-01 # INTERNATIONAL STANDARD Multicore and symmetrical pair/quad cables for digital communications – Part 6: Symmetrical pair/quad cables with transmission characteristics up to 1 000 MHz – Work area wiring – Sectional specification INTERNATIONAL ELECTROTECHNICAL COMMISSION PRICE CODE R ICS 33.120.20 ISBN 978-2-88910-426-0 # CONTENTS | FO | FOREWORD4 | | | | | | |----|-----------------------------|-----------|---|-----------------|--|--| | 1 | Scope6 | | | | | | | 2 | Norm | ative re | ferences | .6 | | | | 3 | Terms and definitions | | | | | | | 4 | Installation considerations | | | | | | | | 4.1 | | c conditions | | | | | 5 | | | d cable construction | | | | | Ü | 5.1 | | Il remarks | | | | | | 5.1 | | construction | . 1 | | | | | 5.2 | 5.2.1 | Conductor | . 1
7 | | | | | | 5.2.2 | Insulation | . <i>1</i> | | | | | | 5.2.3 | Cable element | . <i>1</i> | | | | | | 5.2.4 | Cable make-up | . <i>ነ</i>
ጸ | | | | | | 5.2.5 | Screening of the cable core | . • | | | | | | 5.2.6 | Sheath | 8 | | | | | | 527 | Identification | .8 | | | | 6 | Chara | acteristi | cs and requirements | .8 | | | | | 6.1 | | | ρ | | | | | 6.2 | Flectric | cal characteristics and tests | 9 | | | | | 0.2 | 6.2.1 | Conductor resistance | .9 | | | | | | 6.2.2 | Decistance unhalance \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | a | | | | | | 6.2.3 | Dielectric strength | .9 | | | | | | 6.2.4 | Insulation resistance. | .9 | | | | | | 6.2.5 | Mutual capacitance | | | | | | | 6.2.6 | Capacitance unbalance | .9 | | | | | | 6.2.7 | Transfer impedance. | | | | | | | 6.2.8 | Coupling attenuation | 10 | | | | | | 6.2,9 | Current-carrying capacity | 10 | | | | | 6.3 | Transm | nission characteristics | | | | | | < | 6.3.1 | Welocity of propagation (phase velocity) | 10 | | | | | | · | Phase delay and differential delay (delay skew) | | | | | | | 6.3.3 | Attenuation | 11 | | | | | • | 6.3.4 | Unbalance attenuation | 11 | | | | | | 6.3.5 | Near-end crosstalk (NEXT) | 12 | | | | | | 6.3.6 | Attenuation to crosstalk ratio far end (PS ACR-F) | 12 | | | | | | 6.3.7 | Alien (exogenous) near end crosstalk | 13 | | | | | | 6.3.8 | Alien (exogenous) far-end crosstalk (AACR-F) | 13 | | | | | | 6.3.9 | Alien (exogenous) crosstalk of bundled cables | 14 | | | | | | 6.3.10 | Impedance | 14 | | | | | | 6.3.11 | Return loss (RL) | 15 | | | | | 6.4 | | nical and dimensional characteristics and requirements | 15 | | | | | | 6.4.1 | Dimensional requirements | | | | | | | 6.4.2 | Elongation at break of the conductors | | | | | | | 6.4.3 | Tensile strength of the insulation | | | | | | | 6.4.4 | Elongation at break of the insulation | | | | | | | 6.4.5 | Adhesion of the insulation to the conductor | 16 | | | | | 6.4.6 | Elongation at break of the sheath | 16 | |------------|---------|--|-----| | | 6.4.7 | Tensile strength of the sheath | 16 | | | 6.4.8 | Crush test of the cable | | | | 6.4.9 | Impact test of the cable | 16 | | | 6.4.10 | Bending under tension | 16 | | | 6.4.11 | Repeated bending of the cable | 16 | | | 6.4.12 | Tensile performance of the cable | 16 | | | 6.4.13 | Shock-test requirements of the cable | 16 | | | 6.4.14 | Bump-test requirements of the cable | 16 | | | 6.4.15 | Vibration-test requirements of a cable | 16 | | 6.5 | Enviror | nmental characteristics | 17 | | | 6.5.1 | Shrinkage of the insulation | 17 | | | 6.5.2 | Wrapping test of the insulation after thermal ageing | 17 | | | 6.5.3 | Bending test of the insulation at low temperature | 17 | | | 6.5.4 | Elongation at break of the sheath after ageing | 17 | | | 6.5.5 | Tensile strength of the sheath after ageing | 17 | | | 6.5.6 | Sheath pressure test at high temperature | 17 | | | 6.5.7 | Cold bend test of the cable | 17 | | | 6.5.8 | Heat shock test | 17 | | | 6.5.9 | Damp heat steady state | 17 | | | 6.5.10 | Solar radiation | 17 | | | | Solvents and contaminating fluids | | | | 6.5.12 | Salt mist and sulphur dioxide | 17 | | | | Water immersion | | | | 6.5.14 | Hygroscopicity | 18 | | | | Wicking | | | | | Flame propagation characteristics of a single cable | | | | | Flame propagation characteristics of bunched cables | | | | | Halogen gas evalution | | | | | Smoke generation | | | | | Toxic gas emission | | | | | Integrated fire test | | | | | to the blank detail specification | | | Bibliograp | hy | | 20 | | | C | | | | Figure 1 🔫 | Imped | ance template | 15 | | | | | _ | | | | categories | | | | | er impedance | | | Table 3 – | Couplir | ng attenuation | 10 | | Table 4 – | Attenua | ation, constant values | 11 | | Table 5 – | Near-e | nd unbalance attenuation | 12 | | Table 6 – | Worst p | pair PS NEXT values | 12 | | Table 7 – | Worst p | pair PS ACR-F | 13 | | Table 8 – | PS ANE | XT | 13 | | | | PR-F (PS AELFEXT) | | | | | n loss | | | | | | . • | # INTERNATIONAL ELECTROTECHNICAL COMMISSION # MULTICORE AND SYMMETRICAL PAIR/QUAD CABLES FOR DIGITAL COMMUNICATIONS – # Part 6: Symmetrical pair/quad cables with transmission characteristics up to 1 000 MHz – Work area wiring – Sectional specification #### **FOREWORD** - 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Quides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. - 2) The formal decisions or agreements of IEC on technical matters express as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. - 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. - 4) In order to promote international uniformity, IEC National committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. - 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. - 6) All users should ensure that they have the latest edition of this publication. - 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising but of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. - 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication. - 9) Attention of drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. International Standard IEC 61156-6 has been prepared by subcommittee 46C: Wires and symmetric cables, of IEC technical committee 46: Cables, wires, waveguides, r.f. connectors, r.f. and microwave passive components and accessories. This third edition cancels and replaces the second edition published in 2007. This third edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition: - a) new requirements for new cables Cat6_A, Cat7_A; - b) revised requirements and tests for the cables. The text of this standard is based on the following documents: | FDIS | Report on voting | |--------------|------------------| | 46C/903/FDIS | 46C/908/RVD | Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table. This publication has been drafted in accordance with the ISO/IEC Directives, Part 2. This standard shall be read in conjunction with IEC 61156-1:2007. The list of all the parts of the IEC 61156 series, under the general title. Multicore and symmetrical pair/quad cables for digital communications, can be found on the IEC website. The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be - · reconfirmed; - · withdrawn; - · replaced by a revised edition, or - amended. A bilingual version of this publication may be issued at a later date. # MULTICORE AND SYMMETRICAL PAIR/QUAD CABLES FOR DIGITAL COMMUNICATIONS – # Part 6: Symmetrical pair/quad cables with transmission characteristics up to 1 000 MHz – Work area wiring – Sectional specification # 1 Scope This part of IEC 61156 makes reference to IEC 61156-1. The cables described herein are intended primarily for work area wiring as defined in ISO/IEC 11801 and ISO/IEC 24702. It covers individually screened, common screened and unscreened pairs or guads. The transmission characteristics and the frequency range (see Table 1) of the cables are specified at 20 °C. Cable designation Category 5e Category 6 Category 7 Table 1 - Cable categories These cables can be used for various communication channels which use as many as four pairs simultaneously. In this sense, this sectional specification provides the cable characteristics required by system developers to evaluate new systems. The cables covered by this standard are intended to operate with voltages and currents normally encountered in communication systems. These cables are not intended to be used in conjunction with low impedance sources, for example the electric power supplies of public utility mains; they are intended to be used to support the delivery of low voltage and power applications such as IEEE's 802.3af (Power over Ethernet) and 802.3at (Power over Ethernet Plus). # 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 61156-1:2007, Multicore and symmetrical pair/quad cables for digital communications – Part 1: Generic specification IEC 61156-6-1, Multicore and symmetrical pair/quad cables for digital communications – Part 6-1: Symmetrical pair/quad cables with transmission characteristics up to 1 000 MHz – Work area wiring – Blank detail specification IEC 62153-4-9, Metallic communication cable test methods – Part 4-9: Electromagnetic compatibility (EMC) – Coupling attenuation of screened balanced cables, triaxial method # 3 Terms and definitions For the purposes of this document, the terms and definitions given in IEC 61156-1 apply. # 4 Installation considerations See Clause 4 of IEC 61156-1. ## 4.1 Climatic conditions Under static conditions, the cables shall operate in the temperature range from -20 °C to +60 °C. The conductor and cable temperature dependence is specified for screened and unscreened cables and should be taken into account for the design of an actual cabling system. # 5 Materials and cable construction #### 5.1 General remarks The choice of materials and cable construction shall be suitable for the intended application and installation of the cable. Particular care shall be taken to meet any special requirements for EMC and fire performance (such as burning properties, smoke generation, evolution of halogen gas, etc.). # 5.2 Cable construction The cable construction shall be in accordance with the details and dimensions given in the relevant detail specification. # 5.2.1 Conductor The conductor shall be a solid or stranded annealed copper, in accordance with 5.2.1 of IEC 61156-1 and should have a nominal diameter between 0,4 mm and 0,65 mm. A conductor diameter of up to 0.8 mm may be used. # 5.2.2 Insulation The conductor shall be insulated with a suitable material. Examples of suitable materials are - polyolefin; - fluoropolymer; - low-smoke zero-halogen thermoplastic material. # 5.2.3 Cable element The cable element shall be a pair or quad and shall be twisted. ## 5.2.3.1 Screening of the cable element When required, the screen for the cable element shall be in accordance with 5.2.3.1 of IEC 61156-1. # 5.2.4 Cable make-up A spacer may be used to separate the cable elements. The cable elements, including spacers, shall be assembled to form the cable core. The core of the cable may be wrapped with a protective layer of non-hygroscopic and non-wicking material. # 5.2.5 Screening of the cable core When required by the relevant detail specification, a screen for the cable core shall be provided. The screen shall be in accordance with 5.2.5 of IEC 61156-1. ## 5.2.6 Sheath The sheath material shall consist of a suitable material. Examples of suitable materials are - polyolefin; - PVC; - fluoropolymer; - low-smoke zero-halogen thermoplastic material. The sheath shall be continuous, having a thickness as uniform as possible. A non-metallic ripcord may be provided When provided, the ripcord shall be non-hygroscopic and non-wicking. The colour of the sheath is not specified but it should be specified in the relevant detail specification. # 5.2.7 Identification Each length of cable shall be identified as to the supplier and, when required, a traceability code, using one of the following methods: - appropriately coloured threads or tapes, - with a printed tape, - printing on the cable core wrapping, - marking on the sheath. Additional markings, such as length marking, etc., are permitted. If used, such markings shall refer to this specification. The finished cable shall be adequately protected for storage and shipment. # 6 Characteristics and requirements # 6.1 General remarks This clause lists the characteristics and minimum requirements of a cable complying with this standard. Test methods shall be in accordance with Clause 6 of IEC 61156-1. #### 6.2 Electrical characteristics and tests NOTE The tests should be carried out on a cable length of not less than 100 m, unless otherwise specified. #### 6.2.1 Conductor resistance The maximum conductor resistance at, or corrected to, 20 $^{\circ}$ C shall not exceed 14,5 Ω /100 m of cable. ## 6.2.2 Resistance unbalance # 6.2.2.1 Resistance unbalance within a pair The resistance unbalance shall not exceed 2 %. # 6.2.2.2 Resistance unbalance between pairs The pair-to-pair resistance unbalance shall not exceed 4 %. # 6.2.3 Dielectric strength There shall be no failures when a test is performed on conductor/conductor and, where screen(s) are present, a conductor/screen with 1,0 kV d.c. for 1 min or, alternatively, with 2,5 kV d.c. for 2 s. An a.c. voltage may be used. The a.c. voltage levels in these cases shall be 0,7 kV a.c. for 1 min or, alternatively, 1,7 kV a.c. for 2 s. # 6.2.4 Insulation resistance The test shall be performed on - conductor/conductor; - conductor/screen (when present). The minimum insulation resistance at, or corrected to, 20 °C shall be not less than 5 000 M Ω .m. # 6.2.5 Mutual capacitance The mutual capacitance is not specified but may be indicated in the relevant detail specification. # 6.2.6 Capacitance unbalance The maximum capacitance unbalance pair to ground shall not exceed 1 600 pF/km at a frequency of 800 Hz or 1 000 Hz. # 6.2.7 Transfer impedance For cables containing a screen or screens, two grades of performance are recognized for transfer impedance. The transfer impedance shall not exceed the values shown in Table 2 at the discrete frequencies indicated for each grade. | Frequency
MHz | Maximum surface transfer impedance $m\Omega/m$ | | | |------------------|--|---------|--| | | Grade 1 | Grade 2 | | | 1 | 10 | 50 | | | 10 | 10 | 100 | | | 30 | 30 | 200 | | | 100 | 100 | 1 000 | | Table 2 - Transfer impedance # 6.2.8 Coupling attenuation Three types of performance are recognized for coupling attenuation. When measured using the absorbing clamp method, the coupling attenuation in the frequency range from f = 30.0 MHz to 1 000 MHz shall meet the requirements indicated in Table 3. Coupling attenuation Coupling attenuation type Frequency range MH 30 to 100 ≥85 Type I 100 to 1,000 ≥65 – 20 × log₁₀ (f/100) 30 to 100 ≥55 Type II 100 to 1 000 \geq 55 - 20 × log₁₀ (f/100) 30 to 100 ≥40 Type III 100 to 1 000 \geq 40 - 20 × $\log_{10} (f/100)$ NOTE For screened cables, the triaxial method of IEC 62153-4-9 may also be used. Table 3 - Coupling attenuation # 6.2.9 Current-carrying capacity The maximum current-carrying capacity is not specified but may be indicated in the relevant detail specification. # 6.3 Transmission characteristics NOTE All the tests should be carried out on a cable length of 100 m, unless otherwise specified. Cat 7a test lengths should be 50 m. # 6.3.1 Velocity of propagation (phase velocity) NOTE The requirements are not specified but may be indicated in the relevant detail specification. # 6.3.2 Phase delay and differential delay (delay skew) # 6.3.2.1 Phase delay The phase delay, τ , shall not exceed the value obtained from Equation (1) in the frequency range from 4 MHz to the maximum referenced frequency, $$\tau = 534 + \frac{36}{\sqrt{f}}$$ (ns/100 m) (1) where f is the frequency in MHz. # 6.3.2.2 Differential delay (delay skew) When measured at (20 \pm 1) °C, the maximum delay skew between any two pairs shall not exceed 45 ns/100 m for cat5e, cat6, cat6_A cables and 25 ns/100 m for cat 7 and cat 7_A cables in the frequency range from 4 MHz to the maximum referenced frequency. #### 6.3.3 Attenuation # 6.3.3.1 Attenuation at 20 °C ambient temperature The maximum attenuation α of any pair in the frequency range indicated in Table 4 shall not exceed the value obtained from Equation (2) using the corresponding values of the constants a, b and c given in Table 4. $$\alpha = a \times \sqrt{f} + b \times f + \frac{c}{\sqrt{f}}$$ (dB/100 m) (2) where f is the frequency in MHz. Table 4 - Attenuation, constant values | Cable designation | Frequency range | Constants | | | |-------------------------|-----------------|-----------|----------|-------| | Cable designation | MHz | a | b | С | | Category 5e | 1 to 100 | 2,866 1) | 0,033 | 0,300 | | Category 6 | 1 to 250 | 2,730 | 0,026 | 0,375 | | Category 6 _A | 1 to 500 | 2,730 | 0,0136 5 | 0,375 | | Category 7 | 1 to 600 | 2,700 | 0,015 | 0,300 | | Category 7 | 1 to 1 000 | 2,700 | 0,007 5 | 0,300 | The cable performance between 1 MHz and 4 MHz is achieved by design only and it is therefore not necessary to test to this performance below 4 MHz. # 6.3.3.2 Attenuation at elevated operating temperature The increase in maximum attenuation obtained from Equation (2) due to elevated temperature shall not be more than: - for unscreened cables, 0,4 %/°C, for the temperature range from 20 °C to 40 °C and 0,6%/°C for the temperature range from 40 °C to 60 °C, - for screened cables, 0,2 %/°C in the temperature range from 20 °C to 60 °C. # 6.3.4 Unbalance attenuation Two levels of performance are recognized for unbalance attenuation. The minimum near-end unbalance attenuation (transverse conversion loss or TCL) shall be not less than the value obtained from Equation (3) (level 1) and from Equation (4) (level 2), in the frequency ranges given in Table 5. $$TCL = 40.0 - 10 \times \log_{10} (f) (dB)$$ (3) $$TCL = 50.0 - 10 \times \log_{10} (f) (dB)$$ (4) ^{1) 2,866} was arrived at by 1,5 × 1,91 = 2,866 as an approximate 150 % factor to accommodate smaller conductor stranding and also ILD since 2,866/1,5=1,9106 fitted the old 1,801 model the actual 150 % attenuation should be a factor of 2,951. | Cable category | Frequency range
MHz | |-------------------------|------------------------| | Category 5e | 1 to 100 | | Category 6 | 1 to 250 | | Category 6 _A | 1 to 250 | | Category 7 | 1 to 250 | | Category 7 _A | 1 to 250 | Table 5 - Near-end unbalance attenuation The minimum equal-level far-end unbalance attenuation (equal-level transverse conversion transfer loss or *EL TCTL*) for all categories shall not be less than the value obtained from Equation (5) for all frequencies in the range from 1 MHz to 30 MHz. $$EL\ TCTL = 35,0 - 20 \times \log_{10}(f) \text{ (dB)}/(00 \text{ m})$$ (5) # 6.3.5 Near-end crosstalk (NEXT) The worst pair power sum near end crosstalk, *PS NEXT*, in the frequency range indicated in Table 6 shall not be less than the value obtained from Equation (6) using the corresponding value of *PS NEXT*(1) given in Table 6. $$PS NEXT(f) = PS NEXT(1) - 15 \times \log_{10}(f)$$ (dB) (6) Table 6 - Worst pair PS NEXT values | Cable designation | Frequency range | PS NEXT
dB | |-------------------------|-----------------|---------------| | Category 5e | 1 to 100 | 62,3 | | Catégory 6 | 1 to 250 | 72,3 | | Category 6 _A | 1 to 500 | 72,3 | | Category 7 | 1 to 600 | 99,4 | | Category 7 _A | 1 to 1 000 | 105,4 | The cable performance between 1 MHz and 4 MHz is achieved by design only and it is therefore not necessary to test for this performance below 4 MHz. For those frequencies where the calculated value of *PS NEXT* is greater than 75 dB, the requirement shall be 75 dB. The minimum pair-to-pair NEXT for any pair combination shall be at least 3 dB better than the $PS\ NEXT$ for any pair. # 6.3.6 Attenuation to crosstalk ratio far end (PS ACR-F) The worst pair power sum attenuation to crosstalk ratio far end, PS ACR-F, in the frequency range indicated in Table 7 shall not be less than the value obtained from Equation (7) using the corresponding value of the PS ACR-F(1) given in Table 7. $$PS \ ACR - F(f) = PS \ ACR - F(1) - 20 \times \log_{10}(f) \ (dB / 100 m)$$ (7) Table 7 - Worst pair PS ACR-F | Cable designation | Frequency range
MHz | <i>PS ACR-F</i> dB/ 100 m | |-------------------------|------------------------|---------------------------| | Category 5e | 1 to 100 | 61,0 | | Category 6 | 1 to 250 | 65,0 | | Category 6 _A | 1 to 500 | 65, 0 | | Category 7 | 1 to 600 | 91,0 | | Category 7 _A | 1 to 1 000 | 91, 0 | NOTE 1 If FEXT loss is greater than 70 dB, ACR-F loss may not be measured. NOTE 2 The cable performance between 1 MHz and 4 MHz is achieved by design only and it is therefore not necessary to test for this performance below 4 MHz. For those frequencies where the calculated value of *PS ACR-F* is greater than 75 dB, the requirement shall be 75 dB. The minimum pair-to-pair *ACR-F* for any pair combination shall be at least 3 dB better than the *PS ACR-F* for any pair. # 6.3.7 Alien (exogenous) near end crosstalk Alien (exogenous) near-end crosstalk is only a measurement consideration for unscreened cables. For Type I and Type II screened cables as defined in Table 3, the alien (exogenous) near-end crosstalk is proven by design. The PS ANEXT (power sum alien (exogenous near-end crosstalk) of cable when tested in accordance with 6.3.7.1 of IEC 61156-1 shall be not less than the values obtained from Table 8. Table 8 - PS ANEXT | Category | Frequency range
MHz | Minimum <i>PS ANEXT</i>
dB | | | |---|------------------------|--------------------------------|--|--| | Cat6 | 1 ≤ <i>f</i> ≤ 500 | $92,5-15 \times \log_{10}(f)$ | | | | CatZ | 1 ≤ <i>f</i> ≤ 1 000 | $105 - 15 \times \log_{10}(f)$ | | | | NOTE Calculated values greater than 67 dB revert to a value of 67 dB. | | | | | # 6.3.8 Aljen (exogenous) far-end crosstalk (AACR-F) Alien (exogenous) far end crosstalk is only a measurement consideration for unscreened cables. For Type I and Type II screened cables as defined in Table 3, the alien (exogenous) far-end crosstalk (ACR-F) is proven by design. The *PS AACR-F* (power-sum alien attenuation to crosstalk ratio far end) of cable when tested in accordance with 6.3.8 of IEC 61156-1 shall be not less than the values obtained from Table 9. Table 9 - PS AACR-F (PS AELFEXT) | Category | Frequency range
MHz | Minimum <i>PS AACR-F</i>
dB | | | |--|------------------------|--------------------------------|--|--| | Cat6 _A | 1 ≤ <i>f</i> ≤ 500 | $78,2-20 \times \log_{10}(f)$ | | | | Cat7 _A $1 \le f \le 1000$ $92 - 20 \times \log_{10}(f)$ | | | | | | Calculated values greater than 67 dB revert to a value of 67 dB. | | | | | # 6.3.9 Alien (exogenous) crosstalk of bundled cables The minimum requirement is not specified but should be stated in the relevant detail specification. # 6.3.10 Impedance The measured characteristic impedance in accordance with 6.3.10.1.1 of IEC 61156-1, for each cable category shall fall within the impedance template limits given in Figure 1. The relevant template limits are derived using Equation (8), Equation (9) and Equation (10) for the corresponding cable category, frequency range and return loss requirement given in Table 10. Cables that meet the requirements of the template are not required to be measured for return loss; alternately, cables that meet the return loss requirements given in 6.3.11 are not required to be measured for characteristic impedance. The upper impedance limit, Zu of the template is given by Equation (8), $$Z_{\mathcal{U}} = Z_{\mathcal{O}} \times \left(\frac{1 + |\rho|}{1 - |\rho|} \right) \tag{8}$$ The lower impedance limit, Zl of the template is given by Equation (9), $$Zl = Z_0 \times \left(\frac{1 - |\rho|}{1 + |\rho|}\right) \tag{9}$$ where Z_0 is 100 Ω ; ρ is the reflection coefficient. The reflection coefficient, ρ , is calculated from Equation (10). $$|\rho| = 10^{-\frac{RL}{20}} \tag{10}$$ where RL is the return loss given in 6.3.11. Figure 1 - Impedance template # 6.3.11 Return loss (RL) The minimum return loss of any pair in the frequency range indicated in Table 10 shall not be less than the values in Table 10 for the respective categories. Table 10 - Return loss | Cable category | Frequency range | Return loss
dB | |--------------------------------------|-----------------|--------------------------------------| | All (see Note 1) | 100 | $20.0 + 5.0 \times \log_{10}(f)$ | | All | 10 to 20 | 25,0 | | Category 5e | 20 to 100 | $25.0 - 8.6 \times \log_{10} (f/20)$ | | Category 6 | 20 to 250 | $25.0 - 8.6 \times \log_{10} (f/20)$ | | Category 6 _A (see Note 2) | 20 to 500 | $25.0 - 8.6 \times \log_{10} (f/20)$ | | Category ₹ (see Note 2) | 20 to 600 | $25.0 - 8.6 \times \log_{10} (f/20)$ | | Category 7 _A (see Note 2) | 20 to 600 | $25.0 - 8.6 \times \log_{10} (f/20)$ | | Category 7A | 600 to 1 000 | $15,6 - 8,6 \times \log_{10}(f/600)$ | NOTE: The cable performance between 1 MHz and 4 MHz is achieved by design only and it is therefore not necessary to test for this performance below 4 MHz. NOTE 2 Calculated values below 15,6 dB revert to a 15,6 dB plateau. # 6.4 Mechanical and dimensional characteristics and requirements # 6.4.1 Dimensional requirements The overall diameter of insulation, the nominal thickness of the sheath and the maximum overall diameter of the sheath are not specified but shall be indicated in the relevant detail specification. # 6.4.2 Elongation at break of the conductors The minimum elongation of the conductor shall be not less than 8 %. # 6.4.3 Tensile strength of the insulation The tensile strength of the insulation is not specified but may be indicated in the relevant detail specification. # 6.4.4 Elongation at break of the insulation The minimum value of the elongation at break of the insulation shall be not less than 100 %. # 6.4.5 Adhesion of the insulation to the conductor The adhesion of the insulation to the conductor is not specified but may be indicated in the relevant detail specification. # 6.4.6 Elongation at break of the sheath The minimum value of the elongation at break of the sheath shall not be less than 100%. # 6.4.7 Tensile strength of the sheath The minimum tensile strength of the sheath shall not be less than MPa # 6.4.8 Crush test of the cable The minimum force shall be 1 000 N. # 6.4.9 Impact test of the cable The impact resistance of the cable is not specified but may be indicated in the relevant detail specification. # 6.4.10 Bending under tension The bending performance of the cable is not specified but may be indicated in the relevant detail specification. # 6.4.11 Repeated bending of the cable The cable shall withstand 500 cycles without cracking of the insulation or sheath or loss of continuity in any metallic components. # 6.4.12 Tensile performance of the cable The tensile performance of the cable is not specified but may be indicated in the relevant detail specification. # 6.4.13 Shock-test requirements of the cable Not applicable. # 6.4.14 Bump-test requirements of the cable Not applicable. # 6.4.15 Vibration-test requirements of a cable Not applicable. #### 6.5 Environmental characteristics # 6.5.1 Shrinkage of the insulation When tested at (100 ± 2) °C for 1 h, the shrinkage of the insulation shall not exceed 5 %. The length of the sample shall be 150 mm, and the shrink-back shall be measured as the sum from both ends. # 6.5.2 Wrapping test of the insulation after thermal ageing Not applicable. # 6.5.3 Bending test of the insulation at low temperature The bending test of the insulated conductor shall be carried out at (-20 ± 2) °C. The mandrel diameter shall be 6 mm. There shall be no cracks in the insulation. # 6.5.4 Elongation at break of the sheath after ageing The ageing regime shall be seven days at (100 \pm 2) °C. The tensile strength shall be not less than 50 % of the unaged value. # 6.5.5 Tensile strength of the sheath after ageing The ageing regime shall be seven days at (100 ± 2) °C. The elongation shall be not less than 70 % of the unaged value. # 6.5.6 Sheath pressure test at high temperature Not applicable. # 6.5.7 Cold bend test of the cable The bending test shall be carried out at (-20 ± 2) °C. The mandrel diameter shall be eight times the overall diameter of the cable. There shall be no cracks in the sheath. # 6.5.8 Heat shock test Not applicable. # 6.5.9 Damp heat steady state Not applicable. #### 6.5.10 Solar radiation The resistance to solar radiation is not specified but may be indicated in the relevant detail specification. # 6.5.11 Solvents and contaminating fluids The resistance to solvents and contaminating fluids is not specified but may be indicated in the relevant detail specification # 6.5.12 Salt mist and sulphur dioxide Not applicable.