

IEC TR 62453-41
Edition 2.0 2016-04

TECHNICAL
REPORT

Field device tool (FDT) interface specification –
Part 41: Object model integration profile – Common object model

IE
C

 T
R

 6
24

53
-4

1:
20

16
-0

4(
en

)

®

colour
inside

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2016 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé Fax: +41 22 919 03 00
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue
The stand-alone application for consulting the entire
bibliographical information on IEC International Standards,
Technical Specifications, Technical Reports and other
documents. Available for PC, Mac OS, Android Tablets and
iPad.

IEC publications search - www.iec.ch/searchpub
The advanced search enables to find IEC publications by a
variety of criteria (reference number, text, technical
committee,…). It also gives information on projects, replaced
and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published
details all new publications released. Available online and
also once a month by email.

Electropedia - www.electropedia.org
The world's leading online dictionary of electronic and
electrical terms containing 20 000 terms and definitions in
English and French, with equivalent terms in 15 additional
languages. Also known as the International Electrotechnical
Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary
65 000 electrotechnical terminology entries in English and
French extracted from the Terms and Definitions clause of
IEC publications issued since 2002. Some entries have been
collected from earlier publications of IEC TC 37, 77, 86 and
CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer Service
Centre: csc@iec.ch.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

mailto:info@iec.ch
http://www.iec.ch/
http://webstore.iec.ch/catalogue
http://www.iec.ch/searchpub
http://webstore.iec.ch/justpublished
http://www.electropedia.org/
http://std.iec.ch/glossary
http://webstore.iec.ch/csc
mailto:csc@iec.ch
https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41
Edition 2.0 2016-04

TECHNICAL
REPORT

Field device tool (FDT) interface specification –
Part 41: Object model integration profile – Common object model

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 25.040.40; 35.100.05; 35.110

ISBN 978-2-8322-3337-5

® Registered trademark of the International Electrotechnical Commission

®

 Warning! Make sure that you obtained this publication from an authorized distributor.

colour
inside

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 2 – IEC TR 62453-41:2016  IEC 2016

CONTENTS

FOREWORD ... 12
INTRODUCTION ... 14
1 Scope .. 15
2 Normative references... 15
3 Terms, definitions, abbreviations and conventions .. 15

3.1 Terms and definitions .. 15
3.2 Abbreviations .. 16
3.3 Conventions .. 16

4 Implementation concept ... 17
4.1 Technological orientation ... 17
4.2 Implementation of abstract FDT object model .. 17

4.2.1 General ... 17
4.2.2 FDT Frame Application (FA) ... 17
4.2.3 Device Type Manager (DTM) .. 18
4.2.4 Presentation object .. 19
4.2.5 FDT-Channel object ... 19

4.3 Object interaction .. 19
4.3.1 Parameter interchange via XML .. 19
4.3.2 Examples of usage ... 21

4.4 Implementation of DTM data persistence and synchronization 23
4.4.1 Persistence overview ... 23
4.4.2 Persistence interfaces .. 24

4.5 DTM state machine ... 24
5 General concepts .. 26

5.1 General ... 26
5.2 Overview of task related FDT interfaces... 26
5.3 Return values of interface methods .. 29
5.4 Dual interfaces .. 29
5.5 Unicode .. 29
5.6 Asynchronous versus synchronous behavior .. 29
5.7 ProgIds ... 30
5.8 Implementation of DTM, DTM device type and hardware identification

information .. 30
5.8.1 Device identification ... 30
5.8.2 Protocol-specific transformation style sheet (xsl) .. 33
5.8.3 Semantic identification information ... 33
5.8.4 Device assignment ... 33
5.8.5 Regular expression specification .. 34

5.9 Implementation of slave redundancy .. 34
5.9.1 General ... 34
5.9.2 Topology import/export ... 35

6 Implementation of FDT services: FDT interfaces ... 35
6.1 Overview of the FDT interfaces.. 35
6.2 FDT objects .. 35

6.2.1 FDT object model ... 35
6.2.2 Avalability of interface methods .. 38

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 3 –

6.3 Device Type Manager ... 42
6.3.1 Interface IDtm .. 42
6.3.2 Interface IDtm2 .. 51
6.3.3 Interface IDtmActiveXInformation ... 52
6.3.4 Interface IDtmApplication ... 54
6.3.5 Interface IDtmChannel ... 56
6.3.6 Interface IDtmDocumentation ... 57
6.3.7 Interface IDtmDiagnosis ... 58
6.3.8 Interface IDtmImportExport .. 60
6.3.9 Interface IDtmInformation ... 62
6.3.10 Interface IDtmInformation2 ... 63
6.3.11 Interface IDtmOnlineDiagnosis ... 64
6.3.12 Interface IDtmOnlineParameter .. 65
6.3.13 Interface IDtmParameter .. 68
6.3.14 Interface IFdtCommunicationEvents ... 69
6.3.15 Interface IFdtCommunicationEvents2 ... 72
6.3.16 Interface IFdtEvents ... 73
6.3.17 Interface IDtmHardwareIdentification .. 76
6.3.18 Interface IDtmSingleDeviceDataAccess .. 78
6.3.19 Interface IDtmSingleInstanceDataAccess .. 81

6.4 DTM ActiveXControl .. 83
6.4.1 Interface IDtmActiveXControl ... 83
6.4.2 Init ... 83
6.4.3 PrepareToRelease ... 84

6.5 FDT Channel ... 85
6.5.1 Interface IFdtChannel ... 85
6.5.2 Interface IFdtChannelActiveXInformation .. 88
6.5.3 Interface IFdtCommunication .. 90
6.5.4 Interface IFdtChannelSubTopology ... 97
6.5.5 Interface IFdtChannelSubTopology2 ... 101
6.5.6 Interface IFdtChannelScan ... 101
6.5.7 Interface IFdtFunctionBlockData ... 103

6.6 Channel ActiveXControl .. 105
6.6.1 Interface IFdtChannelActiveXControl .. 105
6.6.2 Interface IFdtChannelActiveXControl2 .. 106

6.7 Block Type Manager .. 107
6.7.1 Interface IBtm .. 108
6.7.2 Interface IBtmInformation ... 109
6.7.3 Interface IBtmParameter .. 109

6.8 BTM ActiveXControl .. 110
6.8.1 General ... 110
6.8.2 Interface IBtmActiveXControl .. 110

6.9 Frame Application ... 111
6.9.1 Interface IDtmEvents .. 111
6.9.2 Interface IDtmEvents2 .. 120
6.9.3 Interface IDtmScanEvents .. 121
6.9.4 Interface IDtmAuditTrailEvents ... 123
6.9.5 Interface IFdtActiveX .. 125
6.9.6 Interface IFdtActiveX2 .. 126

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 4 – IEC TR 62453-41:2016  IEC 2016

6.9.7 Interface IFdtBulkData ... 129
6.9.8 Interface IFdtContainer .. 131
6.9.9 Interface IFdtDialog .. 134
6.9.10 Interface IFdtTopology ... 135
6.9.11 Interface IDtmRedundancyEvents ... 141
6.9.12 Interface IDtmSingleDeviceDataAccessEvents .. 142
6.9.13 Interface IDtmSingleInstanceDataAccessEvents ... 145
6.9.14 Interface IFdtBtmTopology ... 146

7 FDT sequence charts ... 147
7.1 DTM peer to peer communication .. 147

7.1.1 General ... 147
7.1.2 Establish a peer-to-peer connection between DTM and device 147
7.1.3 Asynchronous connect for a peer-to-peer connection 147
7.1.4 Asynchronous disconnect for a peer-to-peer connection 148
7.1.5 Asynchronous transaction for a peer-to-peer connection 148

7.2 Nested communication .. 149
7.2.1 General ... 149
7.2.2 Generate system topology .. 150
7.2.3 Establish a system connection between DTM and device 152
7.2.4 Asynchronous transaction for a system connection 153

7.3 Topology scan ... 154
7.3.1 Scan network ... 154
7.3.2 Cancel topology scan ... 155
7.3.3 Provisional scan result notifications .. 156
7.3.4 Scan for communication hardware .. 157
7.3.5 Manufacturer-specific device identification .. 158

7.4 Registration of protocol-specific FDT schemas ... 160
7.5 Configuration of a fieldbus master ... 162
7.6 Starting and releasing applications .. 163
7.7 Channel access .. 164
7.8 DCS Channel assignment .. 165
7.9 Printing of DTM-specific documents ... 169
7.10 Printing of Frame Application-specific documents .. 170

7.10.1 General ... 170
7.10.2 Processing a document .. 171
7.10.3 Rules for use of DTM-specific style sheets ... 173

7.11 Propagation of changes ... 174
7.12 Locking ... 175

7.12.1 Locking for non-synchronized DTMs ... 175
7.12.2 Locking for synchronized DTMs .. 176

7.13 Instantiation and release ... 178
7.13.1 Instantiation of a new DTM ... 178
7.13.2 Instantiation of an existing DTM ... 178
7.13.3 Instantiation of a DTM ActiveX user interface ... 179
7.13.4 Release of a DTM user interface .. 179

7.14 Persistent storage of a DTM .. 180
7.14.1 State machine of instance data ... 180
7.14.2 Saving instance data of a DTM ... 182
7.14.3 Reload of a DTM object for another instance .. 183

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 5 –

7.14.4 Copy and versioning of a DTM instance .. 183
7.15 Audit trail .. 184
7.16 Comparison of two instance data sets .. 185

7.16.1 Comparison without user interface .. 185
7.16.2 Comparison with user interface .. 186

7.17 Failsafe data access ... 187
7.18 Set or modify device address with user interface .. 188
7.19 Set or modify known device addresses without user interface 189
7.20 Display or modify all child device addresses with user interface 190
7.21 Device initiated data transfer ... 191
7.22 Starting and releasing DTM user interface in modal dialog 192
7.23 Parent component handling redundant slave .. 193
7.24 Initialization of a Channel ActiveX control .. 195

7.24.1 General ... 195
7.24.2 Supports IFdtChannelActiveXcontrol2 ... 195
7.24.3 Does not support IFdtChannelActiveXControl2 .. 195

7.25 DTM upgrade .. 196
7.25.1 General ... 196
7.25.2 Saving data from a DTM to be upgraded ... 196
7.25.3 Loading data in the replacement DTM .. 197

7.26 Usage of IDtmSingleDeviceDataAccess::ReadRequest / Write Request 198
7.27 Instantiation of DTM and BTM ... 199

8 Installation issues .. 201
8.1 Registry and device information ... 201

8.1.1 Visibility of business objects of a DTM .. 201
8.1.2 Component categories ... 201
8.1.3 Registry entries .. 202
8.1.4 Installation issues .. 202
8.1.5 Microsoft’s standard component categories manager 203
8.1.6 Building a Frame Application-database of supported devices 203
8.1.7 DTM registration .. 203

8.2 Paths and file information .. 204
8.2.1 Path information provided by a DTM ... 204
8.2.2 Paths and persistency .. 204
8.2.3 Multi-user systems ... 204

9 Description of data types, parameters and structures.. 205
9.1 Ids .. 205
9.2 Data type definitions ... 205

Annex A (normative) FDT IDL .. 207
Annex B (normative) Mapping of services to interface methods ... 223

B.1 General ... 223
B.2 DTM services .. 223
B.3 Presentation object services .. 227
B.4 General channel services .. 227
B.5 Process channel services .. 228
B.6 Communication Channel Services ... 228
B.7 Frame Application Services ... 229

Annex C (normative) FDT XML schemas .. 232

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 6 – IEC TR 62453-41:2016  IEC 2016

C.1 General ... 232
C.2 FDTDataTypesSchema.. 232
C.3 FDTApplicationIdSchema .. 248
C.4 FDTUserInformationSchema .. 248
C.5 DTMInformationSchema .. 250
C.6 DTMFunctionCallSchema .. 253
C.7 DTMParameterSchema ... 254
C.8 DTMDocumentationSchema .. 262
C.9 DTMProtocolsSchema ... 264
C.10 DTMSystemTagListSchema ... 265
C.11 DTMAuditTrailSchema ... 266
C.12 DTMDeviceStatusSchema ... 268
C.13 DTMFunctionsSchema .. 269
C.14 DTMChannelFunctionsSchema .. 273
C.15 DTMOnlineCompareSchema ... 276
C.16 FDTFailSafeDataSchema .. 277
C.17 DTMTopologyScanSchema .. 277
C.18 FDTOperationPhaseSchema ... 278
C.19 DTMInitSchema .. 279
C.20 FDTUserMessageSchema ... 279
C.21 DTMInfoListSchema .. 281
C.22 FDTTopologyImportExportSchema .. 282
C.23 DTMDeviceListSchema ... 286
C.24 DTMSystemGuiLabelSchema .. 288
C.25 DTMStateSchema ... 288
C.26 DTMEnvironmentSchema .. 289
C.27 FDTConnectResponseSchema .. 290
C.28 TypeRequestSchema .. 290
C.29 FDTScanRequestSchema .. 291
C.30 FDTxxxIdentSchema ... 292
C.31 FDTxxxDeviceTypeIdentSchema ... 292
C.32 FDTxxxScanIdentSchema ... 293
C.33 DTMIdentSchema.. 293
C.34 DTMScanIdentSchema .. 294
C.35 DTMDeviceTypeIdentSchema .. 296
C.36 DTMItemListSchema ... 298
C.37 BtmDataTypesSchema .. 303
C.38 BtmInformationSchema ... 305
C.39 BtmParameterSchema ... 306
C.40 BtmInitSchema .. 308
C.41 BtmInfoListSchema ... 309

Annex D (informative) FDT XML styles – Documentation .. 310
Annex E (informative) FDT XSL Transformation .. 314

E.1 Identification transformation .. 314
E.2 Hint ... 314

Annex F (normative) Channel schema .. 316
F.1 FDTBasicChannelParameterSchema ... 316
F.2 Template for Channel Schema ... 317

Annex G (normative) FDT version interoperability guide .. 318

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 7 –

G.1 Overview... 318
G.2 General ... 318
G.3 Component interoperability .. 318
G.4 FDT type library .. 320
G.5 DTM and device versions .. 320
G.6 Persistence ... 320
G.7 Nested communication .. 321

G.7.1 General ... 321
G.7.2 Data exchange ... 321
G.7.3 Communication channel upgrade .. 321
G.7.4 Scenarios .. 321
G.7.5 OnAddChild ... 322

G.8 Implementation hints ... 322
G.8.1 Interfaces .. 322
G.8.2 Persistence .. 322

Annex H (informative) Implementation with Net technology ... 323
H.1 How FDT supports .NET based development ... 323
H.2 Microsoft .NET Framework 1.1 and 2.0 compatibility .. 323
H.3 Side-by-side installation and related problems ... 323
H.4 How to avoid compatibility issues .. 324

Annex I (informative) Trade names ... 325
Bibliography ... 326

Figure 1 – Part 41 of the IEC 62453 series .. 14
Figure 2 − Frame Application interfaces .. 18
Figure 3 − DTM interfaces ... 18
Figure 4 − FDT Client/server relationship via XML ... 19
Figure 5 − Data access and storage .. 21
Figure 6 − Communication .. 22
Figure 7 − Documentation ... 22
Figure 8 − Parameter verification in case of failsafe devices .. 23
Figure 9 − State machine of a DTM ... 24
Figure 10 − Device identification ... 30
Figure 11 − Structural overview ... 32
Figure 12 − Interfaces of FDT objects – DTM and DtmActiveXControl 36
Figure 13 − Interfaces of FDT object – Frame Application .. 37
Figure 14 − FDT objects – FDT-Channel ... 37
Figure 15 − FDT objects – BTM and BtmActiveXControl .. 38
Figure 16 − Peer to peer connection between DTM and device .. 147
Figure 17 − Asynchronous connect (peer to peer) .. 148
Figure 18 − Asynchronous disconnect (peer to peer) ... 148
Figure 19 − Asynchronous transaction (peer to peer) ... 149
Figure 20 − System-topology ... 150
Figure 21 − Generation of system topology by Frame Application 151
Figure 22 – Generation of system topology – Participation of DTM 152

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 8 – IEC TR 62453-41:2016  IEC 2016

Figure 23 – System connection (across communication hierarchy) 153
Figure 24 − Asynchronous transactions (system connection) ... 154
Figure 25 − Scan network topology ... 155
Figure 26 − Cancel topology scan ... 156
Figure 27 − Provisional topology scan ... 157
Figure 28 − Scan for communication hardware .. 158
Figure 29 − Manufacturer-specific device identification .. 160
Figure 30 − Add protocol-specific schemas to Frame Applications schema sub path 161
Figure 31 − Frame Application reads protocol-specific device identification information
of DTMDeviceTypes .. 162
Figure 32 − Bus master configuration .. 163
Figure 33 − Starting and releasing applications ... 164
Figure 34 − Channel access .. 165
Figure 35 − DCS channel assignment single DTM ... 166
Figure 36 − Sequence of channel assignement for a single DTM .. 167
Figure 37 − Modular DTM structure ... 168
Figure 38 − Channel assignment for modular DTMs ... 169
Figure 39 − Printing of DTM-specific documents .. 170
Figure 40 − Printing of Frame Application-specific documents .. 171
Figure 41 − Report generation (Frame Application style) .. 172
Figure 42 − Report generation (device vendor-specific style) ... 173
Figure 43 − Propagation of changes .. 174
Figure 44 − Locking for non-synchronized DTMs ... 176
Figure 45 − Locking for synchronized DTMs .. 177
Figure 46 − Instantiation of a new DTM ... 178
Figure 47 − Instantiation of an existing DTM .. 179
Figure 48 − Instantiation of a DTM user interface... 179
Figure 49 − Release of a DTM user interface ... 180
Figure 50 − State machine of instance data set ... 181
Figure 51 – Persistence states of a data set .. 182
Figure 52 − Saving instance data of a DTM ... 183
Figure 53 − Copy and versioning of a DTM instance .. 184
Figure 54 − Audit trail ... 185
Figure 55 − Comparison without user interface .. 186
Figure 56 − Comparison with user interface ... 187
Figure 57 − Failsafe data access ... 188
Figure 58 − Set or modify device address with user interface ... 189
Figure 59 − Set or modify known device addresses without user interface 190
Figure 60 − Display or modify all child device addresses with user interface 191
Figure 61 − Device initiated data transfer .. 192
Figure 62 − Modal DTM user interface ... 193
Figure 63 − Handling of a redundant slave .. 194
Figure 64 − Init of Channel ActiveX with IFdtChannelActiveXControl2 195

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 9 –

Figure 65 − Init of Channel ActiveX® without IFdtChannelActiveXControl2 196
Figure 66 − Saving data from a DTM to be upgraded ... 197
Figure 67 − Loading data in the replacement DTM ... 198
Figure 68 − Usage of IDtmSingleDeviceDataAccess .. 199
Figure 69 − General sequence of creation and instantiation of blocks................................. 200
Figure E.1 – XSLT role ... 315

Table 1 – Definition of DTM state machine .. 25
Table 2 − Task related DTM interfaces .. 26
Table 3 − Task related DTM ActiveX® interfaces ... 27
Table 4 − Task related FDT-Channel interfaces ... 27
Table 5 − Task related Channel ActiveX interfaces ... 27
Table 6 − Task related BTM interfaces .. 28
Table 7 − Task related BTM ActiveX interfaces ... 28
Table 8 − Task related Frame Application interfaces .. 28
Table 9 − Semantic identification information ... 33
Table 10 − Regular expressions .. 34
Table 11 − Availability of DTM methods in different states ... 39
Table 12 − Availability of Frame Application interfaces .. 41
Table 13 – Description of instance data set states ... 181
Table 14 – Description of persistent states .. 182
Table 15 – Component categories ... 201
Table 16 – Combinations of categories .. 202
Table 17 – Example for DTM registration ... 202
Table 18 – FDT-specific Ids .. 205
Table 19 – Basic data types .. 205
Table 20 – Helper objects for documentation ... 206
Table B.1 − General services .. 223
Table B.2 − DTM services related to installation .. 223
Table B.3 − DTM services related to DTM information ... 224
Table B.4 − DTM services related to DTM state machine ... 224
Table B.5 − DTM services related to function ... 225
Table B.6 − DTM services related to documentation .. 225
Table B.7 − DTM services to access the instance data .. 225
Table B.8 − DTM services to access diagnosis .. 226
Table B.9 − DTM services to access the device data ... 226
Table B.10 − DTM services related to network management information 226
Table B.11 − DTM services related to online operation .. 226
Table B.12 − DTM services related to FDT-Channel objects ... 227
Table B.13 − DTM services related to import and export .. 227
Table B.14 − DTM services related to data synchronization ... 227
Table B.15 − General channel services ... 228
Table B.16 − Channel services for IO related information ... 228

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 10 – IEC TR 62453-41:2016  IEC 2016

Table B.17 − Channel services related to communication ... 228
Table B.18 − Channel services related sub-topology management 229
Table B.19 − Channel services related to functions .. 229
Table B.20 − Channel services related to scan .. 229
Table B.21 − FA services related to general events ... 229
Table B.22 − FA services related to topology management .. 230
Table B.23 − FA services related to redundancy .. 230
Table B.24 − FA services related to storage of DTM data ... 230
Table B.25 − FA services related to DTM data synchronization .. 231
Table B.26 − FA services related to presentation ... 231
Table B.27 − FA services related to audit trail ... 231
Table C.1 – Description of general XML attributes ... 232
Table C.2 – Description of general XML elements .. 237
Table C.3 – Device classification ID .. 239
Table C.4 – Device classification according to IEC TR 62390:2005, Annex G 240
Table C.5 – Description of applicationId attribute ... 248
Table C.6 – Description of applicationId elements .. 248
Table C.7 – Description of user information attributes .. 249
Table C.8 – Description of user information elements .. 249
Table C.9 – Description of DTM information attributes ... 250
Table C.10 – Description of DTM information elements .. 250
Table C.11 – Description of function call attributes .. 254
Table C.12 – Description of parameter document attributes ... 254
Table C.13 – Description of parameter document elements .. 255
Table C.14 – Description of documentation attributes .. 263
Table C.15 – Description of documentation elements ... 263
Table C.16 – Description of protocols element ... 265
Table C.17 – Description of system tag attributes .. 265
Table C.18 – Description of system tag elements... 265
Table C.19 – Description of audit trail attributes .. 267
Table C.20 – Description of audit trail elements ... 267
Table C.21 – Description of device status attribute .. 268
Table C.22 – Description of device status elements ... 268
Table C.23 – Description of function attributes... 269
Table C.24 – Description of function elements ... 270
Table C.25 – Description of channel functions attributes .. 273
Table C.26 – Description of channel function elements .. 274
Table C.27 – Description of comparison attribute ... 276
Table C.28 – Description of comparison elements ... 276
Table C.29 – Description of fail safe attributes ... 277
Table C.30 – Description of fail safe elements ... 277
Table C.31 – Description of topology scan elements .. 278
Table C.32 – Description of operation phase attribute .. 278

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 11 –

Table C.33 – Description of operation phase element .. 278
Table C.34 – Description of DTM init element .. 279
Table C.35 – Description of user message attributes ... 279
Table C.36 – Description of user message elements .. 280
Table C.37 – Description of DTM info list elements .. 281
Table C.38 – Description of topology attributes .. 282
Table C.39 – Description of topology elements .. 282
Table C.40 – Description of device list attributes ... 286
Table C.41 – Description of device list elements .. 287
Table C.42 – Description of gui label element .. 288
Table C.43 – Description of DTM state element ... 289
Table C.44 – Description of frame version element .. 289
Table C.45 – Description of connect response element .. 290
Table C.46 – Description of type request element .. 290
Table C.47 – Description of scan request attributes ... 291
Table C.48 – Description of scan request elements ... 291
Table C.49 – Description of common identification attributes ... 293
Table C.50 – Description of common identification element .. 294
Table C.51 – Description of scan identification attributes ... 294
Table C.52 – Description of scan identification elements .. 294
Table C.53 – Description of device type identification element ... 296
Table C.54 – Description of item list attributes ... 298
Table C.55 – Description of item list elements ... 299
Table C.56 – Description of BTM data type attributes .. 303
Table C.57 – Description of BTM data type elements ... 304
Table C.58 – Description of BTM information elements .. 305
Table C.59 – Description of BTM parameter elements ... 306
Table C.60 – Description of BTM init element .. 308
Table C.61 – Description of BTM info list element .. 309
Table F.1 – Description of basic channel attribute .. 316
Table F.2 – Description of basic channel elements .. 316
Table F.3 – Description of xxx channel parameter attribute .. 317
Table F.4 – Description of xxx channel parameter elements ... 317
Table G.1 − Interoperability between components of different versions 319

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 12 – IEC TR 62453-41:2016  IEC 2016

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIELD DEVICE TOOL (FDT) INTERFACE SPECIFICATION –

Part 41: Object model integration profile –

Common object model

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a
technical committee may propose the publication of a technical report when it has collected
data of a different kind from that which is normally published as an International Standard, for
example "state of the art".

IEC TR 62453-41, which is a technical report, has been prepared by subcommittee 65E:
Devices and integration in enterprise systems, of IEC technical committee 65: Industrial-
process measurement, control and automation:

This second edition cancels and replaces the first edition published in 2009, and constitutes a
technical revision.

This edition includes the following significant technical changes with respect to the previous
edition:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 13 –

a) correction of specification for bus master configuration;

b) correction of specification for propagation of changes;

c) correction of description of DTM services for online operation.

The text of this technical report is based on the following documents:

Enquiry draft Report on voting

65E/437/DTR 65E/485/RVC

Full information on the voting for the approval of this technical report can be found in the
report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62453 series, under the general title Field Device Tool (FDT)
interface specification, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be

• reconfirmed,

• withdrawn,

• replaced by a revised edition, or

• amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 14 – IEC TR 62453-41:2016  IEC 2016

INTRODUCTION

This Part of IEC 62453, which is a technical report, is an interface specification for
developers of FDT (Field Device Tool) components for function control and data access within
a client/server architecture. The specification is a result of an analysis and design process to
develop standard interfaces to facilitate the development of servers and clients by multiple
vendors that need to interoperate seamlessly.

With the integration of fieldbusses into control systems, there are a few other tasks which
need to be performed. In addition to fieldbus- and device-specific tools, there is a need to
integrate these tools into higher-level system-wide planning or engineering tools. In particular,
for use in extensive and heterogeneous control systems, typically in the area of the process
industry, the unambiguous definition of engineering interfaces that are easy to use for all
those involved is of great importance.

A device-specific software component, called DTM (Device Type Manager), is supplied by the
field device manufacturer with its device. The DTM is integrated into engineering tools via the
FDT interfaces defined in this specification. The approach to integration is, in general, open
for all kind of fieldbusses and thus meets the requirements for integrating different kinds of
devices into heterogeneous control systems.

Figure 1 shows how IEC TR 62453-41 is incorporated in the structure of the IEC 62453
series.

Figure 1 – Part 41 of the IEC 62453 series

Part 41
Object Model
Integration Profile

IEC IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 15 –

FIELD DEVICE TOOL (FDT) INTERFACE SPECIFICATION –

Part 41: Object model integration profile –
Common object model

1 Scope

This part of IEC 62453, which is a technical report, defines how the common FDT principles
are implemented based on the Microsoft1 COM technology, including the object behavior and
object interaction via COM interfaces.

This part specifies the technology-specific implementation of the protocol-specific functionality
and communication services.

This part of IEC 62453 is informative, however when this part is applied its requirements need
to be implemented as specified.

This part specifies FDT version 1.2.1.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.

IEC 61784 (all parts), Industrial communication networks – Profiles

IEC 62453-1:—2, Field Device Tool (FDT) interface specification – Part 1: Overview and
guidance

IEC 62453-2:—2, Field Device Tool (FDT) interface specification – Part 2: Concepts and
detailed description

3 Terms, definitions, abbreviations and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 62453-1,
IEC 62453-2 as well as the following apply.

3.1.1
ActiveX®3
GUI component technology based on the Microsoft Component Object Model (COM/DCOM)

Note 1 to entry: Former standard was OLE controls (OCX).

1 See Annex I.

2 To be published concurrently with this technical report.

3 See Annex I.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 16 – IEC TR 62453-41:2016  IEC 2016

3.1.2
asynchronous function
non-blocking function in which the calling process continues execution while the function is
executed in the background

3.1.3
CLSID
UUID for a COM class

3.1.4
ProgID
human readable ID for a COM class

3.1.5
synchronous function
blocking function in which the calling process stops execution while the function is executed

3.2 Abbreviations

For the purposes of this document, the abbreviations given in IEC 62453-1 and IEC 62453-2
as well as the following apply.

API Application Programming Interface

BTM Block Type Manager

CLSID Class ID

COM Common Object Model

DCOM Distributed COM

DLL Dynamic Linked Library

DOM Document Object Model

DTM Device Type Manager

FA Frame Application

FB Function Block

FDT Field Device Tool

GUI Graphical User Interface

GUID Globally Unique Identifier (a UUID)

HART®4 Highway Addressable Remote Transducer

IID Interface ID

LCID Locale ID

MIDL Microsoft Interface Definition Language

MSDN® Microsoft Developer Network

OCX OLE Controls

OLE Object Linking and Embedding

ProgID Programmatic ID

XDR XML Data Reduced

XSL Extensible Stylesheet Language

XSLT XSL Transformations

3.3 Conventions

The conventions for UML notation used in this document are defined in IEC 62453-1.

4 See Annex I.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 17 –

4 Implementation concept

4.1 Technological orientation

The ActiveX technology introduced by Microsoft makes it possible to define interfaces which
contain not only data but also functions. These possibilities have already been successfully
used in conjunction with OPC (originally: OLE for Process Control) definition.

Within this technical report, implementation of FDT-only user interfaces in ActiveX
technology are specified for the engineering components of field devices. If the engineering
system implements the corresponding interfaces, the ActiveX technology provides the
automatic integration of the components and takes care of the interaction between the
engineering system and the software components of the devices. Furthermore the FDT
interface specification allows the integration of device components with integrated user
interfaces as well as the embedding of ActiveX controls provided by the device component
for special engineering tasks.

The implementation of FDT´s client/server architecture defined in this technical report is
based on Microsoft COM.

This part of IEC 62453 specifies COM interfaces (what the interfaces are), not the
implementation (the “how” of the implementation) of those interfaces. It specifies the behavior
that the interfaces are expected to provide to client applications that use them. The FDT-
specification neither specifies the implementation of DTMs nor the implementation of Frame
Applications.

Included are descriptions of architectures and interfaces which seem most appropriate for
those architectures. Like all COM implementations, the architecture of FDT is a client-server
model where DTMs are the server components managed by the Frame Application.

4.2 Implementation of abstract FDT object model

4.2.1 General

The FDT objects are implemented as COM objects. The general expectation is that these
objects may be implemented as inproc as well as outproc servers. The Frame Application is
responsible for organizing the execution of the objects in a distributed system (based on a
vendor-specific implementation).

4.2.2 FDT Frame Application (FA)

From a DTM point of view, all task-related interfaces for the interaction with Frame Application
are available via the main interface IFdtContainer of the Frame Application (see Figure 2).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 18 – IEC TR 62453-41:2016  IEC 2016

FrameApplication

FdtChannel

IFdtContainer

Standard interfaces for storage and events

Optional task-related interfaces

IFdtCommunication

1

0..*

Optional task-related interfaces

IEC

Figure 2 − Frame Application interfaces

In a complex plant environment, there are also complex communication networks for linking
the process devices. No DTM should need any information about the topology of a system
network. So it is up to the Frame Application to organize the routing for accessing a device.
The Frame Application has to provide in each case a peer-to-peer connection (physical or
logical). So its up to the Frame Application to manage the multi user access to a device.

4.2.3 Device Type Manager (DTM)

4.2.3.1 DTM interfaces

The services of a DTM are provided by means of COM interfaces (see Figure 3).

DTM

FdtChannel

IDtm
IDtm2

Standard interfaces for storage

Optional task-related interfaces

IFdtChannel

1

0..*

Optional task-related interfaces

IDtmInformation
IDtmInformation2

IEC

Figure 3 − DTM interfaces

The interfaces IDtm and IDtmInformation have to be implemented by each DTM (see 5.2).
These interfaces provide the services and information for controlling a DTM. From a Frame
Application’s point of view, all task-related interfaces for the interaction with the device
functionality are available via these interfaces. Which task related interfaces are provided
depends on the capability of the DTM and the corresponding device. Each interface is
described in detail in the appropriate subclause.

4.2.3.2 Block Type Manager (BTM)

The BTM implements similar interfaces to those specified for a DTM. Block-specific schemas
replace device related XML schemas to provide block information. For example,
BtmInformationSchema replaces DTMInformationSchema.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 19 –

4.2.4 Presentation object

A presentation object as defined by this specification may be an ActiveX object (allows
integration into GUI of FA) or a standalone program, that may be integrated by a DTM.

IEC TR 62453-61 provides a style guide for a common look and feel of ActiveX user
interfaces.

4.2.5 FDT-Channel object

The FDT-Channel object implements at least the IFdtChannel interface that gives access to
all parameters of the channel which describes the channel itself.

If the device provides communication functionality, like a fieldbus adapter or a gateway, the
FDT-Channel object shall implement further interfaces for the communication via this channel
(Communication Channel). Each interface of the FDT-Channel object is described in detail,
see the appropriate subclause.

As defined in IEC 62453-2, Communication Channels represent the gateway from the FDT-
specific to the Frame Application-specific communication. At least the interface
IFdtCommunication shall be implemented for Communication Channels.

IFdtCommunication always provides the communication functionality for DTMs to access their
fieldbus devices. All actions that belong to the physical fieldbus shall be done by using this
interface.

4.3 Object interaction

4.3.1 Parameter interchange via XML

Data exchange between objects is implemented based on transport of XML documents (XDR
format) via COM interfaces. One example for this data exchange is the parameter interchange
via XML is to provide a way to exchange information between Frame Application and DTMs
(see Figure 4). Typically, in process control systems, multiple use cases like observing,
channel assignment, or master configuration, need information about the configuration of a
device.

XML is not meant to replace proprietary formats; it is meant to provide access to data that is
stored in a proprietary format. It is recommended that data is stored locally in the fashion that
makes the most sense. XML provides an extendable standard to connect FDT components.
The data exchange is done via XML documents. Within these documents XML tags are used
to delimit pieces of data. XML leaves the interpretation of the data to the application that
reads it. To get a common understanding of the exchanged data FDT uses XML schemas for
validation. For the data access are standardized tools like the DOM (W3C's document object
model) available.

Figure 4 − FDT Client/server relationship via XML

DCS Client

DTM
Server

Vendor A

XML
+

Schema

DTM
Server

Vendor B

DTM
Server

Vendor C

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 20 – IEC TR 62453-41:2016  IEC 2016

XML schemas are valid XML syntax themselves and are used to validate XML data. They
allow the validation of the document structure and the data types of the elements.

W3C's document object model (DOM) is a standard internal representation of the document
structure. It aims to make it easy for programmers to access components and delete, add, or
edit their content, attributes and style. In essence, the DOM makes it possible for
programmers to write applications that work properly on all browsers and servers, and on all
platforms. While programmers may need to use different programming languages, they do not
need to change their programming model.

An XML parser usually generates the DOM. Microsoft provides such an XML parser. So the
DOM API is accessible in VC++5, Visual Basic6 and VBScript.

The parsing of XML documents with XML schemas ensures a valid DOM with well-defined
elements.

It is recommended that the FDT developer always work with the DOM because

• the XML parser generates the DOM from the transferred XML data,

• the schemas ensure a valid DOM with well defined elements,

• the DOM supplies standard tree- and collection-methods for data access,

• the DOM can generate the XML data for the data transfer.

The validation of a XML document ensures that the content of an attribute is valid according
to the XML schemas.

• Non string data types (Ui4,enumeration,etc.): Empty or invalid attribute values will be
detected during the validation of the document.

• Data types ‘string’ and ‘bin.hex’(hexadecimal digits representing octets): Empty values are
possible. No parsing error is generated.

To avoid interoperability problems developers should consider following basic rules.

• Receiving XML documents:
To ensure a robust implementation, developers should be aware that XML documents with
empty attributes of type ‘string’ or ‘bin.hex’ could be received. FDT components should be
capable to handle this in a proper way.

• Providing XML documents:
Empty optional attributes should be avoided generally, because they are a potential cause
of interoperability problems and a waste of resources. Also optional XML elements should
be removed if they contain no information. Exception: Empty ‘string’ attributes can make
sense in some cases (as shown in the example below).

If a Frame Application can not provide information about login location and session
description, the corresponding attributes should be removed.

If a Frame Application can not provide attribute values, the attributes should not be provided.

Negative Example:

<FDT xmlns="x-schema:FDTUserInformationSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml">
 <FDTUserInformation projectName="Project1" userName="ThisUser" userLevel="maintenance"
 loginLocation="" sessionDescription=""/>
</FDT>

5 See Annex I.

6 See Annex I.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 21 –

Positive Example:
<FDT xmlns="x-schema:FDTUserInformationSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml">
 <FDTUserInformation projectName="Project1" userName="ThisUser" userLevel="maintenance"/>
</FDT>

If the session description is generally available, but the user has not typed in something, then
it makes sense to use an empty attribute.

Acceptable Example:

<FDT xmlns="x-schema:FDTUserInformationSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml">
 <FDTUserInformation projectName="Project1" userName="ThisUser" userLevel="maintenance"
 sessionDescription=""/>
</FDT>

4.3.2 Examples of usage

Parameter interchange between DTM and Frame Application is done via XML document.
Object oriented access to data is provided when using an XML parser that generates an in-
memory representation of the XML data (e.g. a DOM). Instance data to be stored
(persistence) can also be handled as an XML document to simplify the DTM development and
to have a homogeneous data handling within a DTM. But also if the data are stored as XML
the content of these data is only known by DTM (see Figure 5).

Figure 5 − Data access and storage

The XML document for communication includes device data and the necessary information for
routing to establish peer-to-peer connection between DTM and field device (see Figure 6).

"public"
parameters

F
D
T XML-

data

DOM

methods

"public" parameters of DTM for Frame Application

" private " parameters of DTM

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 22 – IEC TR 62453-41:2016  IEC 2016

Figure 6 − Communication

Here the DTM only knows the address information for a peer-to-peer connection. The Frame
Application adds during runtime all necessary routing information.

For documentation of field devices within the project documentation and field device-specific
documentation XML is used in conjunction with XML style sheets (XSL) for layout (see
Figure 7). A default style sheet is supported by the Frame Application.

Figure 7 − Documentation

In case of failsafe field devices the instance data that are stored in the controller (e.g. PLC)
after upload from the field device shall be verified by the DTM (see Figure 8). The interchange
format of this data is also an XML document.

IEC

Device Type Manager (DTM)

project-
documentation

F
D
T XML-

data

DOM

methods DTM-specific
printing

Frame Application

 Device Type Manager (DTM)

routing

field device

read/write
dataset

F
D
T

XML-
data

DOM

methods
adresses
data

Frame Application

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 23 –

Figure 8 − Parameter verification in case of failsafe devices

4.4 Implementation of DTM data persistence and synchronization

4.4.1 Persistence overview

The synchronization of the DTM data set is done via the interface IFdtContainer.

To use the storage component of the Frame Application, a DTM has to implement the
standard COM-interfaces IPersistPropertyBag and IPersistStreamInit. It is not determined how
the DTM performs the storage or which kind of private data of a DTM is stored.

The Frame Application requests the storage of private data of a DTM. A DTM shall be able to
re-establish its complete state when this is requested by the Frame Application. This is done
by calling the function IPersistXXX::Load of the DTM. Some DTMs do not support reload of a
DTM object by calling IPersistXXX::Load several times. With an IPersistXXX:Save request a
DTM shall store its private data within the storage provided by the Frame Application. A DTM
object for a new instance shall be initialized if the IPersistXXX:InitNew method is called by the
Frame Application.

DTMs using additional own data storage shall provide all data which are necessary for
commissioning via the IPersistXXX interface. Private data not provided via the IPersistXXX
interface shall be offered to the Frame Application for import and export via the
IDtmImportExport interface. Also an IStream object is used to store and retrieve such import
and export data.

In order to simplify the DTM development, it is up to a DTM to implement one of the defined
persistent interfaces (IPersistStreamInit or IPersistPropertyBag) according to the Microsoft
standard. The Frame Application shall be able to handle both.

References to DTMs do not belong to the instance data of a DTM. A DTM shall not store any
references to other DTMs. A DTM can get information concerning its parents or childs via
IFdtTopology::GetParentNodes() and IFdtTopology::GetChildNodes().

DTM should report data load errors via standard COM error mechanism (HRESULT not equal
to S_OK). Optionally, DTM can write further human readable error information to standard
COM global error info (Win32 SetLastError method).

IEC

Device Type Manager (DTM) Frame Application

XML-
data

XML-
data

comparison

device-
FB-Data

Controller

routing

Field device

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 24 – IEC TR 62453-41:2016  IEC 2016

4.4.2 Persistence interfaces

For detailed information about IPersistStreamInit and IPersistPropertyBag please refer to the
standard Microsoft documentation like MSDN®.

4.5 DTM state machine

The following state machine shows the different states of a DTM (see Figure 9). The state
machine is based on the general state machine as defined in IEC 62453-2. It is extended to
accommodate the specific needs of COM based implementation.

Up

New created

Existing createdNew enabled

Running

Configured

Communication set

Going online

Online

Going offline

Destroyed

Zombie

1a

1b

1e

1d

1c

2a

2b

13b

13a

3 11

4 5

6 8

9

10

12

13d

13c

1f

2c

14

7

COM specific extension

communication allowed

IEC

Figure 9 − State machine of a DTM

Table 1 provides a description of the transitions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 25 –

Table 1 – Definition of DTM state machine

ID Start state End state Trigger Condition Action

1a <non existent> Up CoCreateInstance()

1b Up New created IPersistXXX:InitNew()

1c New created New enabled IDtm:Environment()
 or
IDtm2:Environment2()

1d New enabled Running IDtm:InitNew()

1e Running Configured IDtm:Config()

1f zombie New created IPersistXXX:InitNew()

2a Up Existing
created

IPersistXXX:Load()

2b Existing
created

Running IDtm:Environment()
 or
IDtm2:Environment2()

2c Zombie Existing
created

IPersistXXX:Load()

3 Configured Communication
set
(not connected)

IDtm: SetCommunication()

4 Communication
set
(not connected)

Going online
(connecting)

Trigger of Online service of
the DTM

 IDtmCommunication:
ConnectRequest()

5 Going online
(connecting)

Communication
set
(not connected)

IDtmCommunicationEvent:
OnConnectResponse()
 or
IDtmCommunicationEvent2:
OnConnectResponse2()

Connection
could not be
established,
negative
response

6 Going online
(connecting)

Online IDtmCommunicationEvent:
OnConnectResponse()
 or
IDtmCommunicationEvent2:
OnConnectResponse2()

Connection
was
established,
positive
response

7 Online
(connected)

Communication
set
(not connected)

IDtmCommunicationEvent:
OnAbort()

8 Online
(connected)

Going offline
(disconnecting)

Online service of DTM is
finished
 or
IDtm:
PrepareToReleaseCommun
ication()

 IDtmCommunication:
DisconnectRequest()

9 Going offline
(disconnecting)

Online
(connected)

IDtmCommunicationEvent:
OnDisconnectResponse()

Connection
could not be
terminated

10 Going offline
(disconnecting

Communication
set
(not connected)

IDtmCommunicationEvent:
OnDisconnectResponse()

Connection
was
terminated

If PreparedTo-
Release-
Communication was
called (see
transition 8):
IDtmEvents:On-
PreparedToRelease-
Communication()

11 Communication
set
(not connected)

Configured IDtm:
ReleaseCommunication()

12 Configured Destroyed IDtm:PrepareToDelete()

13a Destroyed Zombie IDtm:PrepareToRelease() IDtmEvents:
OnPreparedToRelea
se()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 26 – IEC TR 62453-41:2016  IEC 2016

ID Start state End state Trigger Condition Action

13b Zombie <NonExisting> Release()

13c new enabled Zombie IDtm:PrepareToRelease() IDtmEvents:
OnPreparedToRelea
se()

13d Up <NonExisting> Release()

14 Configured Zombie IDtm:PrepareToRelease() IDtmEvents:
OnPreparedToRelea
se()

5 General concepts

5.1 General

This clause provides general information about the FDT interfaces, and some background
information about how the designers of FDT expect these interfaces to be implemented and
used.

5.2 Overview of task related FDT interfaces

All FDT interfaces are task related. Each object shall implement a mandatory set of interfaces
expected by all other objects. By implementing optional FDT interfaces an object is able to
support additional functionality, for example a DTM may provide documentation in XML format
or special diagnostics, a frame-application may provide audit trail functionality.

Each object is able to determine the availability of such optional interfaces of other objects
during runtime.

All defined FDT interfaces are fixed and will never be changed. Additional future extensions
will be based on additional optional interfaces. A DTM or frame-application is then able to add
a higher FDT version support by implementing or using such additional FDT interfaces.

Depending on the functionality of a DTM, additionally to the default set of mandatory
interfaces an extra set of interfaces may be mandatory to support (see Table 2).

Table 2 − Task related DTM interfaces

Device Type Manager Availability User
interface

ActiveX
control

user
interface

Device
with

online
data

Gateway
DTM

Commu-
nication
DTM for

PC/Fieldus
adapter

IPersistXXX Mandatory

IDtm Mandatory

IDtm2 Mandatory

IDtmActiveXInformation Optional Mandatory

IDtmApplication Optional Mandatory

IDtmChannel Optional Mandatory Mandatory

IDtmDocumentation Mandatory

IDtmDiagnosis Mandatory

IDtmImportExport Optional

IDtmInformation Mandatory

IDtmInformation2 Mandatory

IDtmOnlineDiagnosis Mandatory

IDtmOnlineParameter Optional Mandatory

IDtmParameter Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 27 –

Device Type Manager Availability User
interface

ActiveX
control

user
interface

Device
with

online
data

Gateway
DTM

Commu-
nication
DTM for

PC/Fieldus
adapter

IFdtCommunicationEvents Optional Mandatory Mandatory

IFdtCommunicationEvents2 Optional Mandatory Mandatory

IDtmHardwareIdentification Optional

IDtmSingleDeviceDataAcce
ss

Optional Mandatory

IDtmSingleInstanceDataAcc
ess

Mandatory

IFdtEvents Mandatory

The mandatory interfaces of a DTM ActiveX are shown in Table 3.

Table 3 − Task related DTM ActiveX® interfaces

DTM ActiveX control Availability

IDtmActiveXControl Mandatory

Depending on the functionality of a channel, additionally to the mandatory default interface an
extra set of interfaces may be mandatory to support (see Table 4).

Table 4 − Task related FDT-Channel interfaces

FDT channel Availability Channel
with user
interface

Channel of
Gateway

DTM

Communication
DTM for

PC/Fieldus
adapter

IFdtChannel Mandatory

IFdtChannelActiveXInformation Optional Mandatory

IfdtChannelSubTopology Optional Mandatory Mandatory

IfdtChannelSubTopology2 Optional Mandatory Mandatory

IfdtCommunication Optional Mandatory Mandatory

IfdtFunctionBlockData Mandatory Mandatory

IfdtChannelScan Mandatory Mandatory

The mandatory interfaces of a Channel ActiveX are shown in Table 5.

Table 5 − Task related Channel ActiveX interfaces

FDT Channel ActiveX control Availability

IfdtChannelActiveXControl Mandatory

IfdtChannelActiveXControl2 Mandatory

The mandatory interfaces of a BTM are shown in Table 6.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 28 – IEC TR 62453-41:2016  IEC 2016

Table 6 − Task related BTM interfaces

BTM Availability

IBtm Mandatory

IDtmActiveXControlInformation Mandatory

IDtmChannel Optional

IDtmDocumentation Mandatory

IDtmDiagnosis Mandatory

IDtmImportExport Optional

IBtmInformation Mandatory

IDtmInformation2 Mandatory

IDtmOnlineDiagnosis Mandatory

IDtmOnlineParameter Mandatory

IBtmParameter Mandatory

IFdtCommunicationEvents Mandatory

IFdtCommunicationEvents2 Mandatory

IDtmHardwareIdentification Mandatory

IDtmSingleDeviceDataAccess Mandatory

IDtmSingleInstanceDataAccess Mandatory

IFdtEvents Mandatory

The mandatory interfaces of a BTM ActiveX are shown in Table 7.

Table 7 − Task related BTM ActiveX interfaces

BTM ActiveX control Availability

IBtmActiveXControl Mandatory

Depending on the functionality of a Frame Application, not all interfaces defined for a Frame
Application shall be supported (see Table 8).

Table 8 − Task related Frame Application interfaces

Frame Application Availability With user interface
IDtmEvents Mandatory

IDtmEvents2 Mandatory

IDtmAuditTrailEvents Mandatory

IFdtActiveX Optional Mandatory

IFdtActiveX2 Optional Mandatory

IFdtBulkData Optional

IFdtContainer Mandatory

IFdtDialog Mandatory

IFdtTopology Mandatory

IFdtBtmTopology Mandatory

IDtmScanEvents Optional

IDtmRedundancyEvents Optional

IDtmSingleDeviceDataAccessEvents Mandatory

IDtmSingleInstanceDataAccessEvents Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 29 –

Furthermore, the prefixes FDT, DTM and BTM are reserved for identifiers and names defined
in the FDT specification. This prevents conflicts of further releases with private extensions of
interfaces or definitions.

In general, all FDT interfaces are designed with fieldbus- and manufacturer-neutral methods.
Extensions for a new fieldbus are done via new XML schemas. Functional extensions for new
tasks will be provided by new interfaces.

5.3 Return values of interface methods

Interface methods indicate success or failure of a method call by well defined return values
(marked as [out, retval]). COM errors (HRESULT) shall not be used to return FDT function
related errors, except if it is stated in the specification. If no return value is defined (e.g. for all
event methods) it is assumed that the method always succeeds.

5.4 Dual interfaces

All interfaces defined within the FDT specification are implemented as dual interfaces. This
decision was made to support C++, Visual Basic, Java7 and other COM compliant
development languages. The functionality of an object is implemented in separate task
oriented interfaces, so that only the default interface is accessible via the dispatch interface.
This prevents marshalling of the extra interfaces to dispatch-only clients, but the extra
interfaces can be made available for a dispatch only-client via a wrapper that holds the other
interfaces as properties or merges all methods to a single interface.

Due to the better performance, the developer should use the custom interface. However, in
general the dispatch interface can be accepted, because the marshalling time of most of the
FDT methods can be neglected compared with the runtime of each method.

5.5 Unicode

All string parameters to the FDT interfaces are BSTRs and are therefore UNICODE strings.

Microsoft MIDL Version 3.0 or later is required to correctly compile the IDL code and generate
proxy/stub software. Microsoft Windows NT 4.0 (or later), or Windows 95 with DCOM support
is required to properly handle the marshalling of FDT parameters.

Note that in order to implement FDT software that will run on both Microsoft Windows NT and
Microsoft Windows 95, it is necessary for these components to test the platform at runtime. In
the case of Microsoft Windows 95, usually the conversion of any strings to be passed to
Win32 from UNICODE to ANSI needs to be done. Visual Basic® makes this conversion
implicitly.

The only limitation within this document is that a NUL character (i.e. 0) is only allowed as the
last character of any BSTR method parameter to prevent conversion errors (UNICODE<-
>ANSI, uppercase<->lowercase, etc.) within the database.

5.6 Asynchronous versus synchronous behavior

In general each function call is synchronous. Within FDT there are two special cases of
asynchronous behavior.

• After starting the user interface of a DTM, the DTM works asynchronous to the Frame
Application. Asynchronous in this case means that the user works with the DTM and the
Frame Application is the server for communication and data access. This state ends by a
notification to the Frame Application, when the DTM closes the user interface.

7 See Annex I.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 30 – IEC TR 62453-41:2016  IEC 2016

• While a DTM has opened its user interface, the DTM uses the asynchronous behavior at
the communication interface. The time a communication function call needs to return
depends on the system topology and the bus protocol and would block an application for
seconds. Dividing a communication function call to a request and a response function
causes a non-blocking behavior without the pain of multi-threading implementation. The
DTM sends its request or several requests without being disturbed by incoming responses.
When a response is available, the DTM gets a notification and can receive the response
from the communication component. Due to this mechanism, on one hand a DTM should
not implement a timeout control and on the other hand the communication has to provide a
response for each request. Only a response can contain the timeout information.

5.7 ProgIds

The usage of progIds is limited to 39 characters. This decision was made to support C++,
Visual Basic, Java and other COM compliant development languages.

5.8 Implementation of DTM, DTM device type and hardware identification information

5.8.1 Device identification

Figure 10 shows how the identity information provided by the DTM and the identity information
provided as a scan result is converted and used for comparison.

Figure 10 − Device identification

In order to identify a proper DTMDeviceType, a Frame Application has to compare
identification information of scanned physical devices with identification information of a
DTMDeviceType. These files shall be converted to a fieldbus independent format using a
fieldbus-specific XSL transformation.

IEC

Protocol specific
ScanSchema

busCategory : xxx
schemaVersion

Protocol specific
DTMIdentificationSchema

Compare device identification
in order to find a proper

DTMDeviceTypeScanResponse() GetDeviceIdentificationInformation()

busAddress : „1"

busAddress : „2"

busAddress : „3"

Protocol specific
device identification

content

Protocol specific
device identification

content

Protocol specific
device identification

content

DTM1
schemaVersion

DTMDeviceType A
busCategory : xxx

DTM2
schemaVersion

Protocol specific
device identification

content

DTMDeviceType B
busCategory: yyy

Protocol specific
device identification

content

DTMDeviceType C
busCategory : yyy

Protocol specific
device identification

content

DTMDeviceType D
busCategory : xxx

Protocol specific
device identification

content

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 31 –

Figure 11 shows, how protocol-specific schemas are integrated in the FDT specification and
used by Frame Application and DTMs (HART® example is shown):

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 32 – IEC TR 62453-41:2016  IEC 2016

Figure 11 − Structural overview
IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 33 –

5.8.2 Protocol-specific transformation style sheet (xsl)

As shown in the structural overview Figure 11, the protocol-specific FDT specification
extension covers a transformation style sheet (.xsl) in addition to schemas. This xsl is to be
used by a Frame Application in order to convert the protocol-specific formats included in the
identification (scan and DTM) XML documents into strings. The result shall be validated
against the protocol independent FDT schemas (DTMScanIdentSchema and
DTMDeviceTypeIdentSchema). The output can be used by a Frame Application to compare
scan and DTM values based on string format. A DTM may define a range of supported
physical device types by including regular expressions. In order to identify a matching
DTMDeviceType, a Frame Application shall implement a pattern matching according to the
regular expression syntax defined in 5.8.5.

5.8.3 Semantic identification information

Table 9 lists identification elements, which have to be provided by the scan and DTM
identification mechanism. After xsl transformation, the following values shall be available in
string format with the elements listed below in DTMScanIdentSchema and
DTMDeviceTypeIdentSchema.

Table 9 − Semantic identification information

Semantic element name Description Scan DTM

IdAddress Fieldbus address of the scanned physical device x -

IdBusProtocol Protocol identification (enum) x x

IdBusProtocolVersion Version of bus protocol (p) (p)

IdManufacturer Manufacturer identification x ?

IdTypeID Device type identification x ?

IdSoftwareRevision Tool relevant version of the physical device –
Firmware version

x ?

IdHardwareRevision Hardware version of the physical device x ?

IdDeviceTag Tag name, which set in the physical device or blok x -

IdSerialNumber In order to get a common definition for all kind of
protocols, a serial number is defined to be only
unique for one manufacturer and device type.

For world wide unique identification this attribute
shall always be combined with manufacturerID and
deviceTypeID.

x -

IdDTMSupportLevel Enum: genericSupport, profileSupport,
blockspecificProfileSupport,
specificSupport(=default)

- x

Key

x shall be provided

- is not to be provided

? optional

(p) optional, but may be defined mandatory for a specific protocol (see parts 3xy)

If a semantic element cannot be defined for a fieldbus protocol, the value shall be set to
’NOT_APPLICABLE’.

5.8.4 Device assignment

The comparison of the scan result with DTM device identification information and the device
assignment is done by the Frame Application based on its internal rules.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 34 – IEC TR 62453-41:2016  IEC 2016

Each element from the scan document can be compared with the DTM device identification
information.

The element of the DTM device identification document shall match to the value within the
scan document.

5.8.5 Regular expression specification

If the element of the DTM device identification document contains a pattern, the Frame
Application shall use regular expressions to compare scan and DTM device identification
information (see Table 10).

Table 10 − Regular expressions

MetaCharacter Description

. Matches any single character.

[] Indicates a character class. Matches any character inside the brackets (for example, [abc]
matches "a", "b", and "c").

^ If this metacharacter occurs at the start of a character class, it negates the character class.
A negated character class matches any character except those inside the brackets (for
example, [^abc] matches all characters except "a", "b", and "c"). If ^ is at the beginning of
the regular expression, it matches the beginning of the input (for example, ^[abc] will only
match input that begins with "a", "b", or "c").

- In a character class, indicates a range of characters (for example, [0-9] matches any of the
digits "0" through "9").

? Indicates that the preceding expression is optional: it matches once or not at all (for
example, [0-9][0-9]? matches "2" and "12").

+ Indicates that the preceding expression matches one or more times (for example, [0-9]+
matches "1", "13", "666", and so on).

* Indicates that the preceding expression matches zero or more times.

??, +?, *? Non-greedy versions of ?, +, and *.These match as little as possible, unlike the greedy
versions which match as much as possible. Example: given the input "<abc><def>", <.*?>
matches "<abc>" while <.*> matches "<abc><def>".

() Grouping operator. Example: ([0-9]+,)*[0-9]+ matches a list of numbers separated by
commas (such as "1" or "1,23,456").

\ Escape character: interpret the next character literally (for example, [0-9]+ matches one or
more digits, but [0-9]\+ matches a digit followed by a plus character). Also used for
abbreviations (such as \a for any alphanumeric character; see table below).

If \ is followed by a number n, it matches the nth match group (starting from 0). Example:
<{.*?}>.*?</\0> matches "<head>Contents</head>".

Note that in C++ string literals, two backslashes shall be used: "\\+", "\\a",
"<{.*?}>.*?</\\0>".

$ At the end of a regular expression, this character matches the end of the input. Example:
[0-9]$ matches a digit at the end of the input.

| Alternation operator: separates two expressions, exactly one of which matches (for
example, T|the matches "The" or "the").

! Negation operator: the expression following ! does not match the input. Example: a!b
matches "a" not followed by "b".

5.9 Implementation of slave redundancy

5.9.1 General

Implementation of slave redundancy is defined in IEC 62453-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 35 –

5.9.2 Topology import/export

A Frame Application not aware of DTMs handling redundant slaves is not able to provide
redundancy information within a FDT topology export file.

A Frame Application aware of DTMs handling redundant slaves can only add a DTMNode
element at ChannelNodes if the appropriate DTM instance has not been added to topology by
a IDtmRedundancy::OnAddedRedundantChild() event call. Instead the appropriate DTM
element of the topology document should contain a BusInformation element containing the
redundant address information.

6 Implementation of FDT services: FDT interfaces

6.1 Overview of the FDT interfaces

The FDT interface specification includes the following:

• DTM

• BTM

• Presentation objects

• DTMActiveXControl

• BTMActiveXControl

• FdtChannelActiveXControl

• FdtChannel

• Frame Application

The behavior of these objects and their interfaces are described in detail in this clause.
Developers building FDT objects for DTMs or parts of Frame Application like storage or
communication objects shall implement the functionality defined in this clause.

This clause also references and defines expected behavior of both standard COM interfaces
and FDT-specific interfaces that FDT compliant objects shall implement.

6.2 FDT objects

6.2.1 FDT object model

These FDT objects and at least the interfaces represent the tasks for the integration of a field-
device-application into a Frame Application. All interfaces of a DTM, of a BTM, of a channel
as well as the interfaces of the Frame Application are implemented by one COM object so that
a client can access them by calling QueryInterface on one of these interfaces of a server
object. So, a client is able to detect availability of optional interfaces of each object during
runtime.

The interfaces provided by DTM, ActiveX and Frame Application are shown in Figure 12 and
Figure 13. After the ActiveX is created by the Frame Application, the DTM cooperates with
the ActiveX object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 36 – IEC TR 62453-41:2016  IEC 2016

DTM

Environment2()
SetSystemGuiLabel()

«interface»
IDtm2

GetDeviceIdentificationInformation()

«interface»
IDtmInformation2

OnConnectResponse2()

«interface»
IFdtCommunicationEvents2

GetItemList()
Read()
Write()

«interface»
IDtmSingleInstanceDataAccess

CancelRequest()
ItemListRequest()
ReadRequest()
WriteRequest()

«interface»
IDtmSingleDeviceDataAccess

Environment()
InitNew()
Config()
SetCommunication()
PrepareToRelease()
PrepareToReleaseCommunication()
ReleaseCommunication()
PrepareToDelete()
SetLanguage()
GetFunctions()
InvokeFunctionRequest()
PrivateDialogEnabled()

«interface»
IDtm

GetActiveXGuid()
GetActiveXProgId()

«interface»
IDtmActiveXInformation

StartApplication()
ExitApplication()

«interface»
IDtmApplication

GetChannels()

«interface»
IDtmChannel

GetDocumentation()

«interface»
IDtmDocumentation

Verify()
InitCompare()
Compare()
ReleaseCompare()

«interface»
IDtmDiagnosis

Import()
Export()

«interface»
IDtmImportExport

GetInformation()

«interface»
IDtmInformation

Compare()
GetDeviceStatus()

«interface»
IDtmOnlineDiagnosis

CancelAction()
DownloadRequest()
UploadRequest()

«interface»
IDtmOnlineParameterGetParameters()

SetParameters()

«interface»
IDtmParameter

OnChildParameterChanged()
OnParameterChanged()
OnLockDataSet()
OnUnlockDataSet()

«interface»
IFdtEvents

Init()
PrepareToRelease()

«interface»
IDtmActiveXControlDtmActiveXControl

ScanHardwareRequest()
CancelAction()

«interface»
IDtmHardwareIdentification

OnAbort()
OnConnectResponse()
OnDisconnectResponse()
OnTransactionResponse()

«interface»
IFdtCommunicationEvents

IEC

Figure 12 − Interfaces of FDT objects – DTM and DtmActiveXControl

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 37 –

FrameApplication

OpenDialogActiveXControlRequest()
OpenChannelActiveXControlRequest()
CloseChannelActiveXControlRequest()
OpenDialogChannelActiveXControlRequest()

«interface»
IFdtActiveX2

OnAddedRedundantChild()
OnRemovedRedundantChild()

«interface»
IDtmRedundancyEvents

OnStateChanged()

«interface»
IDtmEvents2

OnScanResponse()
OnScanHardwareResponse()

«interface»
IDtmScanEvents

OnConnectResponse2()

«interface»
IFdtCommunicationEvents2

OnItemListResponse()
OnDeviceItemListChanged()
OnReadResponse()
OnWriteResponse()

«interface»
IDtmSingleDeviceDataAccessEvents

OnInstanceItemListChanged()

«interface»
IDtmSingleInstanceDataAccessEvents

OnAbort()
OnConnectResponse()
OnDisconnectResponse()
OnTransactionResponse()

«interface»
IFdtCommunicationEvents

OnParameterChanged()
OnErrorMessage()
OnProgress()
OnUploadFinished()
OnDownloadFinished()
OnApplicationClosed()
OnFunctionChanged()
OnChannelFunctionChanged()
OnPrint()
OnNavigation()
OnOnlineStateChanged()
OnPreparedToRelease()
OnPreparedToReleaseCommunication()
OnInvokedFunctionFinished()
OnScanResponse()

«interface»
IDtmEvents

OnStartTransaction()
OnAuditTrailEvent()
OnEndTransaction()

«interface»
IDtmAuditTrailEvents

OpenActiveXControlRequest()
CloseActiveXControlRequest()

«interface»
IFdtActiveX

GetProjectRelatedPath()
GetInstanceRelatedPath()

«interface»
IFdtBulkData

SaveRequest()
LockDataSet()
UnlockDataSet()
GetXmlSchemaPath()

«interface»
IFdtContainer

UserDialog()

«interface»
IFdtDialog

GetParentNodes()
GetChildNodes()
CreateChild()
DeleteChild()
GetDtmForSystemTag()
GetDtmInfoList()
MoveChild()
ReleaseDtmForSystemTag()

«interface»
IFdtTopology

IEC

Figure 13 − Interfaces of FDT object – Frame Application

The interfaces provided by a channel are shown in Figure 14. The DTM accesses
communication by sending requests to the interface IFdtCommunication and receives
responses by the interface IFdtCommunicationEvents. A hierarchy of channels and DTMs is
used to provide nested communication.

Init2()

«interface»
IFdtChannelActiveXControl2

ScanRequest()
CancelAction()

«interface»
IFdtChannelScan

SetChildrenAdresses()

«interface»
IFdtChannelSubTopology2

FdtChannelActiveXControl

Init()
PrepareToRelease()

«interface»
IFdtChannelActiveXControl

GetChannelActiveXGuid()
GetChannelActiveXProgId()
GetChannelFunctions()

«interface»
IFdtChannelActiveXInformation

GetChannelPath()
GetChannelParameters()
SetChannelParameters()

«interface»
IFdtChannel

ScanRequest()
ValidateAddChild()
ValidateRemoveChild()
OnAddChild()
OnRemoveChild()

«interface»
IFdtChannelSubTopology

Abort()
ConnectRequest()
DisconnectRequest()
TransactionRequest()
GetSupportedProtocols()
SequenceBegin()
SequenceStart()
SequenceEnd()

«interface»
IFdtCommunication

SelectFBInstance()
GetFBInstanceData()

«interface»
IFdtFunctionBlockData

FdtChannel DTM

«interface»
IFdtCommunicationEvents

Nested Communication:

IEC

Figure 14 − FDT objects – FDT-Channel

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 38 – IEC TR 62453-41:2016  IEC 2016

The interfaces related to a BTM are shown in Figure 15.

GetParameters()
SetParameters()

«interface»
IBtmParameter

Init()
PrepareToRelease()

«interface»
IBtmActiveXControl

GetParentNodes()
GetChildNodes()
CreateChild()
DeleteChild()
GetBtmForSystemTag()
GetBtmInfoList()
MoveChild()
ReleaseBtmForSystemTag()

«interface»
IFdtBtmTopology

BTM

«interface»
IDtm

GetInformation()

«interface»
IBtmInformation

«interface»
IBtm

«interface»
IDtmInformation2

«interface»
IDtmOnlineParameter

«interface»
IDtmDocumentation

«interface»
IDtmDiagnosis

«interface»
IDtmImportExport

«interface»
IDtmOnlineDiagnosis

«interface»
IDtmHardwareIdentification

«interface»
IDtmSingleDeviceDataAccess

«interface»
IDtmSingleInstanceDataAccess

«interface»
IFdtEvents

«interface»
IFdtCommunicationEvents

«interface»
IFdtCommunicationEvents2

«interface»
IDtmApplication

«interface»
IDtmActiveXInformation

FrameApplication

In addition to all
other interfaces
implemented by
FdtContainer

BtmActiveXControlEnvironment2()
SetSystemGuiLabel()

«interface»
IDtm2

creates

IEC

Key

 indicates interfaces specific for use with BTMs.

Figure 15 − FDT objects – BTM and BtmActiveXControl

6.2.2 Avalability of interface methods

The availability of interface methods of the different objects may depend on the state of a
DTM instance. This dependency is defined in Table 11 and Table 12.

Table 11 defines the interfaces of a DTM which can be used by a Frame Application at the
shown states.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 39 –

Table 11 − Availability of DTM methods in different states

Interface / Method

up

ne
w

 c
re

at
ed

ne
w

 e
na

bl
ed

ex
is

ti
ng

 c
re

at
ed

ru
nn

in
g

co
nf

ig
ur

ed

go
in

g
of

fl
in

e

on
lin

e

go
in

g
on

lin
e

de
st

ro
ye

d

co
m

m
un

ic
at

io
n

se
t

zo
m

bi
e

IPersistXXX

InitNew() √ (√)

Load() √ (√)

Save() √ √ √ √ √

IDtm

Environment() √ √

InitNew() √

Config() √

SetCommunication() √

ReleaseCommunication() √

PrepareToDelete() √

PrepareToRelease() √ √ √

SetLanguage() √ √ √ √

InvokeFunctionRequest() √ √ √ √ √

PrepareToReleaseCommunication() √ √ √ √

PrivateDialogEnabled() √ √ √ √ √

GetFunctions() √ √ √ √ √ √

IDtm2

Environment2() √ √

SetSystemGuiLabel() √ √ √ √ √ √ √

IDtmActiveXInformation √ √ √ √ √ √

IDtmApplication √ √ √ √ √

IDtmChannel √ √ √ √ √ √

IDtmDocumentation √ √ √ √ √

IDtmDiagnosis √ √ √ √ √

IDtmInformation √ √ √ √ √ √ √

IDtmInformation2 √ √ √ √ √ √ √

IDtmImportExport √

IDtmOnlineDiagnosis √ √ √

IDtmOnlineParameter √ √ √

IDtmParameter √ √ √ √ √

IDtmHardwareIdentification √ √ √ √

IFdtCommunicationEvents √ √ √ √

IFdtCommunicationEvents2 √ √ √ √

IFdtEvents √ √ √ √ √ √

IFdtChannel √ √ √ √ √ √

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 40 – IEC TR 62453-41:2016  IEC 2016

Interface / Method

up

ne
w

 c
re

at
ed

ne
w

 e
na

bl
ed

ex
is

ti
ng

 c
re

at
ed

ru
nn

in
g

co
nf

ig
ur

ed

go
in

g
of

fl
in

e

on
lin

e

go
in

g
on

lin
e

de
st

ro
ye

d

co
m

m
un

ic
at

io
n

se
t

zo
m

bi
e

IFdtChannelActiveXInformation √ √ √ √ √ √

IFdtChannelSubTopology

OnAddChild() √ √ √ √ √ √

OnRemoveChild() √ √ √ √ √ √

ScanRequest() √ √ √

ValidateAddChild() √ √ √ √ √ √

ValidateRemoveChild() √ √ √ √ √ √

IIFdtChannelSubTopology2

SetChildrenAdresses() √ √ √ √ √ √

IFdtChannelScan

ScanRequest() √ √ √

CancelAction() √ √ √

IFdtCommunication

Abort() √ √ √ √

ConnectRequest() √ √ √ √

DisconnectRequest() √ √ √ √

TransActionRequest() √ √ √ √

GetSupportedProtocols() √ √ √ √ √

SequenceBegin() √ √ √ √

SequenceStart() √ √ √ √

SequenceEnd() √ √ √ √

IFdtFunctionBlockData √ √ √ √ √

IDtmSingleInstanceDataAccess √ √ √ √ √

GetItemList() √ √ √ √ √

Read() √ √ √ √ √

Write() √ √ √ √ √

IDtmSingleDeviceDataAccess

CancelRequest() √ √ √ √

ItemListRequest() √ √ √ √ √

ReadRequest() √ √ √

WriteRequest() √ √ √

At the Zombie State not all DTMs shall support reload instance via IPersistXXX interfaces, e.g. DTMs written in
Visual Basic.

Concerning the transition between states and methods with asynchronous behavior: The call of methods, which
are defined with an asynchronous behavior (e.g. PrepareToRelease()) will start the transition. The related end
state will be reached, when the according method was called (e.g. OnPreparedToRelease()).

Concerning the transition between states in case of errors: If the method, which leads to the transition between
states, fails (e.g. return value is FALSE or a COM error appears), the state is left unchanged.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 41 –

Table 12 defines the interfaces of a Frame Application which can be used by a DTM at the
shown states. A Frame Application shall be aware that after IDtm:Environment a DTM
complying to older versions of FDT can call any Frame Application interface method.

Table 12 − Availability of Frame Application interfaces

Interface / Method

up

ne
w

 c
re

at
ed

ne
w

 e
na

bl
ed

ex
is

ti
ng

 c
re

at
ed

ru
nn

in
g

co
nf

ig
ur

ed

go
in

g
of

fl
in

e

on
lin

e

go
in

g
on

lin
e

de
st

ro
ye

d

co
m

m
un

ic
at

io
n

se
t

zo
m

bi
e

IFdtContainer

GetXMLSchemaPath() √ √ √ √ √ √ √ √

LockDataSet() √ √ √ √ √ √

SaveRequest() √ √ √ √ √ √

UnlockDataSet() √ √ √ √ √ √

IDtmEvents

OnApplicationClosed() √ √ √ √ √ √

OnDownloadFinished() √ √

OnErrorMessage() √ √ √ √ √ √ √ √

OnFunctionChanged() √ √ √ √ √ √

OnChannelFunctionChanged() √ √ √ √ √ √

OnInvokedFunctionFinished() √ √ √ √ √ √

OnNavigation() √ √ √ √ √

OnOnlineStateChanged() √ √ √ √

OnParameterChanged() √ √ √ √ √ √

OnPreparedToRelease() √

OnPreparedToReleaseCommunication() √ √ √ √

OnPrint() √ √ √ √ √ √

OnProgress() √ √ √ √ √

OnScanResponse() √ √ √

OnUploadFinished() √ √

IDtmAuditTrailEvents √ √ √ √ √

IFdtActiveX √ √ √ √ √ √

IFdtActiveX2 √ √ √ √ √ √

IFdtBulkData √ √ √ √ √ √ √

IFdtDialog √ √ √ √ √ √

IFdtTopology √ √ √ √ √

IDtmSingleDeviceDataAccessEvents

OnItemListResponse() √ √ √ √ √

OnDeviceItemListChanged() √ √ √ √ √

OnReadResponse() √ √ √

OnWriteResponse() √ √ √

IDtmSingleInstanceDataAccessEvents √ √ √ √ √

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 42 – IEC TR 62453-41:2016  IEC 2016

6.3 Device Type Manager

6.3.1 Interface IDtm

6.3.1.1 General

This interface is the main interface of a DTM according to row one of Table G.1. Via this
interface the DTM gets its initialization after the instantiation.

The Frame Application uses the interface to set information, like communication interface or
language, the DTM needs during runtime as well as to reset the DTM for release.

At this time the DTM is not connected to an instance data set of a device. At this state, the
DTM can be asked for its static information like version, vendor and its capabilities.

If the DTM is initialized it can be asked for its instance independent supported functions.

6.3.1.2 Config

HRESULT Config(

[in] FdtXmlDocument userInfo,

[out, retval] VARIANT_BOOL* result);

Description

Is called by the Frame Application for initialization concerning the current user.

The method is part of the implementation of the Initialize service as defined in IEC 62453-2.

Parameters Description

userInfo XML document containing the current user rights and the user role specified by
the FDTUserInformationSchema.

Return value

Return value Description

TRUE DTM accepted the given data.

FALSE The operation failed.

Behavior

It informs the DTM during initialization about the role and the rights of the current user.

Comments

In general it is expected that a DTM adapts the provided functionality according to the role of
the current user (see 6.3.1.4).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 43 –

6.3.1.3 Environment

HRESULT Environment(

[in] BSTR systemTag,

[in] IFdtContainer* container

[out, retval] VARIANT_BOOL* result).

Description

Is called by the Frame Application to set the systemTag and the pointer to the Frame
Application.

The method is part of the implementation of the initialize service as defined in IEC 62453-2.

Parameters Description

systemTag Identifier for the device instance; set by the Frame Application

Container Back pointer to the Frame Application

Return value

Return value Description

TRUE DTM has accepted the data.

FALSE The operation failed.

Behavior

Is called by the Frame Application to initialize a DTM for a device instance. Furthermore the
Frame Application passes the pointer to its own main interface.

Comments

The systemTag is independent of communication tags (e.g. IEC 61784 CPF 9 device tag).

6.3.1.4 GetFunctions

HRESULT GetFunctions(

[in] FdtXmlDocument operationState,

[out, retval] FdtXmlDocument* result);

Description

Returns an XML document containing information about standard (defined by applicationID) or
additional functionalities (defined by functionId) and documents supported by a DTM.

The method is one implementation of the GetFunctions service as defined in IEC 62453-2.

Parameters Description

operationState XML document containing the current operation phase specified by the
FDTOperationPhaseSchema.

Return value

Return value Description

Result XML document containing actual supported functions specified by the
DTMFunctionsSchema.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 44 – IEC TR 62453-41:2016  IEC 2016

Behavior

Functions with user interface are started via IDtmApplication::StartApplication(),
IDtmActiveXInformation::GetActiveXGuid() or IDtmActiveXInformation::GetActiveXProgId()
and work asynchronous.

Comments

The XML document provided by IDtm::GetFunctions() can contain functions (<Function> or
<StandardFunction> elements) and groups of functions (<Functions>). Both can separately be
enabled/disabled or shown/hidden, described by a <Status> element.

Because the FDT standard does not define status inheritance, the group (<Functions>) status
is not inherited by the children (<Function> or <StandardFunction>). The DTM shall take care
about the status of sub-functions.

For example, if the DTM disables a group of functions (<Functions>), it shall also disable all
functions (<Function>) below that group if this is the intended behavior. If the DTM does not
disable sub-functions, the Frame Application can still make use of them.

If the DTM has set the attribute ‘isPrintable’ of a <Function> element to true, the Frame
Application should offer printing, even if attribute ‘isEnabled’ of the same <Function> element
is set to false.

Microsoft Windows supports that menu functions may be called from the keyboard via their
mnemonic access characters. An ampersand (‘&’) in a menu item string is normally translated
into an underline character and used as the mnemonic access character for that menu item.

Because of different FDT Frame Application-specific presentations (e.g. drop-down menu,
listbox or combo box) mnemonic access characters should not be used within the XML
document provided by IDtm::GetFunctions().

6.3.1.5 InitNew

HRESULT InitNew(

[in] FdtXmlDocument deviceType,

[out, retval] VARIANT_BOOL* result);

Description

Is called by the Frame Application to initialize a newly created instance data set for a specific
device type.

The method is part of the implementation of the initialize service as defined in IEC 62453-2.

Parameters Description

deviceType XML document containing the manufacturer-specific data like unique identifier
for a sub-device type specified by DTMInitSchema.

Return value

Return value Description

TRUE DTM is initialized.

FALSE The operation failed.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 45 –

Behavior

The Frame Application initializes the DTM for a specific device-type. The supported device
types of a DTM are available via IDtmInformation::GetInformation(). This initialization is
necessary especially for a DTM that supports more than one device type.

Comments

None

6.3.1.6 InvokeFunctionRequest

HRESULT InvokeFunctionRequest(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument functionCall,

[out, retval] VARIANT_BOOL* result);

Description

Starts a function of a DTM.

The method is one implementation of the InvokeFunction service as defined in IEC 62453-2.

Parameters Description

invokeId Identifier for the started function.

functionCall XML document containing the DTM-specific function id for the requested
function or user interface specified by the DTMFunctionCallSchema.

Return value

Return value Description

TRUE The function started.

FALSE The function call failed.

Behavior

See IEC 62453-2.

Comments

None.

6.3.1.7 PrepareToDelete

HRESULT PrepareToDelete(

[out, retval] VARIANT_BOOL* result);

Description

Returns TRUE if the device instance data set can be deleted at the Frame Applications
database. Used to inform the DTM that it has to clean up e.g. its log files or protocols. The
data set will be deleted by the Frame Application.

The method is one implementation of the ClearInstanceData service as defined in
IEC 62453-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 46 – IEC TR 62453-41:2016  IEC 2016

Return value

Return value Description

TRUE Data set can be deleted.

FALSE The operation failed.

Behavior

The method is used to inform a DTM that it has to clean up, for example its log files or
protocols. After this function call the data set will be deleted by the Frame Application. The
Frame Application is responsible to ensure the pre-conditions for the delete. That means that
the Frame Application shall ensure, that all DTM instances related to this data set are shut
down (either Zombie-state or released). If the DTM returns FALSE the Frame Application can
inform the user to close the user interfaces or can terminate them by ExitApplication() or
IDtmActiveXControl::PrepareToRelease(). In general a DTM will finish its current
communication process during the release of its user interfaces.

Comments

None.

6.3.1.8 PrepareToRelease

HRESULT PrepareToRelease(

[out, retval] VARIANT_BOOL* result);

Description

Used to inform the DTM that it has to release its links to other components. The DTM will be
released by the Frame Application.

The method is one implementation of the terminate service as defined in IEC 62453-2.

Return value

Return value Description

TRUE The DTM will release its links to other components.

FALSE The operation failed.

Behavior

The DTM has to release all links to other components and has to terminate all pending or
running functions. It also shall close all user interfaces.

The DTM sends a notification via IDtmEvents::OnPreparedToRelease() to the Frame
Application if the DTM can be released.

Comments

It is decision of a DTM, whether to store transient data or not. In order to trigger storing of the
data, IFdtContainer::SaveRequest() shall be called.

The DTM shall implement a proper behavior concerning Subclause 4.4 to give a Frame
Application the information about the storing state of DTM related data (refer to FDT data
types’ attribute ‘storageState’).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 47 –

6.3.1.9 PrepareToReleaseCommunication

HRESULT PrepareToReleaseCommunication(

[out, retval] VARIANT_BOOL* result);

Description

Used to inform the DTM that it has to release its links to the communication components.

The method is part of the implementation of the EnableCommunication service as defined in
IEC 62453-2.

Return value

Return value Description

TRUE The DTM will release its references at the communication pointer.

FALSE The operation failed.

Behavior

The DTM has to release all references to the communication pointer set during
SetCommunication(). The method returns FALSE if a communication call is active and cannot
be terminated.

The DTM sends a notification via IDtmEvents::OnPreparedToReleaseCommunication() to the
Frame Application if the communication pointer can be released.

Comments

The method returns FALSE if communication call is active and cannot be terminated.

The method returns TRUE if DTM accepts shutdown of communication. A DTM has to fire
progress events to inform Frame Application about ongoing progress if
IDtmEvents::OnPrepareToReleaseCommunication() notification takes a longer time, for
example, if still some communication calls have not returned.

See also 6.9.1.14 OnProgress and 6.3.1.12 SetCommunication.

6.3.1.10 PrivateDialogEnabled

HRESULT PrivateDialogEnabled(

[in] VARIANT_BOOL enabled,

[out, retval] VARIANT_BOOL* result);

Description

Sends a notification to a DTM whether it is allowed to open a private dialog window.

The method is implementation of the PrivateDialogEnabled service, as defined in
IEC 62453-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 48 – IEC TR 62453-41:2016  IEC 2016

Parameters Description

enabled TRUE means that it is allowed for a DTM to open a dialog window.

Return value

Return value Description

TRUE The function succeeded.

FALSE The function failed.

Behavior

If a DTM uses ActiveX controls as user interfaces, the DTM has to inform its open controls
whether they are allowed to open dialog windows.

If private dialogs are disabled, any private dialogs shall be prevented by the DTM. Also the
DTM should inform user via IFdtDialog::UserDialog() if a specific functionality can not be
performed because private dialogs are not allowed. The message should be something like
“Due to application context request function is not available (opening of corresponding
window is not allowed)”.

Comments

According to this formulation, examples for private dialogs are

• message boxes (e.g. standard message box),

• file or printer selection dialogs (e.g. provided by Microsoft Common Controls library),

• (default) web browsers (e.g. Internet Explorer),

• (default) mail clients (e.g. MS Outlook),

• help file view (e.g. HLP or CHM files),

• manual viewer (e.g. PDF or RTF),

• splash screens,

• external stand-alone applications or

• any other windows.

If the dialogs are opened under control of the Frame Application, they are defined not to be
private dialogs:

• dialogs opened by IFdtDialog::UserDialog(),

• ActiveX controls opened by IFdtActiveX::OpenActiveXControlRequest(),

• applications started by IDtmApplication::StartApplication() and

• windows opened by the Frame Application due to a <Document> entry in the
XMLdocument received from IDtm::GetFunctions().

6.3.1.11 ReleaseCommunication

HRESULT ReleaseCommunication(

[out, retval] VARIANT_BOOL* result);

Description

Used to inform the DTM that the communication pointer will be released by the Frame
Application.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 49 –

The method is one implementation of the ReleaseLinkedCoummunicationChannel service as
defined in IEC 62453-2.

Return value

Return value Description

TRUE The DTM has set at the communication pointer to NULL.

FALSE The operation failed.

Behavior

It is recommended that the DTM sets the communication pointer, set during
SetCommunication(), to NULL. The method returns FALSE if a communication call is active.

If the DTM returns TRUE it has to assume that the communication pointer is invalid for further
function calls.

In general the Frame Application has to ensure that all applications or function calls of a DTM
are finished before it releases the communication pointer.

Comments

See also 6.9.1.12, OnPreparedToReleaseCommunication().

6.3.1.12 SetCommunication

HRESULT SetCommunication(

[in] IFdtCommunication* communication,

[out, retval] VARIANT_BOOL* result);

Description

Set the interface pointer to the communication interface that the DTM has to use for online
access.

The method is implementation of the services SetLinkedCommunicatinChannel and
EnableCommunication as defined in IEC 62453-2.

Parameters Description

Communication Interface pointer of a Communication Channel.

Return value

Return Value Description

TRUE Pointer accepted

FALSE Invalid communication pointer

Behavior

The pointer to the communication interface of a Communication Channel is set by the Frame
Application for online calls like DownloadRequest() or UploadRequest().

The Communication Channel can check the supported communication protocol via
IFdtChannel::GetChannelParameters() and the attribute gatewayBusCategory. In general the
Frame Application is responsible to establish a valid link between a channel and a DTM or

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 50 – IEC TR 62453-41:2016  IEC 2016

between two Communication Channels. This check can be done to ensure that the link is
established correctly or in case of communication problems.

Comments

To ensure a proper behavior, it is recommended that the Frame Application implements
following rules.

• For each DTM, which acts as a root concerning the chain of interfaces for nested
communication, the method IDtm::SetCommunication() shall be called with a NULL pointer
as parameter ‘communication’. This leads to the transition from ‘configured’ to
‘communication set’ concerning the DTM state machine (refer to Figure 9, DTM State
Machine)

• To set up the chain for nested communication, the Frame Application shall start to hand
over the interface pointer from the DTM, which acts as a root concerning the chain of
interfaces for nested communication. To release the chain, according to 6.3.1.9,
IDtm::PrepareToReleaseCommunication(), the Frame Application shall act vice versa.

6.3.1.13 SetLanguage

HRESULT SetLanguage(

[in] long languageId,

[out, retval] VARIANT_BOOL* result);

Description

Returns TRUE if the requested language is supported by the DTM.

The method is implementation of the SetLanguage service as defined in IEC 62453-2.

Parameters Description

languageId Unique identifier for user interface localization; defined by Windows as a
locale identifier (LCID) containing the language identifier in the lower word and
the sorting identifier as well as a reserved value in the upper word. The
identifier supplied in an LCID is a standard international numeric abbreviation
(e.g. German – Standard: 0x0407, English – United States: 0x0409). (See also
WIN32/Platform SDK, locale id or LCID.)

Return value

Return value Description

TRUE Language supported. All human readable outputs will use the required
language.

FALSE Language not supported.

Behavior

The Frame Application sets the language during initialization of the DTM. So all presentation
objects of the same instance have the same language. Also the messages on the event
interfaces like OnErrorMessage() and the human readable contents of the XML documents
like at the interface IDtmDocumentation or IDtmInformation have to use the requested
language. If a DTM does not support the requested language it uses the current language in
case it is already initialized or sets its default language on the first initialization.

Comments

The supported languages of a DTM are listed within the DTMInformationSchema. One DTM
instance is always initialized with one language. It's up to a DTM whether it can change the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 51 –

current language of an user interface while the user interface is shown. The output format for
numbers, currencies, times, and dates will be based on the regional options of the operation
system.

6.3.2 Interface IDtm2

6.3.2.1 General

This interface is the main interface of a DTM according to line two of Table G.1. Via this
interface such a DTM gets its initialization after the instantiation. This interface extends the
interface by new methods. This interface is mandatory.

A Frame Application according to column 2 of Table G.1 has to use IDtm2, if the DTM
supports this interface. Instead of calling IDtm::Environment() such a Frame Application shall
then use the IDtm2::Environment2() method.

6.3.2.2 Environment2

HRESULT Environment2(

[in] BSTR systemTag,

[in] IFdtContainer* container,

[in] FdtXmlDocument frameInfo,

[out, retval] VARIANT_BOOL* result);

Description

Is called by a Frame Application according to Table G.1, column two, and higher to set the
systemTag, the back pointer to the Frame Application and an XML document providing frame
version information. Such a Frame Application will not call the IDtm::Environment() method.

The method is part of the implementation of the initialize service as defined in IEC 62453-2.

Parameters Description

systemTag Identifier for the device instance; set by the Frame Application

Container Back pointer to the Frame Application

frameInfo XML document containing frame version information by the
DTMEnvironmentSchema.

Return value

Return value Description

TRUE DTM has accepted the data.

FALSE The operation failed.

Behavior

Is called by the Frame Application according to Table G.1, column 2, and higher to initialize a
DTM according to Table G.1, row 2, and higher for a device instance. Furthermore the Frame
Application passes the pointer to its own main interface and a document providing Frame
Application version information.

A DTM needs the systemTag during runtime for navigation or to identify itself at the event
interface of the Frame Application. The DTM shall not store the systemTag to prevent side
effect if a Frame Application copies, moves or deletes data sets.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 52 – IEC TR 62453-41:2016  IEC 2016

Comments

The systemTag is independent of communication tags (e.g. IEC 61784 CPF 9 device tag).

6.3.2.3 SetSystemGuiLabel

HRESULT SetSystemGuiLabel(

[in] FdtXmlDocument systemGuiLabel,

[out, retval] VARIANT_BOOL* result);

Description

This method is called by the Frame Application to set a unique human readable identifier of
the DTM instance in the context of the Frame Application.

The method is implementation of the SetSystemGuiLabel service as defined in IEC 62453-2.

Parameters Description

systemGuiLabel XML document containing a unique human readable identifier of the DTM
instance in the context of the Frame Application. Document specified by
DTMSystemGuiLabelSchema.

Return value

Return value Description

TRUE DTM has accepted the data.

FALSE The operation failed.

Behavior

This method is called by the Frame Application in order to set a system label, for example for
a message box or a user interface which is part of the DTM and can not be embedded within
a Frame Application. The Frame Application sets a unique human readable identifier of the
DTM instance in the context of the Frame Application which ensures a unique identification
between the device and for example a message box of a DTM. The DTM shall use this system
label for all kinds of windows that will be opened by the DTM themselves. In special cases the
DTM can extend this title with specific information.

The Frame Application has to call this method as early as possible. As long as the method is
not called the DTM has to use the tag of the device as human readable string by default.

Comments

The human readable identifier shall not be stored by the DTM. It is recommended to update
the labels of all open windows when SetSystemGuiLabel() is called.

6.3.3 Interface IDtmActiveXInformation

This interface provides the user interface of a DTM as ActiveX controls for embedding within
a Frame Application.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 53 –

6.3.3.1 GetActiveXGuid

HRESULT GetActiveXGuid(

[in] FdtXmlDocument functionCall,

[out, retval] FdtUUIDString* result);

Description

Returns the UUID for the ActiveX control according to the function call id.

The method is part of the implementation of the GetGuiInformation service as defined in
IEC 62453-2.

Parameters Description

functionCall XML document containing the function id for the requested user interface
specified by the DTMFunctionCallSchema.

Return value

Return value Description

result UUID for an ActiveX control.

Behavior

Returns a UUID that the Frame Application can use to instantiate the control.

If a requested application is not supported the method returns a NULL string.

The kind of user interface that is expected for a DTM is described in detail within the schema
provided by IDtm::GetFunctions().

Comments

None.

6.3.3.2 GetActiveXProgId

HRESULT GetActiveXProgId(

[in] FdtXmlDocument functionCall,

[out, retval] BSTR* result);

Description

Returns the ProgId for the ActiveX control according to the function call id.

The method is part of the implementation of the GetGuiInformation service as defined in
IEC 62453-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 54 – IEC TR 62453-41:2016  IEC 2016

Parameters Description

functionCall XML document containing the function id for the requested user interface
specified by the DTMFunctionCallSchema.

Return value

Return value Description

result ProgId for an ActiveX control.

Behavior

Returns the ProgId for the ActiveX control according to the function call id. Frame
Applications implemented with scripting languages can use this ProgId to instantiated the
control.

If a requested application is not supported the method returns NULL pointer.

The kind of user interface that is expected for a DTM is described in detail within the schema
provided by IDtm::GetFunctions().

Comments

None.

6.3.4 Interface IDtmApplication

6.3.4.1 General

This interface provides the function to start a user interface of a DTM. These user interfaces
are part of the DTM itself and cannot be embedded within a Frame Application.

6.3.4.2 ExitApplication

HRESULT ExitApplication(

[in] FdtUUIDString invokeId,

[out, retval] VARIANT_BOOL* result);

Description

Notification to a DTM to close an user interfaces identified by the invoke id.

The method is part of the implementation of the ClosePresentation service as defined in
IEC 62453-2.

Parameters Description

invokeId Identifier for the started application. Same value as provided in the
corresponding call of IDtmApplication::StartApplication().

Return value

Return value Description

TRUE The specified application will be closed.

FALSE The operation failed.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 55 –

Behavior

This method works asynchronous. That means that the DTM just checks whether it can close
the user interfaces or not. In case it can, it first returns TRUE and then starts its shut down
procedure for the user interface. During this shut down it has to unlock its instance data set
and release the online connection to its device if necessary. Finally, it has to notify the Frame
Application via IDtmEvents::OnApplicationClosed(). This notification will cause the related
releases on Frame Application’s side. The DTM itself is not terminated.

In case of errors, the DTM should supply further details via IDtmEvents::OnErrorMessage().

The invoke id is used by a Frame Application for the association at the callback interface if
the application is terminated. (See IdtmEvents::OnApplicationClosed.)

Comments

This method has to work asynchronous, because a synchronous call may block the Frame
Application interfaces.

6.3.4.3 StartApplication

HRESULT StartApplication(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument functionCall,

[in] BSTR windowTitle,

[out, retval] VARIANT_BOOL* result);

Description

Opens a user interface of a DTM for a specific function call.

The method is implementation of the OpenPresentation service as defined in IEC 62453-2.

Parameters Description

InvokeId Identifier for the started application.

functionCall XML document containing the function id for the requested function or user
interface specified by the DTMFunctionCallSchema.

windowTitle Window title required by the Frame Application.

Return value

Return value Description

TRUE The requested application is started.

FALSE The operation failed.

Behavior

The function call id associates a DTM with a functional/logical context. Each DTM can provide
more than one function. Which functions are supported by a DTM can be requested via the
schema provided by IDtm::GetFunctions().

In general, it is up to the Frame Application to determine the passed function call id and the
DTM decides the kind of presentation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 56 – IEC TR 62453-41:2016  IEC 2016

IDtmApplication::StartApplication() always brings a user interface to the foreground, or at
least an error message. Already started applications, identified by the invoke id, will be
popped to the foreground. The request of an already started application with a new invoke id
will be rejected by the DTM.

The invoke id is used by a Frame Application for the association at the callback interface if
the application is terminated within the user interface of the DTM. (See
IDtmEvents::OnApplicationClosed().) Furthermore, it allows the Frame Application to handle a
list of open user interfaces.

Comments

None.

6.3.5 Interface IDtmChannel

This interface is used for accessing FDT-Channel objects. On one hand the supplied FDT-
Channel objects carry the information which are necessary to create the association between
I/O channels of a device and the functions of the Frame Application. On the other hand, in
case of Communication Channels, these FDT-Channel objects are used to build the
communication chain for nested communication.

6.3.5.1 GetChannels

HRESULT GetChannels(

[out, retval] IFdtChannelCollection** result);

Description

Returns the FDT-Channel objects of a DTM.

The method is implementation of the GetChannels service as defined in IEC 62453-2.

Return value

Return value Description

result Collection of IFdtChannel of the requested channel objects.

Behavior

This method returns the channel collection of a DTM. The DTM itself can represent a device
or a module of a device.

For simple devices a FDT-Channel object provides only the information for channel
assignment.

In case the channel provides gateway functionality, the FDT-Channel object additionally
supplies the communication interface for nested communication.

Comments

The IFdtChannelCollection allows access to FDT-Channel objects of a DTM. The interface
definition follows the Microsoft COM standards for providing access to a group of objects
that is known as a collection interface.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 57 –

The IFdtChannelCollection provides a Count property that returns the number of items in the
collection, an Item property that returns an item from the collection based on an index or a
key, and a _NewEnum property that returns an enumerator for the collection.

The DTM shall declare its available channels with <ChannelReference> elements in XML
returned in IDtmParameter::GetParamter(). The item property of IFdtChannelCollection shall
accept keys that correspond to the idRef attribute in <ChannelReference> elements and
numeric index values between 1 and count property value.

The item property shall accept the key values as variant data type VT_BSTR and (VT_BSTR |
VT_BYREF), because different type of programming languages pass the strings differently
(e.g. Visual Basic 6 uses VT_BSTR | VT_BYREF).

6.3.6 Interface IDtmDocumentation

6.3.6.1 General

This interface provides the DTM-specific documentation for a device instance as XML
document.

6.3.6.2 GetDocumentation

HRESULT GetDocumentation(

[in] FdtXmlDocument functionCall,

[out, retval] FdtXmlDocument* result);

Description

Returns the device-specific documentation according to the function call as XML document.

The method is implementation of the GetDocumentation service as defined in IEC 62453-2.

Parameters Description

functionCall XML document containing the function id for the requested document specified
by the DTMFunctionCallSchema.

Return value

Return value Description

result XML document containing the requested documentation specified by the
DTMDocumentationSchema.

Behavior

This method returns an XML-Document which can be used directly for documentation
purposes. The format of this technical report is defined by the passed function call id, which is
available via IDtm::GetFunctions() Only functions with the attribute ‘printable’ = TRUE will be
supported. The Frame Application can use a XSL style sheet to transform the returned XML
document to HTML. Nesting DTM-specific style sheets can be used to transform the XML
document into a DTM specifc HTML. Within these nested style sheets also hyperlinks to
additional documents or into the World Wide Web can be placed.

Comments

For an example style sheet please have a look to DTMDocumentationStyle.xsl. Refer to
Annex D.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 58 – IEC TR 62453-41:2016  IEC 2016

6.3.7 Interface IDtmDiagnosis

6.3.7.1 General

This interface provides the base diagnosis functions required by a Frame Application for
DTMs with configuration parameters.

6.3.7.2 Compare

HRESULT Compare(

[out, retval] VARIANT_BOOL* result);

Description

Returns TRUE if the complete data sets are equal.

The method is part of the implementation of the CompareDataValueSet service as defined in
IEC 62453-2.

Return value

Return value Description

TRUE The data sets are equal.

FALSE The data sets are not equal or compare failed.

Behavior

Compares the data set of the external DTM with its own and returns TRUE if the data sets are
equal.

This function fails if it is called outside of an InitCompare() – ReleaseCompare() sequence.

In case of errors the DTM should inform the Frame Application via the callback interface
IDTMEvent::OnErrorMessage().

Comments

The structure and the parameter values for configuration, parameterization and identification
are relevant for the comparison. Runtime dependent parameters (e.g. operation hours) of the
data set are not relevant for comparison.

6.3.7.3 InitCompare

HRESULT InitCompare(

[in] BSTR systemTag,

[out, retval] VARIANT_BOOL* result);

Description

Initializes a DTM for comparison of two device instances.

The method is part of the implementation of the CompareDataValueSet service as defined in
IEC 62453-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 59 –

Parameters Description

systemTag systemTag of a second DTM of the same type

Return value

Return value Description

TRUE Initialization successful.

FALSE Initialization failed (e.g. a compare is already in progress or the DTM is not of
the same type).

Behavior

Initializes the compare of the data set owned by the DTM itself with a data set of a second
device. Such a comparison is only possible within an InitCompare() – ReleaseCompare()
sequence.

The DTM can access the second device data set by requesting the according DTM instance
via IFdtTopology::GetDtmForSystemTag() with the received systemTag.

To perform a comparison in the background the Compare() method can be called. Starting a
compare user interface may perform a user interactive comparison.

It is only possible to compare data sets handled by DTMs of the same type.

Comments

Every comparison sequence started with InitCompare() shall be closed using
ReleaseCompare().

6.3.7.4 ReleaseCompare

HRESULT ReleaseCompare(

[out, retval] VARIANT_BOOL* result);

Description

Returns TRUE if an existing compare sequence initialized by InitCompare() has been closed
successfully.

The method is part of the implementation of the CompareDataValueSet service as defined in
IEC 62453-2.

Return value

Return value Description

TRUE Compare sequence closed and external DTM reference released.

FALSE A comparison is in progress (e.g. a user interface is currently open).

Behavior

If this function is called, the DTM has to release its reference to the external DTM by calling
IFdtTopology::ReleaseDtmForSystemTag().

This method only succeeds, if the comparison is finished and the references to the external
DTM are released. Especially in case of open user interfaces these references shall be solved
first.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 60 – IEC TR 62453-41:2016  IEC 2016

Comments

If the ReleaseCompare() function is not handled in a correct manner on both sides, the Frame
Application and the DTM, the DTM referenced as the external DTM cannot be released during
the lifetime of the current DTM.

6.3.7.5 Verify

HRESULT Verify(

[out, retval] VARIANT_BOOL* result);

Description

Returns TRUE if the complete data set is valid.

The method is implementation of the verify service as defined in IEC 62453-2.

Return value

Return value Description

TRUE The complete data set is valid.

FALSE The data set or a part of the data set is invalid.

Behavior

Validates the complete data set by internal business rules of the DTM.

Comments

A Frame Application calls this method typically to ensure a consistent dataset, for example
after persistent load or before going online.

6.3.8 Interface IDtmImportExport

6.3.8.1 General

To build an export image of a DTM a Frame Application uses one IStream object for each
device instance. This IStream object is used as argument to IDtmImportExport::Load() or
IDtmImortExport::Save(). If a DTM does not offer an IDtmImportExport interface the Frame
Application shall use one of the IPersistXXX interfaces to retrieve and restore the instance
data.

6.3.8.2 Export

HRESULT Export(

[in] IStream* stream,

[out, retval] VARIANT_BOOL* result);

Description

Saves data of the private data storage to the specified stream.

The method is implementation of the export service as defined in IEC 62453-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 61 –

Parameters Description

stream Stream containing all DTM-specific data of an instance

Return value

Return value Description

TRUE The operation succeeded.

FALSE The operation failed.

Behavior

The import/export interface is a mandatory interface for DTMs which do not store the
complete instance-specific data via IPersistXXX mechanism. It is up to a DTM to specify the
contents of the appropriate stream object provided by the Frame Application via the
IDtmImportExport interface. If this interface is not provided by a DTM the Frame Application
uses one of the IPersistXXX interfaces for export/import.

Comments

None

6.3.8.3 Import

HRESULT Import(

[in] IStream* stream,

[out, retval] VARIANT_BOOL* result);

Description

Loads data of the private data storage from the specified stream.

The method is implementation of the import service as defined in IEC 62453-2.

Parameters Description

stream Stream containing all DTM-specific data of an instance.

Return value

Return value Description

TRUE The operation succeeded.

FALSE The operation failed.

Behavior

The import/export interface is a mandatory interface for DTMs which do not store the
complete instance-specific data via IPersistXXX mechanism. It is up to a DTM to specify the
contents of the appropriate stream object provided by the Frame Application via the
IDtmImportExport interface. If this interface is not provided by a DTM the Frame Application
uses one of the IPersistXXX interfaces for export/import.

Comments

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 62 – IEC TR 62453-41:2016  IEC 2016

6.3.9 Interface IDtmInformation

6.3.9.1 General

This interface is the second main interface of a DTM according to FDT version 1.2 and older.
Via this interface the DTM can be asked for its static information like version, vendor, and its
capabilities to allow integration into the libraries of a Frame Application.

6.3.9.2 GetInformation

HRESULT GetInformation(

[out, retval] FdtXmlDocument* result);

Description

This method is one implementation of the service GetTypeInformation as defined in
IEC 62453-2.

Returns a static XML-document containing information like vendor, icon, GSD, etc.

Return value

Return value Description

Result XML document containing static DTM information specified by the
DTMInformationSchema.

Behavior

Comments

Frame Applications should handle the identification-related information available from each
<DtmDeviceType> and its <VersionInformation> element as a unique identification information
of supported device type.

For DTM developers it is recommended that the identification information consist at least from
the following attributes:

Element <DtmDeviceType>

• 'manufacturerId' (see attribute definition)

• 'deviceTypeId' (see attribute definition)
and <VersionInformation> element within <DtmDeviceType>

• 'name' (name of the device type)

• 'vendor' (vendor of the device type)

• 'version' (version of the device type, for example firmware version)

For a DTM it is recommended that

• above listed attributes are provided (if applicable);

• 'manufacturerId', 'deviceTypeId' and 'name' are used to uniquely identify the
<DtmDeviceType> element. Changing any of these attributes for the same element in
newer DTM software version is not allowed;

• the ‘name’ attribute shall be unique within the namespace of a DTM. It shall contain
enough information to distinguish between different device types and sub-device types.
This information will be used as a display string within a Frame Application-specific device
catalogue;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 63 –

• supporting of a new device version, which could not be supported by existing
<DtmDeviceType> elements, shall lead to new <DtmDeviceType> element with the
different 'name' attribute;

• a new DTM software version shall support all the device types of the previous version.

Example:

DTM V1.0
 ManufacturerX DeviceX V1

DTM V1.1
 ManufacturerX DeviceX V1
 ManufacturerX DeviceXR2 V2

Frame Application vendors should be aware that there are DTMs on the market, that do not
follow these recommendations. DTM can expose more than one <DtmDeviceType> element
with the same name, but different values for 'manufacturerId', 'deviceTypeId', 'subDeviceType'
and 'version'. Only in this case the Frame Application should consider the listed attributes as
additional identifiers. This also could be used to distinguish between an update of an existing
device type and a creation of an additional device type entry in the device catalogue.

The information should be used in same way for FDT1.2.1 DTMs in order to avoid problems in
FDT1.2 based Frame Application.

6.3.10 Interface IDtmInformation2

6.3.10.1 General

This interface extends the interface IDtmInformation by new methods. This interface is
mandatory.

6.3.10.2 GetDeviceIdentificationInformation()

HRESULT GetDeviceIdentificiationInformation(

[in] FdtXmlDocument typeRequest,

[in] FdtUUIDString protocolId,

[out, retval] FdtXmlDocument* result);

Description

This method implements service GetDeviceIdentificationInformation as defined in
IEC 62453-2.

Requests device or block identification information for specified type and protocol.

Parameters Description

typeRequest Defines the DTMDeviceType or BTMBlockType for which the identification is
requested. (XML according TypeRequestSchema.)

protocolID Defines UUID of protocol for which the device identification is requested.

Return value

Return value Description

Result Protocol-specific device identification information for a DTMDeviceType
specified by a fieldbus-specific schema. (FDTxxxDeviceTypeIdentSchema where
xxx is the protocol name.)

If method was called at a communiction DTM, then XML document according
DTMDeviceTypeIdentSchema is returned and shall not be transformed.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 64 – IEC TR 62453-41:2016  IEC 2016

Behavior

The response contains a protocol-specific document, which can be validated by Frame
Application against the protocol-specific schemas.

Comments

DTM shall check the protocol-specific FDT schema sub-path provided by a Frame Application
for an already existing protocol-specific schema. If the protocol schemas are missing the
Device DTM has to inform the user about missing schema which is provided by a
Communication DTM of the required protocol.

See usage of information returned by IDtmInformation2::GetDeviceIdentificiationInformation()
in 7.4.

6.3.11 Interface IDtmOnlineDiagnosis

6.3.11.1 General

This interface provides an optional online diagnosis functions used by a Frame Application to
validate complete bus systems within a batch process.

6.3.11.2 Compare

HRESULT Compare(

[out, retval] FdtXmlDocument* result);

Description

Returns an XML document containing the result of the compare.

The method is the implementation of the CompareInstanceDataWithDeviceData service as
defined in IEC 62453-2.

Return value

Return value Description

Result XML document containing the result of the compare specified by the
DTMOnlineCompareSchema.

Behavior

Compares its data set received from the database with the parameter uploaded from the
corresponding device.

If the data stored in database and the data uploaded from the device could be compared the
result shows whether the data are equal or not. Otherwise the document contains the
communication error.

This method is used for batch processing and works without user interface.

If the DTM has no comparable online data, it shall return ‘noComparableData’ as value of the
attribute ‘statusFlag’.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 65 –

Comments

Comparison should only include data significant for the configuration, parameterization and
identification of the device. Data related to runtime (e.g. operation hours) should not be
included.

6.3.11.3 GetDeviceStatus

HRESULT GetDeviceStatus(

[out, retval] FdtXmlDocument* result);

Description

Returns an XML document which describes the status of the device.

The method is part of the implementation of the DeviceStatus service as defined in
IEC 62453-2.

Return value

Return value Description

Result XML document containing the status of the device specified by the
DTMDeviceStatusSchema.

Behavior

The DTM loads the current status from the device. Depending on the fieldbus protocol, the
DTM should additionally upload its actual diagnosis information. Depending on this
information the DTM provides a human readable status and returns the information within an
XML document. The function shall work without a user interface to allow the check of
complete networks.

Comments

A BTM shall return the status of the related block.

6.3.12 Interface IDtmOnlineParameter

6.3.12.1 General

This interface allows a Frame Application the online access to a device. This interface is
mandatory for all devices which shall be loaded during commissioning.

6.3.12.2 CancelAction

HRESULT CancelAction(

[in] FdtUUIDString invokeId,

[out, retval] VARIANT_BOOL* result);

Description

Cancels an active parameter-upload or download.

The method is part of the implementation of the services WriteDataToDevice and
ReadDataFromDevice as defined in IEC 62453-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 66 – IEC TR 62453-41:2016  IEC 2016

Parameters Description

invokeId Identifier of the action to be canceled.

Return value

Return value Description

TRUE Cancel action accepted.

FALSE Cancel action cannot be performed.

Behavior

The method cancels an active parameter-upload or download. If the DTM has accepted the
CancelAction request it returns TRUE. The DTM may not be able to cancel the action
immediately after accepting the request, but it should do so as soon as possible. The DTM
shall not fire the IDtmEvents::OnDownloadFinished() or IDtmEvents::OnUploadFinished()
events.

If the DTM cannot cancel the selected action, it shall return FALSE and shall fire one of the
“finished” events when the action is finished.

Comments

None

6.3.12.3 DownloadRequest

HRESULT DownloadRequest(

[in] FdtUUIDString invokeId,

[in] FdtXPath parameterPath,

[out, retval] VARIANT_BOOL* result);

Description

Sends the request to write online data to the device.

The method is part of the implementation of the WriteDataToDevice service as defined in
IEC 62453-2.

Parameters Description

invokeId Identifier of the request.

parameterPath FdtXPath within the XML document.

Return value

Return value Description

TRUE Request accepted.

FALSE Request cannot be performed.

Behavior

Asynchronous function call that sends an XML document with the device-specific parameters
according to the specified schema of IDtmParameter::GetParameters() to the connected
device. The response whether the download was successful will be provided by
IDtmEvents::OnDownloadFinished().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 67 –

In case of errors the DTM should inform the Frame Application via the callback interface
IDtmEvents::OnErrorMessage().

Downloading of all parameters of the device, will be done if the path contains the root tag. In
this case the DTM sends all parameters for the commissioning of the device.

Comments

None

6.3.12.4 UploadRequest

HRESULT UploadRequest(

[in] FdtUUIDString invokeId,

[in] FdtXPath parameterPath,

[out, retval] VARIANT_BOOL* result);

Description

Sends the request to read online data from a device.

The method is part of the implementation of the ReadDataFromDevice service as defined in
IEC 62453-2.

Parameters Description

invokeId Identifier of the request.

parameterPath FdtXPath within the XML document.

Return value

Return value Description

TRUE Request accepted.

FALSE Request cannot be performed.

Behavior

Asynchronous function call that requires a DTM to upload parameters according to the path
which points to an element of the XML document of IDtmParameter::GetParameters() from the
connected device. The response whether the upload was successful will be provided by
IDtmEvents::OnUploadFinished().

In case of errors the DTM should inform the Frame Application via the callback interface
IDtmEvents::OnErrorMessage().

Uploading of all parameters of the device, will be done if the path contains the root tag. In this
case the DTM loads all parameters from the device which were sent during commissioning.

Comments

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 68 – IEC TR 62453-41:2016  IEC 2016

6.3.13 Interface IDtmParameter

This interface allows a Frame Application the access to device parameters. The DTM provides
its actual in-memory representation of its instance data set. It is up to a DTM and depends on
the device and fieldbus-type which parameters are available.

6.3.13.1 GetParameters

HRESULT GetParameters(

[in] FdtXPath parameterPath,

[out, retval] FdtXmlDocument* result);

Description

Returns an XML document with the device-specific parameters.

The method is implementation of the services GetActiveTypeInfo, InstanceDataInformation,
InstanceDataRead, NetworkManangementInfoRead and GetChannels as defined in
IEC 62453-2.

Parameters Description

parameterPath FdtXPath within the XML document.

Return value

Return value Description

result XML document with the device-specific parameters specified by the
DTMParameterSchema.

Behavior

Returns an XML document with the device-specific parameters. The document can be empty
for devices without public data.

The method provides the transient data of a DTM. That means, if the DTM is active or has for
example an open user interface the provided parameter can differ from the actual stored
instance data.

The state of the received data is classified within the DTMParameterSchema.

The DTM shall always return within the XML document the current DtmDeviceType. That
means, in case of an update of the DTM the changed DtmDeviceType shall be returned
instead of the DtmDeviceType given during IDtm::InitNew().

Comments

The integration of devices depends on the amount of data which is avaliable via this method.
Thus a DTM should provide all data which are necessary to support a seamless integration.

See also 7.14.1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 69 –

6.3.13.2 SetParameters

HRESULT SetParameters(

[in] FdtXPath parameterPath,

[in] FdtXmlDocument xmlDocument,

[out, retval] VARIANT_BOOL* result);

Description

Sets changes of device-specific parameters.

The method is implementation of the services InstanceDataWrite and
NetworkManangementInfoWrite as defined in IEC 62453-2.

Parameters Description

parameterPath FdtXPath within the XML document.

xmlDocument XML document specified by the DTMParameterSchema.

Return value

Return value Description

TRUE The DTM has accepted the complete document.

FALSE The document contains invalid data and was not accepted.

Behavior

Only values of the writable elements can be changed by calling SetParameters. The DTM
shall verify complete document according to the business rules before accepting the
requested changes.

The method returns TRUE if the DTM has accepted the changes for the complete document.

The method returns FALSE if the DTM has rejected any of the value changes. The transient
data will remain unchanged.The DTM informs the Frame Application about the error via the
callback interface IDtmEvents::OnErrorMessage().

The method works on the transient data of a DTM. That means that the new data are not
stored implicitly.

The DTM can request transient data to become persistent by calling
IFdtContainer::SaveRequest().

Comments

See also 7.14.1.

6.3.14 Interface IFdtCommunicationEvents

6.3.14.1 General

This interface IFdtCommunicationEvents is the callback-interface for the associated
communication component.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 70 – IEC TR 62453-41:2016  IEC 2016

6.3.14.2 OnAbort

HRESULT OnAbort(

[in] FdtUUIDString communicationReference);

Description

Notification that the connection identified by the communicationReference has been aborted.

The method is the implementation of the AbortRequest service as defined in IEC 62453-2.

Parameters Description

communicationReference Unique identifier for the connection.

Return value

None

Behavior

The method sends the abort notification to a connected communication component or to a
connected DTM, that a connection is terminated. All pending requests on this connection are
also terminated. The termination of the connection will not be confirmed.

A termination of a connection can be result of an invoked function or can occur “spontaneous”
(e.g. if the absense of a device is noted automatically by the underlying communication
infrastructure).

Comments

The difference between IFdtCommunicationEvents::OnAbort() and all ofther events of this
interface is, that OnAbort provides information regarding the state of a connection. All other
events provide information regarding an invoked functionality.

6.3.14.3 OnConnectResponse

HRESULT OnConnectResponse(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument response);

Description

Provides the response of ConnectRequest() identified by the invoke id.

The method is part of the implementation of the Connect service as defined in IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

response Fieldbus-protocol-specific information about the established connection
specified by a fieldbus-specific schema, for example like
FDTHARTCommunicationSchema or FDTProfibusCommunicationSchema.

Return value

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 71 –

Behavior

Via this method the sender of the connect-request receives from the next communication
component the information whether the connection is established.

The method provides an XML document with communication parameters specified by a
fieldbus-specific schema.

Comments

None.

6.3.14.4 OnDisconnectResponse

HRESULT OnDisconnectResponse(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument response);

Description

Provides the response of DisconnectRequest() identified by the invoke id.

The method is part of the implementation of the disconnect service as defined in IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

response Fieldbus-protocol-specific information about the released connection specified
by a fieldbus-specific schema, for example like
FDTHARTCommunicationSchema or FDTProfibusCommunicationSchema.

Return value

None.

Behavior

Via this method the sender of the disconnect-request receives from the next communication
component the information whether the connection is released.

The method provides an XML document with communication parameters specified by a
fieldbus-specific schema.

OnDisconnectResponse() causes the release of all pending response data and at least the
release of the callback pointer passed during ConnectRequest().

Comments

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 72 – IEC TR 62453-41:2016  IEC 2016

6.3.14.5 OnTransactionResponse

HRESULT OnTransactionResponse(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument response);

Description

Provides the response of TransactionRequest() identified by the invoke id.

The method is part of the implementation of the transaction service as defined in
IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

response Received data, status and error-codes specified by a fieldbus-specific schema,
for example like FDTHARTCommunicationSchema or
FDTProfibusCommunicationSchema.

Return value

None.

Behavior

Via this method the sender of the data-exchange-request receives from the next
communication component the transferred communication data.

The method provides an XML document with communication parameters specified by a
fieldbus-specific schema and results in the release of the response data within the response
data queue communication component.

Comments

None.

6.3.15 Interface IFdtCommunicationEvents2

6.3.15.1 General

This interface IFdtCommunicationEvents2 is the callback-interface for a DTM supporting FDT
version 1.2.1 or higher version for the associated parent communication component. This
interface extends the interface IFdtCommunicationEvents by new methods. This interface is
mandatory.

A parent component supporting 1.2.1 or higher version has to call
IFdtCommunicationEvents2, if the DTM supports this interface. Instead of calling
IFdtCommunicationEvents::OnConnectResponse() such a parent component shall then use
the IFdtCommunicationEvents2::OnConnectResponse2() method.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 73 –

6.3.15.2 OnConnectResponse2

HRESULT OnConnectResponse2(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument parentinformation,

[in] FdtXmlDocument response);

Description

Provides the response of ConnectRequest() identified by the invoke id.

The method is part of the implementation of the Connect service as defined in IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

parentinformation Version information of the parent component according to
FDTConnectResponseSchema.

response Fieldbus-protocol-specific information about the established connection
specified by a fieldbus-specific schema, for example like
FDTHARTCommunicationSchema or FDTProfibusCommunicationSchema.

Return value

None.

Behavior

Via this method the sender of the connect-request receives from the next communication
component whether the connection is established.

The method provides

• with parameter “parentinformation” the FDT version of the parent component. DTM may
only use XML communication documents compatible to the version of the parent
component,

• with parameter “response” an XML document with communication parameters specified by
a fieldbus-specific schema.

Comments

None.

6.3.16 Interface IFdtEvents

6.3.16.1 General

This interface is the callback-interface for the Frame Application.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 74 – IEC TR 62453-41:2016  IEC 2016

6.3.16.2 OnChildParameterChanged

HRESULT OnChildParameterChanged(

[in] BSTR systemTag);

Description

In case of a DTM topology, it can be necessary to inform the parent DTM about parameter
changes.

The method is implementation of the OnChildInstanceDataChanged service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

None.

Behavior

If a DTM has changed any data it has to call IDtmEvents::OnParameterChanged() with an
XML document containing the instance-specific changes. The Frame Application will send this
document via IFdtEvents::OnParameterChanged() to all DTMs which reference the same
device instance. Concerning the corresponding parent DTMs (primary parent, secondary
parents, see IFdtTopology::GetParentNodes()), the Frame Application shall implement the
following behavior.

• The Frame Application shall send a notification to the corresponding parent DTM via
IFdtEvents::OnChildParameterChanged().

• Within a multi-user environment, this notification will only be sent to one parent DTM
instance.

• This notification shall be sent to the parent DTM which has the lock concerning the related
instance data set.

• If currently no parent DTM is started, the Frame Application shall start the parent DTM.

Comments

The parent DTM gets only a notification, because the XML document, exchanged via
OnParameterChanged(), is DTM-specific and cannot be interpreted by a parent DTM. A
parent DTM, which receives such a notification, can update its child-specific data by calling
GetParameters() at the child DTM. The Frame Application has to ensure, that the parent DTM
instance which will be selected to perform IFdtEvents::OnChildParameterChanged(), always is
able to lock its data set.

6.3.16.3 OnLockDataSet

HRESULT OnLockDataSet(

[in] BSTR systemTag,

[in] BSTR userName);

Description

In case of a multi-user environment, it is necessary to inform the DTM about its current
access mode especially if another DTM gets the read/write access for its data set.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 75 –

The method is implementation of the OnLockInstanceData service as defined in IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

userName Human readable name of the user who has locked the data set.

Return value

None.

Behavior

If a DTM has locked a data set via IFdtContainer::LockDataSet() the Frame Application has to
send OnLockDataSet() to all DTM instances which have a reference to the same data set.

Receiving this notification a DTM should disable its input fields in case of an open user
interface and keep in mind that it is not allowed to perform any function which needs any data
storage.

Comments

The userName can be the login name of a user or an identifier within a user management of a
Frame Application. At least the userName should provide the information where to find the
other user within a multi-user environment.

6.3.16.4 OnParameterChanged

HRESULT OnParameterChanged(

[in] BSTR systemTag,

[in] FdtXmlDocument parameter);

Description

In case of a multi-user environment, it can be necessary to inform the DTM about parameter
changes.

The method is implementation of the OnInstanceDataChanged service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Parameter XML document containing the changed parameters.

Return value

None.

Behavior

If a DTM has stored any changed data it has to call IDtmEvents::OnParameterChanged() with
an XML document containing DTM-specific information. The Frame Application will send this
document via IFdtEvents::OnParameterChanged() to all DTMs that reference the same device
instance.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 76 – IEC TR 62453-41:2016  IEC 2016

Comments

None.

6.3.16.5 OnUnlockDataSet

HRESULT OnUnlockDataSet(

[in] BSTR systemTag,

[in] BSTR userName,

[out, retval] VARIANT_BOOL* result);

Description

In case of a multi-user environment, it is necessary to inform a DTM about its current access
mode especially if another DTM gets the read/write access for its data set.

The method is implementation of the OnUnlockInstanceData service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

username Human readable name of the user who has locked the data set.

Return value

Return value Description

TRUE The DTM has actual data.

FALSE The DTM has old data and shall be closed.

Behavior

If a DTM has unlocked a data set via IFdtContainer::UnlockDataSet() the Frame Application
has to send OnUnlockDataSet() to all DTM instances which have a reference to the same
data set.

Receiving this notification a DTM returns TRUE if it has current data and can enable its input
fields in case of an open user interface. To support this feature the DTM has to implement a
synchronization mechanism for its DTM instances via OnParameterChanged(). If the DTM
does not support such synchronization it has to return FALSE. That means that the DTM has
old data and will not get write access for a data set. In this case of an open user interface the
Frame Application will inform the user that he has to close and to restart the DTM.

Comments

None.

6.3.17 Interface IDtmHardwareIdentification

6.3.17.1 General

This interface is used by Frame Application to detect if specific communication hardware is
available or to request information from a field device.

The interface is for example implemented by Communication DTMs to detect if corresponding
hardware is responsive or to request manufacturer-specific identification information from a
field device by Gateway DTMs or Device DTMs.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 77 –

6.3.17.2 ScanHardwareRequest

HRESULT ScanHardwareRequest(

[in] FdtUUIDString invokeID,

[in] FdtXmlDocument request,

[out, retval] VARIANT_BOOL* result);

Description

Requests scan for availability of hardware and corresponding identification information.

The method is part of the implementation of the HardwareInformation service as defined in
IEC 62453-2.

Parameters Description

invokeID Unique identifier for the request.

request Always set to “<FDT/>” (parameter is reserved for future use).

Return value

Return value Description

TRUE DTM has accepted the call.

FALSE The operation failed.

Behavior

Frame Application executes this function to check if corresponding hardware is responsive
and to request identification information.

DTM should connect to the device and request required information. DTM shall call
IDtmScanEvents::OnScanHardwareResponse() when operation has finished.

Comments

DTM shall also call IDtmScanEvents::OnScanHardwareResponse() and pass XML according a
fieldbus-specific schema (FDTxxxScanIdentSchema) if requests fails (i.e. because of
communication failures).

6.3.17.3 CancelAction

HRESULT CancelAction(

[in] FdtUUIDString invokeID,

[out, retval] VARIANT_BOOL* result);

Description

Cancels active hardware check request.

The method is part of the implementation of the HardwareInformation service as defined in
IEC 62453-2.

Parameters Description

invokedID Unique identification of scan hardware request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 78 – IEC TR 62453-41:2016  IEC 2016

Return value

Return value Description

TRUE Cancel action accepted.

FALSE Cancel action not accepted.

Behavior

The Frame Application calls this method to cancel started scan hardware operation. If the
DTM can cancel the operation it will return TRUE and will not fire the
IDtmScanEvents::OnScanHardwareResponse() event.

If the DTM can’t cancel the operation then it returns FALSE and will fire the
IDtmScanEvents::OnScanHardwareResponse() event when operation has finished.

Comments

None.

6.3.18 Interface IDtmSingleDeviceDataAccess

6.3.18.1 General

This interface allows a Frame Application online access to specific parameters of a device.

This interface is implemented in an asynchronous way. The data in the device can be
accessed by multiple threads of the Frame Application. For example: the Frame Application
can perfom a IDtmOnlineParameter::DownloadRequest() in parallel to a WriteRequest() via
this interface.

The DTM shall be prepared for multiple asynchronous requests in parallel. The requests shall
be processed in the order received.

IDtmSingleDeviceDataAccess methods shall not modify the instance data set, but shall taken
the attribute ‘modifiedInDevice’ (see FDTDataTypesSchema) into account.

6.3.18.2 CancelRequest

HRESULT CancelRequest(

[in] FdtUUID invokeID,

[out, retval] VARIANT_BOOL* result);

Description

Cancels active read, write or item list request identified by its invoke ID.

The method is part of the implementation of the services DeviceDataRead, DeviceDataWrite
and DeviceDataInformation as defined in IEC 62453-2.

Parameters Description

invokedID Unique identification of a read or write request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 79 –

Return value

Return value Description

TRUE Request to cancel pending request is accepted.

FALSE Request to cancel pending request is not accepted

Behavior

The Frame Application calls this method to cancel an active request. If the DTM has accepted
the CancelRequest(), it returns TRUE and shall not fire the response event for the canceled
operation.

The DTM may not be able to cancel the action immediately after accepting the request, but it
should do it as soon as possible.

Comments

None

6.3.18.3 ItemListRequest

HRESULT ItemListRequest(

[in] FdtUUIDString invokeId)

Description

ItemListRequest performs an asynchronous request of an XML document containing a list of
the available device-specific parameters and process values.

The method is part of the implementation of the DeviceDataInformation service as defined in
IEC 62453-2.

Return value

Return value Description

invokeId Unique identifier for the request

Behavior

Via this method the Frame Application may request a list of items that can be accessed via
the DTM. The source for this data is the device itself. The DTM shall always accept the
request. If the request cannot be processed, the reason for failure shall be provided
asynchronously as part of the response. The response (either failure or the result) shall be
provided at IDtmSingleDeviceDataAccessEvents::OnItemListResponse()

Comments

Dependent on the user roles, the contents of the item list may change.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 80 – IEC TR 62453-41:2016  IEC 2016

6.3.18.4 ReadRequest

HRESULT ReadRequest(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument itemSelectionList);

Description

ReadRequest performs asynchronous exchange of a data structure with the related device via
the DTM.

The method is part of the implementation of the DeviceDataRead service as defined in
IEC 62453-2.

Parameters Description

InvokeId Unique identifier for the request.

itemSelectionList List of required items described by a DtmItemSelectionList specified by the
DTMItemListSchema.

Return value

None.

Behavior

Via this method a Frame Application may request data from a device. Error information will be
handed over to the Frame Application via the response XML-Document. If a request can not
be accepted by the DTM it is possible to send the response within the call.

Execution of the ReadRequest() method shall not change the data of the instance data set.

The DTM shall always accept the request. If the request cannot be processed, the reason for
failure shall be provided asynchronously as part of the response. The response (either failure
or the result) shall be provided at IDtmSingleDeviceDataAccessEvents::OnReadResponse().

Comments

In order to inform the Frame Application regarding ongoing activities it is recommended to fire
the IDtmEvents::OnProgress() event while a response is pending.

The DTM should be able to handle more than one request at a time. The order of execution is
like the order of the requests. For each request there should be a corresponding response. If
a request can not be executed, an appropriate response shall be provided.

6.3.18.5 WriteRequest

HRESULT WriteRequest(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument itemList);

Description

WriteDeviceRequest performs asynchronous exchange of a data structure with a DTM.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 81 –

The method is part of the implementation of the DeviceDataWrite service as defined in
IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request

itemList List of required items described by a DtmItemList specified by the
DTMItemListSchema

Return value

None.

Behavior

Via this method the Frame Application requests a DTM to write the specified data to its device
according to the device-specific rules. Error information will be handed over to the Frame
Application via the related response XML-Document. If a request can not be accepted by the
DTM it is possible to send the response within the call.

Execution of the WriteRequest() method shall not change the data of the instance data set.

The DTM has to check, whether it could manipulate the flag ‘modifiedInDevice’ (refer clause
‘FDT Data Types) in the instance data set by requesting a lock. If the lock request fails the
DTM has also to refuse the WriteRequest() – an appropriate response shall be provided.

The DTM shall always accept the request. If the request cannot be processed, the reason for
failure shall be provided asynchronously as part of the response. The response (either failure
or the result) shall be provided at IDtmSingleDeviceDataAccessEvents::OnWriteResponse().

Comments

In order to inform the Frame Application regarding an ongoing activities It is recommended to
fire the IDtmEvents::OnProgress() event while a response is pending.

The DTM should be able to handle more than one request at a time. The order of execution is
like the order of appearance of the requests. For each request there should be a
corresponding response.

6.3.19 Interface IDtmSingleInstanceDataAccess

6.3.19.1 General

This interface allows a Frame Application the offline access to specific parameters of a
device.

6.3.19.2 GetItemList

HRESULT GetItemList(

[out, retval] FdtXmlDocument* result);

Description

GetItemList returns an XML document containing a list of the available device-specific
parameters. Within a DTM this list may contain items related to configuration parameters as
well as asset management related data.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 82 – IEC TR 62453-41:2016  IEC 2016

The method is part of the implementation of the InstanceDataInformation service as defined in
IEC 62453-2.

Return value

Return value Description

Result XML document containing a DtmItemInfoList with the actual available
parameters specified by the DTMItemListSchema.

Behavior

This method provides a list of items that can be accessed via the DTM. The source for this
data is the DTM instance data set.

Items provided within these list may also be available as FDT-Channel objects (provided by
IDtmChannel::GetChannels()) or modeled as an exported variable (DtmVariable provided by
IDtmParameter::GetParameters() or IBtmParameter::GetParameters()). The relation of these
items can be identified via the attribute ‘semanticId’.

Comments

The contents of the provided XML document may depend on the current configuration of the
device. If the contents is changed, a DTM has to inform the Frame Application by sending
IDtmSingleInstanceDataAccessEvents::OnInstanceItemListChanged().

Dependent on the user roles, the item list items may vary.

6.3.19.3 Read

HRESULT Read(

[in] FdtXmlDocument itemSelectionList,

[out, retval] FdtXmlDocument* result);

Description

Read performs synchronous exchange of a data structure with the related instance data set.

The method is part of the implementation of the InstanceDataRead service as defined in
IEC 62453-2.

Parameters Description

itemSelectionList List of required items described by a DtmItemSelectionList specified by the
DTMItemListSchema.

Return value

Return value Description

Result Requested data as DtmItemList specified by the DTMItemListSchema.

Behavior

Via this method a Frame Application may request data from an instance data set.

Comments

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 83 –

6.3.19.4 Write

HRESULT Write(

[in] FdtXmlDocument itemList,

[out, retval] FdtXmlDocument* result);

Description

Write performs synchronous exchange of a data structure with a DTM.

The method is part of the implementation of the InstanceDataWrite service as defined in
IEC 62453-2.

Parameters Description

itemList List of required items described by a DtmItemList specified by the
DTMItemListSchema.

Return value

Return value Description

Result Data as DtmItemList that contains the device data of the successfully written
data specified by the DTMItemListSchema (may differ to the written value due to
e.g. rounding procedures within the device).

Behavior

Via this method the Frame Application requests a DTM to write the specified data to its
instance data set. The DTM has to check, whether it could manipulate the instance data set
by requesting a lock. If the lock request fails the DTM has also to refuse the request.

Furthermore the DTM has to apply the business rules in order to keep the instance data set
consistent.

Comments

None.

6.4 DTM ActiveXControl

6.4.1 Interface IDtmActiveXControl

This interface is an extension of a standard ActiveX control and allows connecting a DTM
object with the ActiveX control.

6.4.2 Init

HRESULT Init(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument,

[in] IDtm* dtm,

[out, retval] VARIANT_BOOL* result);

Description

Set the callback pointer of an ActiveX control to the corresponding DTM.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 84 – IEC TR 62453-41:2016  IEC 2016

The method is implementation of an technology-specific service.

Parameters Description

invokeId Identifier for the started application.

functionCall XML document containing the function id for the requested function or user
interface specified by the DTMFunctionCallSchema.

Dtm Pointer to the DTM business object.

Return value

Return value Description

TRUE The control is initialized.

FALSE The operation failed.

Behavior

Set the callback pointer of an ActiveX control to the corresponding DTM. The function id can
be used to toggle a user interface during runtime. It is up to the control whether its supports
this functionality.

If the initialization returns FALSE, the Frame Application has to release the control.

The invoke id is used by a Frame Application for the association at the callback interface if
the control is terminated within the user interface of the DTM (see
IDtmEvents::OnApplicationClosed()). Furthermore it allows the Frame Application to handle a
list of open user interfaces.

Comments

None.

6.4.3 PrepareToRelease

HRESULT PrepareToRelease(

[out, retval] VARIANT_BOOL* result);

Description

Used to inform the DTM control that it has to release its links to other components. The Frame
Application will release the control after the DTM has send
IDtmEvents::OnApplicationClosed().

The method is implementation of an technology-specific service.

Return value

Return value Description

TRUE The request was accepted.

FALSE The operation rejected.

Behavior

If the request is accepted, the ActiveX will release the callback pointer to the DTM set
during Init(). Furthermore the control has to release all links to other components and has to
terminate all pending or running functions. The DTM has to inform the Frame Application via
IDtmEvents::OnApplicationClosed() that the user interface could be released.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 85 –

If FALSE is returned, the DTM will not call OnApplicationClosed() and will preserve its current
state.

Comments

None.

6.5 FDT Channel

6.5.1 Interface IFdtChannel

6.5.1.1 General

This is the main interface of a channel that provides all information which is necessary for the
channel assignment.

6.5.1.2 GetChannelParameters

HRESULT GetChannelParameters(

[in] FdtXPath parameterPath,

[in] FdtUUIDString protocolId,

[out, retval] FdtXmlDocument* result);

Description

Returns an XML document with fieldbus dependent channel-specific parameters.

The method is part of the implementation of the ReadChannelInformation service as defined
in IEC 62453-2.

Parameters Description

parameterPath FdtXPath within the XML document.

protocolId UUID of a fieldbusprotocol. This UUID may be
• one of the UUIDs returned by GetSupportedProtocols() and specified

by DTMProtocolsSchema,
• a UUID defined within the appropriate <ChannelReference> element of

the DTMParameter document returned by the DTM.

Return value

Return value Description

Result XML document with the channel-specific parameters specified by a schema
e.g.like FDTHARTChannelParameterSchema or
FDTProfibusChannelParameterSchema

Behavior

Returns an XML document with the channel-specific parameters specified by a fieldbus-
specific schema. The fieldbus is selected by the parameter protocolId. The returned
parameters are especially used for channel assignment. The document can be empty for
devices without fieldbus master.

Channels that do not have any process related data (e.g. a pure Communication Channel)
should return a document based on FDTBasicChannelParameterSchema.

It is recommended to return a document based on the FDTBasicChannelParameterSchema
instead of an empty document.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 86 – IEC TR 62453-41:2016  IEC 2016

If the requested protocol UUID is not supported by this channel it is recommended to return a
document based on the FDTBasicChannelParameterSchema. This at least gives some basic
info for the caller.

Comments

None.

6.5.1.3 GetChannelPath

HRESULT GetChannelPath(

[out, retval] FdtXPath* result);

Description

Returns an identifier for a channel.

The method is part of the implementation of the ReadChannelInformation service as defined
in IEC 62453-2.

Return value

Return value Description

Result Path that identifies the channel within the device.

Behavior

Returns the path that identifies the channel within the device. The string shall not be empty. It
always starts with the systemTag of the device instance followed by the channel id. The DTM
has to guarantee that the path is unique for a device instance. The channel path is the base
information to handle the system structure at IFdtTopology and IFdtChannelSubTopology.

<systemTag>/<id>

In the case of Communication Channels there are some special rules for building the
channelPath.

How to generate the channelPath of a Communication Channel, which also acts as a Process
Channel for data that it receives from a Process Channel of a child device, depends on the
functionality of the channel.

If the channel is passive, that means that it receives its data from a child device and provides
this data without any changes within its own channel-parameter document, the channelPath
shall be built out of system tag and channel id of the own device instance and the system tag
of the child device and the id of the marshalled channel.

<systemTag>/<id>//<systemTag>/<id>

If the channel is active, that means that it receives its data from a child device for processing
and provides the result within its own channel-parameter document, the channelPath shall be
built out of the system tag and channel id of the own device instance.

<systemTag>/<id>

This allows navigation through the internal channel assignment of a device with gateway
functionality.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 87 –

In general if the channelPath of an channel has changed the corresponding DTM has to send
OnParameterChanged() with respect to the possible behavior of other FDT objects.

Comments

An example for such a channel is a Profibus remote I/O that reads the primary variable
(provided as HART® channel) of an underlying HART® device and provides this value within
its own cyclic I/O data (Profibus DP Channel).

6.5.1.4 SetChannelParameters

HRESULT SetChannelParameters(

[in] FdtXPath parameterPath,

[in] FdtUUIDString protocolId,

[in] FdtXmlDocument xmlDocument,

[out, retval] VARIANT_BOOL* result);

Description

Sets changes of channel-specific parameters.

The method is the implementation of the WriteChannelInformation service as defined in
IEC 62453-2.

Parameters Description

parameterPath FdtXPath within the XML document.

protocolId UUID of a fieldbusprotocol. This UUID shall be one of the UUIDs returned by
GetSupportedProtocols() and specified by DTMProtocolsSchema.

xmlDocument XML document specified by a schema, for example like
FDTHARTChannelParameterSchema or FDTProfibusChannelParameterSchema.

Return value

Return value Description

TRUE The channel has accepted the complete document with all changes.

FALSE The document contains invalid changes.

Behavior

The method passes an XML document with the channel-specific parameters according to a
fieldbus-specific schema. The fieldbus is defined by the parameter protocolId.

Returns TRUE if the channel has accepted the complete document with all changes. FALSE
means that the channel has rejected all transferred changes. In this case the channel informs
the Frame Application about the error in detail via the callback interface
IDtmEvents::OnErrorMessage().

The method works on the transient data of a DTM. That means that the new data are not
stored implicitly. Transient data will become persistent e.g. by calling
IFdtContainer::SaveRequest().

Comments

See also 7.14.1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 88 – IEC TR 62453-41:2016  IEC 2016

6.5.2 Interface IFdtChannelActiveXInformation

Usually an FdtChannel does not have a user-interface, but in case of Communication
Channels it may be required to have one. Depending on the fieldbus protocol and the
capability of the Communication Channel it might be necessary to implement a user interface
to configure the communication itself.

For example, if a hardware driver is included, parameters like selected COM port or interrupt
addresses shall be set by the user. These data are encapsulated within the Communication
Channel and can only be configured by a gateway-specific user-interface.

6.5.2.1 GetChannelActiveXGuid

HRESULT GetChannelActiveXGuid(

[in] FdtXmlDocument,

[out, retval] FdtUUIDString* result);

Description

Returns the UUID for the ActiveX control according to the function call.

The method is one implementation of the GetGuiInformation service as defined in
IEC 62453-2.

Parameters Description

functionCall XML document containing the function id for the requested user interface
specified by the DTMFunctionCallSchema.

Return value

Return value Description

result UUID for an ActiveX control.

Behavior

Returns a UUID that the Frame Application can use to instantiate the control.

If a requested function is not supported the method returns NULL pointer.

For a Communication Channel, it would be the user interface to set communication-specific
parameters.

Comments

None.

6.5.2.2 GetChannelActiveXProgId

HRESULT GetChannelActiveXProgId(

[in] FdtXmlDocument functionCall,

[out, retval] BSTR* result);

Description

Returns the ProgId for the ActiveX control according to the function call.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 89 –

The method is one implementation of the GetGuiInformation service as defined in
IEC 62453-2.

Parameters Description

functionCall XML document containing the function id for the requested user interface
specified by the DTMFunctionCallSchema.

Return value

Return value Description

result ProgId for an ActiveX control.

Behavior

Returns the ProgId for the ActiveX control according to the function id. Frame Applications
implemented with scripting languages can use this ProgId to instantiate the control.

If a requested application is not supported the method returns NULL pointer

For a Communication Channel, it would be the user interface to set communication-specific
parameters.

Comments

None.

6.5.2.3 GetChannelFunctions

HRESULT GetChannelFunctions(

[in] FdtXmlDocument operationState,

[out, retval] FdtXmlDocument* result);

Description

Returns an XML document containing information about standard (defined by applicationID) or
additional functionalities (defined by functionId) of a FDT-Channel object.

The method is part of the implementation of the GetFunctions service as defined in
IEC 62453-2.

Parameters Description

operationState XML document containing the current operation phase specified by the
FDTOperationPhaseSchema.

Return value

Return value Description

result XML document containing actual supported functions specified by the
DTMChannelFunctionsSchema.

Behavior

This method provides the access to FDT-Channel object functionality, defined by the
applicationIDs and specific functionality which is not within the scope of FDT. These data are
available as soon as the FDT-Channel object is instantiated but the information may change if
it is instance-specific.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 90 – IEC TR 62453-41:2016  IEC 2016

That means that the contents of the document can change or can at least be empty after an
OnChannelFunctionChanged() event. This event is sent by a DTM if the configuration results
in a changed extended functionality.

Usually this information is used by the Frame Application to create menus. Only functions with
user interface are supported. These user interfaces are accessible via
GetChannelActiveXGuid() or GetChannelActiveXProgId() and work asynchronous.

The asynchronous behavior is described in the appropriate subclauses.

Comments

None.

6.5.3 Interface IFdtCommunication

6.5.3.1 General

This interface is the communication entry point of a channel with communication functionality.
The connection of this interface with a following component builds the chain for nested
communication. The communication pointer to the following communication component can be
requested at the DTM which owns the Communication Channel.

A channel is able to support a number of different fieldbus protocols. Protocol-specific XML
documents are exchanged between Communication Channel and connected client via the
IFdtCommunication and IFdtCommunicationEvents interfaces. The type of protocol to be used
shall be specified with a connect request.

Dividing a communication function call to a request and a response function causes a non-
blocking behavior. The DTM sends one or several requests to the next communication
component. For the next communication component it is not allowed to send the response to
the corresponding response method within the request method.

6.5.3.2 Abort

HRESULT Abort(

[in] FdtXmlDocument fieldbusFrame);

Description

Aborts a communication link to a device without any response.

The method is implementation of the AbortRequest service as defined in IEC 62453-2.

Parameters Description

fieldbusFrame Fieldbus-protocol-specific information how to abort. The structure is specified by
a fieldbus-specific schema, for example like FDTHARTCommunicationSchema
or FDTProfibusCommunicationSchema.

Return value

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 91 –

Behavior

The method sends the abort to the next communication component or to the connected
device, terminates all pending requests and returns without waiting for a result. The
termination of the connection will not be confirmed.

Comments

None.

6.5.3.3 ConnectRequest

HRESULT ConnectRequest(

[in] IFdtCommunicationEvents* callBack,

[in] FdtUUIDString invokeId,

[in] FdtUUIDString protocolId,

[in] FdtXmlDocument fieldbusFrame,

[out, retval] VARIANT_BOOL* result);

Description

Establishes asynchronously a new communication link to a device specified by the fieldbus
frame. ConnectRequest() establishes a routing to a device as a peer-to-peer connection.

The method is part of the implementation of the connect service as defined in IEC 62453-2.

Parameters Description

callBack Callback interface for the notification if the response is available.

invokeId Unique identifier for the request.

protocolId UUID of a fieldbusprotocol to be used. Identifies type of fieldbus-specific
schema.

fieldbusFrame Fieldbus-protocol-specific information how to connect. The structure is specified
by a fieldbus-specific schema, for example like
FDTHARTCommunicationSchema or FDTProfibusCommunicationSchema

Return value

Return value Description

TRUE Request sent.

FALSE Request refused.

Behavior

The method passes an XML document with communication parameters specified by a
fieldbus-specific schema. The fieldbus protocol to be used is identified by the parameter
protocolId.

Based on this information the method sends the request to the next communication
component or to the connected device and returns without waiting for the established
connection.

The response will be provided by IFdtCommunicationEvents2::OnConnectResponse().

The fieldbus frame contains additional fieldbus-protocol-specific information for the fieldbus
master how to establish the connection. For example, information like repeat counts or

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 92 – IEC TR 62453-41:2016  IEC 2016

preamble counts in case of HART® sent by a DTM is a hint for the HART® master. It is up to
the environment to decide whether this information fits.

Furthermore the fieldbus frame contains fieldbus-protocol-specific information how to address
the device connected to a specific fieldbus.

The systemTag provided in the connect request is the systemTag of the communication client.
It can be used to retrieve the IDtm interface of communication client by calling
IFdtTopology::GetDtmForSystemTag().

If the systemTag is empty (“”), the communication client is not a DTM (may be the Frame
Application or some other component).

Comments

See also definition of use cases and scenarios in IEC 62453-2.

6.5.3.4 DisconnectRequest

HRESULT DisconnectRequest(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument fieldbusFrame,

[out, retval] VARIANT_BOOL* result);

Description

Releases a communication link to a device by an asynchronous function call. For more than
one connection to the same device, the link is identified by the communication reference
which is part of the fieldbus frame.

The method is part of the implementation of the disconnect service as defined in IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

fieldbusFrame Fieldbus-protocol-specific information how to release the connection specified
by a fieldbus-specific schema, for example like
FDTHARTCommunicationSchema or FDTProfibusCommunicationSchema.

Return value

Return value Description

TRUE Request sent.

FALSE Request refused.

Behavior

The method passes an XML document with communication parameters specified by a
fieldbus-specific schema.

Based on this information the method sends the request to the next communication
component or to the connected device, terminates all pending requests and returns without
waiting for the result.

The response will be provided by OnDisconnectResponse().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 93 –

Comments

See also definition of use cases and scenarios in IEC 62453-2.

6.5.3.5 GetSupportedProtocols

HRESULT GetSupportedProtocols(

[out, retval] FdtXmlDocument * result);

Description

Gets a document describing the supported protocols of the communication interface.

The method is implementation of the GetSupportedProtocols service as defined in
IEC 62453-2.

Return value

Return value Description

result XML document specified by DTMProtocolsSchema describing the protocols
supported by the communication interface.

Behavior

Via this method the DTM that wants to establish a connection asks the next communication
component for the supported protocols.

The method returns an XML document with fieldbus protocol UUIDs specified by
DTMProtocolsSchema. Only protocols supported by the configured sub-device can be
returned.

If a channel supports more than one protocol during runtime it has to support all protocols in
parallel.

GetSupportedProtocols() has to return static information if a child is connected to the channel
because a change may cause an invalid topology. Which protocols are supported can be
determined during topology planning (see ValidateAddChild(), OnAddChild()) .

So if the Communication Channel can be configured to support different protocols, this can
only be done if there are no connected childes.

Comments

A DTM, which wants to use more than one protocol, has to ask the channel for its supported
protocols before it starts the communication.

6.5.3.6 SequenceBegin

HRESULT SequenceBegin(

[in] FdtXmlDocument fieldbusFrame,

[out, retval] VARIANT_BOOL* result);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 94 – IEC TR 62453-41:2016  IEC 2016

Description

The communication component has to observe that the transaction communication calls of the
block started with SequenceBegin() and closed by SequenceEnd() are finished during the
period of time defined by the sequence time.

The block supports asynchronous read/write and data exchange requests.

The method is part of the implementation of the SequenceDefine service as defined in
IEC 62453-2.

Parameters Description

fieldbusFrame Fieldbus-protocol-specific information describing the sequence. The structure is
specified by a fieldbus-specific schema, for example like
FDTHARTCommunicationSchema or FDTProfibusCommunicationSchema.

Return value

Return value Description

TRUE Loading of sequences supported.

FALSE Function not supported.

Behavior

After a successful sequence start the last communication component or at least the hardware
itself collects all sent transaction requests. This can be a sequence containing several
TransactionRequest() calls on one connection. The collection of pending requests is closed by
IFdtCommunication::SequenceEnd().

The fieldbusFrame parameter of this method has to contain the element ‘sequence’ (see
schemas). This element contains the following attributes:

Attribute Description

sequenceTime Period of time in [ms] for the whole sequence.

delayTime Minimum delay time in [ms] between two consecuitive
communication calls.

communicationReference Identifier for the communication link.

In case of a sequence time >0 the communication component has to check, if the execution
time of the complete sequence is less or equal the sequence time.

In case of a delay time >0 the last communication component, which has collected the
communication calls, has to wait the defined time after each command before it sends the
next.

The communication component decides according to the associated hardware whether it can
support this function.

The method returns FALSE if the last of the following communication components, possibly
caused by the associated hardware, does not support this functionality.

The actual communication starts with the call to IFdtCommunication::SequenceStart().

For each TransactionRequest there shall be a TransactionResponse. As soon as the
Communication DTM detects that the SequenceTime has expired, it will send
TransactionResponses for any pending Requests with a CommunicationError
“sequenceTimeExpired”.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 95 –

Comments

The default implementation is to hand down the function call through all communication
components. Only the last communication component can decide whether it supports the
functionality or not.

6.5.3.7 SequenceEnd

HRESULT SequenceEnd(

[in] FdtXmlDocument fieldbusFrame,

[out, retval] VARIANT_BOOL* result);

Description

Closes the communication block started with SequenceBegin().

The method is part of the implementation of the SequenceDefine service as defined in
IEC 62453-2.

Parameters Description

fieldbusFrame Fieldbus-protocol-specific information closing a sequence of transaction calls.
The structure is specified by a fieldbus-specific schema, for example like
FDTHARTCommunicationSchema or FDTProfibusCommunicationSchema.

Return value

Return value Description

TRUE Sequence is closed.

FALSE No open sequence.

Behavior

Closes the communication block started with SequenceBegin(). The actual communication to
the device starts on SequenceStart().

Comments

The default implementation is to hand down the function call through all communication
components. Only the last communication component can decide whether it supports the
functionality or not.

6.5.3.8 SequenceStart

HRESULT SequenceStart(

[in] FdtXmlDocument fieldbusFrame,

[out, retval] VARIANT_BOOL* result);

Description

Starts the execution of a communication sequence at the controller. The communication
sequence breaks on error. The communication results are provided by the corresponding
transaction response function calls. (For each recorded transaction request a corresponding
transaction response is received.)

The method is part of the implementation of the SequenceStart service as defined in
IEC 62453-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 96 – IEC TR 62453-41:2016  IEC 2016

Parameters Description

fieldbusFrame Fieldbus-protocol-specific information starting a sequence. The structure is
specified by a fieldbus-specific schema, for examplbe like
FDTHARTCommunicationSchema or FDTProfibusCommunicationSchema.

Return value

Return value Description

TRUE Communication sequence started.

FALSE Communication sequence could not be started.

Behavior

Starts the communication by executing the pending requests without any interruptions. The
method returns without waiting for a result so that the calling application will not be blocked.

The communication sequence breaks on error.

The communication data or errors are accessible by the according response events
OnTransactionResponse().

Comments

The default implementation is to hand down the function call through all communication
components. Only the last communication component can decide whether it supports the
functionality or not.

6.5.3.9 TransactionRequest

HRESULT TransactionRequest(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument fieldbusFrame,

[out, retval] VARIANT_BOOL* result);

Description

TransactionRequest performs asynchronously exchange of a data structure with a device
specified by the fieldbus frame.

The method is part of the implementation of the transaction service as defined in
IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

fieldbusFrame Fieldbus-protocol-specific information to be transferred, specified by a fieldbus-
specific schema, for example like FDTHARTCommunicationSchema or
FDTProfibusCommunicationSchema.

Return value

Return value Description

TRUE Request sent.

FALSE Request refused.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 97 –

Behavior

The method passes an XML document with communication parameters specified by a
fieldbus-specific part of IEC 62453.

Based on this information the method sends the request for data exchange to the next
communication component or to the connected device and returns without waiting for the
result. In case of more than one pending request the association of request and response is
done by the passed invoke id. The client is responsible to pass a unique invoke id for the
specified communication link.

The response will be provided by OnTransactionResponse().

If a TransactionRequest() is called as part of a sequence definiton and the given
SequenceTime is expired, the return value has to be false.

Comments

It depends on the fieldbus protocol which internal communication methods are implemented at
the Communication Channel. For example HART® supports data exchange commands while
Profibus offers read/write services.

Developers of Communication Channels should not expect that there will be only one pending
request for a certain device at one time. For instance several clients (e.g. Frame Application
and Device DTMs) are trying to retrieve information from the same device.

Developers of Device DTMs should consider that the used communication infrastructure
creates delays in the communication. Therefore the Device DTMs should limit the number of
communication requests. Also the Device DTM shall be able to handle a refused request,
since there may be a variety of reasons to refuse a transaction request.

Even if the underlying fieldbus protocol allows sending only one request at a time to one or
more devices, Communication Channels shall be able to manage a number of requests.

It is expected that the requests are processed by the Communication Channel in the order
received if not specified otherwise by the protocol.

6.5.4 Interface IFdtChannelSubTopology

6.5.4.1 General

This interface shall be supported by Communication Channels. It allows validating the sub-
topology beneath a channel. A Frame Application always is responsible for the sub-topology
of a channel, it has to call this interface so that the channel or at least the respective DTM
can validate the configured connections.

6.5.4.2 OnAddChild

HRESULT OnAddChild(

[in] BSTR childSystemTag);

Description

The channel is informed that a new device was added to the sub-topology.

The method is implementation of the ChildAdded service as defined in IEC 62453-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 98 – IEC TR 62453-41:2016  IEC 2016

Parameters Description

childSystemTag SystemTag of the newly added child instance.

Return value

None.

Behavior

The channel is informed that a new device, specified by its systemTag, has been added to the
sub-topology.

If the channel needs more information about the child DTM it can get the DTM via
IFdtTopology::GetDtmForSystemTag() passing the received systemTag.

Comments

This method will only be used in order to inform a parent DTM that the topology was changed.
In case of reloading, for example project related data, this method shall not be called.

6.5.4.3 OnRemoveChild

HRESULT OnRemoveChild(

[in] BSTR childSystemTag);

Description

The channel is informed that a device was removed from the sub-topology.

The method is implementation of the ChildeRemoved service as defined in IEC 62453-2.

Parameters Description

childSystemTag SystemTag of the child DTM which was removed.

Return value

None.

Behavior

The channel is informed that a device, specified by its systemTag, was removed from the sub-
topology.

If the DTM needs more information about the child DTM it can get the DTM via
IFdtTopology::GetDtmForSystemTag() passing the received systemTag.

Comments

This method will only be used in order to inform a parent DTM that the topology was changed.
In case of destruction, for example closing a project, this method shall not be called.

A DTM should release all references to the removed child before returning from
OnRemoveChild().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 99 –

6.5.4.4 ScanRequest

HRESULT ScanRequest(

[in] FdtUUIDString invokeId,

[out, retval] VARIANT_BOOL* result);

Description

The method requests one asynchronous scan of the sub topology.

The method is part of the implementation of the scan service as defined in IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

Return value

Return value Description

TRUE Request of sub-topology scan accepted.

FALSE The operation failed.

Behavior

Requests the scan of the sub topology. If the scan is finished, the result will be provided via
IDtmEvents::OnScanResponse().

Comments

This method is depreciated and should only be supported if running in an FDT 1.2
environment.

6.5.4.5 ValidateAddChild

HRESULT ValidateAddChild(

[in] BSTR childSystemTag,

[out, retval] VARIANT_BOOL* result);

Description

Validates if a given device, specified by its systemTag, can be added to the sub-topology.

The method is implementation of the ValidateAddChild service as defined in IEC 62453-2.

Parameters Description

childSystemTag SystemTag of to the child DTM.

Return value

Return value Description

TRUE Topology valid.

FALSE Topology invalid.

Behavior

The channel validates the connection. If the connection is valid it will return TRUE.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 100 – IEC TR 62453-41:2016  IEC 2016

If the DTM needs more information about the child it can get the DTM via
IFdtTopology::GetDtmForSystemTag() passing the received systemTag.

Comments

Device DTMs with more than one required protocol should include busCategory information in
the <BusInformation> element.

• If a 1.2.1. DTM is connected to a 1.2 Communication Channel,
– a 1.2.1 Frame Application has to consider:

• the first BusInformation element in the DtmParameter document of the DTM is
regarded as primary protocol,

• the Frame Application needs to check if the primary protocol of the DTM is
supported by the Communication Channel;

– in a 1.2 Frame Application:

• the DTM can support only one protocol, because the old schemas support only one
BusInformation element.

See also 6.5.4.2

6.5.4.6 ValidateRemoveChild

HRESULT ValidateRemoveChild(

[in] BSTR childSystemTag,

[out, retval] VARIANT_BOOL* result);

Description

Validates if a given device, specified by its systemTag, can be removed from the sub-
topology.

The method is implementation of the ValidateRemoveChild service as defined in IEC 62453-2.

Parameters Description

childSystemTag SystemTag of the child DTM.

Return value

Return value Description

TRUE Topology valid.

FALSE Topology invalid.

Behavior

The channel has to validate if the device can be removed from the topology.

If the DTM needs more information about the child it can get the DTM via
IFdtTopology::GetDtmForSystemTag() passing the received systemTag.

Comments

The validation shall include a check for active connection and return FALSE if a connection is
active via this channel.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 101 –

6.5.5 Interface IFdtChannelSubTopology2

This mandatory interface is implemented by a Communication Channel and extends the
interface IFdtChannelSubTopology by new methods.

This interface supports network topology management functions for address setting. The
interface is used to ask a DTM Communication Channel to set the fieldbus address of a single
DTM or DTMs of a subtopology.

6.5.5.1 SetChildrenAddresses

HRESULT SetChildrenAddresses(

[in] FdtXmlDocument dtmDeviceList,

[out, retval] FdtXmlDocument* result);

Description

Requests bus address setting for specified device list.

The method is implementation of the SetChildrenAddresses service as defined in
IEC 62453-2.

Parameters Description

dtmDeviceList XML according DTMDeviceListSchema defining device instances where to set
the address.

Return value

Return value Description

Result XML document containing result of address setting. DTMDeviceListSchema.

Behavior

Requests setting of bus address for one device or a list of devices via IDtmParameter
interface of the corresponding child DTMs. The request may specify that the called
Communication Channel should open a user interface to request device address settings from
user. To get a qualified response, error information is included in the returned document.

Comments

As part of executing this method, the method
IFdtActiveX2:OpenDialogActiveXControlRequest() may be used to request address selection
from the user.

Setting the bus address on a Device DTM via the IDtmParameter interface is intended to
provide the Device DTM with information. The Device DTM shall not use this information for
execution of communication transactions, that set the address in the field device.

6.5.6 Interface IFdtChannelScan

6.5.6.1 General

This interface defines methods, which replace scan related methods of existing
IFdtChannelSubTopology interface. If a Communication Channel supports FDT1.2.1 and runs
in an environment that supports FDT1.2.1, the FDT-Channel object can rely on that the
methods of this interface are used instead of the replaced methods of the
IFdtChannelSubTopology interface.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 102 – IEC TR 62453-41:2016  IEC 2016

6.5.6.2 ScanRequest

HRESULT ScanRequest(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument request,

[out, retval] VARIANT_BOOL* result);

Description

Requests the asynchronous scan of the sub topology.

The method is part of the implementation of the scan service as defined in IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

Request Information about the address range(s) to scan. FDTScanRequestSchema.

Return value

Return value Description

TRUE Request of sub-topology scan accepted.

FALSE The operation failed. IDtmEvents:OnErrorMessage() assumed.

Behavior

This method requests the scan of the sub-topology. More than one scan response
(provisional, final or error) can be returned via IDtmScanEvents::OnScanResponse().

Comments

The ability to provide provisional scan responses is intended especially for “slow” fieldbus
protocols. The operator will see how the life list is growing. It is possible to stop the scan, if
the operator received enough information.

6.5.6.3 CancelAction

HRESULT CancelAction(

[in] FdtUUIDString invokeID,

[out, retval] VARIANT_BOOL* result);

Description

Cancels an active asynchronous scan request identified by its invoke ID.

The method is part of the implementation of the scan service as defined in IEC 62453-2.

Parameters Description

invokedID Unique identification of scan request.

Return value

Return value Description

TRUE Cancel of scan request accepted.

FALSE Cancel of scan request not accepted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 103 –

Behavior

The Frame Application calls this method to cancel active scan request operation. If the
channel has accepted the cancel action request it will return TRUE.

The channel may not be able to cancel the action immediately after accepting the request, but
it should do it as soon as possible. In this case the channel will not fire the
IDtmScanEvents::OnScanResponse() event.

If the channel cannot cancel the operation FALSE is returned.
IDtmScanEvents::OnScanResponse() event is fired when the operation has finished.

Comments

CancelAction does not automatically invalidate the provisional scan results, but stops
retrieving additional information. The Communication Channel should stop the scan process.

6.5.7 Interface IFdtFunctionBlockData

6.5.7.1 General

This interface shall be supported by DTMs for failsafe devices.

The root communication component of an FDT system defines whether the system can
provide failsafe access or not.

In a system that is able to provide failsafe access, it is important that all communication
components support failsafe access. Communication channels shall support the propagation
of the failsafe function calls. That is why the interface is mandatory for all channels with
communication functionality. If the represented gateway device does not provide failsafe
functionality itself, it is sufficient to pass the function call to the underlying communication.

Gateway DTMs and Device DTMs shall be aware that the underlying communication might not
support the interface.

The interface is part of the Communication Channel of a bus-master DTM to allow an
extendable topology. The DTM that manages the failsafe function blocks (FB) would be part of
the Frame Application and would be DCS-specific.

Communication channels shall do the propagation of the failsafe function calls. That is why
this interface is mandatory for all channels with gateway functionality.

The interface to the bus master comprises two calls. The first one causes the Frame
Application to open up a browser displaying the failsafe host and the available device function
blocks. The user may select one that will be associated (assigned) with the DTM.

The second call provides the individual device parameter block packed within an XML frame.
The XML frame provides information about the bus master and the device FB.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 104 – IEC TR 62453-41:2016  IEC 2016

6.5.7.2 GetFBInstanceData

HRESULT GetFBInstanceData(

[in] BSTR* systemTag,

[out, retval] FdtXmlDocument* result);

Description

This method is used by DTMs of failsafe devices to verify the consistency of device
parameters.

The user can compare device parameters which are uploaded directly from the device with
device parameters which are read indirectly from the device via the proxy FB, located in the
bus master.

Returns a static XML-document containing the parameters of the failsafe device.

The method is a technology-specific service.

Parameters Description

systemTag Identifier of the device instance.

Return codes

Return code Description

result XML document containing the parameters of the failsafe device specified by the
FDTFailSafeDataSchema.

Behavior

The FDT-Channel object routes upward in the topology to the bus master driver that contains
the corresponding proxy FB of the DTM, reads the individual device parameter set directly out
of the bus master and passes them to the DTM.

If there is still no assignment of the DTM to a proxy FB, at first it executes the browsing
function as it is described for SelectFBInstance ().

If a Communication DTM is not able support failsafe functionality, it will return a valid
xmlDocument that contains no “FDTFailSafeData” element.

Comments

None.

6.5.7.3 SelectFBInstance

HRESULT SelectFBInstance(

[in] BSTR* systemTag,

[out, retval] VARIANT_BOOL* result);

Description

Before a DTM of a failsafe device can verify the consistency of the device parameters, the
user has to assign the proxy FB in the host (bus master) to the DTM which contains the
parameters of the failsafe device.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 105 –

The method is a technology-specific service.

Parameters Description

systemTag Identifier of the device instance.

Return codes

Return code Description

TRUE Function block associated.

FALSE No function block associated.

Behavior

Opens a browser which offers all available proxy FBs that contain individual device parameter
of devices. The user has to select the proxy FB of the corresponding failsafe device for the
DTM. The DTM of the bus-master stores the assignment of the proxy FB to the respective
DTM-instance.

The mechanism of assigning a DTM to a failsafe device is defined in more detail in section
“4.5.3 F Parameter Assignment Paths” of the document “PROFIBUS Profile for Safety
Technology, Version 1.20, 23-Oct-2002”.

If a Communication DTM is not able to support failsafe functionality, it will return a “false”
success.

Comments

None

6.6 Channel ActiveXControl

6.6.1 Interface IFdtChannelActiveXControl

This interface is an extension of a standard ActiveX control and allows connecting a FDT-
Channel object with the ActiveX control.

6.6.1.1 Init

HRESULT Init(

[in] FdtUUIDString invokeId,

[in] IFdtChannel* channel,

[out, retval] VARIANT_BOOL* result);

Description

Sets the callback pointer of an ActiveX control to the corresponding FdtChannel.

The method is a technology-specific service.

Parameters Description

invokeId Identifier for the started application.

channel Pointer to the channel business object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 106 – IEC TR 62453-41:2016  IEC 2016

Return value

Return value Description

TRUE Channel initialized.

FALSE The operation failed.

Behavior

Sets the callback pointer of an ActiveX control to the corresponding FdtChannel.

If the initialization returns FALSE, the Frame Application has to release the control.

The invoke id is used by a Frame Application for the association at the callback interface if
the control is terminated within the user interface of the DTM (see
IDtmEvents::OnApplicationClosed()). Furthermore it allows the Frame Application to handle a
list of open user interfaces.

Comments

None

6.6.1.2 PrepareToRelease

HRESULT PrepareToRelease(

[out, retval] VARIANT_BOOL* result);

Description

Used to inform the channel control that it has to release its links to other components. The
control will be released by the Frame Application after the DTM has send
IDtmEvents::OnApplicationClosed().

The method is a technology-specific service.

Return value

Return value Description

TRUE The request was accepted.

FALSE The operation failed.

Behavior

Releases the callback pointer of an ActiveX control to the corresponding channel set during
Init(). Furthermore the control has to release all links to other components and has to
terminate all pending or running functions. The DTM has to inform the Frame Application via
IDtmEvents::OnApplicationClosed() that the user interface could be released.

Comments

None

6.6.2 Interface IFdtChannelActiveXControl2

6.6.2.1 General

This interface extends the interface IFdtChannelActiveXControl by new methods. This
interface is mandatory.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 107 –

6.6.2.2 Init2

HRESULT Init2(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument functionCall,

[in] IFdtChannel* channel,

[out, retval] VARIANT_BOOL* result);

Description

Sets the callback pointer of an ActiveX control to the corresponding FdtChannel.

The method is a technology-specific service.

Parameters Description

invokeId Identifier for the started application.

functionCall XML document containing the function id for the requested function or user
interface specified by the DTMFunctionCallSchema.

Channel Pointer to the channel business object.

Return value

Return value Description

TRUE Channel initialized.

FALSE The operation failed.

Behavior

Sets the callback pointer of an ActiveX control to the corresponding FdtChannel. The
functionCall document informs the instance of the ActiveXControl about the context, it is
started.

If the initialization returns FALSE, the Frame Application has to release the control.

The invoke id is used by a Frame Application for the association at the callback interface if
the control is terminated within the user interface of the DTM (see
IDtmEvents::OnApplicationClosed()). Furthermore it allows the Frame Application to handle a
list of open user interfaces.

Comments

This function replaces the former IFdtChannelActiveXControl::Init() function that did not
provide the current functionCall document to the Channel ActiveX control.

A Frame Application according to FDT version 1.2.1 shall use this method instead of the
former method.

6.7 Block Type Manager

The BTM follows the rules specified for the DTM. A set of new interfaces is defined to replace
the corresponding DTM interfaces and to be used with the BTM. The new interfaces follow the
specification for the corresponding interfaces for the DTM, but are applicable to the BTM and
are using the schemas specified for the BTM.

These interfaces are

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 108 – IEC TR 62453-41:2016  IEC 2016

• IBtm

• IBtmInformation

• IBtmParameter

6.7.1 Interface IBtm

6.7.1.1 General

This interface is the main interface of a BTM. IBtm methods have the same behavior as
specified with the interface IDtm. The only difference is that the methods are applied on a
block type object (not on a device). The same methods are used for a DTM and for a BTM and
the corresponding XML schemas definitions reflect the differences between the block and the
Device Type Manager objects.

For the IBtm interface, the only difference is in the schemas used in IDtm::InitNew() method.

6.7.1.2 Config

For description of this method refer to the method IDtm::Config().

6.7.1.3 Environment

For description of this method refer to the method IDtm::Environment().

6.7.1.4 GetFunctions

For description of this method refer to the method IDtm::GetFunctions().

6.7.1.5 InitNew

The deviceType parameter changes as follows:

Parameters Description

deviceType XML document containing the manufacturer-specific data like unique identifier
for a block type specified by BtmInitSchema.

For description of the method refer to IDtm::InitNew().

6.7.1.6 InvokeFunctionRequest

For description of this method refer to the method IDtm::InvokeFunctionRequest().

6.7.1.7 PrepareToDelete

For description of this method refer to the method IDtm::PrepareToDelete().

6.7.1.8 PrepareToRelease

For description of this method refer to the method IDtm::PrepareToRelease().

6.7.1.9 PrepareToReleaseCommunication

For description of this method refer to the method IDtm::PrepareToReleaseCommunication().

6.7.1.10 PrivateDialogEnabled

For description of this method refer to the method IDtm::PrivateDialogEnabled().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 109 –

6.7.1.11 ReleaseCommunication

For description of this method refer to method IDtm::ReleaseCommunication().

6.7.1.12 SetCommunication

For description of this method refer to method IDtm::SetCommunication().

6.7.1.13 SetLanguage

For description of this method, refer to method IDtm::SetLanguage().

6.7.2 Interface IBtmInformation

IBtmInformation methods have the same behavior as specified with the interface
IDtmInformation. The only difference is that the GetInformation method is applied on a block
type object (not on a device). The new XML schema definition reflects the differences
between the Block Type Manager and the Device Type Manager objects.

6.7.2.1 GetInformation

The result parameter changes as follows:

Parameters Description

result XML document containing static BTM information specified by the
BtmInformationSchema.

For description of the method refer to IDtmInformation::GetInformation().

6.7.3 Interface IBtmParameter

This interface allows a Frame Application the access to BTM parameters. The IBtmParameter
methods have the same behavior as specified with the interface IDtmParameter. The only
difference is that the methods IDtmParameter::GetParameters() and
IDtmParameter::SetParameters() are applied to a block type object (not to a device). The new
XML schema definition reflects the differences between the Block Type Manager and the
Device Type Manager objects.

6.7.3.1 GetParameters

The return parameter changes as follows:

Parameters Description

result XML document with the block type device-specific parameters specified by the
BtmParameterSchema.

For a description of the method refer to IDtmParameter::GetParameters().

6.7.3.2 SetParameters

The input parameter xmlDocument changes as follows:

Parameters Description

xmlDocument XML document specified by the BtmParamterSchema. This document details
block type-specific parameters.

For a description of the method refer to IDtmParameter::SetParameters().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 110 – IEC TR 62453-41:2016  IEC 2016

6.8 BTM ActiveXControl

6.8.1 General

This section describes the handling of ActiveX controls that are provided by BTMs.

6.8.2 Interface IBtmActiveXControl

6.8.2.1 General

This interface is an extension of a standard ActiveX control and allows connecting a BTM
object with the ActiveX control.

6.8.2.2 Init

HRESULT Init(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument functionCall,

[in] IBtm* btm,

[out, retval] VARIANT_BOOL* result);

Description

Set the callback pointer of an ActiveX control to the corresponding BTM.

The method is a technology-specific service.

Parameters Description

invokeId This is a unique identifier for the started application.

functionCall XML document containing the function id for the requested function or user
interface specified by the DTMFunctionCallSchema.

Btm Pointer to the BTM business object.

Return value

Return value Description

TRUE The control is initialized.

FALSE The operation failed.

Behavior

Set the callback pointer of an ActiveX control to the corresponding BTM.

For detailed description of the method refer to IDtmActiveXControl::Init() but note that the
ActiveX application is associated to the Block Type Manager.

Comments

None

6.8.2.3 PrepareToRelease

For a description of this method, refer to the method IDtmActiveXControl::PrepareToRelease()
but note that the ActiveX control is associated to the Block Type Manager.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 111 –

6.9 Frame Application

6.9.1 Interface IDtmEvents

6.9.1.1 General

This interface is the callback-interface for the DTMs.

6.9.1.2 OnApplicationClosed

HRESULT OnApplicationClosed(

[in] FdtUUIDString invokeId);

Description

Notification by a DTM, that its user interface identified by the invoke id is closed.

The method is part of the implementation of the ClosePresentation service as defined in
IEC 62453-2.

Parameters Description

invokeId Identifier of the closed application.

Return value

None

Behavior

Notification by a DTM, that the user interface of a DTM opened by
IDtmApplication::StartApplication() or embedded as ActiveX control is closed. There is no
difference whether the user interface was closed by a user action or via
IDtmApplication::ExitApplication(), IDtmActiveXControl::PrepareToRelease() or
IFdtChannelActiveXControl::PrepareToRelease().

Comments

The invokeId was set at the startup of an application or during the initialization of the
ActiveX control.

6.9.1.3 OnDownloadFinished

HRESULT OnDownloadFinished(

[in] FdtUUIDString invokeId,

[in] VARIANT_BOOL success);

Description

Notification by a DTM, that the asynchronous download function call identified by the invoke
id is finished.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 112 – IEC TR 62453-41:2016  IEC 2016

The method is part of the implementation of the WriteDataToDevice service as defined in
IEC 62453-2.

Parameters Description

invokeId Identifier of the download request.

success Notification by a DTM, whether the asynchronous download function call
IDtmOnlineParameter::DownloadRequest() is successfully finished.

Return value

None.

Behavior

Notification by a DTM, whether the asynchronous download function call
IDtmOnlineParameter::DownloadRequest() is successfully finished.

Comments

None.

6.9.1.4 OnErrorMessage

HRESULT OnErrorMessage(

[in] BSTR systemTag,

[in] BSTR errorMessage);

Description

Notification by a DTM about errors during a function call.

The method is implementation of the OnErrorMessage service as defined in IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

errorMessage Human readable error message.

Return value

None.

Behavior

The method is necessary if the DTM works without a user interface. If a DTM works without
user interface it is not allowed to display any error message within own dialog windows.

It’s up to the Frame Application to handle the information. In case of errors or warnings, the
human readable string can be displayed in a dialog box of the Frame Application.

Comments

In order to give user helpful hints concerning errors, it is recommended to use this method in
cases, where a function call failed and IFdtDialog::UserDialog() not be used.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 113 –

6.9.1.5 OnFunctionChanged

HRESULT OnFunctionChanged(

[in] BSTR systemTag);

Description

Notification of a DTM that the information about its current available additional functionality
has changed.

The method is part of the implementation of the OnFunctionChanged service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

None.

Behavior

The method is used if the additional functionality depends on the configuration of a device.
Via this method the DTM informs the Frame Application to update its menus or function calls
which reference on this extended functionality. The Frame Application gets the actual
available functionality via IDtm::GetFunctions().

The call of this method is mandatory for a DTM whenever status or number of functions has
changed.

Comments

None.

6.9.1.6 OnChannelFunctionChanged

HRESULT OnChannelFunctionChanged(

[in] BSTR systemTag,

[in] FdtXPath channelPath);

Description

Notification of a DTM that the information about channel related functionality has changed.

The method is part of the implementation of the OnFunctionChanged service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

channelPath Identifier of the channel.

Return value

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 114 – IEC TR 62453-41:2016  IEC 2016

Behavior

Via this method the DTM can inform the Frame Application to update its channel related
menus which refer to these functions. The Frame Application gets the actual available
functionality via IFdtChannelActiveXInformation::GetChannelFunctions().

Comments

None.

6.9.1.7 OnInvokedFunctionFinished

HRESULT OnInvokedFunctionFinished(

[in] FdtUUIDString invokeId,

[in] VARIANT_BOOL success);

Description

Notification by a DTM that the asynchronously invoked function call identified by the invoke id
is finished.

The method is part of the implementation of the InvokeFunction service as defined in
IEC 62453-2.

Parameters Description

invokeId Identifier of the closed application.

success TRUE if the operation is successfully finished.

Return value

None.

Behavior

Notification by a DTM, whether the asynchronously invoked function call
IDtm::InvokeFunctionRequest() is successfully finished.

Comments

None.

6.9.1.8 OnNavigation

HRESULT OnNavigation(

[in] BSTR systemTag);

Description

A DTM sends a notification to cause the navigation to a Frame Application-specific
application.

The method is a technology-specific service.

Parameters Description

systemTag Identifier of the device instance.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 115 –

Return value

None.

Behavior

If a DTM sends a navigation request, the Frame Application decides which application will be
opened.

For example, if a DTM is started for diagnostic and shows the current device status, the user
may want to know, where the device is connected within the system topology. Therefore the
DTM provides a menu item or button for changing the application. If the user selects such a
‘navigation’ element the DTM send the OnNavigate() event and the Frame Application can
open the system topology tree.

In general, the Frame Application has started the DTM and checks the application context to
decide which Frame Application-specific application will be started to guarantee a unique
navigation behavior for the user.

The Frame Application can identify the calling DTM by the systemTag.

Comments

None.

6.9.1.9 OnOnlineStateChanged

HRESULT OnOnlineStateChanged(

[in] BSTR systemTag,

[in] VARIANT_BOOL onlineState);

Description

A DTM sends an notification about its online state.

The method is part of the implementation of the OnOnlineStatusChanged service as defined
in IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

onlineState TRUE means that the DTM is currently online, FALSE means that the DTM is
offline.

Return value

None.

Behavior

If a DTM has successfully established a connection to its device it sends this notification
(onlineState=TRUE) to the Frame Application so that the Frame Application can visualize the
online state of the DTM. After the DTM has released the connection it sends again the
notification (onlineState=FALSE) so that the Frame Application can update its view.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 116 – IEC TR 62453-41:2016  IEC 2016

Comments

The DTM is allowed to send this notification if state has not changed to inform Frame
Application that it is still in the same state. This may for example happen if no connection can
be established (onlineState=FALSE).

The Frame Application should ignore these additional notifications.

6.9.1.10 OnParameterChanged

HRESULT OnParameterChanged(

[in] BSTR systemTag,

[in] FdtXmlDocument parameter);

Description

In case of a multi-user environment, it can be necessary to inform the Frame Application
about parameter changes.

The method is implementation of the InstanceDataChanged service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

parameter XML document containing the changed parameters.

Return value

None.

Behavior

If a DTM has stored any changed data it has to call IDtmEvents::OnParameterChanged() with
an XML document containing the instance-specific changes. The Frame Application has now
to inform all DTMs which reference the same device instance. The Frame Application will
send this XML document via IFdtEvents::OnParameterChanged() to all those DTMs.

Furthermore the Frame Application will send a notification to the corresponding parent DTM
via IFdtEvents::OnChildParameterChanged().

Comments

This notification could also be used by a Frame Application to trigger an update, for example
to visualize the topology information.

The parent DTM gets only a notification, because the XML document, exchanged via
OnParameterChanged(), is DTM-specific and cannot be interpreted by a parent DTM
IDtmParameter::GetParameters(). A parent DTM, which receives such a notification, can
update its child-specific data by calling GetParameters() at the child DTM.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 117 –

6.9.1.11 OnPreparedToRelease

HRESULT OnPreparedToRelease(

[in] BSTR systemTag);

Description

A DTM sends a notification that it can be released.

The method is part of the implementation of the terminate service as defined in IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

Return value Description

TRUE

FALSE

Behavior

The DTM has released all references to other components. After the Frame Application has
received this notification it can release the DTM.

Comments

None.

6.9.1.12 OnPreparedToReleaseCommunication

HRESULT OnPreparedToReleaseCommunication(

[in] BSTR systemTag);

Description

A DTM sends an notification that its communication pointer can be released.

The method is part of the implementation of the EnableCommunication service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

None.

Behavior

The DTM has released all references of the communication pointer set during
IDtm::SetCommunication(). After the Frame Application has received this notification it can
call IDtm::ReleaseCommunication() and release the communication pointer itself.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 118 – IEC TR 62453-41:2016  IEC 2016

Comments

None.

6.9.1.13 OnPrint

HRESULT OnPrint(

[in] BSTR systemTag,

[in] FdtXmlDocument functionCall);

Description

A DTM sends an notification that it wants to print a DTM-specific document.

The method is a technology-specific service.

Parameters Description

systemTag Identifier of the device instance.

functionCall XML document containing the DTM-specific function id for the requested
document specified by the DTMFunctionCallSchema.

Return value

None.

Behavior

The method is used if a DTM wants to print its specific documentation. Therefore it sends via
OnPrint() a request to the Frame Application with a function id which identifies the DTM-
specific document. Now the Frame Application can receive this document via
IDtmDocumentation::GetDocumentation() and send it to the environment-specific printer.

Comments

None.

6.9.1.14 OnProgress

HRESULT OnProgress(

[in] BSTR systemTag,

[in] BSTR title,

[in] short percent,

[in] VARIANT_BOOL show);

Description

A DTM sends a notification about the progress of handling of a function call.

The method is implementation of the OnProgress service as defined in IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

title Description of the running process.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 119 –

Parameters Description

percent State of progress 0..100 %.

show Set to TRUE, if the progress should be displayed, otherwise the progress would
not be shown and an open progress bar shall be closed within the Frame
Application.

Return value

None.

Behavior

This method should be used by DTMs during functions, which may take a longer time, to
inform the Frame Application and at least the user about ongoing activities. If a DTM cannot
determine the real progress, it can be useful to change for example the title.

It’s up to the Frame Application how to handle the information.

Comments

None.

6.9.1.15 OnScanResponse

HRESULT OnScanResponse(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument response);

Description

Returns a list of fieldbus related information to identify the connected devices.

The method is part of the implementation of the scan service as defined in IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

Response XML document containing the result of the topology scan specified by the
DTMTopologyScanSchema.

Return value

None.

Behavior

Returns an XML document which contains a list of fieldbus related information to identify the
connected devices. If no devices could be found the list will be empty.

Comments

Within FDT version 1.2.1 this method is obsolete. Only DTMs based on FDT version 1.2 are
allowed to call this method.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 120 – IEC TR 62453-41:2016  IEC 2016

6.9.1.16 OnUploadFinished

HRESULT OnUploadFinished(

[in] FdtUUIDString invokeId,

[in] VARIANT_BOOL success);

Description

Notification by a DTM, that the asynchronous upload function call identified by the invoke id is
finished.

The method is part of the implementation of the ReadDataFromDevice service as defined in
IEC 62453-2.

Parameters Description

invokeId Identifier of the upload request.

success Notification by a DTM, whether the asynchronously upload function call
IDtmOnlineParameter::UploadRequest() is successfully finished.

Return value

None.

Behavior

Notification by a DTM, whether the asynchronously upload function call
IDtmOnlineParameter::UploadRequest() is successfully finished.

Comments

None.

6.9.2 Interface IDtmEvents2

6.9.2.1 General

This interface is the callback-interface for DTMs supporting FDT version 1.2.1 or higher
version. This interface extends the interface IDtmEvents by a new method. This interface is
mandatory.

A DTM supporting 1.2.1 or higher version shall call IDtmEvents2, if the Frame Application
supports this interface. Instead of calling IDtmEvents::OnOnlineStateChanged() such a DTM
then shall use the IDtmEvents2::OnStateChanged() method.

6.9.2.2 OnStateChanged

HRESULT OnStateChanged(

[in] BSTR systemTag,

[in] FdtXmlDocument xmldoc);

Description

A DTM sends a notification about change in its state.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 121 –

The method is implementation of the OnOnlineStatusChanged service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

xmldoc XML document containing the function id for the requested function or user
interface specified by the DTMStateSchema.

Return value

None.

Behavior

A DTM has performed a state transitions according to the DTM state machine between one of
the following states:

communication-set
going-online
going-offline
online

If the transition was triggered by an error condition, for example ConnectResponse failed or
OnAbort, the fdt:CommunicationError information shall be provided within the XML document.

Comments

None.

6.9.3 Interface IDtmScanEvents

6.9.3.1 General

This interface defines callback methods, called by DTMs when returning scan information.

6.9.3.2 OnScanResponse

HRESULT OnScanResponse(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument response);

Description

Returns a list of fieldbus related information to identify the connected devices.

The method is part of the implementation of the scan service as defined in IEC 62453-2.

Parameters Description

invokedID Unique identification of scan request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 122 – IEC TR 62453-41:2016  IEC 2016

Return value

Return value Description

response XML document containing the result of the topology scan as specified by a
fieldbus-specific schema (FDTxxxScanIdentSchema) . The fieldbus-specific
document shall be transformed using protocol-specific xsl to get a protocol
independent document, which shall validate against DTMScanIdentSchema.

Behavior

The Communication Channel calls this method to return provisional results, final scan request
results or error information.

Comments

Information regarding the type of response (provisional, final or error) is part of the response
document.

6.9.3.3 OnScanHardwareResponse

HRESULT OnScanHardwareResponse(

[in] FdtUUIDString invokeID,

[in] FdtXmlDocument response);

Description

Notification by a DTM, that asynchronous scan hardware request operation has finished.

The method is part of the implementation of the HardwareInformation service as defined in
IEC 62453-2.

Parameters Description

invokeID Identifier of the request.

Response XML document containing the result of the scan hardware request specified by a
fieldbus-specific schema (FDTxxxScanIdentSchema) if request was called at a
Gateway or Device DTM. The fieldbus-specific document containing additional
manufacturer-specific extensions and shall be transformed using protocol-
specific xsl to get a protocol independent document according
DTMScanIdentSchema.

If request was called at a Communication DTM, then XML document according
DTMScanIdentSchema is returned, which shall not be transformed (ID entries
which can not be filled are left empty).

Return value

None.

Behavior

Notification by a DTM, that asynchronous scan hardware request operation has finished. DTM
passes XML containing information about found hardware.

If the operation was called in context of a Communication DTM, then the XML contains
information of all responsive hardware entities (interface cards, modems…), which can be
handled by this DTM device type.

If the operation was called in context of a Gateway-/Device DTM, then the XML only contains
information of single device where the DTM was started for.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 123 –

The XML contains error information if the scan hardware request failed.

Comments

None.

6.9.4 Interface IDtmAuditTrailEvents

6.9.4.1 General

This interface shall be used by all DTMs to send their audit trail information to the Frame
Application. It is up to the Frame Application to implement the audit-trail-application itself
which records the device-specific information and supplies the user interface.

6.9.4.2 OnAuditTrailEvent

HRESULT OnAuditTrailEvent(

[in] BSTR systemTag,

[in] FdtXmlDocument logEntry);

Description

Notification by a DTM about changed data to be recorded by the Frame Application’s audit
trail tool.

The method is part of the implementation of the RecordAuditTrailEvent service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance

logEntry XML document containing the changes specified by the DTMAuditTrailSchema

Return value

None.

Behavior

A DTM shall call this function at the Frame Application to add an entry to the audit trail record.

Comments

The content of the log-entry depends on the DTM. The implementation of the audit trail tool is
Frame Application-specific.

6.9.4.3 OnEndTransaction

HRESULT OnEndTransaction(

[in] BSTR systemTag,

[out, retval] VARIANT_BOOL* result);

Description

A DTM sends an notification to close the audit trail sequence.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 124 – IEC TR 62453-41:2016  IEC 2016

The method is part of the implementation of the RecordAuditTrailEvent service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

Return value Description

TRUE Audit trail session closed.

FALSE The operation failed.

Behavior

A DTM calls this function at the Frame Application if it wants to close the audit trail record
opened by IDtmAuditTrailEvents::OnStartTransaction().

Comments

When the record has been closed, the Frame Application may use it for its own specific audit
trail functions like adding comments, time stamps, etc.

6.9.4.4 OnStartTransaction

HRESULT OnStartTransaction(

[in] BSTR systemTag,

[out, retval] VARIANT_BOOL* result);

Description

Notification by a DTM that the following changes should be recorded by the Frame
Application’s audit trail tool.

The method is part of the implementation of the RecordAuditTrailEvent service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

Return value Description

TRUE The audit trail application allows to open a new session.

FALSE The operation failed.

Behavior

A DTM calls this function at the Frame Application to request audit trail for the following
actions like configuration or simulation. All calls of OnAuditTrailEvent() will be recorded until
the record is closed by IDtmAuditTrailEvents::OnEndTransaction().

Comments

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 125 –

6.9.5 Interface IFdtActiveX

This interface shall be provided by a Frame Application that supports a GUI.

6.9.5.1 CloseActiveXControlRequest

HRESULT CloseActiveXControlRequest(

[in] FdtUUIDString invokeId,

[out, retval] VARIANT_BOOL* result);

Description

A DTM sends a request to close one of its ActiveX controls.

The method is part of the implementation of the ClosePresentationRequest service as defined
in IEC 62453-2.

Parameters Description

invokeId Identifier for the started ActiveX control.

Return value

Return value Description

TRUE The ActiveX control will be released by the Frame Application

FALSE The operation failed.

Behavior

This method is used by a DTM if it wants to close an ActiveX user interface which was
instantiated and embedded by the Frame Application. The Frame Application will release the
link between the user interface and the DTM via IDtmActiveXControl::PrepareToRelease().

Comments

None

6.9.5.2 OpenActiveXControlRequest

HRESULT OpenActiveXControlRequest(

[in] BSTR systemTag,

[in] FdtXmlDocument functionCall,

[out, retval] VARIANT_BOOL* result);

Description

Request of a DTM to start a DTM GUI defined by the function call id.

The method is part of the implementation of the OpenPresentationRequest service as defined
in IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

functionCall XML document containing the DTM-specific function id for the requested user
interface specified by the DTMFunctionCallSchema.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 126 – IEC TR 62453-41:2016  IEC 2016

Return value

Return value Description

TRUE The requested ActiveX control will be instantiated by the Frame Application.

FALSE The operation failed.

Behavior

This method is used by a DTM if it wants to open an ActiveX user interface which shall be
instantiated and embedded by the Frame Application. The Frame Application will establish the
link between the new user interface and the DTM via IDtmActiveXControl::Init().

Comments

The DTM has also take into account the additional information (application id and operation
phase) passed via the XML document.

In general it is expected that the ActiveX behaves like a modeless dialog.

6.9.6 Interface IFdtActiveX2

This interface extends the interface IFdtActiveX by new methods. This interface is mandatory.

6.9.6.1 OpenDialogActiveXControlRequest

HRESULT OpenDialogActiveXControlRequest(

[in] BSTR systemTag,

[in] FdtXmlDocument functionCall,

[out, retval] VARIANT_BOOL* result);

Description

Request to open ActiveX control for a certain DTM in a modal dialog of Frame Application.

The method is part of the implementation of the OpenPresentationRequest service as defined
in IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

functionCall XML document containing the DTM-specific function id for the requested user
interface specified by the DTMFunctionCallSchema.

Return value

Return value Description

TRUE The requested ActiveX control was instantiated by the Frame Application

FALSE The operation failed (i.e. because Frame Application is running without user
interface).

Behavior

This method is used to open an ActiveX user interface, which shall be instantiated and
embedded in a modal dialog by the Frame Application. The Frame Application will establish
the link between the new user interface and the DTM via IDtmActiveXControl::Init().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 127 –

This method behaves always modal. Frame Application at least has to ensure that all
ActiveX controls of calling DTM are disabled; no further user input is possible.

The opened ActiveX user interface shall call IFdtActiveX:CloseActiveXControlRequest() if it
wants to be closed later. OpenDialogActiveXControlRequest() works synchronously so that
the DTM is block until ActiveX user interface and corresponding dialog are closed.

Comments

A DTM always should use this method for more complex dialogs rather than calling
IFdtDialog::UserDialog() with FDTUserMessageSchema XML containing variables to edit,
because this is not supported by almost all Frame Applications. Call of
IFdtDialog::UserDialog() should be preferred if FDTUserMessage XML only contains text
lines.

Caller of OpenDialogActiveXControlRequest() have to be aware of some synchronization
circumstances which arise if modal dialogs are opened. FDT 1.2 addendum specification
discusses this topic for IFdtDialog::UserDialog() and IDtmEvents:OnErrorMessage() calls
(refer FDT V 1.2 – May 2003 – Addendum, chapter 2.30.4 – A closer look at message loops).

6.9.6.2 OpenDialogChannelActiveXControlRequest

HRESULT OpenDialogChannelActiveXControlRequest(

[in] BSTR channelPath,

[in] FdtXmlDocument functionCall,

[out, retval] VARIANT_BOOL* result);

Description

Request to open ActiveX control for a certain FDT-Channel object (identified by the
channelPath) in a modal dialog of Frame Application.

The method is part of the implementation of the OpenPresentationRequest service as defined
in IEC 62453-2.

Parameters Description

channelPath Identifier of the channel instance (as returned by
IFdtChannel::GetChannelPath()).

functionCall XML document containing the ActiveX function id for the requested user
interface specified by the DTMFunctionCallSchema.

Return value

Return value Description

TRUE The requested ActiveX control was instantiated by the Frame Application

FALSE The operation failed (i.e. because Frame Application is running without user
interface).

Behavior

This method is used to open an ActiveX user interface, which shall be instantiated and
embedded in a modal dialog by the Frame Application. The Frame Application will establish
the link between the new user interface and the channel via
IFdtChannelActiveXControl2::Init2().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 128 – IEC TR 62453-41:2016  IEC 2016

This method behaves always modal. Frame Application at least has to ensure that all
ActiveX controls of related DTM are disabled; no further user input is possible.

The opened ActiveX user interface shall call
IFdtActiveX2:CloseChannelActiveXControlRequest() if it wants to be closed later.
OpenDialogChannelActiveXControlRequest() works synchronously so that the call is block
until ActiveX user interface and corresponding dialog are closed.

Comments

This function should be used for more complex dialogs rather than calling
IFdtDialog::UserDialog() with FDTUserMessageSchema XML containing variables to edit,
because this is not supported by almost all Frame Applications. Call of
IFdtDialog::UserDialog() should be preferred if FDTUserMessage XML only contains text
lines.

The caller of OpenDialogChannelActiveXControlRequest() shall be aware of some
synchronization circumstances which arise if modal dialogs are opened. The FDT 1.2
addendum specification discusses this topic for IFdtDialog::UserDialog() and
IDtmEvents:OnErrorMessage() calls (refer FDT V 1.2 – May 2003 – Addendum, chapter
2.30.4 – A closer look at message loops, paragraph DTM’s point of view).

6.9.6.3 CloseChannelActiveXControlRequest

HRESULT CloseChannelActiveXControlRequest(

[in] FdtUUIDString invokeId,

[out, retval] VARIANT_BOOL* result);

Description

A DTM sends a request to close one of its ActiveX controls.

The method is part of the implementation of the ClosePresentationRequest service as defined
in IEC 62453-2.

Parameters Description

invokeId Identifier for the started ActiveX control.

Return value

Return value Description

TRUE The ActiveX control will be released by the Frame Application.

FALSE The operation failed.

Behavior

This method is used by a DTM if it wants to close an ActiveX user interface which was
instantiated and embedded by the Frame Application. The Frame Application will release the
link between the user interface and the FDT-Channel object. This is done via
IFdtChannelActiveXControl::PrepareToRelease().

Comments

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 129 –

6.9.6.4 OpenChannelActiveXControlRequest

HRESULT OpenChannelActiveXControlRequest(

[in] BSTR channelPath,

[in] FdtXmlDocument functionCall,

[out, retval] VARIANT_BOOL* result);

Description

Request to start an ActiveX functionality defined by the function call id for a certain
FDT_Channel object (identified by the channelPath).

The method is part of the implementation of the OpenPresentationRequest service as defined
in IEC 62453-2.

Parameters Description

channelPath Identifier of the channel instance (as returned by
IFdtChannel::GetChannelPath()).

functionCall XML document containing the ActiveX function id for the requested user
interface specified by the DTMFunctionCallSchema.

Return value

Return value Description

TRUE The requested ActiveX control will be instantiated by the Frame Application.

FALSE The operation failed.

Behavior

This method is used if the caller wants to open an ActiveX user interface which shall be
instantiated and embedded by the Frame Application. The Frame Application will establish the
link between the new user interface and the related object via
IFdtChannelActiveXControl::Init().

Comments

The caller of this method has also to take into account the additional information (application
id and operation phase) passed via the XML document.

The Frame Application creates the Channel ActiveX and assigns it to the FDT-Channel object
(referenced by channelPath) by calling IFdtChannelActiveXControl::Init().

6.9.7 Interface IFdtBulkData

The bulk data interface offers DTMs the possibility, to store a big amount of additional data
like protocols of measured values or historical data of configuration changes. The DTMs are
able to do that in a private way.

If access to these data is not possible, there shall be no impact on the instance-specific
configuration data set of a DTM. The instance data set of a DTM shall be always consistent to
the configuration data stored via the standard IPersistXXX interface. It is the responsibility of
the Frame Application to create a backup strategy for this type of data.

The interface handles bulks of data at a device level.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 130 – IEC TR 62453-41:2016  IEC 2016

6.9.7.1 GetInstanceRelatedPath

HRESULT GetInstanceRelatedPath(

[in] BSTR systemTag,

[out, retval] BSTR* result);

Description

Returns the instance related path for bulk data.

The method is part of the implementation of the GetPrivateDtmStorageInfo service as defined
in IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

Return value Description

Result Instance related path (file system-directory) for bulk data including a trailing
backslash.

Behavior

The Frame Application offers a DTM a way to request an instance-specific path to an area
which could be used to store data in a DTM-specific way. It is up to a DTM to decide in which
way the data will be stored. It could be a binary format by using IStorage or PropertyBag or
even an ASCII-File.

The Frame Application is responsible to provide a unique path for each instance. It shall be
an absolute path to allow a DTM the direct access.

Comments

A DTM shall work without any side effects if a path is not available.

A DTM shall clean up the area specified by the instance related path if
IDtm::PrepareToDelete() is called.

There is no FDT-specific locking mechanism, so the DTM is responsible for consistency of
data.

6.9.7.2 GetProjectRelatedPath

HRESULT GetProjectRelatedPath(

[in] BSTR systemTag,

[out, retval] BSTR* result);

Description

Returns the project related path for bulk data. Returns a unique file system path (directory) for
any combination of project and DTM type (e.g. it returns different paths for the same DTM
type within two projects).

The method is part of the implementation of the GetPrivateDtmStorageInfo service as defined
in IEC 62453-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 131 –

Parameters Description

systemTag Identifier of the device instance.

Return value

Return value Description

result Project related path (directory) for bulk data including a trailing backslash.

Behavior

The Frame Application offers a DTM a way to request a project-specific path to an area which
could be used to store data in a DTM-specific way. It is up to a DTM to decide in which way
the data will be stored. It could be a binary format by using IStorage or PropertyBag or even
an ASCII-File.

The Frame Application is responsible to provide a unique path for each DTM type within a
project. It shall be an absolute path to allow a DTM the direct access.

Comments

A DTM shall work without any side effects if a path is not available.

If the DTM holds any references between project and instance related data it shall clean up
these data if IDtm::PrepareToDelete() is called

There is no FDT-specific locking mechanism, so the DTM is responsible for consistency of
data.

6.9.8 Interface IFdtContainer

This is the main interface of the Frame Application. It supports the functions for the instance
data management like locking within a multi-user system.

6.9.8.1 GetXmlSchemaPath

HRESULT GetXmlSchemaPath(

[out, retval] BSTR* result);

Description

Returns a path where the default schemas are stored.

The method is a technology-specific service.

Return value

Return value Description

Result Path to the default schemas including a trailing backslash.

Behavior

This function returns the file system path to the FDT default XML schemas.

Comments

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 132 – IEC TR 62453-41:2016  IEC 2016

6.9.8.2 LockDataSet

HRESULT LockDataSet(

[in] BSTR systemTag,

[out, retval] VARIANT_BOOL* result);

Description

A DTM sends an notification to the Frame Application that it wants to have exclusive write
access for the currently loaded data set.

The method is part of the implementation of the LockInstanceData service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

Return value Description

TRUE Data set is locked for write access.

FALSE Data set could not be locked. DTM has read access only

Behavior

Via this method a DTM notifies the database that it wants to modify or delete the specified
instance data set. It is up to the Frame Application to validate this request within a multi-user
multi-session system. If the request fails, the DTM shall not change any data and should set
all input fields to ‘non edit’ in case of an open user interface.

It is in the responsibility of the Frame Application to reject write-requests if a DTM does not
take care about its read only status.

A DTM shall not lock its instance data for the complete lifetime. Instead the DTM should try to
lock data only if instance data is going to be modified and should unlock the data after the
instance data is saved and no further modifications are expected.

Comments

Within a single user system the method returns always TRUE.

Examples for lock conditions are

• a user interface is active, that allows changing the instance data,

• the DTM received the request to change data via its COM-interfaces (IDtmParameter,
IDtmInstanceData).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 133 –

6.9.8.3 SaveRequest

HRESULT SaveRequest(

[in] BSTR systemTag,

[out, retval] VARIANT_BOOL* result);

Description

Informs the Frame Application that it should store the changed data.

The method is part of the implementation of the SaveInstanceData service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

Return value Description

TRUE Data set will be saved.

FALSE The operation failed.

Behavior

Via this method a DTM notifies the Frame Application that it wants to save its data. It is up to
the Frame Application to store the data.

The Frame Application gets the data it has to store via the standard storage interfaces.

Transient data remains in transient state until the Frame Application successfully completes
IPersistXXX:Save().

Comments

This method is the only method to inform the Frame Application that it should store the
changed data. Even if the IPersistXXX::IsDirty property is available, it will not be used by a
Frame Application. The Frame Application could also initiate the persistence interface of a
DTM by itself.

Concerning multi-user access the Frame Application shall reject the save request if the DTM
has no write access rights.

Storing the data triggers IDtmEvents::OnParameterChange() which can lead to actions in the
system and IFdtEvents::OnChildParameterChange() notifications which might start a new
DTM (or a whole line). This can lead to performance issues.

Therefore a DTM should limit the calls to IDtmEvents::SaveRequest().

For exmple, DTM should not fire SaveRequest() for every single change in a user interface,
instead it should only call SaveRequest() once when the user interface is closed.

The Frame Application decides whether and when the DTM related instance data set will be
stored into the data base. The Frame Application requests the DTM to store by calling
IPersistXXX::Save() on the DTM. After executing the save procedure successfully, the DTM
data set is in storage state “persistent”.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 134 – IEC TR 62453-41:2016  IEC 2016

6.9.8.4 UnlockDataSet

HRESULT UnlockDataSet(

[in] BSTR systemTag,

[out, retval] VARIANT_BOOL* result);

Description

Notification to the Frame Application that the DTM wants to unlock a data set and needs only
read access for the currently loaded data set.

The method is part of the implementation of the UnlockInstanceData service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

Return value Description

TRUE Data set is unlocked.

FALSE Data set is still locked.

Behavior

Via this method a DTM notifies the Frame Application that it has finished the modification of
the instance data set. It is up to the Frame Application to manage the notification of all
dependent components, for example via IFdtEvents::OnParameterChanged() within a multi-
user multi-session system.

If the request fails, the DTM should notify the Frame Application via
IDtmEvents:OnErrorMessage() to cause a system administrator to clean up the database.

A DTM shall not lock it’s instance data for its complete lifetime. Instead the DTM should try to
lock data only if instance data is going to be modified and should unlock the data after the
instance data is saved and no further modifications are expected.

Comments

Within a single user system the method returns always TRUE.

6.9.9 Interface IFdtDialog

6.9.9.1 General

This interface provides a functionality which allows a DTM to display messages like error,
warning and information.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 135 –

6.9.9.2 UserDialog

HRESULT UserDialog(

[in] BSTR systemTag,

[in] FdtXmlDocument userMessage,

[out, retval] FdtXmlDocument* result);

Description

Call the Frame Application to display a message.

The method is implementation of the UserDialog service as defined in IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

userMessage XML document according to the message specified by the
FDTUserMessageSchema.

Return value

Return value Description

result XML document according to the user action specified by the
FDTUserMessageSchema behavior.

Behavior

A DTM should always use this method for standard user dialogs like error or information
messages. Especially if a DTM is not allowed to open a user dialog (see
IDtm::PrivateDialogEnabled()) this method is called to instruct the Frame Application to open
it. The method will return the selection of the user action or the specified default answer of the
dialog.

It is up to the Frame Application to open a dialog or to send the default answer.

The Frame Application should answer within a proper time-space, because the method works
synchronously so that the DTM is blocked until it receives the answer.

In case of a distributed system the Frame Application shall ensure displaying the user dialog
and the user interface of the DTM at the same workplace.

Comments

None.

6.9.10 Interface IFdtTopology

6.9.10.1 General

This interface provides the access to the complete system topology. A Frame Application has
always to configure the sub-topology of a channel via the interface IFdtChannelSubTopology,
so that the channel or at least the corresponding DTM can validate the connections.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 136 – IEC TR 62453-41:2016  IEC 2016

6.9.10.2 CreateChild

HRESULT CreateChild(

[in] FdtXmlDocument deviceType,

[in] FdtXPath channelPath,

[out, retval] BSTR* result);

Description

A DTM sends a request to the Frame Application to create a new instance data set of the
specified device type.

The method is the implementation of the CreateChild service for a DTM as defined in
IEC 62453-2.

Parameters Description

deviceType XML document containing the information specified by DTMInitSchema.

channelPath Specifies the channel path of the parent DTM to which the newly created
instance data set should be placed.

Return value

Return value Description

result System tag of the DTM. If the operation failed, a NULL pointer will be returned.

Behavior

Returns the system tag of the DTM which is newly created. The DTM is instantiated by the
Frame Application. If the operation failed, a NULL pointer will be returned. The Frame
Application has to implement the behavior described in 7.13.1. It is also in the responsibility of
the Frame Application to insert the created DTM into the topology.

Comments

None.

6.9.10.3 DeleteChild

HRESULT DeleteChild(

[in] BSTR systemTag,

[in] FdtXPath channelPath,

[out, retval] VARIANT_BOOL* result);

Description

Remove the DTM specified by systemTag from the topology identified by channelPath. If this
was the last reference within the topology, remove the instance data set.

The method is the implementation of the DeleteChild service for a DTM as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device to remove.

channelPath Path of channel of parent.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 137 –

Return value

Return value Description

TRUE Operation succeeded.

FALSE Operation failed.

Behavior

Remove the DTM specified by systemTag from the topology identified by channelPath.
Therefore the Frame Application has to call ValidateRemoveChild(). If this was the last
reference within the topology, the Frame Application has to delete the instance data set. The
Frame Application has to call IDtm::PrepareToDelete() with respect of the behavior. The
operation will also fail, if a sub-topology exists.

Comments

None.

6.9.10.4 GetChildNodes

HRESULT GetChildNodes(

[in] BSTR systemTag,

[in] FdtXPath channelPath,

[out, retval] FdtXmlDocument* result);

Description

Returns an XML document containing the systemTags of all child DTMs of the DTM identified
by its system tag and the channel path.

The method is the implementation of the GetChildNodes service for a DTM as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

channelPath Identifier of the channel.

Return value

Return value Description

result XML document containing information according to the definition of
DTMSystemTagListSchema.

Behavior

Returns an XML document containing the systemTags of all child DTMs of the DTM identified
by its system tag and the channel path.

The topology information is globally accessible for all DTMs.

Comments

Only a Frame Application that supports nested communication needs to implement this
method.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 138 – IEC TR 62453-41:2016  IEC 2016

6.9.10.5 GetDtmForSystemTag

HRESULT GetDtmForSystemTag(

[in] BSTR systemTag,

[out, retval] IDtm* result);

Description

Return the associated DTM according the given system tag.

The method is the implementation of the GetDtm service for a DTM as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device.

Return value

Return value Description

result Pointer to a DTM.

Behavior

Return the associated DTM according the given system tag. Additional calls within a Frame
Application instance shall return the identical interface pointer.

The Frame Application shall implement a kind of reference counting which is required to
handle multiple references to the same DTM instance. The caller shall call
ReleaseDtmForSystemTag() to release the reference.

Comments

None

6.9.10.6 GetDtmInfoList

HRESULT GetDtmInfoList(

[out, retval] FdtXmlDocument * result);

Description

Returns an XML-document containing a list of DTM related information. This information is
provided via the DtmInfo-structure defined within the DTMInformationSchema.

The method is the implementation of the GetDtmInfoList service for DTM related information
as defined in IEC 62453-2.

Return value

Return value Description

Result List of DtmInfo according the DTMInfoListSchema.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 139 –

Behavior

Returns an XML-document containing a list of DTM related information. This information could
be used to create an XML document of type DTMInitSchema according the usage of
CreateDtmInstance().

Comments

It is up to the Frame Application to decide which DTM information will be available via the list.
For example the list could contain only information concerning HART® devices even if
PROFIBUS devices are installed.

6.9.10.7 GetParentNodes

HRESULT GetParentNodes(

[in] BSTR systemTag,

[out, retval] FdtXmlDocument* result);

Description

Returns an XML-document containing a list of system tags of all parent DTMs of the DTM
identified by its system tag.

The method is the implementation of the ParentNodes service for DTMs as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

Return value Description

result XML document containing a list of system tags DTMSystemTagListSchema.

Behavior

Returns a list of system tags of parent DTMs. The topology information is globally accessible
for all DTMs.

Comments

Only a Frame Application that supports nested communication has to implement this
interface.

6.9.10.8 MoveChild

HRESULT MoveChild(

[in] BSTR systemTag,

[in] FdtXPath destinationChannelPath,

[out, retval] VARIANT_BOOL* result);

Description

Move a DTM defined by systemTag from the current position within the topology to the
position defined by destinationChannelPath. The complete sub topology will be moved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 140 – IEC TR 62453-41:2016  IEC 2016

The method is the implementation of the MoveChild service for a DTM as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device to move.

destinationChannelPath Path of channel of destination parent.

Return value

Return value Description

TRUE Data Set moved.

FALSE Operation failed.

Behavior

Moves the instance data set related to the device which is identified by the systemTag.

The Frame Application has to call OnRemoveChild() and OnAddChild().

Comments

None.

6.9.10.9 ReleaseDtmForSystemTag

HRESULT ReleaseDtmForSystemTag(

[in] BSTR systemTag,

[out, retval] VARIANT_BOOL* result);

Description

Release the associated DTM according the given system tag.

The method is the implementation of the ReleaseDtm service for a DTM as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device to release.

Return value

Return value Description

TRUE The operation succeeded.

FALSE The operation failed.

Behavior

Release the reference to the associated DTM according the given system tag. This method is
used only in combination with GetDtmForSystemTag().

Comments

None.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 141 –

6.9.11 Interface IDtmRedundancyEvents

6.9.11.1 General

This Frame Application interface provides access for parent components handling redundant
slaves. A Frame Application not implementing this interface is not able to display redundancy
information within its topology information (for redundancy refer 5.9)

6.9.11.2 OnAddedRedundantChild

HRESULT OnAddedRedundantChild(

[in] BSTR systemTag,

[in] FdtXPath channelPath,

[out, retval] VARIANT_BOOL* result);

Description

A parent component sends this event to the Frame Application if a Device DTM handling a
redundant device is added to the topology. The Frame Application is then able to display the
instance at an additional redundant Communication Channel.

The method is implementation of the OnAddedRedundantChild service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the Device DTM instance representing a redundant slave.

channelPath Specifies the redundant channel path of the parent DTM to which the DTM is
connected

Return value

Return value Description

TRUE Operation succeeded.

FALSE Operation failed.

Behavior

The parent component adds the Device DTM specified by systemTag, handling a redundant
slave, to the Communication Channel identified by channelPath. The Frame Application shall
not call ValidateAddChild() or OnAddChild() on this channel.

Comments

None.
IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C TR 62
45

3-4
1:2

01
6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 142 – IEC TR 62453-41:2016  IEC 2016

6.9.11.3 OnRemovedRedundantChild

HRESULT OnRemovedRedundantChild(

[in] BSTR systemTag,

[in] FdtXPath channelPath,

[out, retval] VARIANT_BOOL* result);

Description

A parent component sends this event to the Frame Application if a Device DTM handling a
redundant device is removed from the topology. The Frame Application is able to hide the
instance at the additional redundant Communication Channel.

The method is implementation of the OnRemovedRedundantChild service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance representing a redundant slave.

channelPath Specifies the redundant channel path of the parent DTM to which the DTM is
connected.

Return value

Return value Description

TRUE Operation succeeded.

FALSE Operation failed.

Behavior

The parent component removes the Device DTM specified by systemTag, handling a
redundant slave, from the Communication Channel identified by channelPath. The Frame
Application shall not call ValidateRemoveChild() or OnRemoveChild() on this channel.

Comments

None.

6.9.12 Interface IDtmSingleDeviceDataAccessEvents

This interface is the callback interface for single device data access implemented by the
Frame Application.

6.9.12.1 OnItemListResponse

HRESULT OnItemListResponse(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument response);

Description

Provides the response to ItemListRequest() identified by the invoke id. ItemListResponse
provides an XML document containing a list of the available device-specific parameters and
process values. Within a DTM this list may contain items related to configuration parameters,
process values as well as asset management related data like stroke counter. In DTM state

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 143 –

‘configured’ the returned item list is based on the current instance data set, which could be
different from the configuration of the device. In this case Read- and WriteRequests may fail.

The method is part of the implementation of the DeviceDataInformation service as defined in
IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

response XML document containing a DtmItemInfoList with the actual available
parameters specified by the DTMItemListSchema return value.

Return value

None.

Behavior

The method provides a list of items that can be read or written from/to the DTM via
ReadRequest() or written to the DTM via WriteRequest(). The source for this data is the
device itself.

Items provided within these list may also be available as FDT-Channel objects (provided by
IDtmChannel::GetChannels()) or modeled as an exported variable (DtmVariable provided by
IDtmParameter::GetParameters() or IBtmParameter::GetParameters()). The related items can
be identified via the attribute ‘semanticId’ (refer to clause FDT Data Types).

Comments

The contents of the provided XML document may depend on the current configuration of the
device. If the contents is changed, a DTM has to inform the Frame Application by sending
IDtmSingleDeviceDataAccessEvents::OnDeviceItemListChanged().

6.9.12.2 OnDeviceItemListChanged

HRESULT OnDeviceItemListChanged(

[in] BSTR systemTag);

Description

The DTM informs the Frame Application that the content of the item list has been changed.

The method is part of the implementation of the DeviceDataInformation service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

None.

Behavior

Via this method a DTM informs the Frame Application that the content of the item list has
changed (the available items in general, not the value). This may happen if the content of the
list depends on the configuration of the device.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 144 – IEC TR 62453-41:2016  IEC 2016

OnDeviceItemListChanged should not be fired in case of pending responses.

Comments

None.

6.9.12.3 OnReadResponse

HRESULT OnReadResponse(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument response);

Description

Provides the response to ReadRequest() identified by the invoke id.

The method is part of the implementation of the DeviceDataRead service as defined in
IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

Response Received data as DtmItemList specified by the DTMItemListSchema return
value.

Return value

None.

Behavior

Via this method a Frame Application that sent the read-request, receives the requested data
from the DTM.

Comments

None.

6.9.12.4 OnWriteResponse

HRESULT OnWriteResponse(

[in] FdtUUIDString invokeId,

[in] FdtXmlDocument response);

Description

Provides the response to WriteRequest() identified by the invoke id.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 145 –

The method is part of the implementation of the DeviceDataWrite service as defined in
IEC 62453-2.

Parameters Description

invokeId Unique identifier for the request.

Response Received data as DtmItemList that contains the device data of the successfully
written data specified by the DTMItemListSchema (may differ to the written
value due to e.g. rounding procedures within the device).

Return value

None.

Behavior

Via this method a Frame Application may receive information from the DTM about the
successfully written data.

Comments

None.

6.9.13 Interface IDtmSingleInstanceDataAccessEvents

This interface is the callback interface for single instance data access implemented by the
Frame Application.

6.9.13.1 OnInstanceItemListChanged

HRESULT OnInstanceItemListChanged(

[in] BSTR systemTag);

Description

The DTM informs the Frame Application that the content of the item list has been changed.

The method is part of the implementation of the InstanceDataInformation service as defined in
IEC 62453-2.

Parameters Description

systemTag Identifier of the device instance.

Return value

None.

Behavior

Via this method a DTM informs the Frame Application that the content of the item list has
changed (the available items in general, not the value). This may happen if the content of the
list depends on the configuration of the device.

OnInstanceItemListChanged should not be fired in case of pending responses.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 146 – IEC TR 62453-41:2016  IEC 2016

Comments

None.

6.9.14 Interface IFdtBtmTopology

This interface provides the access to the block topology. IFdtBtmTopology methods have the
same behavior as specified with the interface IFdtTopology. The only difference is that the
methods are used to apply to a block type object (not to a device). The new XML schema
definition reflects the differences between the Block Type Manager and the Device Type
Manager objects.

If a DTM has Communication Channels to support both, DTMs and BTMs, the
IFdtBtmTopology interface will provide information only about BTMs. The information related
to the DTM topology will be provided by the IFdtTopology interface.

6.9.14.1 CreateChild

The method is the implementation of the CreateChild service for a BTM as defined in
IEC 62453-2.

The input parameter deviceType changes as follows:

Parameters Description

deviceType XML document containing the information specified by the BTMInitSchema. For
description of the method refer to IFdtTopology::CreateChild().

6.9.14.2 DeleteChild

The method is the implementation of the DeleteChild service for a BTM as defined in
IEC 62453-2.

For description of the method refer to IFdtTopology::DeleteChild().

6.9.14.3 GetChildNodes

The method is the implementation of the GetChildNodes service for a BTM as defined in
IEC 62453-2.

For description of the method refer to IFdtTopology::GetChildNodes().

6.9.14.4 GetBtmForSystemTag

The method is the implementation of the GetDtm service for a BTM as defined in
IEC 62453-2.

For description of the method refer to IFdtTopology::GetDtmForSystemTag().

6.9.14.5 GetBtmInfoList

The method is the implementation of the GetDtmInfoList service for BTM related information
as defined in IEC 62453-2.

For description of the method refer to IFdtTopology::GetDtmInfoList().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 147 –

6.9.14.6 GetParentNodes

The method is the implementation of the ParentNodes service for BTMs as defined in
IEC 62453-2.

For description of the method refer to IFdtTopology::GetParentNodes().

6.9.14.7 MoveChild

The method is the implementation of the MoveChild service for a BTM as defined in
IEC 62453-2.

For description of the method refer to IFdtTopology::MoveChild().

6.9.14.8 ReleaseBtmForSystemTag

The method is the implementation of the ReleaseDtm service for a BTM as defined in
IEC 62453-2.

For description of the method refer to IFdtTopology::ReleaseDtmForSystemTag().

7 FDT sequence charts

7.1 DTM peer to peer communication

7.1.1 General

For a DTM each connection is established as a peer-to-peer connection. This subclause
describes the communication function calls from a DTM developer’s point of view.

7.1.2 Establish a peer-to-peer connection between DTM and device

The connection is established by method calls to the IFdtCommunication pointer, which was
provided to the DTM (see Figure 16).

Figure 16 − Peer to peer connection between DTM and device

7.1.3 Asynchronous connect for a peer-to-peer connection

The connect request is handled asynchronously (see Figure 17).

DTM

Frame-application communication channel

IEC

Interface IFdtCommunication, generated for
a DTM by the frame-application

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 148 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IFdtCommunication::ConnectRequest()

IFdtCommunicationEvents2::OnConnectResponse2()

Figure 17 − Asynchronous connect (peer to peer)

7.1.4 Asynchronous disconnect for a peer-to-peer connection

Also the disconnect is handled in an asynchronous way (see Figure 18).

Used methods:

IFdtCommunication::DisconnectRequest()

IFdtCommunicationEvents::OnDisconnectResponse()

Figure 18 − Asynchronous disconnect (peer to peer)

7.1.5 Asynchronous transaction for a peer-to-peer connection

Transaction requests are handled asynchronously (see Figure 19).

IEC

DTM Communication
frame application

DisconnectRequest()
Release connection

Spawn
communication

process
and

release
established
connection

OnDisconnectResponse()

X

IEC

DTM Communication
frame application

ConnectRequest()
Establish connection

Spawn
communication

process
and

established
connection

OnConnectResponse2()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 149 –

Used methods:

IFdtCommunication::TransactionRequest()

IFdtCommunicationEvents::()

IFdtContainer::LockDataSet()

IFdtContainer::UnlockDataSet()

Figure 19 − Asynchronous transaction (peer to peer)

7.2 Nested communication

7.2.1 General

This subclause is important for DTM developers who support a device with gateway
functionality (e.g. remote I/O). This subclause describes the communication function calls
from the point of view of a developer of a communication component.

Nested communication is used to establish the connection to a device on a sub-system. For
example, a DTM calls a field device which is connected to a channel of a remote I/O.

The requirement of this architecture is that a DTM shall not know anything about the kind of
the overlaying system. Nevertheless, the structure of the sub-system is well known to Frame
Application and DTMs.

The DTMs which have gateway functionality (remote I/O) have to provide an FdtChannel with
communication interfaces for each channel with gateway functionality.

Furthermore always the parent (DTM with gateway functionality or, at least, the Frame
Application) is responsible for the communication addressing of its sub-devices. Therefore it
has to set parameters like ‘tag’ and ‘BusInformation’ according to the communication protocol.
(see also: IDtmParameter::SetParameters()).

Figure 20 shows the system topology for the following examples:

IEC

DTM Storage
frame application

Communication
frame application

Start read or write a single
parameter or list of

parameters decribed via
aXML document

Establish connection

End of communication

TransactionRequest()

Spawn
communication

process
and

Read/Write via
established
connection

UnlockDataSet()

LockDataSet()

Store sucessfully down
loaded parameters

OnTransactionResponse()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 150 – IEC TR 62453-41:2016  IEC 2016

Figure 20 − System-topology

A connection from DCS to field device in such a hierarchical communication system is called
system connection in the following clauses and subclauses.

7.2.2 Generate system topology

7.2.2.1 Topology

The following information reflects this topology:

• the instance data set of the HART®-device;

• the instance data set of the remote-I/O;

• the reference of the data sets HART®-device to remote-I/O.

7.2.2.2 Frame Applications point of view

The Frame Application is responsible to generate and manage the topology. The sequence
shows how the Frame Application manages the relation between DTMs and Communication
Channels (see Figure 21).

IEC

DCS

Network-
Adapter

Field deviceField device

Channel

Channel

Field device

Module
Channel

Channel

Module
Channel

Field device

Channel

Channel

DP
Profibus

HART

Remote I/O
as gateway

Profibus to HART

0..20 mA

Specific
HART DTM
is running

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 151 –

Used methods:

IDtmInformation::GetInformation()

IDtmChannel::GetChannels()

IFdtChannelSubTopology::ValidateAddChild()

IFdtChannelSubTopology::OnAddChild()

Figure 21 − Generation of system topology by Frame Application

7.2.2.3 DTMs point of view

This sequence shows the generation of the topology triggered by a DTM (see Figure 22).

IEC

DTM
HART

Frame
Application

DTM
RIO

Update topology with the
Profibus Remote-I/O

Get information about the
direct connected device

Get information about the
sub-device

Check if the connection will
be valid

Frame-application stores the
new topology

GetInformation()

Internal Add

The frame-application
updates the topology with the

HART device if the
connection is valid

ValidateAddChild()
True

OnAddChild()

GetInformation()

GetChannels()
Determine the channel

RIO
Channel

Internal Add

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 152 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IFdtTopology::GetDtmInfoList()

IFdtTopology::CreateChild()

IFdtChannelSubTopology::ValidateAddChild()

IFdtChannelSubTopology::OnAddChild()

Figure 22 – Generation of system topology – Participation of DTM

7.2.3 Establish a system connection between DTM and device

Figure 23 shows possible communication hierarchy in FDT.

IEC

DTM
Child

Frame
Application

DTM / Channel

CreateChild()

OnAddChild()

ValidateAddChild()

GetDtmInfoList()

Select DTM

True

Internal Add

Instantiation of the selected DTM

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 153 –

The topology information shall be available to create the proper communication interface hierarchy.

Used methods:

IDtm::SetCommunication()

IFdtTopology::GetChildNodes()

IFdtCommunication::ConnectRequest()

IFdtCommunicationEvents2::OnConnectResponse2()

Figure 23 – System connection (across communication hierarchy)

7.2.4 Asynchronous transaction for a system connection

Example HART/PROFIBUS

The transaction-function-call of the HART DTM is realized as a read and write-function at the
PROFIBUS communication component of the remote I/O. With the PROFIBUS write function
the communication component transfers the HART data to the HART master at the remote
I/O. The answer of the HART device can be received from the HART master by the according
PROFIBUS read function call. The addressing for the read and write function call depends on
the hardware and the configuration of the remote I/O and is well known to the Communication
Channel (see Figure 24).

HART DTM

Remote I/O Gateway Channel

Frame-Application Communication Channel

Interface IFdtCommunication, generated for
the HART DTM by the Remote I/O Gateway
Channel.

Interface IFdtCommunication, generated for the
Remote I/O Gateway Channel by a FDTChannel
of the frame- application.

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 154 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IFdtCommunication::TransactionRequest()

IFdtCommunicationEvents::OnTransactionResponse()

IDtmOnlineParameter::DownloadRequest()

IDtmEvents::OnDownloadFinished()

Figure 24 − Asynchronous transactions (system connection)

7.3 Topology scan

7.3.1 Scan network

Sequence diagram: scan network topology (see Figure 25).

IEC

HART
DTM

Gateway Channel
Remote-I/O

Communication Channel
 Frame Application

TransactionRequest()Establish connection
Build HART Frame for

parameter

Build Profibus frame
and spawn process to
send HART Request

Frame

take out and
return

 HART-Frame

DownloadRequest()

OnDownloadFinished()

take out
parameter

value

Build Profibus
frame to receive

HART Response
Frame

TransactionRequest()

Spawn process and write via
established connection

OnTransactionResponse()

TransactionRequest()

Read via established
connection

OnTransactionResponse()

OnTransactionResponse()

Communication
process

Communication
process

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 155 –

Used methods:

IFdtChannelScan::ScanRequest()

IDtmScanEvents::OnScanResponse()

IFdtChannelSubTopology2::SetChildrenAddresses()

Figure 25 − Scan network topology

7.3.2 Cancel topology scan

In this scenario Frame Application cancels an active scan request (see Figure 26).

IEC

Frame-
Application

Communication
Channel

ScanRequest()

Communication channel
determines the
connected device with
the required address
range .This is an online
functionality.
The implementation is
DTM / device specific.

True

OnScanResponse()
The frame-application recognizes, that
a scan response is available

The frame-application uses the result to
identify the device connected to a
specific address.

The frame-application identifies proper
DTMs for the devices based on device
identification of the DTMDeviceType
and creates a subtopology
accordingly.

The frame-application sets the device
address(es) in the DTM via
CommunicationChannel

SetChildrenAddresses()

The frame-application validates the
scan result document against the
protocol specific schema

The frame application may process the
protocol specific stylesheet to create a
scan response in a protocol
independent format. The result is
validated against the protocol
independent schema and can be used
for pattern matching.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 156 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IFdtChannelScan::ScanRequest()

IFdtChannelScan:CancelAction()

IDtmScanEvents::OnScanResponse()

Figure 26 − Cancel topology scan

Behavior

In case of problems it is up to the Communication Channel to handle problems in a way that
the Communication Channel returns final response with an error information.

If the final response is not returned in expected time, user or Frame Application can cancel
this action. No further OnScanResponse() should be called.

In case of an error in a provisional scan result, it is up to the Frame Application to cancel the
scanning or to handle the particular error in the result and continue the scan.

Progress events shall be fired by Communication Channel while scanning is performed.

7.3.3 Provisional scan result notifications

In this scenario Communication Channel sends provisional topology scan result XMLs to the
Frame Application (see Figure 27).

Frame
Application

ScanRequest() Execute
scan operation

The communication channel informs
frame-application about progress of
operation.

Communication
Channel

CancelAction() The frame-application cancels scan
operation before operation has finished.
Communication channel accepts the call
and doesn't send OnScanResponse()
notification.

TRUE

TRUE

[*] OnScanResponse()
resultState=“provisional“

The frame-application requests scan of
field-bus at some communication channel.

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 157 –

Used methods:

IFdtChannelScan::ScanRequest()

IDtmScanEvents::OnScanResponse()

Figure 27 − Provisional topology scan

7.3.4 Scan for communication hardware

Scan for communication hardware is needed for full automatic creation of a system topology
out of an existing bus topology. Frame Application needs to check available communication
hardware first and instantiate corresponding bus master DTM before scan for sub-topology is
feasible (see Figure 28).

Frame
Application

ScanRequest()
Execute
Scan Operation

Scan Operation

The frame-application request scan of
field-bus at some communication
channel

The communication channel sends
several provisional scan result XMLs
to frame-application.

Communicatio
n

Ch l

[*] OnScanResponse()

At the end of scan operation the final
result XML is also passed via
OnScanResponse() notification.

TRUE

OnScanResponse()

resultState=“provisional“

resultState=“final“

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 158 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IDtmHardwareIdentification::ScanHardwareRequest()

IDtmScanEvents::OnScanHardwareResponse()

IFdtActiveX::OpenActiveXControlRequest()

(or IFdtActiveX2:OpenDialogActiveXControlRequest())

Figure 28 − Scan for communication hardware

7.3.5 Manufacturer-specific device identification

In this scenario a Frame Application scans an existing field-bus network and uses DTM
implementing IDtmHardwareIdentification interface to identify devices for which manufacturer-
specific operation shall be performed (see Figure 29).

IEC

Frame-
Application

Bus Master
DTM

ScanHardwareRequest ()

Open

The frame-application instantiate new bus
maser DTM and requests scanning for
responsive hardware .

Instantiation of new DTM

OpenActiveXControlRequest ()

Bus Master
Config ActiveX

True

Configure
(private DTM interface)

True

OnScanHardwareResponse ()

Scan for responsive
hardware

Bus master DTM may requests open of
ActiveX control if manual configuration (i.e.
setting of COM Port) is needed before
operation can be performed .

[NEXT]

The DTM returns XML containing
information about found hardware .

The frame-application processes the
protocol specific stylesheet to create a scan
response in a protocol independent format
(XML according DTMScanIdentSchema . ID
entries which can not be filled are left
empty).

[FOR EACH <ScanIdententification > in result XML DO]

The frame-application tries to identifiy
proper DTM for the hardware based on
device identification of the
DTMDeviceType and adds DTM to the
topology.

Search for DTM supporting
this device type

Add DTM to topology

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 159 –

Used methods:

IEC

Frame
Application

DTM
(supporting

manufacturer
specific

identification)

ScanRequest()
The frame-application request scan of field-bus at
some communication channel.

Communication
Channel

OnScanResponse()

[FOR EACH <ScanIdentification> in result XML DO]

[IF proper DTM can be found THEN]

Search for DTM supporting hardware
identification for this device type

Start

ScanHardwareRequest()

ConnectRequest()

OnConnectResponse2()

TransActionRequest()

OnTransActionResponse()

OnDisconnectRequest()

DisconnectResponse()

OnScanHardwareResponse()

[ENDIF]

[NEXT]

The frame-application processes the protocol
specific stylesheet to create a scan response in a
protocol independent format (XML according
DTMScanIdentSchema).

Otherwise frame-application searches for nearly
proper DTM supporting IDtmHardwareIdentification
interface (at least id of manufacturer and bus
protocol match) .

If proper DTM can be found, then frame-
application starts the DTM, adds it to the topology
and requests set of bus-address at corresponding
communication channel.

The frame-application passes communication
pointer to the DTM and executes hardware
scanning.

The DTM connects to
the device and
performs manufacturer
specific device
identification operation.

The frame-application substitues the DTM if
proper DTM can now be found.
(Otherwise DTM may remain in topology as long
as proper DTM is not installed).

The DTM returns XML containing manufacturer
specific extensions. The frame-application
processes the protocol specific stylesheet to create
a scan hardware response in a protocol independent
format (XML according DTMScanIdentSchema).

refer sequence diagramm:
"Instantiation and Release /
Instantiation of a new DTM

SetCommunication()

ValidateAddChild() /
OnAddChild()

SetChildrenAddress()

Substitute DTM

refer sequence diagramm:
"Scan Network“

refer sequence diagramm:
"Set or modify device
address using scan result
information“

The frame-application tries to identifiy proper DTM
for the device based on device identification of the
DTMDeviceType.

Search for DTM supporting
this device type

[ELSE]

Add DTM to topologyIf proper DTM can be found, then DTM is added to
topology.

Search for DTM supporting
this device typeThe frame-application tries to identifiy proper DTM

for the device based on device identification of the
DTMDeviceType.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 160 – IEC TR 62453-41:2016  IEC 2016

IDtmHardwareIdentification:ScanHardwareRequest()

IDtmScanEvents::OnScanHardwareResponse()

IDtm::SetCommunication()

IFdtChannelSubTopology:ValidateAddChild()

IFdtChannelSubTopology::OnAddChild()

IFdtChannelScan::ScanRequest()

IFdtChannelSubTopology2::SetChildrenAddresses()

IDtmScanEvents::OnScanResponse()

IFdtCommunication::ConnectRequest()

IFdtCommunication::TransActionRequest()

IFdtCommunication::DisconnectRequest()

IFdtCommunicationEvents2::OnConnectResponse2()

IFdtCommunicationEvents::OnTransactionResponse()

IFdtCommunicationEvents::OnDisconnectResponse()

Figure 29 − Manufacturer-specific device identification

7.4 Registration of protocol-specific FDT schemas

Protocol-specific schemas are stored in a sub-path of the FDT schema path. The name of this
path is identical with the FDT fieldbus category id of the protocol (e.g. '036D1498-387B-11D4-
86E1-00E0987270B9' for HART protocol)".

In order to add new protocol support to the FDT specification and to existing Frame
Application installations, a CommDTM installation shall provide protocol-specific schemas.

There are two cases:

a) Protocol-specific schemas accepted and published by FDT Group. These schemas may be
released independent on a FDT specification release.

b) Schemas of a proprietary protocol. In this case all CommDTMs and Device DTMs are
provided in one consistent package. Consistency of all related data shall be ensured
internally by DTM.

The following structure explains an overall workflow (see Figure 30):

• Installation of DTMs with a channel implementing IFdtCommunication.

• CommDTM is installed and contains in its setup the merge module of the protocol-specific
schemas.

• CommDTM copies the schemas to a CommDTM-specific certain path.

• DTM library update

DTMDeviceType information is used for DTMCatalog information.

• IDtmInformation::GetInformation(), returns an XML document containing schema version
and path of protocol-specific schemas.

• Frame Application compares this information with the already known schemas.

• Frame Application checks, if schemas are already available in the sub schema path of a
Frame Application and copies the schemas if not, or if a higher version is offered.

• Frame Application is responsible to synchronize the schema files over all subdirectories.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 161 –

Used methods:

IDtmInformation::GetInformation()

Figure 30 − Add protocol-specific schemas to Frame Applications schema sub path

After updating the schema cache, the Frame Application gets additional protocol-specific
device identification information from a DTM by calling
IDtmInformation2::GetDeviceIdentificationInformation (see Figure 31).

IEC

Frame-
Application

CommDTM or
Gateway DTM

GetInformation DTM provides DTM information with
protocol specific schema path
(‚DtmSchemaPath’)

Frame application reads
busCategory and
DtmSchemaPath

Frame application checks
if the schema/xsl is new or
if there is a newer version
(Searching for attribute
‚schemaVersion’ or xsl
variable ‚FileVersion’)

[if newer]

Frame application checks
if the supported
busCategory is new

[if new busCategory]

[for each xml- or xsl- file in DtmSchemaPath]

[next file]

[for each DTM]

Frame application
searches for installed DTM

Instantiate DTM

Frame creates new protocol
sub path in common FDT
schema path
(Using protocol id as
pathname)

Copy protocol specific
schemas to Frame’s
protocol schema sub path

[next DTM]

[end if]

[end if]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 162 – IEC TR 62453-41:2016  IEC 2016

Frame-
Application

Device DTM or
Gateway DTM

GetInformation() DTM provides
DTMDeviceType
information

Frame application
reads information
about supported
device types Frame application includes

the DTM into the DTM library

 [for each DTMDeviceType]
GetDeviceIdentificationInformation()

Frame validates the
document using the
protocol specific
schemas from Frames
schema sub path

Frame adds the
supported device
identification information
to the DTMDeviceType
in the library

IEC

Figure 31 − Frame Application reads protocol-specific
device identification information of DTMDeviceTypes

7.5 Configuration of a fieldbus master

Device-specific bus parameters are needed to configure the Frame Application’s fieldbus
master or communication scheduler. To retrieve these parameters an interaction between
DTMs and a master configuration tool is required. To provide a standard access to this bus-
specific data, it is stored as a public data accessible by the predefined XML tag.

<busMasterConfigurationPart>

<busMasterConfigurationPart> is a binary stream which contains the device-specific bus
information according to the fieldbus-protocol-specification (see Parts 3yx for protocol-specific
definitions).

Each DTM shall at least fill in the device-specific parameters and all parameters which can be
changed by its application.

All other entries may be filled up with substitute values like zeroes. The substituted values of
the <busMasterConfigurationPart> structure will be set by the environment’s master
configuration tool according to the requirements of the complete bus.

Independent of the values filled in, it is very important that the structure generated by the
DTM adheres to the definitions of the fieldbus specification.

After all network participants have written their instance data, the master configuration tool
can commission the fieldbus (see Figure 32). For that purpose, it collects the
<busMasterConfigurationPart> of each network participant and calculates the bus parameters
of the corresponding master device.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 163 –

The master configuration tool can be part of the DTM of the master device or like in the
following example part of the Frame Application. If a DTM for a master device exists, the
master configuration will be downloaded by IDtmOnlineParameter::DownloadRequest().

Used methods:

IDtmParameter::GetParameters()

IDtmParameter::SetParameters()

IFdtTopology::GetChildNodes()

Figure 32 − Bus master configuration

7.6 Starting and releasing applications

In general the Frame Application uses the interface IDtmApplication to start an application or
uses IDtmActiveXInformation to get the information about an ActiveX control for the required
application. The sequence chart in Figure 33 shows how the Frame Application starts an
application and how it handles the asynchronous behavior of the user interface via the invoke
id. The same mechanism is used for ActiveX controls. The association between user
interface and invoke id can always be used to synchronize DTM and Frame Application,
independent whether the user closes the user-interface or it is closed by the Frame
Application via ExitApplication() or PrepareToRelease().

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 164 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IDtmApplication::StartApplication()

IDtmEvents::OnApplicationClosed()

Figure 33 − Starting and releasing applications

7.7 Channel access

The information for the access of I/O data of a device within a Frame Application and the
communication interfaces for nested communication are available via FDT-Channel objects.
These objects carry all address information for the configuration of a fieldbus master or a
connected fieldbus controller. How to access such a FDT-Channel object is fieldbus
independent (see Figure 34). However the information which is accessible as an XML
document depends on the specific fieldbus protocol.

IEC

Frame
Application DTM

DTM sends a notification
that its user interface is
closed

StartApplication(invokeId)

Open the user interface
of a DTM e.g. for
parametrization

User closes the
user interface

OnApplicationClosed(invokeId)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 165 –

Used methods:

Standard Microsoft interfaces

IDtmParameter::GetParameters()

IDtmChannel::GetChannels()

Figure 34 − Channel access

7.8 DCS Channel assignment

During the channel assignment the relationship between a channel provided by the DTM and
a channel within the Frame Application (DCS channel) is established by the Frame
Application (see Figure 35).

IEC

Frame
Application DTM

User selects or the frame-
application determines a
single channel. Each channel
is identified within a device
instance by the channel
reference of the parameter
document. The reference is
equal to the id of a channel,
which is a mandatory
attribute of each channel
description.

FdtChannel

Frame-application
iterates over the channel
collection to get all
channel information or
can access a single
channel within the
collection by the channel
reference (id)

GetChannels()

GetParameters()Get structure information of
the channel references as
part of the device specific
parameterXML document

Get all channels of the device
as collection of interface
pointers of IFdtChannel
objects

*CoCreateInstance()

DTM creates a
collection of interface
pointers to its
FdtChannel objects.
Each element is
available by the
channel id

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 166 – IEC TR 62453-41:2016  IEC 2016

Figure 35 − DCS channel assignment single DTM

To do this, the Frame Application has to get the channel properties from the DTM. To get this
information it asks the DTM for the channels of the current instance and iterates over the
received channels (see Figure 36).

For the assigned channels the Frame Application sets the read-only-flag within the channel
parameters. This flag ensures that the channel is not deleted until the channel assignment is
released.

IEC

DTM (Device)

FdtChannel

1..1

0..n

Channels

Project
1..1

0..n

Devices

DcsChannel
0..1

0..1
ChannelAssignment

0..1linkedDevice

0..n0..1

linkedChannel

0..n

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 167 –

Used methods:

IFdtContainer::LockDataSet()

IFdtContainer::UnlockDataSet()

IDtmParameter::GetParameters()

IDtmChannel::GetChannels()

IFdtChannel::GetChannelParameters()

IFdtChannel::SetChannelParameters()

Figure 36 − Sequence of channel assignement for a single DTM

If a DTM instance represents a complete device, all information for channel assignment is
available at this DTM.

In case of a modular device like remote I/Os which is represented by one DTM, the internal
structure is also available via the parameter interface. From the channel assignment point of
view this information allows the Frame Application to generate a structured presentation, so
that there is no difference for a user whether he works with a single DTM or with several
DTMs which represent the parts of the modular device.

Figure 37 shows a sub structure with DTMs for modular devices especially for remote I/Os
with modules of different vendor. The connection of the Device DTM and its Module DTMs is
established via the standard topology methods. At this sub structure the Device DTM is the

IEC

Frame
Application DTM

Get Information for
Channel Assignment

e.g. User dialog with
sorted display of the

channels suppied by the
selected device

DCS specific
Channel Assignment

FdtChannel

FOR assigned Channels DO

Write additional DCS
information
Set the channel to read
only

END

* SetChannelParameters()

FOR all instance specific
channels DO

END

* GetChannelParameters()

GetChannels()

GetParameters()Get structure information
of the deviceand channel
references

Get all channels or a
single channel via
reference

LockDataSet()

To lock the
data set the
FdtChannel or
the DTM
should call
LockDataSet()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 168 – IEC TR 62453-41:2016  IEC 2016

gateway between the fieldbus and the proprietary backplane bus. Therefore the
communication can be realized by the mechanisms of nested communication.

Figure 37 − Modular DTM structure

In this case ‘LinkedDevice’ specifies the connection between a Communication Channel of the
bus coupler (Device DTM) and the modules (Module DTM) as well as the connection between
a Communication Channel of a module and a connected device. Especially for a remote I/O
the FdtChannels are similar to the slots at the backplane.

So if a DTM instance represents only a part of a device, the information for channel
assignment has to be collected by the Frame Application

In case of a modular device like remote I/Os, the gateway is signed as main DTM and is the
start point to collect the information of the sub DTMs which at least belong to the same
device. So the internal structure is represented by the topology. From the channel assignment
point of view the channel information together with the topology allows the Frame Application
to generate a structured presentation, so that there is no difference for a user whether he
works with a single DTM or with several DTMs which represent the parts of the modular
device (see Figure 38).

IEC

DTM (Device or Module)

FdtChannel

1..1

0..n

Channels

Project
1..1

0..n

Devices

DcsChannel
0..1

0..1
ChannelAssignment

0..1LinkedDevice

0..n0..1

LinkedChannel

0..n

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 169 –

Used methods:

IFdtContainer::LockDataSet()

IFdtContainer::UnlockDataSet()

IDtmParameter::GetParameters()

IDtmChannel::GetChannels()

IFdtChannel::GetChannelParameters()

IFdtChannel::SetChannelParameters()

IFdtTopology::GetChildNodes()

Figure 38 − Channel assignment for modular DTMs

7.9 Printing of DTM-specific documents

In general, the Frame Application uses IDtmDocumentation for its documentation. This
interface allows the Frame Application to ask a DTM for context-specific documents identified
by the information passed via an XML document (see Figure 39). Beneath the documents
defined by application id of a Frame Application a DTM can have device- or task-specific
documents. These documents are not necessary for the integration itself but are mandatory
for special environments like failsafe.

IEC

Frame
Application DTM

Get Information for
Channel Assignment

FdtChannel

Get structure information of
the device and channel
references for the gateway

GetParameters()

GetChildNodes()

FOR assigned Channels DO

Set the channel to read
only

END

Write additional DCS
information

* SetChannelParameters()

e.g. User dialog with
sorted display of the

channels suppied by the
selected device

DCS specific
Channel Assignment

FOR all instance specific
channels DO

END

GetChannels()

Get all channels or a
single channel via
reference

GetParameters()

* GetChannelParameters()

FOR all Module DTMs DO

END Module DTMs DO

LockDataSet()

To lock the
data set the
FdtChannel or
the DTM
should call
LockDataSet()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 170 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IDtmApplication::StartApplication()

IDtmEvents::OnPrint()

IDtmDocumentation::GetDocumentation()

Figure 39 − Printing of DTM-specific documents

Only functions that are exposed in the XML document provided by IDtm:GetFunctions() are
printable. If a DTM requests printing of a function by call to IDtmEvents::OnPrint(), it has to
provide a <Function> element with the appropriate functionId.

7.10 Printing of Frame Application-specific documents

7.10.1 General

IDtmDocumentation allows the Frame Application to ask a DTM for context-specific
documents identified by the information passed via an XML document (see Figure 40).

IEC

Frame
Application DTM

DTM sends a request to
print a DTM specific
document identified by a
DTM specific XML
document

StartApplication(parametrize)

Open the user interface
of a DTM e.g. for
parametrization User selects

specific
document for
printing

GetDocumentation()

Frame application
receives a DTM specific
XML document from the
documentation interface

OnPrint()

Frame application sends
the document to the
connected printer or uses
a browser application to
preview the document

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 171 –

Used methods:

IDtmDocumentation:: GetDocumentation()

Figure 40 − Printing of Frame Application-specific documents

7.10.2 Processing a document

Figure 41 shows the general flow of events for processing of a document.

IEC

Frame
Application

User opens frame
application specific
documentation
application (e.g. printing
out of a tree structure)

Frame application 'walks
through' the structure to
collect DTM specific XML
documents via the
documentation interface

Frame application sends
the document to the
connected printer or uses
a browser application to
preview the document

DTM1

GetDocumentation()

GetDocumentation()

DTM2

GetDocumentation()

DTM3

Frame application
formates the output (e.g.
by using a frame specific
XML-Style)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 172 – IEC TR 62453-41:2016  IEC 2016

IEC

a Frame Applications calls IDtmDocumentation.GetDocumentation() at DTM to request the documentation for a
specific function (e.g. offline or online parameterization, configuration etc.).

b DTM returns an XML document according DTMDocumentationSchema that contains the requested
documentation.

c Frame Application transforms the XML document into a human readable format, for example an HTML or PDF
document. The transformation uses the information included in <DocumentVariables>, <DocumentVariable>
and <GraphicalReference> XML elements.

d Frame Application sends the generated documentation to a printer or displays it to the user.

Figure 41 − Report generation (Frame Application style)

Optionally, a DTM can define a DTM-specific style sheet (XSL) that can be used by the Frame
Application for transformation of the XML document to a device vendor-specific HTML
document as shown in Figure 42.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 173 –

IEC

a Frame Applications calls IDtmDocumentation.GetDocumentation() at DTM to request the documentation for a
specific function (e.g. offline or online parameterization, configuration etc.).

b DTM returns XML according DTMDocumentationSchema that contains requested documentation + specific style
sheet embedded in the XML document <DTMStyleForCompleteDocument>.

c Frame Application extracts DTM-specific style sheet from the XML document
<DTMStyleForCompleteDocument>.

d Frame Application uses the DTM-specific style sheet for transformation of the returned XML document to a
HTML document.

e Frame Application sends the generated HTML documentation to a printer or displays it to the user.

Figure 42 − Report generation (device vendor-specific style)

7.10.3 Rules for use of DTM-specific style sheets

7.10.3.1 Use of XML elements

The use of DTM-specific style sheets is optional for a Frame Application. Some Frame
Applications may ignore the embedded style sheets if consistent plant wide documentation or
non HTML reports shall be generated.

DTM shall also provide complete information in <DocumentVariables>, <DocumentVariable>
and <GraphicalReference> XML elements even if a specific style sheet is embedded in the
returned XML document. That means providing the information in <DTMSpecificXMLData>
XML element only is not sufficient. This XML element may contain additional information that
is only used if the vendor-specific style is applied.

7.10.3.2 Transformation to HTML

The embedded DTM-specific style sheet shall transform the complete XML document to HTML
format.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 174 – IEC TR 62453-41:2016  IEC 2016

7.10.3.3 XML transformation language

The embedded DTM-specific style sheet shall use the W3C XSL transformation version 1
syntax (refer to XSL Transformations (XSLT), Version 1.0, W3C Recommendation 16
November 1999).

7.11 Propagation of changes

Within a multi-user environment it is common, that more than one DTM have access to the
same data set. Such an environment may be a Frame Application executed as distributed
system on several PCs (Frame Application System).

To synchronize DTMs which are started by several users on different workplaces, FDT
provides a notification mechanism via OnParameterChanged() (see Figure 43). Precondition
for this event mechanism is that all changed data are stored by the DTM or by the Frame
Application. All other DTMs have read access only. Furthermore all DTMs which are
responsible for a device instance shall have a common agreement about the contents and
schema of the XML document send for propagation of changes. The Frame Application only
passes the document to all DTMs which have a reference to the same data set.

Frame
Application DTM1 DTM2

StartApplication(parametrize)

StartApplication(measuring)

Open the user interface of
DTM1 and DTM2 which
have a reference to the
same data set

User changes
parameters

User confirms
parameters

[All changed data are stored
by DTM or frame application]
OnParameterChanged(XML)

Frame application receives
a DTM specific XML
document containing the
changes

Frame application
determines the DTMs
which have a reference to
the same data set

OnParameterChanged(XML)Frame application sends
the received XML
document to all DTMs
which have a reference to
the same data set

e.g. via list of DTMs
instantiated by the
frame application

IEC

Used methods:

IDtmApplication::StartApplication()

IDtmEvents::OnParameterChanged()

IFdtEvents::OnParameterChanged()

Figure 43 − Propagation of changes

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 175 –

7.12 Locking

Within a multi-user environment it is common that more than one DTM has access to the
same data set. To synchronize DTMs which are started by several users on different
workplaces, FDT provides a locking mechanism. The target for this event mechanism is that
only one DTM has read/write access to the data set. All other DTMs have read access only.

For this reason a DTM shall lock its data set only if required and only during modification of
the data. After the instance data is saved by the Frame Application and is not further under
modification the DTM shall unlock its data set immediately to enable concurrent access to the
device data by other DTM instances within a multi-user environment.

• Before opening an ActiveX the DTM shall try to lock the dataset. If successful all user
input fields can be enabled, in the other case user input fields shall be disabled. After
closing all ActiveX controls in case of a locked datatset the DTM should request to save
the dataset and unlock the data set after Frame Application has saved the dataset.

• Before an upload the DTM shall also try to lock the dataset, after upload DTM should call
IFdtContainer::SaveRequest() and unlock dataset after Frame Application has saved
dataset.

• A DTM can only unlock the dataset if no user interface with write-access is opened.

• If a DTM locks its dataset after instantiation and unlocks during, for example a
IDtm::PrepareToRelease() this DTM is not suitable for use within a multi-user
environment.

7.12.1 Locking for non-synchronized DTMs

This locking mechanism is suitable for all DTMs which do not implement
IFdtEvents::OnParameterChanged() (IFdtEvents::OnParameterChanged() returns
E_NOTIMPL). The mechanism shall be implemented to support multi-user environments (see
Figure 44).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 176 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IDtmApplication::StartApplication()

IFdtContainer::LockDataSet()

IFdtContainer::UnlockDataSet()

IFdtEvents::OnLockDataSet()

IFdtEvents::OnUnlockDataSet()

Figure 44 − Locking for non-synchronized DTMs

7.12.2 Locking for synchronized DTMs

The synchronization of DTMs is an optional feature to provide a better handling for the user
within a multi-user environment (see Figure 45).

IEC

Frame
Application DTM1 DTM2

DTM1 requests read/write
access for its data set

StartApplication(parametrize)

Open the user interface of
DTM1 and DTM2 which
have a reference to the
same data set

Confirmation of
changes

R
E
A
D

A
C
C
E
S
S

R
E
A
D

W
R
I
T
E

A
C
C
E
S
S

Frame application
determines the DTMs
which have a reference to
the same data set and
sends the lock notification

StartApplication(parametrize)

DTM
disables its
input fields

Parameter
changes e.g. via
user interaction

LockDataSet()

OnLockDataSet()

LockdataSet()

FALSE Error case

UnlockDataSet()

OnUnlockDataSet()

FALSE

Frame application
determines the DTMs
which have a reference to
the same data set and
sends the unlock
notification

Frame application
informs the user that
DTM2 has old data

DTM has old
data and
returns
FALSE to
notify the
frame
application

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 177 –

Used methods:

IDtmApplication::StartApplication()

IFdtContainer::LockDataSet()

IFdtContainer::UnlockDataSet()

IDtmEvents::OnParameterChanged()

IFdtEvents::OnParameterChanged()

IFdtEvents::OnLockDataSet()

IFdtEvents::OnUnlockDataSet()

Figure 45 − Locking for synchronized DTMs

IEC

Frame
Application DTM1 DTM2

DTM1 requests read/
write access for its data
set

StartApplication(parametrize)

Open the user interface
of DTM1 and DTM2
which have a reference
to the same data set

Confirmation of
parameters[All changed data are stored

by DTM or frame application]
OnParameterChanged(XML)

Frame application
receives a DTM specific
XML document
containing the changes

Frame application
determines the DTMs
which have a reference
to the same data set

OnParameterChanged(XML)Frame application sends
the received XML
document to all DTMs
which have a reference
to the same data set

e.g. via list of DTMs
instantiated by the
frame application

R
E
A
D

A
C
C
E
S
S

R
E
A
D

W
R
I
T
E

A
C
C
E
S
S

Frame application
determines the DTMs
which have a reference
to the same data set and
sends the lock
notification

UnlockDataSet()

OnUnlockDataSet()

TRUE

Frame application
determines the DTMs
which have a reference
to the same data set and
sends the unlock
notification

StartApplication(parametrize)

LockdataSet()

FALSE Error case

DTM
disables its
input fields

DTM can
enable its input
fields and
returns true

Parameter
changes e.g. via
user interaction

LockDataSet()

OnLockDataSet()

User changes
parametersLockDataSet()

OnLockDataSet()

DTM2 requests read/
write access for its data
set
and the frame
application...

R/WIECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 178 – IEC TR 62453-41:2016  IEC 2016

7.13 Instantiation and release

7.13.1 Instantiation of a new DTM

After creation of a DTM business object the Frame Application shall request the IPersistXXX
interface pointer and call IPersistXXX::InitNew() (see Figure 46). Within this method the DTM
business object shall initialize its default device parameters.

Used methods:

Standard Microsoft interfaces

IDtm::Environment()

IDtm::InitNew()

IDtmInformation::GetInformation()

Figure 46 − Instantiation of a new DTM

7.13.2 Instantiation of an existing DTM

After creation of a DTM business object for an existing instance the Frame Application shall
request the IPersistXXX interface pointer and call IPersistXXX::Load() with a reference to the
stream object of the appropriate field device instance (see Figure 47). Within this method the
DTM business object shall initialize its device parameters based on the information of the
stream object.

IEC

Frame
Application DTM

Request storage interface

CoCreateInstance()

Instantiate a DTM
business object

IPersistPropertyBag::InitNew()

Initialize the data set

QueryInterface(IPersistPropertyBag)

IDtm::Environment()

Set the environment

IDtmInformation::GetInformation()

QueryInterface(IDtmInformation)

Request information interface

Request DTM specific
information

Frame application selects the
proper subdevice type

IDtm::InitNew()

Initialize the DTM

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 179 –

Used methods:

Standard Microsoft interfaces

Figure 47 − Instantiation of an existing DTM

7.13.3 Instantiation of a DTM ActiveX user interface

After creation of a DTM business object the Frame Application can instantiate a presentation
object as user interface for a special task related to the application context (see Figure 48).
Within the Init() method the presentation object shall initialize its device parameters based on
the information of the business object.

Used methods:

Standard Microsoft interfaces

IDtmActiveXControl::Init()

IDtmActiveXInformation::GetActiveXGuid()

Figure 48 − Instantiation of a DTM user interface

7.13.4 Release of a DTM user interface

If the Frame Application wants to release a presentation object of a DTM it first has to prepare
the release by sending a notification to the presentation object (see Figure 49). After the

IEC

Frame
Application DTM

Instantiation and embedding
of the user interface

GetActiveXGuid()
UUIDRequest the UUID of the

presentation object

Init(IDtm,..)

Presentation object loads
instance specific data
from the buisiness object

CoCreateInstance()

Presentation
Object

Connecting the business
and the presentation object

IEC

Frame
Application

DTM

Request storage interface

CoCreateInstance()

Instantiate a DTM
business object

IPersistPropertyBag::Load(IPropertyBag)

Load DTM data set

QueryInterface(IPersistPropertyBag)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 180 – IEC TR 62453-41:2016  IEC 2016

IDtmActiveXControl::PrepareToRelease() method the presentation object shall release all its
connections to other components and can call DTM-specific de-initialization methods.

Used methods:

Standard Microsoft interfaces

IDtmActiveXControl::PrepareToRelease()

IDtmEvents::OnApplicationClosed()

Figure 49 − Release of a DTM user interface

7.14 Persistent storage of a DTM

7.14.1 State machine of instance data

7.14.1.1 Modifications

This state machine reflects the possible states of an instance data set concerning
modifications (see Figure 50).

IEC

Frame
Application DTM

Notification that the
presentation object will
be released

Presentation
Object

Presentation object can be
released

PrepareToRelease()

Presentation object
releases all connections

to other objects and
performs e.g. DTM

specific deinitialization
OnApplicationClosed()

TRUE

Release()
Release the instance of the
presentation object X

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 181 –

Figure 50 − State machine of instance data set

The meaning of the different states can be seen in Table 13.

Table 13 – Description of instance data set states

State Meaning

default The contents of the instance data set are the default data. This state will typically
appear after creation of a new data set.

validModified The data set was modified in a consistent manner.

invalidModified The data set was modified. The data are not in a consistent state.

AllDataLoaded The instance data set was loaded from or into the related device.

NOTE This state means not, that the data within the device are equal to the data
found within the related instance data set. Due to the fact that a user can use tools out
of the scope of FDT, the FDT specification cannot guarantee such a state.

zombie The instance data set is prepared to delete, no access to this data is allowed.

IEC

InitNew
final remove

PrepareToDelete
default

modification which causes
an invalid data set

modification which causes
a valid data set

Only valid if the newly
created data set
contains enough

information to establish
a proper

communication

modification which causes
a valid data set

invalidModified

PrepareToDelete
zombie PrepareToDelete validModified

DownloadAllData

UploadAllData
DownloadAllData

allDataLoaded

modification which causes
an invalid data set

PrepareToDelete

UploadAllData

All changes of dtm data,
which were not downloaded

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 182 – IEC TR 62453-41:2016  IEC 2016

7.14.1.2 Persistence states

persistent

transient

IPropertyBag::SaveAll changes of dtm data

IEC

Figure 51 – Persistence states of a data set

This state machine reflects the possible states of an instance data set concerning the
persistence of data (see Figure 51). Description of the states can be found in Table 14.

Table 14 – Description of persistent states

State Meaning

persistent The content of the instance data set is persistent. This state will typically appear after
the data set was saved by the Frame Application using the persistence interfaces of the
DTM.

transient The data set was modified. These changes are not saved in a persistent way. All
modified instance data within the DTM is temporary and not synchronized with other
DTM instances or with the Frame Application. A IFdtContainer::SaveRequest() call just
informs the Frame Application that the data set should be stored.

7.14.2 Saving instance data of a DTM

To save the private data of a DTM object the Frame Application shall request the IPersistXXX
interface pointer and call IPersistXXX::Save() with a reference to the stream / property bag
object of the appropriate field device instance (see Figure 52). Within this method the DTM
business object shall save all its device parameters necessary to re-establish its complete
state based on the information of the stream / property bag object within a
IPersistXXX::Load() call.

After saving private data of a DTM the Frame Application is able to release the DTM business
object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 183 –

Used methods:

Standard Microsoft interfaces

Figure 52 − Saving instance data of a DTM

7.14.3 Reload of a DTM object for another instance

A Frame Application may reuse one DTM COM object for a number of different field device
instances by calling IPersistXXX::Load() several times and with different Istream /
IPropertyBag objects as argument. But, if an IPersistXXX::Load() call fails, the Frame
Application shall instantiate a new DTM COM object.

7.14.4 Copy and versioning of a DTM instance

After creation of a DTM object the Frame Application shall request the IPersistXXX interface
pointer and call IPersistXXX::Load() with a reference to the stream / property bag object of
the appropriate field device instance (see Figure 53). Within this method the DTM business
object shall initialize its device parameters based on the information of the stream object. To
get a copy of the private data of a DTM business object the Frame Application shall call
IPersistXXX::Save() with a reference to a new stream / property bag object.

It is up to the Frame Application to handle the Frame Application-specific versioning aspects
and to manage the different instance data sets for a device.

IEC

Frame DTM

QueryInterface(IPersistPropertyBag)

IPersistPropertyBag::Save(IPropertyBag)

IUnknown::Release()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 184 – IEC TR 62453-41:2016  IEC 2016

Used methods:

Standard Microsoft interfaces

Figure 53 − Copy and versioning of a DTM instance

7.15 Audit trail

Audit trail services are implemented in the Frame Application. It stores all information about
audit trail session like username, date and time, description and comment of the session and
description of all audit-trail events within the session. It provides saving, analyzing a
documentation of the audit trail sessions. For the DTM it offers the interface
IDtmAuditTrailEvents.

When audit trail is started the Frame Application may ask the user for additional comments
(see Figure 54).

IEC

Frame

CoCreateInstance

QueryInterface(IPersistPropertyBag)

IPersistPropertyBag::Load(istream1)

IPersistPropertyBag::Save(istream2)

Frame Application creates a copy by using
Load() and Save(). It is in the responsibility
of the frame application to take care of
additional links/references like topology
information or channel assignment.

Frame application stores
copy of instance data set
in a specific way out of the
area of project data

DTM

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 185 –

Used methods:

IDtmAuditTrailEvents::OnStartTransaction()

IDtmAuditTrailEvents::OnAuditTrailEvent()

IDtmAuditTrailEvents::OnEndTransaction()

Figure 54 − Audit trail

7.16 Comparison of two instance data sets

This section describes sequences to compare the data sets of two different instances using
the IDtmDiagnosis interface.

The two DTMs invoked in the comparison have to be of the same type.

7.16.1 Comparison without user interface

The sequence chart for the comparison of two instance data sets is shown in Figure 55:

IEC

DTM Frame
Application

User Dialog

OnStartTransaction()
Ask the user for comment

Enter comment etc.
ok

OnAuditTrailEvent()

ok

OnEndTransaction()

ok

User enters
into an Audit
Trail Session

User exits Audit
Trail Session

OnAuditTrailEvent()

ok

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 186 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IDtmDiagnosis::InitCompare()

IDtmDiagnosis::Compare()

IFdtTopology::GetDtmForSystemTag()

IFdtTopology::ReleaseDtmForSystemTag()

Figure 55 − Comparison without user interface

7.16.2 Comparison with user interface

To invoke a user interface for comparison, the sequence shown in Figure 56 is to be
performed.

IEC

Frame
Application

The systemTag
of DTM2 is given to
DTM1 using the
InitCompare method of
its IDtmDiagnosis
interface

To perform the
comparison the DTM1
accesses the data of
DTM2 using private
communication
mechanism

DTM1

GetDtmForSystemTag()

InitCompare()

Compare()

DTM2

DTM
private
data

access
and

compare
sequence

ReleaseCompare()The release of the DTM2
interface pointer is forced
calling ReleaseCompare

ReleaseDtmForSystemTag()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 187 –

Equivalent to StartApplication() (as shown in the sequence chart) ActiveX® controls can be used.

Used methods:

IDtmDiagnosis::InitCompare()

IDtmDiagnosis::ReleaseCompare()

IDtmApplication::StartApplication()

IDtmEvents::OnApplicationClosed()

Figure 56 − Comparison with user interface

7.17 Failsafe data access

The sequence chart in Figure 57 shows how to access failsafe data from a device and its
associated function block via two independent communication links.

IEC

Frame
Application

The systemTag of DTM2
is given to DTM1 using
the InitCompare method
of its IDtmDiagnosis
interface

The user interface is startet
using StartApplication and
the fdtCompare flag set
within the
applicationContext

DTM1

InitCompare()

StartApplication()

DTM2

DTM
private
data

access

show
GUI

The user interface is either
closed by the user or closed
by the frame application in
both ways the DTM informs
the frame application by
calling OnApplicationClosed

OnApplicationClosed()

ReleaseCompare()The release of the DTM2
interface pointer is forced
calling ReleaseCompare

GetDtmForSystemTag()

ReleaseDtmForSystemTag()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 188 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IFdtCommunication::TransActionRequest()

IFdtCommunicationEvents::OnTransactionResponse()

IFdtFunctionBlockData::SelectFBInstance()

IFdtFunctionBlockData::GetFBInstanceData()

Figure 57 − Failsafe data access

7.18 Set or modify device address with user interface

In this scenario the Frame Application requests a set of specific child device addresses at bus
master DTMs. This sequence (see Figure 58) for example is started when a new DTM is
added to the topology. Similar sequences can be used if a Frame Application offers manual
change of address in context of a DTM.

Child DTM
(F-Device)

Parent DTM
(Master)

Communication
Channel

Read fail safe data directly
from the device

Establish connection

The gateway channel may
propagate the function call
to its DTM which holds the
information of all fail safe
function blocks

TransactionRequest()

Spawn
communication
process
and
Read via
established
connection

OnTransactionResponse()

SelectFBInstance()

Temporary store the fail safe
data read from the device

Require an association
between the F-device and a
function block
(only done the first time)

GetFBInstanceData()

Pproprietary function call
The DTM opens e.g. a
funtion chart diagram and
the user selects a fail safe
function block to be
associated

proprietary function call
The DTM reads the fail safe
data e.g. via a proprietary
protocol from the master
stack

The gateway channel may
propagate the function call
to its DTM which holds the
information how to read
the fail safe data from
themaster stack

Read the fail safe data from
the associated function block

Compare the fail safe data
read from the device with
the data of the associated
function block and inform
the user in about the result
of the compare

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 189 –

Used methods:

IFdtChannelSubTopology2::SetChildrenAddresses()

IFdtActiveX2:OpenDialogActiveXControlRequest()

IFdtActiveX::CloseActiveXControlRequest()

IFdtTopology::GetDtmForSystemTag()

IFdtTopology::ReleaseDtmForSystemTag()

IDtmParameter::SetParameters()

IDtmParameter::GetParameters()

Figure 58 − Set or modify device address with user interface

7.19 Set or modify known device addresses without user interface

In this scenario, the Frame Application requests a set of device addresses at DTM, for
example after a scanning or import operation (see Figure 59).

IEC

Frame
Application

Start child DTMs and
add to topology

Parent DTM Child DTM

Add child DTM

SetChildrenAdresses()

Request bus-
address from user

Child Address
ActiveX

Open Dialog & Initalize

Set bus-address
(private DTM
interface)

CloseActiveX
ControlRequest()

Close Dialog and destroy

GetDTMForSystemTag()
GetParameters()

SetParameters()ReleaseDTM
ForSystemTag()

The frame-application starts one child
DTM and adds it to the topology.

Parent DTM request reference to child
DTM at frame-application and sets the
address in DTMParameter XML
<BusInformation> element.

The frame-application request child
DTM address setting via corresponding
method of parent DTM.

Parent DTM most probably opens
ActiveX control in frame-application
dialog which requests child bus-address
from user.

Attribute to open user interface is set.

[NEXT]

[FOR EACH <changed Device> DO]

Frame
Application

Start child DTMs and
add to topology

Parent DTM Child DTM

Add child DTM

SetChildrenAdresses()

Request bus-
address from user

OpenDialogActiveX
ControlRequest() Child Address

ActiveX

Open Dialog & Initalize

Set bus-address
(private DTM
interface)

CloseActiveX
ControlRequest()

Close Dialog and destroy

GetDTMForSystemTag()
GetParameters()

SetParameters()ReleaseDTM
ForSystemTag()

The frame-application starts one child
DTM and adds it to the topology.

Parent DTM request reference to child
DTM at frame-application and sets the
address in DTMParameter XML
<BusInformation> element.

The frame-application request child
DTM address setting via corresponding
method of parent DTM.

Parent DTM most probably opens
ActiveX control in frame-application
dialog which requests child bus-address
from user.

Attribute to open user interface is set.

[NEXT]

[FOR EACH <changed Device> DO]

Or alternatively for channels:
OpenChannelActiveXRequest()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 190 – IEC TR 62453-41:2016  IEC 2016

Used methods:

IFdtChannelSubTopology2::SetChildrenAddresses()

IDtmEvents::OnScanResponse()

IFdtTopology::GetDtmForSystemTag()

IFdtTopology::ReleaseDtmForSystemTag()

IDtmParameter::SetParameters()

IDtmParameter::GetParameters()

Figure 59 − Set or modify known device addresses without user interface

7.20 Display or modify all child device addresses with user interface

In this scenario Frame Application requests display or modification of all child device
addresses at a Parent DTM. This sequence (see Figure 60) for example is started when a
user selects the corresponding menu entry in context of a Communication DTM or a Gateway
DTM.

IEC

Frame
Application

SetChildrenAddresses()

Start child DTMs and
add to topology

The frame-application starts one child DTM
for each device descrbed in ToplogyScan
XML and adds DTM to the topology.

Parent DTM

OnScanResponse()

[NEXT]

Child
DTMs

GetParameters()

SetParameters()

ReleaseDTMForSystemTag()

[FOR EACH <Device> in DTMList XML DO]

The frame-application request set of device
address at parent DTM. XML containing
relevant device information is passed in
this call.

Parent DTM request reference to child
DTM for each <Device> element in passed
XML at frame-application and sets the
address in DTMParameter XML
<BusInformation> element.

GetDTMForSystemTag()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 191 –

Used methods:

IDtm::GetFunctions()

IDtmActiveXInformation::GetActiveXGuid()

IFdtTopology::GetChildNodes()

IFdtTopology::GetDtmForSystemTag()

IFdtTopology::ReleaseDtmForSystemTag()

IDtmParameter::SetParameters()

IDtmParameter::GetParameters()

Figure 60 − Display or modify all child device addresses with user interface

7.21 Device initiated data transfer

Some protocols support data transfer services that are initiated by the device and not by the
DTM. In order to support such services, the approach shown in Figure 61 is recommended:

• the infrastructure (filter, service queue) for such services is initiated by a protocol-specific
transaction request of the DTM, dependant on the protocol, this service may be
acknowledged or not;

• the device initiated data transfer is transported by transaction responses to the initiating
request (they carry the same invokeId);

• the infrastructure for these services is terminated by a protocol-specific transaction
request of the DTM, which may carry the original invokeId as an attribute of the request
XML document.

IEC

Frame
Application

Parent
DTM

GetFunctions()

GetActiveXGUID()
Child

Addresses
ActiveX

Create and Initialize

GetChildNodes ()

GetDTMForSystemTag()

Child
DTMs

GetParameters ()
ReleaseDTM
ForSystemTag()

Get Child
Addresses

Display
Child

Addresses

Set Child
Address

GetDTMForSystemTag()

ReleaseDTM
ForSystemTag()

SetParameters ()

The frame-application determines user
interface for AppID = fdtNetworkManagement
if user selected this function in context of
Parent DTM and opens it .

The (Parent DTM) user interface accesses
the Child DTMs and reads the address
information stored in the parameter XML
and displays it to the user .

The (Parent DTM) user interface accesses
Child DTM again if user selected to change
the address . The address information is
stored in the Child DTM parameter XML .

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 192 – IEC TR 62453-41:2016  IEC 2016

Figure 61 − Device initiated data transfer

Device initiated data transfer needs management by the communication infrastructure. This is
why it is necessary to unambiguously identify the request to initialize and terminate this type
of behavior.

The TransactionRequests to initiate or terminate device initiated data transfer will transport
protocol-specific XML-documents.

The terminating TransactionRequest will contain the information necessary to terminate the
device initiated data transfer. This may include the invokeId of the initiating
TransactionRequest.

If a DTM initializes such services, it is required to terminate these services. The termination
has to occur, before the DTM can go offline (DisconnectRequest / Abort). If the connection is
terminated by IFdtCommunicationEvents::OnAbort(), this service is terminated automatically.

The support of such services is protocol-specific and device-specific. If a Communication
Channel is not able to support this type of service, it will return a protocol-specific error
document in the TransactionResponse, indicating that it is not able to support this feature.

7.22 Starting and releasing DTM user interface in modal dialog

DTM requests start of user interface over IFdtActiveX2 interface implemented by Frame
Application (see Figure 62). This starts modal dialog and opens DTM user interface in it. DTM
user interface exchanges data with DTM over private interface and request closing of dialog
after work is finished. Frame Application closes the dialog and DTM user interface. Now
IFdtActiveX2:OpenDialogActiveXControlRequest() call returns to the DTM.

IEC

CommChannelDeviceDTM

TransactionRequest
(invokeId1, xmlDocument)

Device

TransactionRequest
(invokeId2, xmlDocument)

* Data transfer from device

Setup of communication
infrastructure for device
initiated data transfer

[TransactionResponse(Ack)]

* TransactionResponse
(invokeId1, Data)

Termination of
communication
infrastructure for device
initiated data transfer

TransactionResponse
(invokeId2)

This type of
transfer can be
repeated 0 to n
times

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 193 –

Used methods:

Standard Microsoft interfaces

IDtmActiveXInformation::GetActiveXGuid()

IFdtActiveX2:OpenDialogActiveXControlRequest()

IFdtActiveX:CloseActiveXControlRequest()

IDtmActiveXControl:Init()

IDtmActiveXControl:PerpareToRelease()

Figure 62 − Modal DTM user interface

7.23 Parent component handling redundant slave

A parent component, e.g. a Communication DTM, handling a redundant fieldbus is able to
detect a Device DTM able to handle a redundant slave within execution of
IFdtChannelSubTopology::OnAddChild() by examining the parameter document of this DTM
(see Figure 63). The Communication DTM selects the redundant communication paths (either
automatically or using a dialog) and sets redundancy information to the Device DTM by calling
SetParameter().

IEC

Frame
ApplicationDTM

DTM sends a notification
that user interface should
be closed.

In turn Frame Application
requests at user interface
release of DTM reference .

OpenDialogActiveX
ControlRequest(functionCall)

DTM user interface
interacts with DTM over
priivate interface.

Frame Application
Dialog

DTM ActiveX
user interface

ShowModal()
CoCreateControl()

Init(IDtm...)

CloseActiveXControlRequest()

PrepareToRelease()

 Private data exchange

Close()

DTM requests open of user
interface in modal dialog.

Frame Application requests
GUID of DTM user interface
for functionCall.

Frame Appication starts
modal dialogs and opens
and initializes DTM user
interface.

Later Frame Application
closes the dialog. Now
OpenDialogActiveX
ControlRequest() call
returns to DTM.

GetActiveXGuid()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 194 – IEC TR 62453-41:2016  IEC 2016

Device DTM provides this redundancy information within its connect request to the
Communication DTM. For each such opened connection the Communication DTM is able to
use one of the available communication paths without need for further interaction with the
Device DTM.

A Frame Application implementing the IDtmRedundancyEvents interface is able to get
topology information about redundant DTMs. In such a Frame Application the topology view
may show this redundancy information. On the other hand, Communication DTM and Device
DTM of a redundant slave can be used in a Frame Application without knowledge about
redundancy, because all redundancy functionality is handled by the Communication DTM and
its child DTMs.

Used methods:
IDtmRedundancy::OnAddedRedundantChild()
IDtmRedundancyEvents::OnRemovedRedundantChild()

Figure 63 − Handling of a redundant slave

IEC

Device
DTM for

redundant
device

Frame
Application

Communication
channelDuring topology planning ...

Device is added to
communication channel of
parent component handling

redundant fieldbus ValidateAddChild()

GetParameters()

OnAddChild()

Communicationchannel
detects a DTM able to handle a

redundant device

GetParameters()Communicationchannel
detects a DTM able to handle a

redundant device

Communicationchannel selects
redundant communication path

Communicationchannel sets
redundant address information.
Device DTM is configured for a

redundant slave

SetParameters()

OnAddedredunda
ntChild()

Communicationchannel
informs frame application about

use of DTM for reduandant
device

ConnectRequest()If device DTM connects to slave
redundant address information

is sent to
Communicationchannel

TransactionRequest()Communicationchannel is able
to use one of redundant
communication paths to
communicate with slave

OnRemoveChild()

OnRemovedRedu
ndantChild()

During topology planning ...
Device DTM is removed from

Communicationchannel
handling redundant fieldbus

Communicationchannel
informs frame application about
remove of DTM for reduandant

device

GetDTMForSyste
mtag()

Communicationchannel
requests access to new child

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 195 –

7.24 Initialization of a Channel ActiveX control

7.24.1 General

To initialize a Channel ActiveX® control conformant to this specification, the Frame
Application has first to check, if the interface IFdtChannelActiveXControl2 exists.

If it exists the Frame Application has to call the IFdtChannelActiveXControl2::Init2() function
at this interface.

If it does not exist, the Frame Application calls the IFdtChannelActiveXControl::Init() function.

7.24.2 Supports IFdtChannelActiveXcontrol2

Figure 64 describes the sequence of the Channel ActiveX® control initialization for the case
that the Channel ActiveX® control provides the IFdtChannelActiveXControl2 interface.

Frame
Application

Create

the frame instanciates the control
Channel ActiveX

Control

the frame successfully accesses the
IFdtChanelActiveXControl2 interface

IFdtChannelActiveXControl2::Init2()

*IFdtChannelActiveXControl2

the frame calls the
IFdtChannelActiveXControl2::Init2()
function

IUnknown::QueryInterface
(IFdtChannelActiveXControl2)

IEC

Used methods:

IUnkown::QueryInterface

IFdtChannelActiveXControl2::Init2()

Figure 64 − Init of Channel ActiveX with IFdtChannelActiveXControl2

7.24.3 Does not support IFdtChannelActiveXControl2

Figure 65 describes the sequence of the Channel ActiveX® control initialization for the case
that the Channel ActiveX® control does not provide the IFdtChannelActiveXControl2 interface. IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C TR 62
45

3-4
1:2

01
6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 196 – IEC TR 62453-41:2016  IEC 2016

Frame
Application

Create

the frame instanciates the control
Channel ActiveX

Control

IUnknown::QueryInterface
(IFdtChannelActiveXControl2)

the frame fails to access the
IFdtChannelActiveXControl2 interface

IFdtChannelActiveXContorl::Init()

null

the frame calls the
IFdtChannelActiveXControl::Init() function

IUnknown::QueryInterface
(IFdtChannelActiveXControl)

*IFdtChannelActiveXControl

the frame successfully accesses the
IFdtChannelActiveXControl interface

IEC

Used methods:

IUnkown::QueryInterface

IFdtChannelActiveXControl::Init()

Figure 65 − Init of Channel ActiveX® without IFdtChannelActiveXControl2

7.25 DTM upgrade

7.25.1 General

The first step to be resolved during upgrade is to verify if the saved data set can be
associated with the new DTM.

Each DTM should expose a unique identifier (UUID) specifying its data set format. A DTM can
provide a list of compatible data set formats it can load. These UUIDs are returned as part of
IDtmInformation::GetInformation() method call.

If the CLSID and the ProgID of the DTM is not changed it is up to the DTM to handle version
upgrade. The list of supported data set formats may not be considered by the Frame
Application when data is loading in this case. Additional check for data compatibility shall be
done by the DTM when the data is loaded.

7.25.2 Saving data from a DTM to be upgraded

The first step is to store the information from the DTM that will be upgraded.

The Frame Application needs to store additional information about the DTM:

• CLSID of the DTM;

• UUID of the stored data format;

• Storage type;

• Additional information about the device.

This information is associated to the stored data and can be used later by the Frame
Application to identify and manage data set.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 197 –

The diagram given in Figure 66 provides an illustration of that sequence:

Figure 66 − Saving data from a DTM to be upgraded

7.25.3 Loading data in the replacement DTM

After the Frame Application created an new DTM, the newly created DTM loads the data set
of the replaced DTM (see Figure 67).

IEC

Frame-
Applicati

on
DTM or BTM

GetInformation() DTM provides
DTMDeviceType
information

Frame application gets the UUID from
DataFormats\Current\dataSetID
as returned in GetInformation and
associates it to the DTM/BTM type

Frame asks the DTM/BTM to store it’s
persistent data IPersistXXX.Save()

DTM/BTM 1
Data

DTM/BTM 1
Data

UUID, . .

Frame associates the UUID from
DataFormats\Current\dataSetID
from DtmDeviceType to the persisted data
Frame stores the ClassID, Persistent Type,
etc. for further use

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 198 – IEC TR 62453-41:2016  IEC 2016

Figure 67 − Loading data in the replacement DTM

7.26 Usage of IDtmSingleDeviceDataAccess::ReadRequest / Write Request

This sequence chart (see Figure 68) gives an example regarding handling of ReadRequest()
and WriteRequest().

IEC

Frame-
Applicati

on

New
DTM or BTM

GetInformation()

DTM provides
DTMDeviceType
information

Frame application gets list of supported device
types from
DtmInfo\DtmDeviceTypes\DtmDeviceType
as returned in GetInformation

When the frame finds matching UUIDs, it loads
the saved data to the DTM

IPersistXXX.Load()

DTM/BTM 1
Data

UUID

Frame gets the UUID associated to the stored
device data

For each of the device types supported by the
DTM/BTM that match to the device type info
returned in the topology scan, the frame verifies if
the UUID returned in
DataFormats\Supported\dataSetID
is equal to the UUID associated to the stored data

DTM/BTM 1
Data

UUID

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 199 –

Used methods:

IDtmSingleDeviceDataAccess::ItemListRequest()

IDtmSingleDeviceDataAccessEvents::OnItemListResponse()

IDtmSingleDeviceDataAccess::ReadRequest()

IDtmSingleDeviceDataAccess::WriteRequest()

IDtmSingleDeviceDataAccessEvents::OnReadResponse()

IDtmSingleDeviceDataAccessEvents::OnWriteResponse()

IDtmEvents::OnProgress()

Figure 68 − Usage of IDtmSingleDeviceDataAccess

7.27 Instantiation of DTM and BTM

A BTM is created by the same mechanism as a DTM, which means the Frame Application
always creates a BTM. If a DTM shall create a BTM, it has to use the interface IFdtTopology
of the Frame Application. BTMs are instantiated by

• Frame Application according to the defined sequence,

• DTM triggers as described below.

The verification of assigned Child-BTMs is done by using the ValidateAddChild() method of
the IFdtChannelSubTopology interface.

IEC

Frame
Application DTM

Frame Application gets the
data related to the related
items via specified XML
document

ItemListRequest()

DTM reads data out of
the device. It may has to
establish an online
connection

Frame Application requests
list of available items

Frame Application
requests data

OnReadResponse()*

Frame Application selects
items to read out of the
provided list

ReadRequest()*

Frame Application gets the
data related to the related
items via specified XML
document

DTM writes data into the
device

Frame Application writes
data

OnWriteResponse()*

WriteRequest()*

Contents of item list has
changed due to a
configuration change of
the DTM

OnDeviceItemListChanged()

ItemListRequest()
Frame Application requests
list of available items

Frame Application selects or
updates items to write out of
the provided list

OnProgress()*

OnItemListResponse()

OnItemListResponse()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 200 – IEC TR 62453-41:2016  IEC 2016

The general sequence is shown in the following chart (see Figure 69). The creation of BTMs
is possible in any of the following states:

• running;

• configured;

• communication set;

• going online;

• going offline;

• online.

The trigger for creating BTMs (shown in the chart by the event Trigger to initiate BTMs) can
originate from the following sources:

• the DTM GUI (e.g. the GUI of the running DTM provides a method “add block”);

• a function exposed by the DTM (that is, a function without GUI);

• an event on the DTM (e.g., transition from state “running” to state “configured”);

Figure 69 − General sequence of creation and instantiation of blocks

IEC

Frame

Create DTM()

DTM

Create()

Instantiate()

Internal Activation()

BTM*: Create()

Channel

Create()

*: Instantiate()

*: IFdtSubTopology::OnAddChild()

Trigger to Initiate BTMs()

return from Instantiate()

Sequence "Create() - Instantiate()" :
 see chapter 5.12.1 of FDT Specification

Sequence "CreateChild() - OnAddChild()" :
 see chapter 5.2.1.2 of FDT Specification

*:IFdtBtmTopology::CreateChild()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 201 –

The Frame Application can reject the CreateChild method. In this case, the procedure of
creation of the BTM is aborted. It is up to the user to create the BTM.

It does not matter how the BTMs initiation is triggered. The general sequence of events does
not change. Thus, each DTM and each BTM is handled according to the DTM state machine.

If the DTM is loaded (transition from state ‘Up’ to state ‘Existing Created’ to state ‘Running’), it
shall not automatically trigger the BTM creation. The Frame Application should handle the
instantiation of the BTMs.

8 Installation issues

8.1 Registry and device information

8.1.1 Visibility of business objects of a DTM

Each business object class within a DTM which should be visible for integration within the
Frame Application, or a separate DTM presentation object shall be registered in the
Windows® registry using FDT-specific COM-component category entries. These class objects
of a DTM can then be detected by a Frame Application or a configuration tool using the
Microsoft® standard component category manager.

The BTM to DTM assignment follows the same model as the assignment of module Device
DTM to DTM. Vendors are encouraged to define a unique CATID for the protocol between
DTM and BTM in order to ensure correct block assignment. The same CATID can be used in
different devices if the same BTMs are used.

8.1.2 Component categories

FDT defines the following component categories (see Table 15).

Table 15 – Component categories

CATID description in the
registry

SYMBOLIC NAME OF
THE CATID

UUID of the CATID Description

“FDT DTM” CATID_FDT_DTM {036D1490-387B-11D4-
86E1-00E0987270B9}

Object compatible to FDT
major version 1 providing
class information via
IDtmInformation.

“FDT DTM device” CATID_FDT_DEVICE {036D1491-387B-11D4-
86E1-00E0987270B9}

Device object of a DTM
for integration within a
Frame Application

”FDT DTM module“ CATID_FDT_MODULE {036D1492-387B-11D4-
86E1-00E0987270B9}

Module object of a DTM
for integration within a
Frame Application

“FDT BTM”

CATID_FDT_BTM {036D1690-387B-11D4-
86E1-00E0987270B9}

Object represents a block

A CATID consist of its symbolic name and the UUID within the registry. The FDT IDL defines
a symbolic name, e.g., CATID_FDT_DTM.

Table 16 shows the valid combination of category ids:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 202 – IEC TR 62453-41:2016  IEC 2016

Table 16 – Combinations of categories

SYMBOLIC NAME OF
THE CATID

CATID_FDT_DTM CATID_FDT_DEVICE CATID_FDT_MODULE CATID_FDT_BTM

CATID_FDT_DTM √ √ √

CATID_FDT_DEVICE √

CATID_FDT_MODULE √

CATID_FDT_BTM √

For example, class objects shall register for categories according to the list given in Table 17:

Table 17 – Example for DTM registration

Description Categories

DTM for a device CATID_FDT_DTM

CATID_FDT_DEVICE

DTM for a module of a modular device CATID_FDT_DTM

CATID_FDT_MODULE

It is expected that a DTM will first create any categories it uses and then registers for those
categories during installation. Deregistering a server should cause it to be removed from that
category but not to deregister the category by itself. For more information refer to
documentation of ICatRegister in MSDN®.

A DTM may register additional component categories according to COM rules.

8.1.3 Registry entries

Each object (device, module, channel, class, presentation) within a DTM shall provide all
COM required registry entries within HKEY_CLASSES_ROOT and shall support self-
registration.

8.1.4 Installation issues

It is assumed that the DTM vendor will provide a SETUP.EXE to install the needed
components for his DTM. This will not be discussed further. Other than the actual
components, the main issue affecting COM software is management of the Windows® registry
and component categories.

All FDT components shall have a version information resource containing at least a version
number, so that an installation tool can decide whether it can overwrite an installed
component or not.

Furthermore a Frame Application is responsible to install all FDT related XML schemas. A
DTM has to use these documents provided by the Frame Application via
IFdtContainer::GetXMLSchemaPath().

DTM-specific schemas within FDT related XML documents shall be declared as an inline
definition. During the de-installation of FDT related components, the procedure has to take
care about the availability of the FDT related interface description To avoid problems the
usage of Microsoft® installer technology is mandatory. This means all merge modules
provided by FDT Group shall be used. For example, it is not allowed to copy the FDT100.dll
directly on the PC. Furthermore, all common DLLs (e.g. for usage of ATL, VB runtime or third
party controls) shall be installed via merge modules if provided by the vendor of the DLL.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 203 –

Furthermore, it is highly recommended not to include the FDT-specific interface description
(IDL) within own components.

8.1.5 Microsoft’s standard component categories manager

Using the Microsoft® standard component categories manager a Frame Application is able to
query a list of all available DTMs or a list of DTMs with a set of specific categories by using
the interface method ICatInformation::EnumClassesOfCategories.

8.1.6 Building a Frame Application-database of supported devices

Using component categories a Frame Application is able to detect all installed DTMs.
Additional information, for example vendor information, list of supported devices, can be
determined by instantiating a DTM and using the IDtmInformation and IDtmInformation2
interfaces.

By using this information, a Frame Application is able to build a database with

• all available DTMs;

• all available BTMs;

• DTMs supporting a specific fieldbus;

• supported field devices;

• etc.

Based on this information it is possible to generate a mapping between specific field devices
and supporting DTMs. This functionality is described in 5.8.1.

8.1.7 DTM registration

DTMs have to write registry entries whenever the DTM is

• installed,

• uninstalled,

• modified, (e.g. new device types are supported or the DTM was updated (bug fix)).

If the path doesn’t exist, the first installed DTM has to create the path.

A FDT root path is defined for FDT in windows registry:

DTM registration – Path in registry

[HKEY_LOCAL_MACHINE\SOFTWARE\FDT\DTMCatalogUpdates]8

Key Format Description

ModificationComment

REG_SZ (String Value) Mandatory: Any string, e.g.:
Timestamp of modification.
Empty string alloweda.

ModificationFlag REG_SZ (String – GUID) Mandatory: GUID created by DTM
setup during setup runtime.

a Instead of setting this attribute to optional, it’s mandatory and allowed to set an empty string. This avoids
having old comment together with new flag.

8 HKEY_LOCAL_MACHINE allows DTMs to write a registry key and string. During DTM setup user has to have

administrator permissions anyway, so there is no missing permission for writing to the registry. During other
use case sessions, a user can have normal permissions. Then a Frame Application only reads the registry
keys, so the missing write permission is not a problem.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 204 – IEC TR 62453-41:2016  IEC 2016

Frame Applications may update a DTM Library and save the last known ModificationFlag entry
internally.

A Frame Application can easily check if there is a need to update the DTM catalog by
comparing last known entry with current entry.

NOTE It was seen as acceptable to leave the entry in registry without a concept for a cleanup because there may
be a number of Frame Applications installed on one PC.

Frame Applications are only allowed to read these keys. DTMs shall update ModificationFlag
and ModificationComment during setup.

8.2 Paths and file information

8.2.1 Path information provided by a DTM

There are several possibilities where a DTM has to provide paths to files on the local file
system:

• icons and bitmaps (<DeviceIcon>,<BlockIcon>, <DeviceBitmap>)

• documentation (<DocumentFile>, <DocumentExe>)

• protocol-specific schemas (<DtmSchemaPath>)

• GSD files (<deviceTypeInformationPath>)

Usually, these files will be copied on the local file system during DTM installation. The DTM
has to provide the full path (including the drive).

8.2.2 Paths and persistency

Installation on different PCs may lead to different path information.

Since a DTM instance data set could be copied from one PC to another PC, a DTM shall not
rely on path information, which is stored in its instance data set.

General rule: A DTM should never store path information in its instance data set.

This rule is also valid for paths that are provided by the Frame Application and used by the
DTM (e.g. IFdtBulkData:GetInstanceRelatedPath, IFdtBulkData:GetProjectRelatedPath and
IFdtContainer:GetXmlSchemaPath)

Example:

Installation path on PC-A “c:\programs\manufacturer\” leads to the Icon path:

<fdt:DeviceIcon path="file://c:/programs/manufacturer/icons/device.ico" />

Installation path on PC-B: “d:\programme\manufacturer\” leads to the Icon path:

<fdt:DeviceIcon path="file://d:/programme/manufacturer/icons/device.ico" />

8.2.3 Multi-user systems

Some Frame Applications provide multi-user capability, which means that the system is
distributed over several PCs. In such a system, the Frame Application should not retrieve path
information from one PC and expect that the file is also available on all other PCs in the same
path.

General rule: Path information provided by FDT interfaces is only valid on the local PC.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 205 –

9 Description of data types, parameters and structures

9.1 Ids

Ids are unique identifiers in a specific context. They are used to identify components,
notification about user roles and rights, and for the association of asynchronous function calls,
as shown in Table 18.

Table 18 – FDT-specific Ids

Name Data type Description

invokeId FdtUUIDString An invokeId of a request method of a server object is a unique
identifier to be generated by the client via CoCreateGuid() API and
is only valid within the calling object. Within a callback method this
identifier shall be used by the client to identify the appropriate
request send to the server object.

Association of asynchronous function calls is used for methods like
xxxRequest(), OnxxxResponse()

systemTag BSTR Unique identifier of a device instance within a project of the Frame
Application. The system tag will be set during the initialization of a
DTM and has to be used by the DTM for all instance-specific
function calls to the Frame Application. The DTM shall not store
the systemTag (e.g. in the instance data set). The DTM may not
rely on the fact that it receives the same systemTag during each
initialization (call of IDtm::Environment() or IDtm2::Environment2())

CommunicationReference FdtUUIDString Mandatory identifier for a communication link to a device. This
identifier is allocated by the communication component during the
connect via CoCreateGuid() API. The communication reference
has to be used for all following communication calls.

9.2 Data type definitions

For basic datatypes mapping given in Table 19 is defined:

Table 19 – Basic data types

Data type Mapping to COM data types

ClassIdentifier CLSID / ProgID

LanguageID LCID

ObjectReference IUnknown pointer

UUID UUID

URI URI

The following helper objects for documentation are defined (see Table 20): IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C TR 62
45

3-4
1:2

01
6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 206 – IEC TR 62453-41:2016  IEC 2016

Table 20 – Helper objects for documentation

Name Data type Description

FdtUUIDString BSTR String containing a unique identifier according to the Microsoft®
standard UUID.

The format shall be e.g. “C2137DD1-7842-11d4-A3C9-
005004DC410F” (without bracket).

Due to the definition of the UUID format, the value shall NOT be
handled in a case sensitive way. That means comparing
“C2137dd1-7842-11d4-A3C9-005004DC410F” with “C2137DD1-
7842-11d4-A3C9-005004DC410f” will return TRUE

FdtXmlDocument BSTR String containing an XML document

FdtXPath BSTR String containing an Xpath to an element of an XML document

For FDT 1.2 and FDT 1.2.1 the Xpath has to be the root tag
“FDT” – XML documents are accepted as complete document.
Otherwise the DTM informs the Frame Application via the event
interface about the occurred of errors

Exceptions:

- IFdtChannel::GetChannelPath(), refer to method description

- Interface IFdtTopology, usage as channel path within the
specified methods

All boolean parameters VARINAT_BOOL TRUE and FALSE according to the definition of VARIANT_TRUE
and VARIANT_FALSE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 207 –

Annex A
(normative)

FDT IDL

This IDL file should never be modified in any way. The standard marshaller may be used
based on a type library generated from this IDL. If vendor-specific interfaces are added to the
application (which is allowed) a SEPARATE vendor-specific IDL file shall be generated to
describe only those interfaces and a separate vendor-specific ProxyStub DLL to marshal only
those interfaces.

/**
 *
 * FDT 1.2.1 Interfaces
 *
 ***/

[
 uuid(036D1471-387B-11D4-86E1-00E0987270B9),
 version(1.20100)
]
library Fdt100
{
 importlib("STDOLE2.TLB");

 // FDT Datatypes
 typedef [uuid(036D1472-387B-11D4-86E1-00E0987270B9), version(1.0)] BSTR FdtUUIDString;
 typedef [uuid(036D1473-387B-11D4-86E1-00E0987270B9), version(1.0)] BSTR FdtXmlDocument;
 typedef [uuid(036D1474-387B-11D4-86E1-00E0987270B9), version(1.0)] BSTR FdtXPath;

 // Forward declaration of all required interfaces
 interface IFdtContainer;
 interface IFdtChannelCollection;
 interface IFdtCommunication;

 //
 // DTM Interfaces
 // ==============

// IDtm
 [
 odl,
 uuid(036D1481-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtm: IDispatch {
 [id(0x1)]
 HRESULT Environment(
 [in] BSTR systemTag,
 [in] IFdtContainer* container,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT InitNew(
 [in] FdtXmlDocument deviceType,
 [out, retval] VARIANT_BOOL* result);
 [id(0x3)]
 HRESULT Config(
 [in] FdtXmlDocument userInfo,
 [out, retval] VARIANT_BOOL* result);
 [id(0x4)]
 HRESULT SetCommunication(
 [in] IFdtCommunication* communication,
 [out, retval] VARIANT_BOOL* result);
 [id(0x5)]
 HRESULT PrepareToRelease(
 [out, retval] VARIANT_BOOL* result);
 [id(0x6)]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 208 – IEC TR 62453-41:2016  IEC 2016

 HRESULT PrepareToReleaseCommunication(
 [out, retval] VARIANT_BOOL* result);
 [id(0x7)]
 HRESULT ReleaseCommunication(
 [out, retval] VARIANT_BOOL* result);
 [id(0x8)]
 HRESULT PrepareToDelete(
 [out, retval] VARIANT_BOOL* result);
 [id(0x9)]
 HRESULT SetLanguage(
 [in] long languageId,
 [out, retval] VARIANT_BOOL* result);
 [id(0xa)]
 HRESULT GetFunctions(
 [in] FdtXmlDocument operationState,
 [out, retval] FdtXmlDocument* result);
 [id(0xb)]
 HRESULT InvokeFunctionRequest(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument functionCall,
 [out, retval] VARIANT_BOOL *result);
 [id(0xc)]
 HRESULT PrivateDialogEnabled(
 [in] VARIANT_BOOL enabled,
 [out, retval] VARIANT_BOOL *result);
 };

// IDtmActiveXInformation
 [
 odl,
 uuid(036D1480-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmActiveXInformation: IDispatch {
 [id(0x1)]
 HRESULT GetActiveXGuid(
 [in] FdtXmlDocument functionCall,
 [out, retval] FdtUUIDString* result);
 [id(0x2)]
 HRESULT GetActiveXProgId(
 [in] FdtXmlDocument functionCall,
 [out, retval] BSTR* result);
 };

// IDtmApplication
 [
 odl,
 uuid(036D147E-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmApplication: IDispatch {
 [id(0x1)]
 HRESULT StartApplication(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument functionCall,
 [in] BSTR windowTitle,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT ExitApplication(
 [in] FdtUUIDString invokeId,
 [out, retval] VARIANT_BOOL* result);
 };

// IDtmChannel
 [
 odl,
 uuid(036D1489-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmChannel: IDispatch {
 [id(0x1)]
 HRESULT GetChannels(
 [out, retval] IFdtChannelCollection** result);
 };

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 209 –

// IDtmDocumentation
 [
 odl,
 uuid(036D147C-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmDocumentation: IDispatch {
 [id(0x1)]
 HRESULT GetDocumentation(
 [in] FdtXmlDocument functionCall,
 [out, retval] FdtXmlDocument* result);
 };

// IDtmDiagnosis
 [
 odl,
 uuid(036D1476-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmDiagnosis: IDispatch {
 [id(0x1)]
 HRESULT Verify([out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT InitCompare(
 [in] BSTR systemTag,
 [out, retval] VARIANT_BOOL* result);
 [id(0x3)]
 HRESULT Compare(
 [out, retval] VARIANT_BOOL* result);
 [id(0x4)]
 HRESULT ReleaseCompare(
 [out, retval] VARIANT_BOOL* result);
 };

// IDtmImportExport
 [
 odl,
 uuid(036D148E-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmImportExport: IDispatch {
 [id(0x1)]
 HRESULT Import(
 [in] IStream* stream,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT Export(
 [in] IStream* stream,
 [out, retval] VARIANT_BOOL* result);
 };

// IDtmInformation
 [
 odl,
 uuid(036D147F-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmInformation: IDispatch {
 [id(0x1)]
 HRESULT GetInformation(
 [out, retval] FdtXmlDocument* result);
 };

// IDtmOnlineDiagnosis
 [
 odl,
 uuid(036D1477-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmOnlineDiagnosis: IDispatch {
 [id(0x1)]
 HRESULT Compare(
 [out, retval] FdtXmlDocument* result);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 210 – IEC TR 62453-41:2016  IEC 2016

 [id(0x2)]
 HRESULT GetDeviceStatus(
 [out, retval] FdtXmlDocument* result);
 };

// IDtmOnlineParameter
 [
 odl,
 uuid(036D1483-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmOnlineParameter: IDispatch {
 [id(0x1)]
 HRESULT CancelAction(
 [in] FdtUUIDString invokeId,
 [out,retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT DownloadRequest(
 [in] FdtUUIDString invokeId,
 [in] FdtXPath parameterPath,
 [out,retval] VARIANT_BOOL* result);
 [id(0x3)]
 HRESULT UploadRequest(
 [in] FdtUUIDString invokeId,
 [in] FdtXPath parameterPath,
 [out,retval] VARIANT_BOOL* result);
 };

 // IDtmParameter
 [
 odl,
 uuid(036D147D-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmParameter: IDispatch {
 [id(0x1)]
 HRESULT GetParameters(
 [in] FdtXPath parameterPath,
 [out, retval] FdtXmlDocument* result);
 [id(0x2)]
 HRESULT SetParameters(
 [in] FdtXPath parameterPath,
 [in] FdtXmlDocument FdtXmlDocument,
 [out, retval] VARIANT_BOOL* result);
 };

 //
 // DTM event interfaces
 // ====================

// IFdtCommunicationEvents
 [
 odl,
 uuid(036D1485-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IFdtCommunicationEvents: IDispatch {
 [id(0x1)]
 HRESULT OnAbort(
 [in] FdtUUIDString communicationReference);
 [id(0x2)]
 HRESULT OnConnectResponse(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument response);
 [id(0x3)]
 HRESULT OnDisconnectResponse(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument response);
 [id(0x4)]
 HRESULT OnTransactionResponse(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument response);

 };

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 211 –

// IFdtEvents
 [
 odl,
 uuid(036D1478-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IFdtEvents: IDispatch {
 [id(0x1)]
 HRESULT OnChildParameterChanged(
 [in] BSTR systemTag);
 [id(0x2)]
 HRESULT OnParameterChanged(
 [in] BSTR systemTag,
 [in] FdtXmlDocument parameter);
 [id(0x3)]
 HRESULT OnLockDataSet(
 [in] BSTR systemTag,
 [in] BSTR userName);
 [id(0x4)]
 HRESULT OnUnlockDataSet(
 [in] BSTR systemTag,
 [in] BSTR userName,
 [out, retval] VARIANT_BOOL* result);
 };

 //
 // DTM ActiveX Control interfaces
 // ==============================
 //

 // IDtmActiveXControl
 [
 odl,
 uuid(036D1486-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmActiveXControl: IDispatch {
 [id(0x1)]
 HRESULT Init(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument functionCall,
 [in] IDtm* dtm,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT PrepareToRelease(
 [out, retval] VARIANT_BOOL* result);
 };

 //
 // FDT Channel interfaces
 // ======================
 //

// IFdtChannel
 [
 odl,
 uuid(036D1488-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IFdtChannel: IDispatch {
 [id(0x1)]
 HRESULT GetChannelPath(
 [out, retval] FdtXPath* result);
 [id(0x2)]
 HRESULT GetChannelParameters(
 [in] FdtXPath parameterPath,
 [in] FdtUUIDString protocolId,
 [out, retval] FdtXmlDocument* result);
 [id(0x3)]
 HRESULT SetChannelParameters(
 [in] FdtXPath parameterPath,
 [in] FdtUUIDString protocolId,
 [in] FdtXmlDocument XmlDocument,
 [out, retval] VARIANT_BOOL* result);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 212 – IEC TR 62453-41:2016  IEC 2016

 };

 // IFdtChannelActiveXInformation
 [
 odl,
 uuid(F2BD2970-13FA-470c-A28C-6A5969A04037),
 dual,
 oleautomation
]
 interface IFdtChannelActiveXInformation: IDispatch {
 [id(0x1)]
 HRESULT GetChannelActiveXGuid(
 [in] FdtXmlDocument functionCall,
 [out, retval] FdtUUIDString* result);
 [id(0x2)]
 HRESULT GetChannelActiveXProgId(
 [in] FdtXmlDocument functionCall,
 [out, retval] BSTR* result);
 [id(0x3)]
 HRESULT GetChannelFunctions(
 [in] FdtXmlDocument operationState,
 [out, retval] FdtXmlDocument* result);

 };

 // IFdtCommunication
 [
 odl,
 uuid(039ECFC4-9CA8-44e6-944D-B37F288A34D8),
 dual,
 oleautomation
]
 interface IFdtCommunication: IDispatch {
 [id(0x1)]
 HRESULT Abort(
 [in] FdtXmlDocument fieldbusFrame);

 [id(0x2)]
 HRESULT ConnectRequest(
 [in] IFdtCommunicationEvents* callBack,
 [in] FdtUUIDString invokeId,
 [in] FdtUUIDString protocolId,
 [in] FdtXmlDocument fieldbusFrame,
 [out, retval] VARIANT_BOOL* result);
 [id(0x3)]
 HRESULT DisconnectRequest(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument fieldbusFrame,
 [out, retval] VARIANT_BOOL* result);
 [id(0x4)]
 HRESULT TransactionRequest(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument fieldbusFrame,
 [out, retval] VARIANT_BOOL* result);
 [id(0x5)]
 HRESULT GetSupportedProtocols(
 [out, retval] FdtXmlDocument *result);
 [id(0x6)]
 HRESULT SequenceBegin(
 [in] FdtXmlDocument fieldbusFrame,
 [out, retval] VARIANT_BOOL* result);
 [id(0x7)]
 HRESULT SequenceStart(
 [in] FdtXmlDocument fieldbusFrame,
 [out, retval] VARIANT_BOOL* result);
 [id(0x8)]
 HRESULT SequenceEnd(
 [in] FdtXmlDocument fieldbusFrame,
 [out, retval] VARIANT_BOOL* result);

 };

 // IFdtChannelSubTopology
 [
 odl,
 uuid(036D1484-387B-11D4-86E1-00E0987270B9),
 dual,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 213 –

 oleautomation
]
 interface IFdtChannelSubTopology: IDispatch {
 [id(0x1)]
 HRESULT ScanRequest(
 [in] FdtUUIDString invokeId,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT ValidateAddChild(
 [in] BSTR childsystemTag,
 [out, retval] VARIANT_BOOL* result);
 [id(0x4)]
 HRESULT ValidateRemoveChild(
 [in] BSTR childsystemTag,
 [out, retval] VARIANT_BOOL* result);
 [id(0x5)]
 HRESULT OnAddChild(
 [in] BSTR childsystemTag);
 [id(0x6)]
 HRESULT OnRemoveChild(
 [in] BSTR childsystemTag);
 };

// IFdtFunctionBlockData
 [
 odl,
 uuid(036D1475-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IFdtFunctionBlockData: IDispatch {
 [id(0x1)]
 HRESULT SelectFBInstance(
 [in] BSTR systemTag,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT GetFBInstanceData(
 [in] BSTR systemTag,
 [out, retval] FdtXmlDocument* result);
 };

 //
 // FDT Channel ActiveX Control interfaces
 // ======================================
 //

// IFdtChannelActiveXControl
 [
 odl,
 uuid(036D148B-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IFdtChannelActiveXControl: IDispatch {
 [id(0x1)]
 HRESULT Init(
 [in] FdtUUIDString invokeId,
 [in] IFdtChannel* channel,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT PrepareToRelease(
 [out, retval] VARIANT_BOOL* result);
 };

 //
 // Frame Application interfaces
 // ========================
 //

// IDtmEvents
 [
 odl,
 uuid(F15BA42E-BBF1-42ed-8009-7F664A002CFB),
 dual,
 oleautomation
]
 interface IDtmEvents: IDispatch {
 [id(0x1)]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 214 – IEC TR 62453-41:2016  IEC 2016

 HRESULT OnParameterChanged(
 [in] BSTR systemTag,
 [in] FdtXmlDocument parameter);
 [id(0x2)]
 HRESULT OnErrorMessage(
 [in] BSTR systemTag,
 [in] BSTR errorMessage);
 [id(0x3)]
 HRESULT OnProgress(
 [in] BSTR systemTag,
 [in] BSTR title,
 [in] short percent,
 [in] VARIANT_BOOL show);
 [id(0x4)]
 HRESULT OnUploadFinished(
 [in] FdtUUIDString invokeId,
 [in] VARIANT_BOOL success);
 [id(0x5)]
 HRESULT OnDownloadFinished(
 [in] FdtUUIDString invokeId,
 [in] VARIANT_BOOL success);
 [id(0x6)]
 HRESULT OnApplicationClosed(
 [in] FdtUUIDString invokeId);
 [id(0x8)]
 HRESULT OnFunctionChanged(
 [in] BSTR systemTag);

 [id(0x9)]
 HRESULT OnChannelFunctionChanged(
 [in] BSTR systemTag,
 [in] FdtXPath channelPath);
 [id(0xa)]
 HRESULT OnPrint(
 [in] BSTR systemTag,
 [in] FdtXmlDocument functionCall);
 [id(0xb)]
 HRESULT OnNavigation(
 [in] BSTR systemTag);
 [id(0xc)]
 HRESULT OnOnlineStateChanged(
 [in] BSTR systemTag,
 [in] VARIANT_BOOL onlineState);
 [id(0xd)]
 HRESULT OnPreparedToRelease(
 [in] BSTR systemTag);
 [id(0xe)]
 HRESULT OnPreparedToReleaseCommunication(
 [in] BSTR systemTag);
 [id(0xf)]
 HRESULT OnInvokedFunctionFinished(
 [in] FdtUUIDString invokeId,
 [in] VARIANT_BOOL success);
 [id(0x10)]
 HRESULT OnScanResponse(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument response);

 };

// IDtmAuditTrailEvents
 [
 odl,
 uuid(036D1479-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IDtmAuditTrailEvents: IDispatch {
 [id(0x1)]
 HRESULT OnStartTransaction(
 [in] BSTR systemTag,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT OnAuditTrailEvent(
 [in] BSTR systemTag,
 [in] FdtXmlDocument logEntry);
 [id(0x3)]
 HRESULT OnEndTransaction(

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 215 –

 [in] BSTR systemTag,
 [out, retval] VARIANT_BOOL* result);
 };

// IFdtActiveX
 [
 odl,
 uuid(5959f485-2c51-4a55-80a7-dd3c45d8baf2),
 dual,
 oleautomation
]
 interface IFdtActiveX: IDispatch {
 [id(0x1)]
 HRESULT OpenActiveXControlRequest(
 [in] BSTR systemTag,
 [in] FdtXmlDocument functionCall,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT CloseActiveXControlRequest(
 [in] FdtUUIDString invokeId,
 [out, retval] VARIANT_BOOL* result);
 };

 // IFdtBulkData
 [
 odl,
 uuid(036D148D-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IFdtBulkData: IDispatch {
 [id(0x60030000)]
 HRESULT GetProjectRelatedPath(
 [in] BSTR systemTag,
 [out, retval] BSTR* result);
 [id(0x60030001)]
 HRESULT GetInstanceRelatedPath(
 [in] BSTR systemTag,
 [out, retval] BSTR* result);
 };

 // IFdtContainer
 [
 odl,
 uuid(036D1487-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IFdtContainer: IDispatch {
 [id(0x1)]
 HRESULT SaveRequest(
 [in] BSTR systemTag,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT LockDataSet(
 [in] BSTR systemTag,
 [out, retval] VARIANT_BOOL* result);
 [id(0x3)]
 HRESULT UnlockDataSet(
 [in] BSTR systemTag,
 [out, retval] VARIANT_BOOL* result);
 [id(0x4)]
 HRESULT GetXmlSchemaPath(
 [out, retval] BSTR* result);
 };

// IFdtDialog
 [
 odl,
 uuid(15C19931-6161-11d4-A0A9-005004011A04),
 dual,
 oleautomation
]
 interface IFdtDialog: IDispatch {
 [id(0x1)]
 HRESULT UserDialog(
 [in] BSTR systemTag,
 [in] FdtXmlDocument userMessage,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 216 – IEC TR 62453-41:2016  IEC 2016

 [out, retval] FdtXmlDocument* result);
 };

// IFdtTopology
 [
 odl,
 uuid(036D147A-387B-11D4-86E1-00E0987270B9),
 dual,
 oleautomation
]
 interface IFdtTopology: IDispatch {
 [id(0x1)]
 HRESULT GetParentNodes(
 [in] BSTR systemTag,
 [out, retval] FdtXmlDocument* result);
 [id(0x2)]
 HRESULT GetChildNodes(
 [in] BSTR systemTag,
 [in] FdtXPath channelPath,
 [out, retval] FdtXmlDocument* result);
 [id(0x3)]
 HRESULT CreateChild(
 [in] FdtXmlDocument deviceType,
 [in] FdtXPath channelPath,
 [out, retval] BSTR* result);
 [id(0x4)]
 HRESULT DeleteChild(
 [in] BSTR systemTag,
 [in] FdtXPath channelPath,
 [out, retval] VARIANT_BOOL* result);
 [id(0x5)]
 HRESULT GetDtmForSystemTag(
 [in] BSTR systemTag,
 [out,retval] IDtm **result);
 [id(0x6)]
 HRESULT GetDtmInfoList(
 [out, retval] FdtXmlDocument* result);
 [id(0x7)]
 HRESULT MoveChild(
 [in] BSTR systemTag,
 [in] FdtXPath destinationchannelPath,
 [out, retval] VARIANT_BOOL* result);
 [id(0x8)]
 HRESULT ReleaseDtmForSystemTag(
 [in] BSTR systemTag,
 [out, retval] VARIANT_BOOL* result);
 };

 //
 // Collections
 // ===========

// IFdtChannelCollection
 [
 odl,
 uuid(E4F31A10-45BF-11d4-BBB3-0060080993FF),
 dual,
 oleautomation
]
 interface IFdtChannelCollection: IDispatch {
 [propget, id(0x1)]
 HRESULT Item(
 [in] VARIANT *pvarIndex,
 [out,retval] IFdtChannel **ppRes);
 [propget, id(0x2)]
 HRESULT Count(
 [out,retval] long* plCount);
 //support VB FOR EACH syntax via an IEnumVariant
 [propget, id(DISPID_NEWENUM)]
 HRESULT NewEnum(
 [out,retval] IUnknown** ppEnumVariant);
 };

 //
 // BTM Interfaces
 // ==============

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 217 –

// IBtm
 [
 odl,
 uuid(96341E37-9611-46ba-80ED-A85BD73BF518),
 dual,
 oleautomation
]
 interface IBtm: IDtm {
 };

// IBtmInformation
 [
 odl,
 uuid(87DCC81C-9F97-46c2-A483-5A89B155204C),
 dual,
 oleautomation
]
 interface IBtmInformation: IDispatch {
 [id(0x1)]
 HRESULT GetInformation(
 [out, retval] FdtXmlDocument* result);
 };

// IBtmParameter
 [
 odl,
 uuid(43D592CC-5F8E-4eca-9365-8D4749390C55),
 dual,
 oleautomation
]
 interface IBtmParameter: IDispatch {
 [id(0x1)]
 HRESULT GetParameters(
 [in] FdtXPath parameterPath,
 [out, retval] FdtXmlDocument* result);
 [id(0x2)]
 HRESULT SetParameters(
 [in] FdtXPath parameterPath,
 [in] FdtXmlDocument FdtXmlDocument,
 [out, retval] VARIANT_BOOL* result);
 };

// IBtmActiveXControl
 [
 odl,
 uuid(0E0418B4-9BC6-4a28-B980-5D3E7F457E4F),
 dual,
 oleautomation
]
 interface IBtmActiveXControl: IDispatch {
 [id(0x1)]
 HRESULT Init(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument functionCall,
 [in] IBtm* btm,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT PrepareToRelease(
 [out, retval] VARIANT_BOOL* result);
 };

 // IFdtBtmTopology
 [
 odl,
 uuid(18250F40-73FB-4c22-A0F1-DB2A11B3FE8D),
 dual,
 oleautomation
]
 interface IFdtBtmTopology: IDispatch {
 [id(0x1)]
 HRESULT GetParentNodes(
 [in] BSTR systemTag,
 [out, retval] FdtXmlDocument* result);
 [id(0x2)]
 HRESULT GetChildNodes(
 [in] BSTR systemTag,
 [in] FdtXPath channelPath,
 [out, retval] FdtXmlDocument* result);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 218 – IEC TR 62453-41:2016  IEC 2016

 [id(0x3)]
 HRESULT CreateChild(
 [in] FdtXmlDocument deviceType,
 [in] FdtXPath channelPath,
 [out, retval] BSTR* result);
 [id(0x4)]
 HRESULT DeleteChild(
 [in] BSTR systemTag,
 [in] FdtXPath channelPath,
 [out, retval] VARIANT_BOOL* result);
 [id(0x5)]
 HRESULT GetBtmForSystemTag(
 [in] BSTR systemTag,
 [out,retval] IBtm **result);
 [id(0x6)]
 HRESULT GetBtmInfoList(
 [out, retval] FdtXmlDocument* result);
 [id(0x7)]
 HRESULT MoveChild(
 [in] BSTR systemTag,
 [in] FdtXPath destinationchannelPath,
 [out, retval] VARIANT_BOOL* result);
 [id(0x8)]
 HRESULT ReleaseBtmForSystemTag(
 [in] BSTR systemTag,
 [out, retval] VARIANT_BOOL* result);
 };

 //
 // FDT 1.2.1 Interfaces
 // ==============

// IFdtActiveX2
 [
 odl,
 uuid(1922C2DE-4EE7-4085-878A-80AC6C6728AD),
 dual,
 oleautomation
]
 interface IFdtActiveX2: IDispatch
 {
 [id(0x1)]
 HRESULT OpenDialogActiveXControlRequest(
 [in] BSTR systemTag,
 [in] FdtXmlDocument functionCall,
 [out, retval] VARIANT_BOOL* result);

 [id(0x2)]
 HRESULT OpenChannelActiveXControlRequest(
 [in] BSTR channelPath,
 [in] FdtXmlDocument functionCall,
 [out, retval] VARIANT_BOOL* result);

 [id(0x3)]
 HRESULT CloseChannelActiveXControlRequest(
 [in] FdtUUIDString invokeId,
 [out, retval] VARIANT_BOOL* result);

 [id(0x4)]
 HRESULT OpenDialogChannelActiveXControlRequest(
 [in] BSTR channelPath,
 [in] FdtXmlDocument functionCall,
 [out, retval] VARIANT_BOOL* result);

 };

// IDtm2
 [
 odl,
 uuid(51E1F44B-D6A1-423d-B11F-AD38EDE78047),
 dual,
 oleautomation
]
 interface IDtm2: IDispatch
 {
 [id(0x1)]
 HRESULT Environment2(
 [in] BSTR systemTag,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 219 –

 [in] IFdtContainer* container,
 [in] FdtXmlDocument frameInfo,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT SetSystemGuiLabel(
 [in] FdtXmlDocument systemGuiLabel,
 [out, retval] VARIANT_BOOL* result);
 };

// IDtmRedundancyEvents
 [
 odl,
 uuid(04808A4C-90C3-45a7-B69E-034A2FA8314D),
 dual,
 oleautomation
]
 interface IDtmRedundancyEvents: IDispatch
 {
 [id(0x1)]
 HRESULT OnAddedRedundantChild(
 [in] BSTR systemTag,
 [in] FdtXPath channelPath,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT OnRemovedRedundantChild(
 [in] BSTR systemTag,
 [in] FdtXPath channelPath,
 [out, retval] VARIANT_BOOL* result);

 };

 // IDtmEvents2
 [
 odl,
 uuid(494FFD2B-6E58-4e42-80DB-85EBDF6E2CF5),
 dual,
 oleautomation
]
 interface IDtmEvents2: IDispatch
 {
 [id(0x1)]
 HRESULT OnStateChanged(
 [in] BSTR systemTag,
 [in] FdtXmlDocument xmldoc);
 };

 // IFdtChannelActiveXControl2
 [
 odl,
 uuid(73757F49-F3A6-41f7-BEA0-1A3E59D69D5B),
 dual,
 oleautomation
]
 interface IFdtChannelActiveXControl2: IDispatch
 {
 [id(0x1)]
 HRESULT Init2(
 [in] FdtUUIDString invokeId,
 [in] FdtXMLDocument functionCall,
 [in] IFdtChannel* channel,
 [out, retval] VARIANT_BOOL* result);
 };

// IDtmScanEvents
 [
 odl,
 uuid(515590B9-5177-474a-9310-708A3E785B2B),
 dual,
 oleautomation
]
 interface IDtmScanEvents: IDispatch
 {
 [id(0x1)]
 HRESULT OnScanResponse(
 [in] FdtUUIDString invokeId,
 [in] FdtXMLDocument response);
 [id(0x2)]
 HRESULT OnScanHardwareResponse (

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 220 – IEC TR 62453-41:2016  IEC 2016

 [in] FdtUUIDString invokeId,
 [in] FdtXMLDocument response);
 };

// IFdtChannelScan
 [
 odl,
 uuid(64A4310D-F9EE-411d-B4F9-51D3360DF359),
 dual,
 oleautomation
]
 interface IFdtChannelScan: IDispatch
 {
 [id(0x1)]
 HRESULT ScanRequest(
 [in] FdtUUIDString invokeId,
 [in] FdtXMLDocument request,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT CancelAction (
 [in] FdtUUIDString invokeId,
 [out, retval] VARIANT_BOOL* result);

 };

// IFdtChannelSubTopology2
 [
 odl,
 uuid(6359FBF1-D373-4202-90E8-E696C37739D4),
 dual,
 oleautomation
]
 interface IFdtChannelSubTopology2: IDispatch
 {
 [id(0x1)]
 HRESULT SetChildrenAdresses(
 [in] FdtXMLDocument dtmDeviceList,
 [out, retval] FdtXMLDocument* result);
 };

// IDtmInformation2
 [
 odl,
 uuid(C2934CC6-B72D-4611-890F-1C6531D1F8EB),
 dual,
 oleautomation
]
 interface IDtmInformation2: IDispatch
 {
 [id(0x1)]
 HRESULT GetDeviceIdentificationInformation(
 [in] FdtXMLDocument request,
 [in] FdtUUIDString protocolId,
 [out, retval] FdtXMLDocument* response);
 };

 // IDtmHardwareIdentification
 [
 odl,
 uuid(9A1DD233-987C-43d1-9424-DA5C1FC6F292),
 dual,
 oleautomation
]
 interface IDtmHardwareIdentification: IDispatch
 {
 [id(0x1)]
 HRESULT ScanHardwareRequest (
 [in] FdtUUIDString invokeID,
 [in] FdtXMLDocument request,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT CancelAction (
 [in] FdtUUIDString invokeID,
 [out, retval] VARIANT_BOOL* result);
 };

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 221 –

// IFdtCommunicationEvents2
 [
 odl,
 uuid(7A0AEF6A-A9E7-4673-8F45-01B8AC28F55D),
 dual,
 oleautomation
]
 interface IFdtCommunicationEvents2: IDispatch
 {
 [id(0x1)]
 HRESULT OnConnectResponse2(
 [in] FdtUUIDString invokeID,
 [in] FdtXMLDocument parentInformation,
 [in] FdtXMLDocument response);
 };

// IDtmSingleDeviceDataAccess
 [
 odl,
 uuid(D67240E4-664B-44b0-B692-A1D1ED3FB8F8),
 dual,
 oleautomation
]
 interface IDtmSingleDeviceDataAccess: IDispatch
 {
 [id(0x1)]
 HRESULT CancelRequest (
 [in] FdtUUIDString invokeId,
 [out, retval] VARIANT_BOOL* result);
 [id(0x2)]
 HRESULT ItemListRequest(
 [in] FdtUUIDString invokeId);
 [id(0x3)]
 HRESULT ReadRequest(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument itemSelectionList);
 [id(0x4)]
 HRESULT WriteRequest(
 [in] FdtUUIDString invokeId,
 [in] FdtXmlDocument itemList);

 };

// IDtmSingleInstanceDataAccess
 [
 odl,
 uuid(84F9A19A-7E38-40b5-A311-60B14F30C258),
 dual,
 oleautomation
]
 interface IDtmSingleInstanceDataAccess: IDispatch
 {
 [id(0x1)]
 HRESULT GetItemList(
 [out, retval] FdtXmlDocument* result);
 [id(0x2)]
 HRESULT Read(
 [in] FdtXmlDocument itemSelectionList,
 [out, retval] FdtXmlDocument* result);
 [id(0x3)]
 HRESULT Write(
 [in] FdtXmlDocument itemList,
 [out, retval] FdtXmlDocument* result);
 };

// IDtmSingleDeviceDataAccessEvents
 [
 odl,
 uuid(2357691C-E69A-4e0a-A8AA-EB7F1D080CEF),
 dual,
 oleautomation
]
 interface IDtmSingleDeviceDataAccessEvents: IDispatch
 {
 [id(0x1)]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 222 – IEC TR 62453-41:2016  IEC 2016

 HRESULT OnItemListResponse(
 [in] FdtUUIDString invokeId,
 [in] FdtXMLDocument response);
 [id(0x2)]
 HRESULT OnDeviceItemListChanged(
 [in] BSTR systemTag);
 [id(0x3)]
 HRESULT OnReadResponse(
 [in] FdtUUIDString invokeId,
 [in] FdtXMLDocument response);
 [id(0x4)]
 HRESULT OnWriteResponse(
 [in] FdtUUIDString invokeId,
 [in] FdtXMLDocument response);
 };

// IDtmSingleInstanceDataAccessEvents
 [
 odl,
 uuid(EBC093F1-4F7A-4208-A209-C172E54AB185),
 dual,
 oleautomation
]
 interface IDtmSingleInstanceDataAccessEvents: IDispatch
 {
 [id(0x1)]
 HRESULT OnInstanceItemListChanged(
 [in] BSTR systemTag);
 };

};

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 223 –

Annex B
(normative)

Mapping of services to interface methods

B.1 General

This annex describes the mapping of IEC 62453-2 services to interface, methods and XML
information.

IEC 62453-2 does not define whether it is optional or mandatory to implement the defined
services. This definition is provided by Table 2, Table 4, Table 6 and Table 8.

IEC 62453-2 does not define whether the services are implemented as synchronous or
asynchronous calls. This technical report uses the asynchronous model, if it is likely that
execution of service takes a longer time. This Part of IEC 62453 defines separated request,
callback and canceling interfaces / methods for this kind of services. Synchronous services
are implemented by a single interface / method.

B.2 DTM services

The mapping of general services is specified in Table B.1.

Table B.1 − General services

IEC 62453-2 service IEC TR 62453-41 interface / method

PrivateDialogEnabled Request/Response: IDtm.PrivateDialogEnabled

SetLanguage Request/Response: IDtm.SetLanguage

SetSystemGuiLabel Request/Response: IDtm.SetSystemGuiLabel

The mapping of DTM services related to installation is specified in Table B.2.

Table B.2 − DTM services related to installation

IEC 62453-2 IEC TR 62453-41

Not defined. Registration of DTM at the system (today’s ProgID and maybe CategoryID)

Not defined. Modification flag

The mapping of DTM services related to DTM information is specified in Table B.3.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 224 – IEC TR 62453-41:2016  IEC 2016

Table B.3 − DTM services related to DTM information

IEC 62453-2 service IEC TR 62453-41 interface / method

GetTypeInformation Request/Response: IDtmInformation.GetInformation

 IBtmInformation.GetInformation

GetIdentificationInformation Request/Response: IDtmInformation2.GetDeviceIdentificiationInformation

HardwareInformation Request: IDtmHardwareIdentification.ScanHardwareRequest

Response: IDtmScanEvents.ScanHardwareResponse

Cancel: IDtmHardwaeIdentification:CancelAction

GetActiveTypeInfo Request/Response: IDtmParameter.GetParameters:
 - <DtmDeviceType> section
 : <InternalTopology> section

 IBtmParameter.GetParameters:
 - <BtmBlockType> section

The mapping of DTM services related to DTM state machine is specified in Table B.4.

Table B.4 − DTM services related to DTM state machine

IEC 62453-2 service IEC TR 62453-41 interface / method

Initialize Request/Response: IPersistxxx.InitNew

 IPersistxxx.Load

 IDtm.InitNew

 IBtm.InitNew

 IDtm.Environment

 IBtm.Environment

 IDtm2.Environment2

 IDtm.Config

 IBtm.Config

SetLinked
CommunicationChannel

Request/Response: The services SetCommunicationChannel and
EnableCommunication = TRUE are combined to
IDtm.SetCommunication./ IBtm.SetCommunication
(SetCommunication sets the channel and enables the
communication)

EnableCommunication = FALSE maps to
IDtm.PrepareToReleaseCommunication /
IBtm.PrepareToReleaseCommunication and
OnPreparedToReleaseCommunication

EnableCommunication

ReleaseLinked
CommunicationChannel

Request/Response: IDtm.ReleaseCommunication

 IBtm.ReleaseCommunication

ClearInstanceData Request/Response: IDtm.PrepareToDelete

 IBtm.PrepareToDelete

Terminate Request/Response: IDtm.PrepareToRelease

 IDtmEvents.OnPreparedToRelease

 IBtm.PrepareToRelease

The mapping of DTM services related to function is specified in Table B.5.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 225 –

Table B.5 − DTM services related to function

IEC 62453-2 service IEC TR 62453-41 interface / method

GetFunctions Request/Response: IDtm.GetFunctions

 IBtm.GetFunctions

Event IDtmEvents.OnFunctionChanged

InvokeFunction Request: IDtm.InvokeFunction

 IBtm.InvokeFunction

Response: IDtmEvents.OnInvokedFunctionFinished

GetGuiInformation Request/Response: IDtmActiveXInformation.GetActiveXGuid

 IDtmActiveXInformation.GetActiveXProgId

OpenPresentation Request/Response: IDtmApplication.StartApplication

ClosePresentation Request: IDtmApplication.ExitApplication

Response: IDtmEvents.OnApplicationClosed

The mapping of DTM services related to documentation is specified in Table B.6.

Table B.6 − DTM services related to documentation

IEC 62453-2 service IEC TR 62453-41 interface / method

GetDocumentation Request/Response: IDtmDocumentation.GetDocumentation

The mapping of DTM services to access the instance data is specified in Table B.7.

Table B.7 − DTM services to access the instance data

IEC 62453-2 service IEC TR 62453-41 interface / method

InstanceDataInformation Request/Response: IDtmSingleInstanceDataAccess.GetItemList

 IDtmParameter.GetParameters /
IBtmParameter. GetParameters <ExportedVarialbes> section

Event IDtmSingleInstanceDataAccessEvents.OnInstanceItemListChanged

 IDtmEvents.OnParmenterChanged

InstanceDataRead Request/Response: IDtmSingleInstanceDataAccess.Read that enables to read
single and multiple parameters

 IDtmParameter.GetParameters / IBtmParameter.
 GetParameters <ExportedVarialbes> section
 within the returned XML that enables to read all parameters at
 once.

InstanceDataWrite Request/Response: IDtmSingleInstanceDataAccess.Read that enables to write
single and multiple parameters

 IDtmParameter.GetParameters / IBtmParameter.
SetParameters <ExportedVarialbes> section
within the returned XML that enables to write all parameters at
once.

The mapping of DTM services to access diagnosis is specified in Table B.8.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 226 – IEC TR 62453-41:2016  IEC 2016

Table B.8 − DTM services to access diagnosis

IEC 62453-2 service IEC TR 62453-41 interface / method

Verify Request/Response: IDtmDiagnosis.Verify

CompareDataVaueSet Request/Response: IDtmDiagnosis.InitCompare

 IDtmDiagnosis.Compare

 IDtmDiagnosis.ReleaseCompare

The mapping of DTM services to access the device data is specified in Table B.9.

Table B.9 − DTM services to access the device data

IEC 62453-2 service IEC TR 62453-41 interface / method

DeviceDataInformation Request: IDtmSingleDeviceDataAccess.ItemListRequest

Response IDtmSingleDeviceDataAccessEvebts.OnDeviceItemListResponse

Cancel: IDtmSingleDeviceDataAccess.CancelRequest

Event IDtmSingleDeviceDataAccessEvents.OnDeviceItemListChanged

DeviceDataRead Request: IDtmSingleDeviceDataAccess.ReadRequest

Response: IDtmSingleDeviceDataAccessEvebts.OnReadResponse

Cancel: IDtmSingleDeviceDataAccess.CancelRequest

DeviceDataWrite Request: IDtmSingleDeviceDataAccess.WirteRequest

Response: IDtmSingleDeviceDataAccessEvebts.OnWirteResponse

Cancel: IDtmSingleDeviceDataAccess.CancelRequest

The mapping of DTM services related to network management information is specified in
Table B.10.

Table B.10 − DTM services related to network management information

IEC 62453-2 service IEC TR 62453-41 interface / method

NetworkManagementInfo
Read

Request/Response: IDtmParameter.GetParameters – section <BusInformation>

NetworkManagementInfo
Write

Request/Response: IDtmParameter.SetParameters – section <BusInformation>

The mapping of DTM services related to online operation is specified in Table B.11.

Table B.11 − DTM services related to online operation

IEC 62453-2 service IEC TR 62453-41 interface / method

DeviceStatus Request/Response: IDtmOnlineDiagnosis.GetDeviceStatus

CompareInstanceDataWith
DeviceData

Request/Response: IDtmOnlineDiagnosis.Compare

WriteDataToDevice Request: IDtmOnlineParameter.DowloadRequest

Response: IDtmEvents.OnDownLoadFinished

Cancel: IDtmOnlineParameter.CancelAction

ReadDataFromDevice Request: IDtmOnlineParameter.UploadRequest

Response: IDtmEvents.OnUploadLoadFinished

Cancel: IDtmOnlineParameter.CancelAction

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 227 –

The mapping of DTM services related to FDT-Channel objects is specified in Table B.12.

Table B.12 − DTM services related to FDT-Channel objects

IEC 62453-2 service IEC TR 62453-41 interface / method

GetChannels Request/Response: IDtmChannel.GetChannels

 GetParameters <ChannelReferences> sections

The mapping of DTM services related to import and export is specified in Table B.13.

Table B.13 − DTM services related to import and export

IEC 62453-2 service IEC TR 62453-41 interface / method

Export Request/Response: IDtmImportExport.Export for DTM using private data storage

IPersistStreamXXX.Save for DTM not using private data
storage

Import Request/Response: IDtmImportExport.Import for DTM using private data storage

IPersistStreamXXX.Load for DTM not using private data
storage

The mapping of DTM services related to data synchronization is specified in Table B.14.

Table B.14 − DTM services related to data synchronization

IEC 62453-2 service IEC TR 62453-41 interface / method

OnLockInstanceData Request/Response: IFdtEvents.OnLockDataSet

OnUnlockInstanceData Request/Response: IFdtEvents.OnUnLockDataSet

OnInstanceDataChanged Request/Response: IFdtEvents.OnParameterChange

OnChildInstanceData
Changed

Request/Response: IFdtEvents.OnChildParameterChanged

B.3 Presentation object services

The interactions and state control between Frame Application, Presentation object and DTM
is technology dependent. The IEC 62453 series leaves it to the technology-specific parts
(IEC TR 62453-4z) to define necessary services. This technical report defines the following
interfaces / methods for state control of ActiveX®:

• IDtmActiveXControl.Init / PrepareToRelease

• IFdtChannelActiveX.Init / PrepareToRelease

• IBtmActiveXControl.Init / PrepareToRelease

B.4 General channel services

The mapping of general channel services is specified in Table B.15.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 228 – IEC TR 62453-41:2016  IEC 2016

Table B.15 − General channel services

IEC 62453-2 service IEC TR 62453-41 interface / method

ReadChannelInformation Request/Response: IFdtChannel.GetChannelPath

 IFdtChannel.GetChannelParameters – minimum set of
information included in all protocol-specific channel parameter
schemas (information defined by FDTBasicChannelSchema).

WriteChannelInformation Request/Response: IFdtChannel.SetChannelParameters – minimum set of
information included in all protocol-specific channel parameter
schemas (information defined by FDTBasicChannelSchema)

B.5 Process channel services

The mapping of channel services for IO related information is specified in Table B.16.

Table B.16 − Channel services for IO related information

IEC 62453-2 service IEC TR 62453-41 interface / method

ReadChannelData Request/Response: IFdtChannel.GetChannelParameters – protocol dependent
information defined in corresponding FDT Annex.

WriteChannelData Request/Response: IFdtChannel.SetChannelParameters – protocol dependent
information defined in corresponding FDT Annex.

B.6 Communication Channel Services

The mapping of channel services related to communication is specified in Table B.17.

Table B.17 − Channel services related to communication

IEC 62453-2 service IEC TR 62453-41 interface / method

GetSupportedProtocols Request/Response: IFdtCommunication:GetSupportedProtocols

Connect Request: IFdtCommunication:ConnectRequest

Response: IFdtCommunicationEvens.OnConnectRespones

 IFdtCommunicationEvents2:OnConnectResponse2

Disconnect Request: IFdtCommunication.DisconnectRequest

Response: IFdtCommunicationEvens.OnDisconnectRespones

AbortRequest Request/Response: IFdtCommunication.Abort

AbortIndication Event: IFdtCommunicationEvent.OnAbort

Transaction Request: IFdtCommunication.TransactionRequest

Response: IFdtCommunicationEvens:OnTransActionRespones

SequenceDefine Request/Response: IFdtCommunication.SequenceBegin

 IFdtCommunication.SequenceEnd

SequenceStart Request/Response: IFdtCommunication.SequenceStart

Not defined. Request/Response: IFdtFunctionBlockData.GetFBInstanceData

 IFdtFunctionBlockData.SelectFBInstance

The mapping of channel services related to sub-topology management is specified in Table
B.18.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 229 –

Table B.18 − Channel services related sub-topology management

IEC 62453-2 service IEC TR 62453-41 interface / method

ValidateAddChild Request/Response: IFdtChannelSubTopology.ValidateAddChild

ChildAdded Request/Response: IFdtChannelSubTopology.OnAddChild

ValidateRemoveChild Request/Response: IFdtChannelSubTopology.ValidateRemoveChild

ChildRemoved Request/Response: IFdtChannelSubTopology.OnRemoveChild

SetChildrenAddresses Request/Response: IFdtChannelSubTopology2.SetChildrenAddresses

The mapping of channel services related to functions is specified in Table B.19.

Table B.19 − Channel services related to functions

IEC 62453-2 service IEC TR 62453-41 interface / method

GetFunctions Request/Response: IFdtChannelFunctions.GetFunctions

Event IDtmEvents.OnChannelFunctionChanged

GetGuiInformation Request/Response: IFdtChannelActiveXInformation.GetActiveXGuid

 IFdtChannelActiveXInformation.GetActiveXProgId

The mapping of channel services related to scan is specified in Table B.20.

Table B.20 − Channel services related to scan

IEC 62453-2 service IEC TR 62453-41 interface / method

Scan Request: IFdtChannelScan.ScanRequest

 IFdtChannelSubTopology.ScanRequest

Response: IDtmScanEvents.OnScanResponse

 IDtmEvents::OnScanResponse()

Cancel: IFdtChannelScan.CancelAction.

B.7 Frame Application Services

The mapping of FA services related to general events is specified in Table B.21.

Table B.21 − FA services related to general events

IEC 62453-2 service IEC TR 62453-41 interface / method

OnErrorMessage Request/Response: IDtmEvents:OnErrorMessage

OnProgress Request/Response: IDtmEvents:OnProgress

OnOnlineStatusChanged Request/Response: IDtmEvents2:OnStateChanged

OnFunctionChanged Request/Response: IDtmEvents:OnFunctionChanged

 IDtmEvents.OnChannelFunctionChanged

Not defined. Request/Response: IDtmEvents:OnNavigation

Not defined. Request/Response: IDtmEvents:OnPrint

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 230 – IEC TR 62453-41:2016  IEC 2016

The mapping of FA services related to topology management is specified in Table B.22.

Table B.22 − FA services related to topology management

IEC 62453-2 service IEC TR 62453-41 interface / method

GetDtmInfoList Request/Response: IFdtTopology:GetDtmInfoList

 IFdtBtmTopology.GetBtmInfoList

CreateChild Request/Response: IFdtTopology.CreateChild

 IFdtBtmTopology.CreateChild

DeleteChild Request/Response: IFdtTopology.DeleteChild

 IFdtBtmTopology.DeleteChild

MoveChild Request/Response: IFdtTopology.MoveChild

 IFdtBtmTopology.MoveChild

GetChildNodes Request/Response: IFdtTopology:GetChildNodes

 IFdtBtmTopology.GetChildNodes

GetParentNodes Request/Response: IFdtTopology:GetParentNodes

 IFdtBtmTopology.GetParentNodes

GetDtm Request/Response: IFdtTopology:GetDtmForSystemTag

 IFdtBtmTopology.GetBtmForSystemTag

ReleaseDtm Request/Response: IFdtTopology:ReleaseDtmForSystemTag

 IFdtBtmTopology.ReleaseBtmForSystemTag

The mapping of FA services related to redundancy is specified in Table B.23.

Table B.23 − FA services related to redundancy

IEC 62453-2 service IEC TR 62453-41 interface / method

OnAddedRedundantChild Request/Response: IDtmRedundancyEvents:OnAddedRedundantChild

OnRemovedRedundantChild Request/Response: IDtmRedundancyEvents:OnRemovedRedundantChild

The mapping of FA services related to storage of DTM data is specified in Table B.24.

Table B.24 − FA services related to storage of DTM data

IEC 62453-2 service IEC TR 62453-41 interface / method

LoadInstanceData Request/Response: IStream.Read / IPropertyBag.Read

(DTM gets access to these Frame Application
interfaces/methods via IPersistStreamInit.Load or
IPersistPropertyBag.Load which are called at DTM start up).

SaveInstanceData Request/Response: IStream.Write / IPropertyBag.Write

(DTM gets access to these Frame Application
interfaces/methods on demand by calling
IFdtContainer.SaveRequest. The reference is then hand over
via IPersistStreamInit.Save or IPersistPropertyBag.Save).

GetPrivateDtmStorageInfo Request/Response: IFdtBulkData.GetProjectRelatedPath

 IFdtBulkData.GetInstanceRelatedPath

The mapping of FA services related to DTM data synchronization is specified in Table B.25.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 231 –

Table B.25 − FA services related to DTM data synchronization

IEC 62453-2 service IEC TR 62453-41 interface / method

LockInstanceData Request/Response: IFdtContainer.LockDataSet

UnlockInstanceData Request/Response: IFdtContainer.UnLockDataSet

InstanceDataChanged Request/Response: IDtmEvents.OnParameterChanged

The mapping of FA services related to presentation is specified in Table B.26.

Table B.26 − FA services related to presentation

IEC 62453-2 service IEC TR 62453-41 interface / method

OpenPresentationRequest Request/Response: IFdtActiveX.OpenAcitveXControlRequest

 IFdtActiveX2.OpenChannelAcitveXControlRequest

 IFdtActiveX2.OpenDialogAcitveXControlRequest

 IFdtActiveX2.OpenDialogChannelAcitveXControlRequest

 The Init methods in IDtmActiveXControl, IBtmActiveXControl,
and IFdtChannelActiveXControl are used to pass the InvokeID
that enables to close the Active by calling
IFdtActiveX.CloseAcitveXControlRequest or

 IFdtActiveX2.CloseChannelAcitveXControlRequest

ClosePresentationRequest Request/Response: IFdtActiveX.CloseAcitveXControlRequest

 IFdtActiveX2.CloseChannelAcitveXControlRequest

UserDialog Request/Response: IFdtDialog.UserDialog

The mapping of FA services related to audit trail is specified in Table B.27.

Table B.27 − FA services related to audit trail

IEC 62453-2 service IEC TR 62453-41 interface / method

RecordAuditTrailEvent Request/Response: IFdtAuditTrai.OnAuditTrailEvent

 IFdtAuditTrai.OnStartTransaction

 IFdtAuditTrai.OnEndTransAction

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 232 – IEC TR 62453-41:2016  IEC 2016

Annex C
(normative)

FDT XML schemas

C.1 General

The schemas defined here are technology-specific implementations of the data types as
defined in IEC 62453-2. The relation between data types and schema elements is shown by
using the same names.

In order to adapt to this specific implementation technology, small modifications have been
applied during mapping. These modifications (e.g. differences in naming) have been
documented in this Annex.

NOTE Implementers need to verify the correct implementation of data types according to this document.

C.2 FDTDataTypesSchema

The data type schema is used as a global FDT definition. Data types of this schema are
referenced via the prefix fdt: within the other schemas. Several data elements are defined as
attributes (see Table C.1) and as elements (see Table C.2) to support the XML features for
element and group definitions.

Table C.1 – Description of general XML attributes

Attribute Description

alarmType Identifier for the alarm type to show the association between high- and low
alarm and high-high- and low-low-alarm

applicationDomain Attribute defining the application domain, that applies to provided semanticId.
This can be a protocol-specific ID or an other FDT-defined application domain.

address Parameter addressing information. The format of the value for this parameter is
described for each communication protocol in the corresponding clause of the
specification.

For interoperability reasons this parameter is defined as optional in the XML
schema document. The protocol portion of the specification provides the
guidelines for address attribute. Most of the protocols specify that the DTM
expose the addressing information to the Frame Application.

binData Variable containing binary data

bitLength Length of a binary variable as bit count

bitPosition Position of a bit within a enumeration (0 based position)

boolValue Variable for configured static boolean data like alarm value

busCategory Unique identifier for a supported bus type like IEC 61784 CPF 3 or IEC 61784
CPF 9 according to the FDT-specific unique identifier

This attribute is an implementation of data type ‘fdt:protocolId’.

busCategoryName Human readable string for the bus type.

Examples are:
• DPV0 -> 'Profibus DP/V0'
• DPV1 -> 'Profibus DP/V1'
• HART -> ’HART’

The categories are defined in the protocol-specific parts of IEC 62453.

This attribute is an implementation of data type ‘fdt:protocolIdName’.

busRedundancy Number of redundant fieldbus interfaces

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 233 –

Attribute Description

byteArray Variable used to transfer binary data. Binary data can be transferred if the
attribute is defined as ‘bin.hex’. The value has to be set as string at the DOM.
This string has to be generated by the DTM developer, because the ‘bin.hex’
data type of XML shows the problem, that the last byte gets lost at the non
typed contents variable, if the value is set to the nodeTypedValue of the DOM

byteLength Number of bytes to describe data types like string

channelMode Type information enumeration for a channel

classificationDomainId Device classification domain group according to IEC 62390, Annex G. See
Table C.4.

classificationId Unique identifier for classification of a channel or device according to its
primary function. Primarily it is recommended to select the value of attribute
'classificationId' from Table C.4 and use the corresponding
'classificationDomainId' attribute from Table C.4. If suitable classification ID
does not exist in Table C.4, it is recommended to select the ID from Table C.3
and use it without 'classificationDomainId' attribute.See definition of data type
classificationId in IEC 62453-2.

communicationError Fieldbus protocol independent error occurred during communication. This kind
of error is used especially if an error occurred during nested communication.
The fieldbus-specific communication error is part of the fieldbus-specific XML
schema.

Communication errors detected by a communication component, e.g. a
Communication DTM, shall be handled within the XML document returned to
the child component

It is recommended that for all errors returned by a device as result of a fieldbus
transaction to be returned by protocol-specific response read or write response
elements, typically by using fieldbus-specific status and error attributes.

All errors detected by the Communication DTM shall be mapped to one of the
fdt:communicationError enumeration values (e.g., abort busy
invalidCommunicationReference noConnection noParallelServices
noPendingRequest unknownError timeout dtmSpecific notSupportedFeature)
and returned as a fdt:CommunciationError element to the child DTM.

A DTM shall be able to handle both types of error responses for a transaction
request sent to the parent component.

communicationType Indicates the type of the protocol support:
• ‘supported’: Bus protocol which can be provided by the DTM at a

channel.
• ‘required’: Bus protocol which will be expected by the DTM from the

parent DTM
NOTE The actual supported bus protocols depend on the configuration of the
DTM. This data type shows the possible supported, not the actual available
protocols.

dataSetID Unique identifier of the data set version

dataSetState State of an instance data set concerning modifications (refer to 7.14.1.1)

dataType Identifier for the data type of a transferred variable

dataTypeDescriptor Description of data type

date Date variable within an element

descriptor Human readable description within the context of an element

description A human readable description of the supported and current data set format.
Can be used to provide additional information to the user in case of partial
level of support

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 234 – IEC TR 62453-41:2016  IEC 2016

Attribute Description

deviceGraphicState List of possible device states used in the DeviceIcon and DeviceBitmap
element. Possible states are:

device: symbolic representation of the device

diagnostic: symbolic representation of device if there is online diagnosis
available

oem: symbol representation of device in special operating modes (e.g. OEM
service)

It is recommmended that the Frame Application displays the correct picture
according to protocol-specific rules.

deviceTypeId Unique identifier for a device type within the name space of the fieldbus
specification

deviceTypeInformation Additional device type information supplied with a device. For example a
IEC 61784 CPF 3 device has to provide its GSD information as human
readable string at this attribute.

The GSD information shall be provided based on the current locale according
to the usage of IDtm::SetLanguage().

NOTE The GSD information is accessible via:

IDtmParameter::GetParameters()

IDtmInformation::GetInformation()

deviceTypeInformationPath Path to the file containing the information which is provided via the attribute
‘deviceTypeInformation’.

It is recommended to use this attribute for providing additional protocol-specific
descriptions of the device type. The use of this attribute is specified in the
protocol-specific annex.

deviceTypeVariant Manufacturer-specific device type variant definition string

deviceTypeVariantInfo Contains additional information for manufacturer-specific device type variant
definition.

display Carries an human readable display string for tasks like documentation

displayFormat Describes the display format for a display attribute (e.g. “%3.2f “ for a float
value)

documentClassification Specifies the subject of the document

documentLanguageId Identifier for the language of the document. The language-id is defined as a
Windows® locale identifier (LCID)

dtmDevTypeID dtmDevTypeID is a DTM-specific unique identifier of the software related to the
device type.

For the same device type its value remains unchanged although some
identification information in DtmDeviceType element is updated.

This can be a result of DTM update.

The same dtmDevTypeID value shall always be related to the same device as
in the previous DTM version (e.g. to provide backward compatibility).

It is strongly recommended to provide this attribute!

dtmDevTypeIDVersion Version number of the dtmDevTypeID. It is also used to indicate that the
information related to DtmDeviceType is changed. Frame Application can use
this information e.g. to update DTM related information in DTM library. It is
strongly recommended to provide this attribute!

An example:

When a DTM is DD based, an upgrade of DD will cause the change of
dtmDevTypeIDVersion without changing the dtmDevTypeID.

dtmStateMachine current state of DTM state machine

errorCode Status information according to the IEC 61784 CPF 3 specification

file Contains a document or executable file with a absolute path.

help Human readable help string for a document

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 235 –

Attribute Description

Id Unique identifier for an element. This identifier is used within collections for the
direct access of elements. This id shall be unique within the namespace of a
device instance. The corresponding reference within the XML schemas Is the
attribute ‘idref’.

Idref Reference to an element specified by the attribute ‘id’. The identifier is used
within collections for the direct access of elements.

Index Index within an enumerator

label Human readable label for a document

levelOfSupport Provides an indication about the level of support of the supported data set
version.

full – the data set is fully supported

partial – some of the information in the data set cannot be used in the upgrade
procedure. Additional information can be provided in the description attribute.
Can be used to warn the user that some values can be lost.

languageId Identifier for a supported language or the language a DTM can interact in
(according to the Microsoft® standard).

See also IDtm::SetLanguage()

manufacturerId Unique identifier for a manufacturer within the name space of the fieldbus
specification

modifiedInDevice Flag to provide more information about current state of the instance data set.
Although this flag is an optional attribute, usage of the flag is strongly
recommended.

TRUE, indicates that parameters have been changed in the device but not in
instance data set (E.g.: see use case Online parameterization,
IDtmSingleDeviceDataAccess interface definition)

 ‘modifiedInDevice’ flag shall be set only once in case the data in the device
has been changed.

In case of successful Upload or Download of complete data set,
‘modifiedInDevice’ flag shall be reset (set to FALSE).

Data in the device can also be modified directly by a tool out of the scope of
the FDT. In this case, it is recommended not to set the flag ‘modifiedInDevice’.

Data set shall be locked before an application is started, which may need to
change the flag “modifiedInDevice” (the flag ‘modifiedInDevice is part of the
instance data set and can not be changed if the data set is not locked)

name Human readable name within the context of an element

nodeId DTM-specific node identifier. Can be used to speed up the access to a node

number Number variable like float, integer or other numeric data types

orderCode Order code of the device variant.

parameters Contains the parameters to be passed to the application, if the file attribute
specifies an executable file.

path Path to the icon for a device

physicalLayer CATID for description of a physical layer of a fieldbus

physicalLayerName human readable description for the physical layer

readAccess Specifies whether the value can be read from a device

reference Reference to a variable of a structure

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 236 – IEC TR 62453-41:2016  IEC 2016

Attribute Description

semanticId Semantic identifier for an element. This identifier shall be unique at least within
the context of an element. By using this attribute, for example a Frame
Application is able to get the information regarding the meaning and usage of a
single data structure. The definition regarding the identifier is protocol-specific
and described in protocol-specific annexes

Furthermore the following protocol independent semanticIds are defined to
cover the network information:

FDT.slaveAddress

FDT.busAddress

FDT.busMasterConfigurationPart

A Parameter with one of these semanticId shall be the same parameter as the
corresponding XML attribute (slaveAddress, busAddress or
busMasterConfigurationPart) within in the DTMParameterSchema represents.

signalType Specifies a signal as input or output

staticValue Variable for configured static Data like an alarm value.

statusFlag Identifier for the current status of a device or module

storageState State of an instance data set concerning the persistent state (refer to 7.14.2
and 7.14.1.2)

string String variable within an element

subDeviceType Manufacturer-specific unique identifier for a device type within the name space
of the device type id. This parameter shall be passed to the DTM during
initialization via IDtm::Init()to advise a pre configuration for the requested sub
type. For example, the same transmitter can be pre configured for Level or flow
measuring.

substituteType Type of an substitute value

systemGuiLabel Unique human readable identifier of the DTM instance in the context of the
Frame Application

tag Unique identifier for a device, module or channel

time Time variable within an element

url Contains a URL to a document in the Web

vendor Human readable description of the vendor of component

version Human readable description of the version of component like “1.0”

writeAccess Specifies whether the value can be written into a device

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 237 –

Table C.2 – Description of general XML elements

Tag Description

Alarm Description of an alarm

AlarmEnumerationEntry Alarm enumeration entry

AlarmEnumerationEntries Collection of alarm enumeration entries

Alarms Collection of alarms

BinaryVariable Element containing binary data

BitEnumeratorEntries Collection of EnumerationEntry

BitEnumeratorVariable Current EnumeratorEntry and the collection of possible EnumeratorEntries

BitVariable Selected element of an enumeration

BoolValue Variable for configured static boolean data

BusCategory Description of busCategory

BusCategories Collection of BusCategory

BusRedundancy Number of redundant fieldbus interfaces

ChannelMode Type information element for a channel

ChannelModes List of ChannelMode elements

ChannelInformation Type information for a FDT channel. This element is recommended within a
document returned by a IDtmParameter::GetParameters()call. It is expected
that the BusCategories element contains the list of supported fieldbus
protocols of this channel.

ChannelReference Reference to an object identified by its id

ChannelReferences Collection of references

ClassificationId Classification Id. See defintion of data type ClassificationId in IEC 62453-2

ClassificationIds Collection of ClassificationId elements

CommunicationData Variable used to transfer binary communication data

CommunicationError Description of a fieldbus protocol independent error occurred during nested
communication with error code, the tag of the Communication Channel’s device
and optional error description

CommunicationTypeEntry Enumeration element for the communication type.

Current A current version of the data set used for saving the data.

DataSetFormats Data formats of the persisted data used and supported by the DTM

Deadband Deadband is the amount of value changes that triggers for example new trend
values.

DeviceIcon Icon for a device

DeviceTypeVariant Contains manufactuer-specific device type variant information.

A device type variant is a property of the physical device that has no influence
to the software (i.e. flange material, Ex certificate …). However, some Frame
Applications will use this information for documentation purposes.

The DeviceVariant element can occur under DeviceVariants element within
context of DTMInformationSchema XMLs or directly under DtmDeviceType
elements in context of DTMInitInstanceSchema or DTMParameterSchema
XMLs.

DeviceTypeVariants Collection of DeviceVariant elements.

It is expected that the DeviceVariants element only is used within context of
DTMInformationSchema documents.

Display Display variable

DtmDeviceType Description of a device type

DtmVariable Variable description with name, value, range, etc.

DtmVariables Collection of DTM variables

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 238 – IEC TR 62453-41:2016  IEC 2016

Tag Description

DtmVariableReference Reference to a DTM variable

EnumeratorEntries Enumeration element

EnumeratorEntry Element of an enumeration

EnumeratorVariable Current EnumeratorEntry and the collection of possible EnumeratorEntries

LanguageId Contains the languageId (refer to languageId)

LowerRange Defintion of a lower range element

LowerRawValue A numeric entry which reflects the actual value, for example transferred via
IEC 61784 CPF 3. The value is mapped to the related range
(LowerRangeValue).

For example, if a IEC 61784 CPF 3 device maps a range from 10 mbar to
100 mbar to an integer of value 1 024 to 4 096 the ‘LowerRawValue’ contains
1 024, the ‘UpperRawValue’ contains 4 096.

NumberData Number variable like float, integer or other numeric data types

PhysicalLayer Unique identifier for a physical layer of a fieldbus like IEC 61784 CPF 3 (PA)

Range Describes the valid range of a process variable

Ranges Collection of ranges

SemanticInformation The element provides semantic information for a data object. For each object
at least one <SemanticInformation> element with an FDT-defined protocol-
specific semanticId shall be provided. The DTM shall provide a
<SemanticInformation> element for all supported fieldbus protocol of the DTM
instance.

StaticValue Variable for configured static data like an alarm value.

StatusInformation Current status information of a device or module

StringData String variable

StructuredElement Variable as display value or as reference to a variable with data length
information

StructuredElements Collection of structured elements

StructuredVariable Describes a binary value and is structure information

SubstituteValue Describes a substitute value which is used in combination of the behavior of
disturbed channel values

Supported A list of the supported data set that can be upgraded by the DTM

SupportedLanguages Collection of language ids

TimeData Element of a time date value

Unit Current unit and the collection of possible units of a process variable

UpperRange Definition of an upper range element

UpperRawValue A numeric entry which reflects the real via, for example IEC 61784 CPF 3
transferred value. The value is mapped to the related range
(UpperRangeValue).

For example, if a IEC 61784 CPF 9 device maps a range from 10 mbar to
100 mbar to an integer of value 1 024 to 4 096 the ‘UpperRawValue’ contains
4 096, the ‘UpperRange’ contains 4 096.

Value Contains the display string for a variable or the variable itself

Variable Selected element of an enumeration

Variant Variable with data type and display format

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 239 –

Tag Description

VersionInformation Description of the version of a component where used.

For example:

This element provides the version information of the DTM when used in
DtmInfo.

It is recommended to use this element to describe the physical device
information in the DtmDeviceType. It is expected that this information
correlates to information provided by SW revision or HW revision in
IDtmInformation2::GetDeviceIdentificationInformation().

DtmDocument Definition of a document, which is provided by a DTM and displayed by the
Frame Application.

DocumentFile Defines a file document

DocumentExe Defines a executable, which is used to show DTM documents

DocumentUrl Defines a URL to a document in the Web

Implementation hint:

The file, url and executable documents can be implemented by using the
ShellExecute() function.

DtmDocuments List of DTM documents. This tag allows a DTM to publish his documents.

DeviceBitmap Bitmap for a device in BMP format (70*40 pixels (width*height), 16 colors)

Tables C.3 and C.4 provide the FDT classification ID (see Table C.3 for a list of valid
classification IDs and Table C.4 for a mapping to IEC 60947).

Table C.3 – Device classification ID

classificationID

flow

level

pressure

temperature

valve

positioner

actuator

nc_rc

encoder

speedDrive

hmi

analogInput

analogOuput

digitalInput

digitalOutput

electrochemicalAnalyser

dtmSpecific

universal

analyser

remoteIO

analogCombinedIO

digitalCombinedIO

recorder

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 240 – IEC TR 62453-41:2016  IEC 2016

classificationID

controller

angle

limitSwitch

converter

motor

Table C.4 defines the mapping between IEC TR 62390 device classification and the FDT
classification attributes.

Table C.4 – Device classification according to IEC TR 62390:2005, Annex G

Domain () Subdomain

classificationDomainId IEC domain group name classificationId

powerDistribution Power distribution switchboard

 circuitBreaker

 powerMonitoring

 distributionPanel

motionControl Motion control contactor

 protectionStarter

 softStarter

 drive

 axisControl

 motorControlCenter

 motorMonitoring

 positioner

 controlValve

measurement Detection, measurement electrical

 density

 flow

 level

 quality

 pressure

 speedOrRotaryFrequency

 radiation

 temperature

 weightMass

 distanceOrPositionOrPresence

operatorInterface Dialogue / operator interfaces pushButton

 joystick

 keypad

 pilotLight

 stackLight

 display

 combinedButtonsAndLights

 operatorStation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 241 –

Domain () Subdomain

classificationDomainId IEC domain group name classificationId

modulesAndControllers Logic / universal I/O modules
and controllers

generalInput

 generalOuput

 combinedInputOuput

 relay

 timer

 scanner

 programmableController

<Schema name="FDTDataTypesSchema" xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-
microsoft-com:datatypes">
 <!--Definition of Attributes-->
 <AttributeType name="alarmType" dt:type="enumeration" dt:values="highHighAlarm highAlarm lowLowAlarm
lowAlarm"/>
 <AttributeType name="binData" dt:type="bin.hex"/>
 <AttributeType name="bitLength" dt:type="ui4"/>
 <AttributeType name="byteArray" dt:type="bin.hex"/>
 <AttributeType name="byteLength" dt:type="ui4"/>
 <AttributeType name="classificationId" dt:type="enumeration" dt:values="flow level pressure temperature valve
positioner actuator nc_rc encoder speedDrive hmi analogInput analogOutput digitalInput digitalOutput
electrochemicalAnalyser dtmSpecific universal analyser remoteIO analogCombinedIO digitalCombinedIO recorder
controller angle limitSwitch converter motor switchboard circuitBreaker powerMonitoring distributionPanel contactor
protectionStarter softStarter drive axisControl motorControlCenter controlValve electrical density quality
speedOrRotaryFrequency radiation weightMass distanceOrPositionPresence pushButton joystick keypad pilotLight
stackLight display combinedButtonsAndLights operatorStation generalInput generalOutput combinedInputOutput
relay timer scanner programmableController"/>
 <AttributeType name="communicationError" dt:type="enumeration" dt:values="abort busy
invalidCommunicationReference noConnection noParallelServices noPendingRequest unknownError timeout
dtmSpecific notSupportedFeature sequenceTimeExpired"/>
 <AttributeType name="dataSetState" dt:type="enumeration" dt:values="default validModified invalidModified
allDataLoaded"/>
 <AttributeType name="dataType" dt:type="enumeration" dt:values="byte float double int unsigned enumerator
bitEnumerator index ascii packedAscii password bitString hexString date time dateAndTime duration binary
structured dtmSpecific"/>
 <AttributeType name="dataTypeDescriptor" dt:type="string"/>
 <AttributeType name="date" dt:type="date"/>
 <AttributeType name="descriptor" dt:type="string"/>
 <AttributeType name="display" dt:type="string"/>
 <AttributeType name="displayFormat" dt:type="string"/>
 <AttributeType name="errorCode" dt:type="bin.hex"/>
 <AttributeType name="id" dt:type="string"/>
 <AttributeType name="idref" dt:type="string"/>
 <AttributeType name="index" dt:type="ui4"/>
 <AttributeType name="name" dt:type="string"/>
 <AttributeType name="number" dt:type="number"/>
 <AttributeType name="reference" dt:type="string"/>
 <AttributeType name="signalType" dt:type="enumeration" dt:values="input output "/>
 <AttributeType name="staticValue" dt:type="number"/>
 <AttributeType name="statusFlag" dt:type="enumeration" dt:values="ok warning error invalid"/>
 <AttributeType name="storageState" dt:type="enumeration" dt:values="persistent transient"/>
 <AttributeType name="string" dt:type="string"/>
 <AttributeType name="tag" dt:type="string"/>
 <AttributeType name="time" dt:type="dateTime"/>
 <AttributeType name="vendor" dt:type="string"/>
 <AttributeType name="version" dt:type="string"/>
 <AttributeType name="nodeId" dt:type="id"/>
 <AttributeType name="readAccess" dt:type="boolean" default="1"/>
 <AttributeType name="writeAccess" dt:type="boolean" default="0"/>
 <AttributeType name="deviceTypeId" dt:type="ui4"/>
 <AttributeType name="subDeviceType" dt:type="string"/>
 <AttributeType name="deviceTypeInformation" dt:type="string"/>
 <AttributeType name="languageId" dt:type="ui4"/>
 <AttributeType name="manufacturerId" dt:type="ui4"/>
 <AttributeType name="busCategory" dt:type="uuid"/>
 <AttributeType name="substituteType" dt:type="enumeration" dt:values="lastValue lastValidValue upperRange
lowerRange"/>
 <AttributeType name="path" dt:type="uri"/>
 <AttributeType name="communicationType" dt:type="enumeration" dt:values="supported required"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 242 – IEC TR 62453-41:2016  IEC 2016

 <AttributeType name="busCategoryName" dt:type="string"/>
 <AttributeType name="help" dt:type="string"/>
 <AttributeType name="label" dt:type="string"/>
 <AttributeType name="file" dt:type="uri"/>
 <AttributeType name="url" dt:type="uri"/>
 <AttributeType name="parameters" dt:type="string"/>
 <AttributeType name="documentLanguageId" dt:type="ui4"/>
 <AttributeType name="documentClassification" dt:type="enumeration" dt:values="help technicalDocumentation
orderingInformation miscellaneous"/>
 <AttributeType name="deviceGraphicState" dt:type="enumeration" dt:values="device diagnosis oem"/>
 <AttributeType name="deviceTypeInformationPath" dt:type="uri"/>
 <AttributeType name="systemGuiLabel" dt:type="string"/>
 <AttributeType name="busAddress" dt:type="string"/>
 <AttributeType name="systemTag" dt:type="string"/>
 <AttributeType name="channelMode" dt:type="enumeration" dt:values="communication moduleSlot
processValue"/>
 <AttributeType name="physicalLayerName" dt:type="string"/>
 <AttributeType name="physicalLayer" dt:type="uuid"/>
 <AttributeType name="busRedundancy" dt:type="ui4"/>
 <AttributeType name="modifiedInDevice" dt:type="boolean" default="0"/>
 <AttributeType name="dtmStateMachine" dt:type="enumeration" dt:values="communicationSet goingOnline
goingOffline online"/>
 <AttributeType name="orderCode" dt:type="string"/>
 <AttributeType name="deviceTypeVariant" dt:type="string"/>
 <AttributeType name="deviceTypeVariantInfo" dt:type="string"/>
 <AttributeType name="bitPosition" dt:type="ui4"/>
 <AttributeType name="boolValue" dt:type="boolean"/>
 <AttributeType name="classificationDomainId" dt:type="enumeration" dt:values="powerDistribution
motionControl measurement operatorInterface modulesAndControllers"/>
 <AttributeType name="dataSetID" dt:type="uuid"/>
 <AttributeType name="description" dt:type="string"/>
 <AttributeType name="levelOfSupport" dt:type="enumeration" dt:values="full partial" />
 <AttributeType name="semanticId" dt:type="string"/>
 <AttributeType name="address" dt:type="string"/>
 <AttributeType name="applicationDomain" dt:type="string"/>
 <AttributeType name="dtmDevTypeID" dt:type="uuid"/>
 <AttributeType name="dtmDevTypeIDVersion" dt:type="ui4"/>

 <!--Definition of Elements-->
 <ElementType name="SemanticInformation" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="applicationDomain" required="yes"/>
 <attribute type="semanticId" required="yes"/>
 <attribute type="address" required="no"/>
 </ElementType>
 <ElementType name="LowerRawValue" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="number" required="yes"/>
 </ElementType>
 <ElementType name="UpperRawValue" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="number" required="yes"/>
 </ElementType>
 <ElementType name="Current" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="dataSetID" required="yes"/>
 <attribute type="description" required="no"/>
 </ElementType>
 <ElementType name="Supported" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="dataSetID" required="yes"/>
 <attribute type="levelOfSupport" required="no" default="partial"/>
 <attribute type="description" required="no"/>
 </ElementType>
 <ElementType name="DataSetFormats" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="Current" minOccurs="1" maxOccurs="1"/>
 <element type="Supported" minOccurs="0" maxOccurs="*"/>
 </ElementType>
 <ElementType name=" ClassificationId" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="classificationId" required="yes"/>
 </ElementType>
 <ElementType name=" ClassificationIds" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="classificationDomainId" required="no"/>
 <element type="ClassificationId" minOccurs="1" maxOccurs="*"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 243 –

 </ElementType>
 <ElementType name="BoolValue" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="boolValue" required="no"/>
 </ElementType>
 <ElementType name="Deadband" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="number" required="yes"/>
 </ElementType>
 <ElementType name="AlarmEnumerationEntry" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="bitPosition" required="yes"/>
 <attribute type="name" required="yes"/>
 <attribute type="boolValue" required="yes"/>
 <attribute type="descriptor" required="no"/>
 </ElementType>
 <ElementType name="AlarmEnumerationEntries" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="AlarmEnumerationEntry" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <ElementType name="DeviceTypeVariant" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="deviceTypeVariant" required="yes"/>
 <attribute type="deviceTypeVariantInfo" required="no"/>
 <attribute type="orderCode" required="no"/>
 </ElementType>
 <ElementType name="DeviceTypeVariants" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="DeviceTypeVariant" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <ElementType name="BusRedundancy " content="empty" model="closed">
 <attribute type=" busRedundancy " required="yes"/>
 </ElementType>
 <ElementType name="ChannelMode" content="empty" model="closed" >
 <attribute required="no" type="nodeId"/>
 <attribute required="yes" type="channelMode"/>
 </ElementType>
 <ElementType name="ChannelModes" content="eltOnly" model="closed" >
 <attribute required="no" type="nodeId"/>
 <element type="ChannelMode" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <ElementType name="ChannelInformation" content="eltOnly" model="closed" >
 <attribute required="no" type="nodeId"/>
 <element type="BusCategories" minOccurs="1" maxOccurs="1"/>
 <element maxOccurs="1" minOccurs="1" type=" ChannelModes"/>
 </ElementType>
 <ElementType name="CommunicationTypeEntry" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="communicationType" required="yes"/>
 </ElementType>
 <ElementType name="DeviceIcon" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="deviceGraphicState" required="no"/>
 <attribute type="path" required="yes"/>
 </ElementType>
 <ElementType name="DeviceBitmap" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="deviceGraphicState" required="yes"/>
 <attribute type="path" required="yes"/>
 </ElementType>
 <ElementType name="SubstituteType" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="substituteType" required="yes"/>
 </ElementType>
 <ElementType name="LanguageId" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="languageId" required="yes"/>
 </ElementType>
 <ElementType name="SupportedLanguages" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="LanguageId" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <ElementType name="PhysicalLayer" content="empty" model="closed">
 <attribute type="physicalLayer" required="yes"/>
 <attribute type="physicalLayerName" required="no"/>
 </ElementType>
 <ElementType name="BusCategory" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 244 – IEC TR 62453-41:2016  IEC 2016

 <attribute type="busCategory" required="yes"/>
 <attribute type="busCategoryName" required="no"/>
 <element type="CommunicationTypeEntry" minOccurs="0" maxOccurs="*"/>
 <element type="PhysicalLayer" minOccurs="0" maxOccurs="*"/>
 </ElementType>
 <ElementType name="BusCategories" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="BusCategory" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <!--Definition of a document entry, which specifies a path to a DTM provided document-->
 <ElementType name="DocumentFile" content="empty" model="closed">
 <attribute type="file" required="yes"/>
 </ElementType>
 <ElementType name="DocumentUrl" content="empty" model="closed">
 <attribute type="url" required="yes"/>
 </ElementType>
 <ElementType name="DocumentExe" content="empty" model="closed">
 <attribute type="file" required="yes"/>
 <attribute type="parameters" required="no"/>
 </ElementType>
 <ElementType name="DtmDocument" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="label" required="yes"/>
 <attribute type="help" required="no"/>
 <attribute type="documentClassification" required="yes"/>
 <attribute type="documentLanguageId" required="no"/>
 <group order="one" minOccurs="1" maxOccurs="1">
 <element type="DocumentFile" minOccurs="0" maxOccurs="1"/>
 <element type="DocumentUrl" minOccurs="0" maxOccurs="1"/>
 <element type="DocumentExe" minOccurs="0" maxOccurs="1"/>
 </group>
 </ElementType>

 <ElementType name="DtmDocuments" content="mixed" model="closed">
 <attribute type="nodeId" required="no"/>
 <group order="many">
 <element type="DtmDocument" minOccurs="1" maxOccurs="*"/>
 </group>
 </ElementType>

 <ElementType name="DtmDeviceType" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="readAccess" required="no"/>
 <attribute type="writeAccess" required="no"/>
 <attribute type="manufacturerId" required="no"/>
 <attribute type="deviceTypeId" required="no"/>
 <attribute type="subDeviceType" required="no"/>
 <attribute type="deviceTypeInformation" required="no"/>
 <attribute type="deviceTypeInformationPath" required="no"/>
 <attribute type="classificationId" required="no"/>
 <attribute type="dtmDevTypeID" required="no"/>
 <attribute type="dtmDevTypeIDVersion" required="no"/>
 <element type="VersionInformation" minOccurs="1" maxOccurs="1"/>
 <element type="SupportedLanguages" minOccurs="1" maxOccurs="1"/>
 <element type="BusCategories" minOccurs="0" maxOccurs="1"/>
 <element type="DeviceIcon" minOccurs="0" maxOccurs="*"/>
 <element type="DtmDocuments" minOccurs="0" maxOccurs="1"/>
 <element type="DeviceBitmap" minOccurs="0" maxOccurs="*"/>
 <element type="ClassificationIds" minOccurs="0" maxOccurs="1"/>
 <element type="DataSetFormats" minOccurs="0" maxOccurs="1"/>
 <group order="one" minOccurs="0" maxOccurs="1">
 <element type="DeviceTypeVariants"/>
 <element type="DeviceTypeVariant"/>
 </group>
 </ElementType>
 <!-- Definition of Version Information -->
 <ElementType name="VersionInformation" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="readAccess" required="no"/>
 <attribute type="writeAccess" required="no"/>
 <attribute type="name" required="yes"/>
 <attribute type="vendor" required="no"/>
 <attribute type="version" required="no"/>
 <attribute type="date" required="no"/>
 <attribute type="descriptor" required="no"/>
 </ElementType>
 <ElementType name="NumberData" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 245 –

 <attribute type="number" required="yes"/>
 </ElementType>
 <ElementType name="StringData" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="string" required="yes"/>
 </ElementType>
 <ElementType name="TimeData" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="time" required="yes"/>
 </ElementType>
 <!-- Definition of Binary Variable -->
 <ElementType name="BinaryVariable" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="binData" required="yes"/>
 </ElementType>
 <!-- Definition of Enumerator Variable -->
 <ElementType name="EnumeratorEntry" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="index" required="yes"/>
 <attribute type="name" required="yes"/>
 <attribute type="descriptor" required="no"/>
 </ElementType>
 <ElementType name="Variable" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="EnumeratorEntry" minOccurs="1" maxOccurs="1"/>
 </ElementType>
 <ElementType name="EnumeratorEntries" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="EnumeratorEntry" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <ElementType name="BitEnumeratorEntries" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="EnumeratorEntry" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <ElementType name="EnumeratorVariable" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="Variable" minOccurs="1" maxOccurs="1"/>
 <element type="EnumeratorEntries" minOccurs="0" maxOccurs="1"/>
 </ElementType>
 <!-- Definition of Bit Enumerator Variable -->
 <ElementType name="BitVariable" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="EnumeratorEntry" minOccurs="0" maxOccurs="*"/>
 </ElementType>
 <ElementType name="BitEnumeratorVariable" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="BitVariable" minOccurs="1" maxOccurs="1"/>
 <element type="BitEnumeratorEntries" minOccurs="0" maxOccurs="1"/>
 </ElementType>
 <!-- Definition of Unit -->
 <ElementType name="Unit" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="readAccess" required="no"/>
 <attribute type="writeAccess" required="no"/>
 <group order="one" minOccurs="0" maxOccurs="1">
 <element type="EnumeratorVariable"/>
 <element type="ChannelReference"/>
 </group>
 </ElementType>
 <!-- Definition of LowerRange -->
 <ElementType name="LowerRange" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <group order="one" minOccurs="0" maxOccurs="1">
 <element type="NumberData"/>
 <element type="StringData"/>
 <element type="TimeData"/>
 <element type="ChannelReference"/>
 </group>
 </ElementType>
 <!-- Definition of UpperRange -->
 <ElementType name="UpperRange" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <group order="one" minOccurs="0" maxOccurs="1">
 <element type="NumberData"/>
 <element type="StringData"/>
 <element type="TimeData"/>
 <element type="ChannelReference"/>
 </group>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 246 – IEC TR 62453-41:2016  IEC 2016

 </ElementType>
 <!-- Definition of Ranges -->
 <ElementType name="Range" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="LowerRange" minOccurs="1" maxOccurs="1"/>
 <element type="UpperRange" minOccurs="1" maxOccurs="1"/>
 <element type="Unit" minOccurs="0" maxOccurs="1"/>
 <element type="LowerRawValue" minOccurs="0" maxOccurs="1"/>
 <element type=" UpperRawValue " minOccurs="0" maxOccurs="1"/>
 </ElementType>
 <ElementType name="Ranges" content="eltOnly" model="closed">
 <attribute type="readAccess" required="no"/>
 <attribute type="writeAccess" required="no"/>
 <attribute type="nodeId" required="no"/>
 <element type="Range" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <!-- Definition of Channel References -->
 <ElementType name="ChannelReference" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="idref" required="yes"/>
 <element type="ChannelInformation" maxOccurs="1" minOccurs="0" />
 </ElementType>
 <ElementType name="ChannelReferences" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="ChannelReference" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <!-- Definition of Alarms -->
 <ElementType name="StaticValue" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="staticValue" required="yes"/>
 </ElementType>
 <ElementType name="Alarm" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="alarmType" required="yes"/>
 <element type="Unit" minOccurs="0" maxOccurs="1"/>
 <group order="one" minOccurs="0" maxOccurs="1">
 <element type="StaticValue"/>
 <element type="NumberData"/>
 <element type="AlarmEnumerationEntries"/>
 <element type="ChannelReferences"/>
 </group>
 </ElementType>
 <ElementType name="Alarms" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="Alarm" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <!-- DtmVariable -->
 <ElementType name="Display" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="string" required="yes"/>
 </ElementType>
 <ElementType name="DtmVariableReference" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="reference" required="yes"/>
 </ElementType>
 <!-- StructuredVariable -->
 <ElementType name="StructuredElement" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="bitLength" required="yes"/>
 <group order="one" minOccurs="1" maxOccurs="1">
 <element type="Display"/>
 <element type="DtmVariableReference"/>
 </group>
 </ElementType>
 <ElementType name="StructuredElements" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="StructuredElement" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <ElementType name="StructuredVariable" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="BinaryVariable" minOccurs="1" maxOccurs="1"/>
 <element type="StructuredElements" minOccurs="1" maxOccurs="1"/>
 <attribute type="dataTypeDescriptor" required="no"/>
 </ElementType>
 <ElementType name="Variant" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="dataType" required="yes"/>
 <attribute type="byteLength" required="no"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 247 –

 <attribute type="displayFormat" required="no"/>
 <group order="one" minOccurs="1" maxOccurs="1">
 <element type="StringData"/>
 <!-- for types: ascii, packedAscii, password, bitString, hexString -->
 <element type="NumberData"/>
 <!-- for types: float, double, int, unsigned, index -->
 <element type="TimeData"/>
 <!-- for types: date, time, dateAndTime, duration -->
 <element type="EnumeratorVariable"/>
 <!-- for type: enumerator -->
 <element type="BitEnumeratorVariable"/>
 <!-- for type: bitEnumerator -->
 <element type="BinaryVariable"/>
 <!-- for types: binary, dtmSpecific -->
 <element type="StructuredVariable"/>
 <!-- for type: structured -->
 </group>
 </ElementType>
 <!-- SubstituteValue -->
 <ElementType name="SubstituteValue" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <group order="one" minOccurs="1" maxOccurs="1">
 <element type="SubstituteType"/>
 <element type="Variant"/>
 </group>
 </ElementType>
 <!-- Value -->
 <ElementType name="Value" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="readAccess" required="no"/>
 <attribute type="writeAccess" required="no"/>
 <group order="one" minOccurs="1" maxOccurs="1">
 <element type="Display"/>
 <element type="Variant"/>
 </group>
 </ElementType>
 <!-- DTMVariableStatus -->
 <ElementType name="StatusInformation" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="readAccess" required="no"/>
 <attribute type="writeAccess" required="no"/>
 <element type="EnumeratorEntry" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <!-- DtmVariable -->
 <ElementType name="DtmVariable" content="eltOnly" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="SemanticInformation" minOccurs="0" maxOccurs="*"/>
 <attribute type="name" required="yes"/>
 <attribute type="descriptor" required="no"/>
 <element type="Value" minOccurs="1" maxOccurs="1"/>
 <element type="Unit" minOccurs="0" maxOccurs="1"/>
 <element type="Ranges" minOccurs="0" maxOccurs="1"/>
 <attribute type="statusFlag" required="no"/>
 <element type="StatusInformation" minOccurs="0" maxOccurs="1"/>
 </ElementType>
 <ElementType name="DtmVariables" content="mixed" model="closed">
 <attribute type="nodeId" required="no"/>
 <element type="SemanticInformation" minOccurs="0" maxOccurs="*"/>
 <attribute type="name" required="yes"/>
 <attribute type="descriptor" required="no"/>
 <group order="many">
 <element type="DtmVariables" minOccurs="0" maxOccurs="*"/>
 <element type="DtmVariable" minOccurs="0" maxOccurs="*"/>
 </group>
 </ElementType>
 <!-- Communication Data -->
 <ElementType name="CommunicationData" content="empty" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="byteArray" required="yes"/>
 </ElementType>
 <!-- Definition of FDT specic communication errors for nested communication-->
 <ElementType name="CommunicationError" content="mixed" model="closed">
 <attribute type="nodeId" required="no"/>
 <attribute type="communicationError" required="yes"/>
 <attribute type="tag" required="yes"/>
 <attribute type="errorCode" required="no"/>
 <attribute type="descriptor" required="no"/>
 </ElementType>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 248 – IEC TR 62453-41:2016  IEC 2016

</Schema>

C.3 FDTApplicationIdSchema

The application id schema is used as a global FDT definition (see Table C.5 and Table C.6).
The application id of this schema is reference via the prefix fdtappid: within the other
schemas. The appearance and the functionality of a DTM user interface is controlled by the
entry of the element applicationId, functionId, and operationPhase.

Table C.5 – Description of applicationId attribute

Attribute Description

applicationId Identification of the current application context (The enumeration refers to the
DTM Realization Elements)

Table C.6 – Description of applicationId elements

Tag Description

ApplicationId FDT global application id coded as an enumeration

FDTApplicationIds Collection of application id

FDT Root tag

<Schema name="FDTApplicationIdSchema" xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-
microsoft-com:datatypes" xmlns:fdt="x-schema:FDTDataTypesSchema.xml">
 <!--Definition of Attributes-->
 <AttributeType name="applicationId" dt:type="enumeration" dt:values="fdtAdjustSetValue fdtAssetManagement
fdtAuditTrail fdtConfiguration fdtDiagnosis fdtForce fdtManagement fdtObserve fdtOfflineCompare
fdtOfflineParameterize fdtOnlineCompare fdtOnlineParameterize fdtIdentify fdtCalibration fdtMainOperation
fdtNetworkManagement"/>
 <!-- ApplicationId specifies the standard user interface called -->
 <ElementType name="ApplicationId" content="empty" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="applicationId" required="yes"/>
 </ElementType>
 <!-- FDTApplicationIds: a list of application -->
 <ElementType name="FDTApplicationIds" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <element type="ApplicationId" minOccurs="0" maxOccurs="*"/>
 </ElementType>
 <!-- main FDT element -->
 <ElementType name="FDT" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <element type="FDTApplicationIds" minOccurs="1" maxOccurs="1"/>
 </ElementType>
</Schema>

Example:

See usage within DTMFunctionsSchema

C.4 FDTUserInformationSchema

Used at: IDtm::Config()

The user information schema is used as a global FDT definition (see Table C.7 and
Table C.8). It informs the DTM during initialization about the role and the rights of the current
user.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 249 –

Table C.7 – Description of user information attributes

Attribute Description

administrator Flag describing if the user has administrative right (default to “FALSE”)

loginLocation Description of the location the user logged in

loginTime Time of last login

oemService Flag describing if the user has OEM service rights (default to “FALSE”)

projectName Unique identifier for the project within the name space of the Frame Application

sessionDescription Description of the user session (can be given by the user)

userLevel User level specifying users rights

userName Name of the current user

Table C.8 – Description of user information elements

Tag Description

FDTUserInformation Description of the user role

FDT Root tag

<Schema name="FDTUserInformationSchema" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes" xmlns:fdt="x-schema:FDTDataTypesSchema.xml">
 <!--Definition of Attributes-->
 <AttributeType name="administrator" dt:type="boolean" default="0"/>
 <AttributeType name="loginLocation" dt:type="string"/>
 <AttributeType name="loginTime" dt:type="dateTime"/>
 <AttributeType name="oemService" dt:type="boolean" default="0"/>
 <AttributeType name="projectName" dt:type="string"/>
 <AttributeType name="sessionDescription" dt:type="string"/>
 <AttributeType name="userLevel" dt:type="enumeration" dt:values="observer operator maintenance
planningEngineer"/>
 <AttributeType name="userName" dt:type="string"/>
 <!-- FDTUserInformation -->
 <!--the contents of an FDTUserInformation instance lies in the responsibility of the frame-application only
-->
 <ElementType name="FDTUserInformation" content="empty" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="projectName" required="yes"/>
 <!-- project name -->
 <attribute type="userName" required="yes"/>
 <!-- user name -->
 <attribute type="userLevel" required="yes"/>
 <!-- user level as defined within the FDT sepcification -->
 <attribute type="oemService" required="no"/>
 <!-- oemService set to True enables OEM access -->
 <attribute type="administrator" required="no"/>
 <!-- administrator set to True enables administrative access -->
 <attribute type="loginTime" required="no"/>
 <!-- time and date of login for this session -->
 <attribute type="loginLocation" required="no"/>
 <!-- station description at which the user loged in -->
 <attribute type="sessionDescription" required="no"/>
 <!-- descriptive string for the actual session -->
 </ElementType>
 <!-- FDTUserInformation -->
 <ElementType name="FDT" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <element type="FDTUserInformation" minOccurs="1" maxOccurs="1"/>
 </ElementType>
</Schema>

Example:

<?xml version="1.0" encoding="UTF-8"?>
<FDT xmlns="x-schema:FDTUserInformationSchema.xml" xmlns:fdt="x-
schema:FDTDataTypesSchema.xml">

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 250 – IEC TR 62453-41:2016  IEC 2016

 <FDTUserInformation userName="ThisUser" userLevel="maintenance" loginTime="2000-05-07T18:39:09"
loginLocation="WorkStation10" sessionDescription="The actor may specify his session here!"/>
</FDT>

C.5 DTMInformationSchema

Used at: IDtmInformation::GetInformation()

The XML document provides DTM-specific information (see Table C.9 and Table C.10).

Table C.9 – Description of DTM information attributes

Attribute Description

major Major part of the FDT specification version on which the implementation of a
DTM is based on. For FDT specification, 1.2.1.0 it shall be set to ‘1’.

minor Minor part of the FDT specification version on which the implementation of a
DTM is based on. For FDT specification 1.2.1.0 it shall be set to ‘2’.

release release part of the FDT specification version on which the implementation of a
DTM is based on. For FDT specification 1.2.1.0 it shall be set to ‘1’. It is
highly recommended to use this attribute.

build build part of the FDT specification version on which the implementation of a
DTM is based on. For FDT specification 1.2.1.0 it shall be set to ‘0’. It is
highly recommended to use this attribute.

Table C.10 – Description of DTM information elements

Tag Description

DtmDeviceTypes Collection of device types

DtmInfo Describes the DTM itself

DtmSchemaPath File system path with protocol-specific schemas and XSLT files (path
including a trailing backslash). It is expected that this path contains no other
files.

In order to avoid validation errors, it is recommended to avoid using XML-
specific characters (like ‘&’) in this path.

DtmSchemaPaths Collection of DTM schema paths

FDTVersion Definition of the element which specifies the version information on which the
implementation of a DTM is based on

FDT Root tag

<Schema name="DTMInformationSchema" xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-
microsoft-com:datatypes" xmlns:fdt="x-schema:FDTDataTypesSchema.xml">
 <!--Definition of Attributes-->
 <AttributeType name="major" dt:type="number"/>
 <AttributeType name="minor" dt:type="number"/>
 <AttributeType name="deviceTypeInformation" dt:type="string"/>
 <AttributeType name="release" dt:type="number"/>
 <AttributeType name="build" dt:type="number"/>
 <!--Definition of Elements-->
 <ElementType name="FDTVersion" content="empty" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="major" required="yes"/>
 <attribute type="minor" required="yes"/>
 <attribute type="release" required="no"/>
 <attribute type="build" required="no"/>
 </ElementType>
 <ElementType name="DtmDeviceTypes" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <element type="fdt:DtmDeviceType" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <ElementType name="DtmSchemaPath" content="empty" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="fdt:busCategory" required="yes"/>
 <attribute type="fdt:path" required="yes"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 251 –

 </ElementType>
 <ElementType name="DtmSchemaPaths" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <element type="DtmSchemaPath " minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <ElementType name="DtmInfo" content="eltOnly" model="closed" order="seq">
 <attribute type="fdt:nodeId" required="no"/>
 <element type="FDTVersion" minOccurs="1" maxOccurs="1"/>
 <element type="fdt:VersionInformation" minOccurs="1" maxOccurs="1"/>
 <element type="DtmSchemaPaths" minOccurs="0" maxOccurs="1"/>
 <element type="DtmDeviceTypes" minOccurs="1" maxOccurs="*"/>
 </ElementType>
 <ElementType name="FDT" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <element type="DtmInfo" minOccurs="1" maxOccurs="1"/>
 </ElementType>
</Schema>

Examples:

<?xml version="1.0"?>
<FDT xmlns="x-schema:DTMInformationSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml" >
 <DtmInfo>
 <FDTVersion major="1" minor="2" release="1" build="1"/>
 <fdt:VersionInformation name="myname" vendor="myVendor" version="1.0" date="2000-08-05"/>
 <DtmSchemaPaths>
 <DtmSchemaPath fdt:busCategory="12345678-ABCD-7890-86E1-00E0987270B9"
fdt:path="file://c:/mySchemaPath/" />
 </DtmSchemaPaths>
 <DtmDeviceTypes>
 <fdt:DtmDeviceType>
 <fdt:VersionInformation name="myname" vendor="myVendor" version="1.0" date="2000-08-05"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1131"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9"
busCategoryName="Profibus DP/V1">
 <fdt:CommunicationTypeEntry communicationType="required"/>
 </fdt:BusCategory>
 <fdt:BusCategory busCategory="12345678-ABCD-7890-86E1-00E0987270B9"
busCategoryName="Private Bus">
 <fdt:CommunicationTypeEntry communicationType="supported"/>
 </fdt:BusCategory>
 <fdt:BusCategory busCategory="036D1498-387B-11D4-86E1-00E0987270B9"
busCategoryName="HART">
 <fdt:CommunicationTypeEntry communicationType="supported"/>
 <fdt:PhysicalLayer physicalLayer="036D1590-387B-11D4-86E1-00E0987270B9"
physicalLayerName="IEC61158-2"/>
 </fdt:BusCategory>
 </fdt:BusCategories>
 <fdt:DeviceIcon path="file://c:/programs/manufacturer/icons/device.ico" />
 <fdt:DeviceIcon deviceGraphicState="device" path="file://c:/dev.ico" />
 <fdt:DeviceIcon deviceGraphicState="diagnosis" path="file://c:/devdiag.ico" />
 <fdt:DtmDocuments>
 <fdt:DtmDocument label="Online Help" help="Help for Dtm" documentClassification="help"
documentLanguageId="1033">
 <fdt:DocumentFile file="c:\mydtm\helpEN.chm"/>
 </fdt:DtmDocument>
 <fdt:DtmDocument label="Online Hilfe" help="Hilfe für DTM" documentClassification="help"
documentLanguageId="1031">
 <fdt:DocumentFile file="c:\mydtm\helpDE.chm"/>
 </fdt:DtmDocument>

 <fdt:DtmDocument label="Ordering Information" help="Order our Products"
documentClassification="orderingInformation">
 <fdt:DocumentUrl url="http://www.manufacturer.com"/>
 </fdt:DtmDocument>

 <fdt:DtmDocument label="Product Database" help="Find a Product"
documentClassification="miscellaneous" documentLanguageId="1033">
 <fdt:DocumentExe file="c:\programs\manufacturer\productFinder.exe" parameters="-L1033"
/>
 </fdt:DtmDocument>

 </fdt:DtmDocuments>
 <fdt:DeviceBitmap deviceGraphicState="device" path="file://c:/dev.bmp" />

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 252 – IEC TR 62453-41:2016  IEC 2016

 <fdt:DeviceBitmap deviceGraphicState="diagnosis" path="file://c:/devdiag.bmp" />
 <fdt:DataSetFormats>
 <fdt:Current dataSetID="036D1497-387B-11D4-86E1-00E0987270B9" description="The data set
in encrypted according to the client recommendation"/>
 <fdt:Supported dataSetID="036D1497-387B-11D4-86E1-00E0987270B9" levelOfSupport="full"
description="The data set is fully supported"/>
 <fdt:Supported dataSetID="036D1497-387B-11D4-86E1-00E0987270BA" levelOfSupport="full"
description="The default value for fault action is not supported in this version"/>
 </fdt:DataSetFormats>
 <fdt:DeviceTypeVariants>
 <fdt:DeviceTypeVariant deviceTypeVariant="PM255-EX" deviceTypeVariantInfo="PM255-EX Info"
orderCode="ExampleOrderCode1"/>
 <fdt:DeviceTypeVariant deviceTypeVariant="PM255-TX" deviceTypeVariantInfo="PM255-TX Info"
orderCode="ExampleOrderCode2"/>
 <fdt:DeviceTypeVariant deviceTypeVariant="PM255-ZX" deviceTypeVariantInfo="PM255-ZX Info"
orderCode="ExampleOrderCode3"/>
 <fdt:DeviceTypeVariant deviceTypeVariant="PM255-XX" deviceTypeVariantInfo="PM255-XX Info"
orderCode="ExampleOrderCode4"/>
 </fdt:DeviceTypeVariants>
 </fdt:DtmDeviceType>
 </DtmDeviceTypes>
 </DtmInfo>
</FDT>

Example for IEC 61784 CPF 3:

<?xml version="1.0"?>
<FDT xmlns="x-schema:DTMInformationSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml" >
 <DtmInfo>
 <FDTVersion major="1" minor="2" release="1" build="1"/>
 <fdt:VersionInformation name="myName" vendor="myVendor" version="1.0" date="2000-08-05"/>
 <DtmDeviceTypes>
 <fdt:DtmDeviceType manufacturerId="12" deviceTypeId="3456" deviceTypeInformation="
#Profibus_DP
GSD_Revision = 2
Vendor_Name = &myVendor&
Model_Name = &myName&
Revision = &1.0&
Ident_Number = 0x0D80
Protocol_Ident = 0
Station_Type = 0
Bitmap_Device = &Src0D80n&
FMS_supp = 0
Hardware_Release = &1.0&
Software_Release = &1.0&
31.25_supp = 1
45.45_supp = 1
93.75_supp = 1
187.5_supp = 1
MaxTsdr_31.25 = 100
MaxTsdr_45.45 = 250
MaxTsdr_93.75 = 1000
MaxTsdr_187.5 = 1000
Redundancy = 0
Repeater_Ctrl_Sig = 0
24V_Pins = 0
Freeze_Mode_supp = 0
Sync_Mode_supp = 0
Auto_Baud_supp = 0
Set_Slave_Add_supp = 1
Min_Slave_Intervall = 250
Modular_Station = 1
Max_Module = 6
Max_Input_Len = 30
Max_Output_Len = 6
Max_Data_Len = 36
Max_Diag_Data_Len = 14
Slave_Family = 12
User_Prm_Data_Len = 0
;Ext_User_Prm_Data_Const(0) = 0x00,0x00,0x00

;Empty module
Module = &EMPTY_MODULE& 0x00
EndModule
"
 deviceTypeInformationPath="file://c:/myDtm/myGsdFile.gsd"
 >

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 253 –

 <fdt:VersionInformation name="myname" vendor="myVendor" version="1.0" date="2000-08-05"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1131"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9"
busCategoryName="Profibus DP/V1">
 <fdt:CommunicationTypeEntry communicationType="required"/>
 </fdt:BusCategory>
 </fdt:BusCategories>
 <fdt:DeviceIcon path="file://c:/programs/manufacturer/icons/device.ico" />
 <fdt:DeviceIcon deviceGraphicState="device" path="file://c:/myDtm/Src0D80n.ico" />
 <fdt:DeviceIcon deviceGraphicState="diagnosis" path="file://c:/myDtm/Src0D80ndiag.ico" />
 <fdt:DtmDocuments>
 <fdt:DtmDocument label="Online Help" help="Help for Dtm" documentClassification="help"
documentLanguageId="1033">
 <fdt:DocumentFile file="c:\mydtm\helpEN.chm"/>
 </fdt:DtmDocument>
 <fdt:DtmDocument label="Online Hilfe" help="Hilfe für DTM" documentClassification="help"
documentLanguageId="1031">
 <fdt:DocumentFile file="c:\mydtm\helpDE.chm"/>
 </fdt:DtmDocument>

 <fdt:DtmDocument label="Ordering Information" help="Order our Products"
documentClassification="orderingInformation">
 <fdt:DocumentUrl url="http://www.manufacturer.com"/>
 </fdt:DtmDocument>

 <fdt:DtmDocument label="Product Database" help="Find a Product"
documentClassification="miscellaneous" documentLanguageId="1033">
 <fdt:DocumentExe file="c:\programs\manufacturer\productFinder.exe" parameters="-L1033"
/>
 </fdt:DtmDocument>

 </fdt:DtmDocuments>
 <fdt:DeviceBitmap deviceGraphicState="device" path="file://c:/myDtm/Src0D80n.bmp" />
 <fdt:DeviceBitmap deviceGraphicState="diagnosis" path="file://c:/myDtm/Src0D80diag.bmp" />
 <fdt:DataSetFormats>
 <fdt:Current dataSetID="036D1497-387B-11D4-86E1-00E0987270B9" description="The data set
in encrypted according to the client recommendation"/>
 <fdt:Supported dataSetID="036D1497-387B-11D4-86E1-00E0987270B9" levelOfSupport="full"
description="The data set is fully supported"/>
 <fdt:Supported dataSetID="036D1497-387B-11D4-86E1-00E0987270BA" levelOfSupport="full"
description="The default value for fault action is not supported in this version"/>
 </fdt:DataSetFormats>
 <fdt:DeviceTypeVariants>
 <fdt:DeviceTypeVariant deviceTypeVariant="PM255-EX" deviceTypeVariantInfo="PM255-EX Info"
orderCode="ExampleOrderCode1"/>
 <fdt:DeviceTypeVariant deviceTypeVariant="PM255-TX" deviceTypeVariantInfo="PM255-TX Info"
orderCode="ExampleOrderCode2"/>
 <fdt:DeviceTypeVariant deviceTypeVariant="PM255-ZX" deviceTypeVariantInfo="PM255-ZX Info"
orderCode="ExampleOrderCode3"/>
 <fdt:DeviceTypeVariant deviceTypeVariant="PM255-XX" deviceTypeVariantInfo="PM255-XX Info"
orderCode="ExampleOrderCode4"/>
 </fdt:DeviceTypeVariants>
 </fdt:DtmDeviceType>
 </DtmDeviceTypes>
 </DtmInfo>
</FDT>

C.6 DTMFunctionCallSchema

Used at:

 IDtmActiveXInformation::GetActiveXGuid()
 IDtmActiveXInformation::GetActiveXProgId()
 IDtmApplication::StartApplication()
 IDtmDocumentation::GetDocumentation()
 IFdtChannelActiveXInformation::GetChannelActiveXGuid()
 IFdtChannelActiveXInformation::GetChannelActiveXProgId

The XML document provides information to specifiy a specific function call (see Table C.11).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 254 – IEC TR 62453-41:2016  IEC 2016

Table C.11 – Description of function call attributes

Tag Description

FDTFunctionCall Definition of the element which specifies a specific function call

FDT Root tag

<Schema name="DTMFunctionCallSchema" xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes" xmlns:fdt="x-schema:FDTDataTypesSchema.xml"
xmlns:appId="x-schema:FDTApplicationIdSchema.xml" xmlns:func="x-schema:DTMFunctionsSchema.xml"
xmlns:ops="x-schema:FDTOperationPhaseSchema.xml">
 <!--Definition of Elements-->
 <ElementType name="FDTFunctionCall" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="func:functionId" required="yes"/>
 <element type="appId:ApplicationId" minOccurs="0" maxOccurs="1"/>
 <attribute type="ops:operationPhase" required="no"/>
 </ElementType>
 <ElementType name="FDT" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <element type="FDTFunctionCall" minOccurs="1" maxOccurs="1"/>
 </ElementType>
</Schema>

Example:

<?xml version="1.0"?>
<FDT xmlns="x-schema:DTMFunctionCallSchema.xml" xmlns:func="x-schema:DTMFunctionsSchema.xml"
xmlns:appId="x-schema:FDTApplicationIdSchema.xml" xmlns:ops="x-
schema:FDTOperationPhaseSchema.xml" >
 <FDTFunctionCall func:functionId="32" ops:operationPhase ="runtime">
 <appId:ApplicationId applicationId="fdtObserve"/>
 </FDTFunctionCall>
</FDT>

C.7 DTMParameterSchema

Used at:

IDtmParameter::GetParameters ()
IDtmParameter::SetParameters()

The XML document provides all instance specific information about a device. For a
description of the document contents see Table C.12 and Table C.13.

Table C.12 – Description of parameter document attributes

Attribute Description

busAddress Network participant number of a device according to fieldbus protocols like
IEC 61784 CPF 3

busMasterConfigurationPart Bus parameters are needed to allow an interaction between DTMs and a
master configuration tool. To provide a standard access to this bus-
specific data, it is stored as a binary stream which contains the device-
specific bus information according to the fieldbus specification.

Each DTM shall a least fill in the device-specific parameters and all
parameters which can be changed by its application.

All other entries can be filled up with substitute values like zeros. The
substituted values of the structure will be set by the environment’s master
configuration tool according to the requirements of the complete bus.

Independent of the values filled in, it is very important that the structure
generated by the DTM adheres to the definitions of the fieldbus
specification.

After all network participants have written their instance data, the master
configuration tool can commission the fieldbus. For that purpose it collects

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 255 –

Attribute Description
the configuration part of each network participant and calculates the bus
parameters of the corresponding master device.

configurationData Additional configuration data as binary stream according to the fieldbus
specification

moduleId Unique identifier for a module within the name space of the device
instance

moduleTypeId Unique identifier for a module type within the name space of the device
type

redundant Specifies whether a device or module is redundant

slaveAddress Universal slave address e.g. polling address for IEC 61784 CPF 9
communication

slot Unique identifier for the slot of a module within the name space of the
device instance

Table C.13 – Description of parameter document elements

Tag Description

BusInformation This element is an implementation of data type ‘fdt:NetworkInfo’ as defined in
IEC 62453-2.

It is recommended that Device DTMs with more than one required protocol
includes busCategory in BusInformation.

If a 1.2.1. DTM is connected to a 1.2 Communication Channel,

a 1.2.1 Frame Application has to consider:
• the first BusInformation element in the DtmParameter document of

the DTM is regarded as primary protocol;
• the Frame Application needs to check if the primary protocol of the

DTM is supported by the channel and
a 1.2 Frame Application has to consider:

• The DTM can support only one protocol, because the old schema
supports only one BusInformation element

DtmDevice Description of a device instance

It is recommended that Device DTMs with more than one required protocol
include BusInformation for each protocol.

ExportedVariables Collection of DTM variables for common access. This means that the Frame
Application or other DTMs are allowed to get access to the data within this
section

FDT Root tag

InternalChannel An internal channel is the connection point for an internal module within the
internal topology

InternalTopology Description of the internal topology of a modular device build as a none
software modular DTM

MasterSlaveBus Description of bus parameters for communication and configuration This
element is an implementation of data type ‘fdt:DeviceAddress’ as defined in
IEC 62453-2.

Module Description of a hardware or software module of a device

Modules Collection of modules

SlaveAddress Universal slave address. This element is an implementation of data type
‘fdt:DeviceAddress’ as defined in IEC 62453-2.

UserDefinedBus Description bus parameters for the integration of proprietary bus systems .
This element is an implementation of data type ‘fdt:UserDefinedBus’ as
defined in IEC 62453-2. It is specified as open element so that protocol-
specific elements may by integrated into this element.

If a DTM can be used by an redundant aware parent component as DTM for a redundant
slave, the parameter document shall provide additional redundancy information:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 256 – IEC TR 62453-41:2016  IEC 2016

• the BusInformation element shall contain a BusRedundancy element with the number of
supported redundant fieldbus interfaces of the slave.

It is recommend that with the address, set by calling SetParameter(), the parent component
provides complete redundant address information. Then the DTM is able to detect if its
appropriate slave is used as redundant slave. Only in this case, specific redundancy handling
is to be activated within the DTM, for example during communication requests or configuration
dialogs. Therefore, it is recommended to set all fieldbus addresses using SlaveAddress
elements by the parent component.

<Schema name="DTMParameterSchema" xmlns="urn:schemas-microsoft-com:xml-data" xmlns:dt="urn:schemas-
microsoft-com:datatypes" xmlns:fdt="x-schema:FDTDataTypesSchema.xml">
 <!--Definition of Attributes-->
 <AttributeType name="busAddress" dt:type="ui4"/>
 <AttributeType name="busMasterConfigurationPart" dt:type="bin.hex"/>
 <AttributeType name="configurationData" dt:type="bin.hex"/>
 <AttributeType name="moduleId" dt:type="ui4"/>
 <AttributeType name="moduleTypeId" dt:type="ui4"/>
 <AttributeType name="redundant" dt:type="boolean"/>
 <AttributeType name="slaveAddress" dt:type="ui4"/>
 <AttributeType name="slot" dt:type="ui4"/>
 <!--Definition of Elements-->
 <ElementType name="SlaveAddress" content="empty" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="fdt:readAccess" required="no"/>
 <attribute type="fdt:writeAccess" required="no"/>
 <attribute type="slaveAddress" required="yes"/>
 </ElementType>
 <ElementType name="MasterSlaveBus" content="empty" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="fdt:readAccess" required="no"/>
 <attribute type="fdt:writeAccess" required="no"/>
 <attribute type="busAddress" required="yes"/>
 <attribute type="busMasterConfigurationPart" required="yes"/>
 </ElementType>
 <ElementType name="UserDefinedBus" content="mixed" model="open"/>
 <ElementType name="BusInformation" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="fdt:busCategory" required="no"/>
 <element type="fdt:BusRedundancy" maxOccurs="1" minOccurs="0"/>
 <group order="one" minOccurs="0" maxOccurs="*">
 <element type="SlaveAddress"/>
 <element type="MasterSlaveBus"/>
 <element type="UserDefinedBus"/>
 </group>
 </ElementType>
 <ElementType name="ExportedVariables" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <element type="fdt:DtmVariables" minOccurs="1" maxOccurs="1"/>
 </ElementType>
 <ElementType name="Module" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="fdt:readAccess" required="no"/>
 <attribute type="fdt:writeAccess" required="no"/>
 <attribute type="moduleId" required="yes"/>
 <attribute type="moduleTypeId" required="no"/>
 <attribute type="slot" required="no"/>
 <attribute type="redundant" required="no"/>
 <attribute type="configurationData" required="no"/>
 <element type="fdt:VersionInformation" minOccurs="1" maxOccurs="1"/>
 <element type="fdt:ChannelReferences" minOccurs="0" maxOccurs="1"/>
 <element type="ExportedVariables" minOccurs="0" maxOccurs="1"/>
 </ElementType>
 <ElementType name="InternalChannel" content="eltOnly" model="closed">
 <attribute type="fdt:readAccess" required="no"/>
 <attribute type="fdt:writeAccess" required="no"/>
 <attribute type="fdt:nodeId" required="no"/>
 <element type="Module" minOccurs="0" maxOccurs="1"/>
 </ElementType>
 <ElementType name="InternalTopology" content="eltOnly" model="closed">
 <attribute type="fdt:readAccess" required="no"/>
 <attribute type="fdt:writeAccess" required="no"/>
 <attribute type="fdt:nodeId" required="no"/>
 <element type="BusInformation" minOccurs="0" maxOccurs="1"/>
 <element type="InternalChannel" minOccurs="1" maxOccurs="*"/>
 </ElementType>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 257 –

 <ElementType name="DtmDevice" content="eltOnly" model="closed" order="seq">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="fdt:readAccess" required="no"/>
 <attribute type="fdt:writeAccess" required="no"/>
 <attribute type="fdt:tag" required="yes"/>
 <attribute type="redundant" required="no"/>
 <element type="fdt:ChannelReferences" minOccurs="0" maxOccurs="1"/>
 <element type="BusInformation" minOccurs="0" maxOccurs="*"/>
 <element type="InternalTopology" minOccurs="0" maxOccurs="1"/>
 <element type="ExportedVariables" minOccurs="0" maxOccurs="1"/>
 </ElementType>
 <ElementType name="FDT" content="eltOnly" model="closed">
 <attribute type="fdt:nodeId" required="no"/>
 <attribute type="fdt:storageState" required="yes"/>
 <attribute type="fdt:dataSetState" required="yes"/>
 <attribute type="fdt:modifiedInDevice" required="no"/>
 <element type="fdt:DtmDeviceType" minOccurs="1" maxOccurs="1"/>
 <element type="DtmDevice" minOccurs="1" maxOccurs="1"/>
 </ElementType>
</Schema>

Example for a simple device:

<?xml version="1.0"?>
<FDT xmlns="x-schema:DTMParameterSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml"
fdt:storageState="persistent" fdt:dataSetState="default ">
 <fdt:DtmDeviceType >
 <fdt:VersionInformation name="Transmitter" vendor="Vendor name" version="1.0" date="2000-08-
05"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1497-387B-11D4-86E1-00E0987270B9"/>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9"/>
 </fdt:BusCategories>
 </fdt:DtmDeviceType>
 <DtmDevice fdt:tag="00PGH10EC001">
 <fdt:ChannelReferences>
 <fdt:ChannelReference idref="temperature"/>
 </fdt:ChannelReferences>
 <ExportedVariables>
 <fdt:DtmVariables name="Parameter" descriptor="root of parameters">
 <fdt:DtmVariable name="Cell" descriptor="Measuring point data">
 <fdt:Value>
 <fdt:Display string="PT100"/>
 </fdt:Value>
 <fdt:Unit>
 <fdt:EnumeratorVariable>
 <fdt:Variable>
 <fdt:EnumeratorEntry index="1" name="C"/>
 </fdt:Variable>
 <fdt:EnumeratorEntries>
 <fdt:EnumeratorEntry index="1" name="C"/>
 <fdt:EnumeratorEntry index="2" name="K"/>
 <fdt:EnumeratorEntry index="3" name="F"/>
 </fdt:EnumeratorEntries>
 </fdt:EnumeratorVariable>
 </fdt:Unit>
 </fdt:DtmVariable>
 <fdt:DtmVariables name="Curve" descriptor="characteristic curve interpolation points">
 <fdt:DtmVariable name="point1">
 <fdt:Value>
 <fdt:Display string="1.1"/>
 </fdt:Value>
 </fdt:DtmVariable>
 <fdt:DtmVariable name="point2">
 <fdt:Value>
 <fdt:Display string="1.2"/>
 </fdt:Value>
 </fdt:DtmVariable>
 <fdt:DtmVariable name="point3">
 <fdt:Value>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 258 – IEC TR 62453-41:2016  IEC 2016

 <fdt:Display string="1.3"/>
 </fdt:Value>
 </fdt:DtmVariable>
 </fdt:DtmVariables>
 </fdt:DtmVariables>
 </ExportedVariables>
 </DtmDevice>
</FDT>

Example for a redundant slave:

<?xml version="1.0"?>
<FDT fdt:dataSetState="default " fdt:storageState="persistent" xmlns="x-schema:DTMParameterSchema.xml"
xmlns:fdt="x-schema:FDTDataTypesSchema.xml">
 <fdt:DtmDeviceType readAccess="1" writeAccess="0">
 <fdt:VersionInformation date="2000-08-05" name="myname" readAccess="1" vendor="myVendor"
version="1.0" writeAccess="0"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1497-387B-11D4-86E1-00E0987270B9">
 </fdt:BusCategory>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9">
 </fdt:BusCategory>
 </fdt:BusCategories>
 </fdt:DtmDeviceType>
 <DtmDevice fdt:tag="myTag">
 <fdt:ChannelReferences>
 <fdt:ChannelReference idref="n1"/>
 <fdt:ChannelReference idref="n25"/>
 </fdt:ChannelReferences>
 <BusInformation>
 <fdt:BusRedundancy busRedundancy="2"/>
 <SlaveAddress fdt:readAccess="1" fdt:writeAccess="0" slaveAddress="123"/>
 <SlaveAddress fdt:readAccess="1" fdt:writeAccess="0" slaveAddress="1234"/>
 </BusInformation>
 <ExportedVariables>
 <fdt:DtmVariables descriptor="root of parameters" name="ParaRoot">
 <fdt:DtmVariable descriptor="display only parameter" name="Simple">
 <fdt:Value readAccess="1" writeAccess="0">
 <fdt:Display string="12.345"/>
 </fdt:Value>
 </fdt:DtmVariable>
 </fdt:DtmVariables>
 </ExportedVariables>
 </DtmDevice>
</FDT>

Example for the usage of channel mode:

<?xml version="1.0"?>
<FDT xmlns="x-schema:DTMParameterSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml"
fdt:storageState="persistent" fdt:dataSetState="default ">
 <fdt:DtmDeviceType readAccess="1" writeAccess="0">
 <fdt:VersionInformation name="myname" vendor="myVendor" version="1.0" date="2000-08-05"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1497-387B-11D4-86E1-00E0987270B9"/>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9"/>
 </fdt:BusCategories>
 </fdt:DtmDeviceType>
 <DtmDevice fdt:tag="myTag">
 <fdt:ChannelReferences>
 <fdt:ChannelReference idref="n1"/>
 <fdt:ChannelReference idref="n25"/>
 </fdt:ChannelReferences>
 <InternalTopology>
 <InternalChannel>
 <Module moduleId="1">
 <fdt:VersionInformation name="myname" vendor="myVendor" version="1.0" date="2000-08-
05"/>
 <fdt:ChannelReferences>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 259 –

 <fdt:ChannelReference idref="m25.n1">
 <fdt:ChannelInformation>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9"/>
 </fdt:BusCategories>
 <fdt:ChannelModes>
 <fdt:ChannelMode channelMode="processValue" />
 </fdt:ChannelModes>
 </fdt:ChannelInformation>
 </fdt:ChannelReference>
 <fdt:ChannelReference idref="m25.n25">
 <fdt:ChannelInformation>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1497-387B-11D4-86E1-00E0987270B9"/>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9"/>
 </fdt:BusCategories>
 <fdt:ChannelModes>
 <fdt:ChannelMode channelMode="communication" />
 <fdt:ChannelMode channelMode="processValue" />
 </fdt:ChannelModes>
 </fdt:ChannelInformation>
 </fdt:ChannelReference>
 </fdt:ChannelReferences>
 </Module>
 </InternalChannel>
 </InternalTopology>
 <ExportedVariables>
 <fdt:DtmVariables name="ParaRoot" descriptor="root of parameters">
 <fdt:DtmVariable name="Simple" descriptor="display only parameter">
 <fdt:Value>
 <fdt:Display string="12.345"/>
 </fdt:Value>
 </fdt:DtmVariable>
 <fdt:DtmVariables name="SubStructur" descriptor="sub structure of parameters">
 <fdt:DtmVariable name="Integer" descriptor="editable integer format">
 <fdt:Value>
 <fdt:Variant dataType="int" byteLength="2">
 <fdt:NumberData number="4711"/>
 </fdt:Variant>
 </fdt:Value>
 </fdt:DtmVariable>
 </fdt:DtmVariables>
 </fdt:DtmVariables>
 </ExportedVariables>
 </DtmDevice>
</FDT>

Example for a modular device:

<?xml version="1.0"?>
<FDT xmlns="x-schema:DTMParameterSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml"
fdt:storageState="persistent" fdt:dataSetState="default">
 <fdt:DtmDeviceType>
 <fdt:VersionInformation name="RemoteI/O" vendor="Vendor name" version="1.0" date="2000-08-05"
descriptor="Bus coupler"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1497-387B-11D4-86E1-00E0987270B9"/>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9"/>
 </fdt:BusCategories>
 </fdt:DtmDeviceType>
 <DtmDevice fdt:tag="00PGH10EC001">
 <fdt:ChannelReferences>
 <fdt:ChannelReference idref="Binary input"/>
 </fdt:ChannelReferences>
 <InternalTopology>
 <InternalChannel>
 <Module moduleId="1">
 <fdt:VersionInformation name="AI4" vendor="Vendor name" version="1.0" date="2000-08-
05" descriptor="Analog Input 4 Channels"/>
 <fdt:ChannelReferences>
 <fdt:ChannelReference idref="AI4.C1"/>
 <fdt:ChannelReference idref="AI4.C2"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 260 – IEC TR 62453-41:2016  IEC 2016

 <fdt:ChannelReference idref="AI4.C3"/>
 <fdt:ChannelReference idref="AI4.C4"/>
 </fdt:ChannelReferences>
 </Module>
 </InternalChannel>
 <InternalChannel>
 <Module moduleId="8">
 <fdt:VersionInformation name="AO4" vendor="Vendor name" version="1.0" date="2000-08-
05" descriptor="Analog Output 4 Channels"/>
 <fdt:ChannelReferences>
 <fdt:ChannelReference idref="AO4.C1"/>
 <fdt:ChannelReference idref="AO4.C2"/>
 <fdt:ChannelReference idref="AO4.C3"/>
 <fdt:ChannelReference idref="AO4.C4"/>
 </fdt:ChannelReferences>
 <ExportedVariables>
 <fdt:DtmVariables name="Parameter" descriptor="root of parameters">
 <fdt:DtmVariable name="Substitute Value" descriptor="Module type specific
parameter">
 <fdt:Value>
 <fdt:Display string="false"/>
 </fdt:Value>
 </fdt:DtmVariable>
 </fdt:DtmVariables>
 </ExportedVariables>
 </Module>
 </InternalChannel>
 </InternalTopology>
 </DtmDevice>
</FDT>

Example for a modular device with one DTM for the bus coupler and a DTM for each
module type:

<?xml version="1.0"?>
<FDT xmlns="x-schema:DTMParameterSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml"
fdt:storageState="persistent" fdt:dataSetState="default ">
 <fdt:DtmDeviceType >
 <fdt:VersionInformation name="RemoteI/O" vendor="Vendor name" version="1.0" date="2000-08-05"
descriptor="Bus coupler"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1497-387B-11D4-86E1-00E0987270B9"/>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9"/>
 </fdt:BusCategories>
 </fdt:DtmDeviceType>
 <DtmDevice fdt:tag="00PGH10EC001">
 <fdt:ChannelReferences>
 <fdt:ChannelReference idref="Binary input"/>
 </fdt:ChannelReferences>
 </DtmDevice>
</FDT>

<?xml version="1.0"?>
<FDT xmlns="x-schema:DTMParameterSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml"
fdt:storageState="persistent" fdt:dataSetState="default ">
 <fdt:DtmDeviceType >
 <fdt:VersionInformation name="AI4" vendor="Vendor name" version="1.0" date="2000-08-05"
descriptor="Analog Input 4 Channels"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9"/>
 </fdt:BusCategories>
 </fdt:DtmDeviceType>
 <DtmDevice fdt:tag="00PGH10EC001">
 <fdt:ChannelReferences>
 <fdt:ChannelReference idref="AI4.C1"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

IEC TR 62453-41:2016  IEC 2016 – 261 –

 <fdt:ChannelReference idref="AI4.C2"/>
 <fdt:ChannelReference idref="AI4.C3"/>
 <fdt:ChannelReference idref="AI4.C4"/>
 </fdt:ChannelReferences>
 </DtmDevice>
</FDT>

<?xml version="1.0"?>
<FDT xmlns="x-schema:DTMParameterSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml"
fdt:storageState="persistent" fdt:dataSetState="default ">
 <fdt:DtmDeviceType >
 <fdt:VersionInformation name="AO4" vendor="Vendor name" version="1.0" date="2000-08-05"
descriptor="Analog Output 4 Channels"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1497-387B-11D4-86E1-00E0987270B9"/>
 <fdt:BusCategory busCategory="036D1499-387B-11D4-86E1-00E0987270B9"/>
 </fdt:BusCategories>
 </fdt:DtmDeviceType>
 <DtmDevice fdt:tag="00PGH10EC001">
 <fdt:ChannelReferences>
 <fdt:ChannelReference idref="AO4.C1"/>
 <fdt:ChannelReference idref="AO4.C2"/>
 <fdt:ChannelReference idref="AO4.C3"/>
 <fdt:ChannelReference idref="AO4.C4"/>
 </fdt:ChannelReferences>
 <ExportedVariables>
 <fdt:DtmVariables name="Parameter" descriptor="root of parameters">
 <fdt:DtmVariable name="Substitute Value" descriptor="Module type specific parameter">
 <fdt:Value>
 <fdt:Display string="false"/>
 </fdt:Value>
 </fdt:DtmVariable>
 </fdt:DtmVariables>
 </ExportedVariables>
 </DtmDevice>
</FDT>

Example for a completed datatype structure:

<?xml version="1.0"?>
<FDT xmlns="x-schema:DTMParameterSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml"
fdt:storageState="persistent" fdt:dataSetState="default ">
 <fdt:DtmDeviceType>
 <fdt:VersionInformation name="Transmitter" vendor="Vendor name" version="1.0" date="2000-08-
05"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1497-387B-11D4-86E1-00E0987270B9"/>
 </fdt:BusCategories>
 </fdt:DtmDeviceType>
 <DtmDevice fdt:tag="00PGH10EC001">
 <ExportedVariables>
 <fdt:DtmVariables name="Parameter" descriptor="root of parameters">
 <fdt:DtmVariable name="Float">
 <fdt:Value>
 <fdt:Display string="2.34"/>
 </fdt:Value>
 </fdt:DtmVariable>
 <fdt:DtmVariable name="Integer">
 <fdt:Value>
 <fdt:Variant dataType="int">
 <fdt:NumberData number="2"/>
 </fdt:Variant>
 </fdt:Value>
 </fdt:DtmVariable>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

 – 262 – IEC TR 62453-41:2016  IEC 2016

 <fdt:DtmVariable name="Integer2">
 <fdt:Value>
 <fdt:Variant dataType="int">
 <fdt:NumberData number="3"/>
 </fdt:Variant>
 </fdt:Value>
 </fdt:DtmVariable>
 <fdt:DtmVariable name="Structured1">
 <fdt:Value>
 <fdt:Variant dataType="structured">
 <fdt:StructuredVariable>
 <fdt:BinaryVariable binData="28FC215403"/>
 <fdt:StructuredElements>
 <fdt:StructuredElement bitLength="4">
 <fdt:DtmVariableReference reference="Integer"/>
 </fdt:StructuredElement>
 <fdt:StructuredElement bitLength="32">
 <fdt:DtmVariableReference reference="Float"/>
 </fdt:StructuredElement>
 <fdt:StructuredElement bitLength="4">
 <fdt:DtmVariableReference reference="Integer2"/>
 </fdt:StructuredElement>
 </fdt:StructuredElements>
 </fdt:StructuredVariable>
 </fdt:Variant>
 </fdt:Value>
 </fdt:DtmVariable>
 </fdt:DtmVariables>
 </ExportedVariables>
 </DtmDevice>
</FDT>

Example for device type variant

<FDT xmlns="x-schema:DTMParameterSchema.xml" xmlns:fdt="x-schema:FDTDataTypesSchema.xml"
fdt:storageState="persistent" fdt:dataSetState="default ">
 <fdt:DtmDeviceType readAccess="1" writeAccess="0">
 <fdt:VersionInformation name="Name" vendor="Vendor" version="1.0" date="2000-08-05"/>
 <fdt:SupportedLanguages>
 <fdt:LanguageId languageId="1311"/>
 </fdt:SupportedLanguages>
 <fdt:BusCategories>
 <fdt:BusCategory busCategory="036D1497-387B-11D4-86E1-00E0987270B9"/>
 </fdt:BusCategories>
 <fdt:DeviceTypeVariant deviceTypeVariant="PM255-EX" deviceTypeVariantInfo="PM255-EX Info"
orderCode="ExampleOrderCode"/>
 </fdt:DtmDeviceType>
 <DtmDevice fdt:tag="myTag">
 ...
 </DtmDevice>
</FDT>

C.8 DTMDocumentationSchema

Used at:

IDtmDocumentation::GetDocumentation()

The XML document contains the instance-specific information according to the request. The
context (function id, application id and operation phase) is described via the passed XML
document of type DTMFunctionCallSchema (see Table C.14 and Table C.15).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

1:2
01

6

https://iecnorm.com/api/?name=36ad6bc35ff398048f9505ae916f8228

	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	2 Normative references
	3 Terms, definitions, abbreviations and conventions
	3.1 Terms and definitions
	3.2 Abbreviations
	3.3 Conventions

	4 Implementation concept
	4.1 Technological orientation
	4.2 Implementation of abstract FDT object model
	4.2.1 General
	4.2.2 FDT Frame Application (FA)
	4.2.3 Device Type Manager (DTM)
	4.2.4 Presentation object
	4.2.5 FDT-Channel object

	4.3 Object interaction
	4.3.1 Parameter interchange via XML
	4.3.2 Examples of usage

	4.4 Implementation of DTM data persistence and synchronization
	4.4.1 Persistence overview
	4.4.2 Persistence interfaces

	4.5 DTM state machine

	5 General concepts
	5.1 General
	5.2 Overview of task related FDT interfaces
	5.3 Return values of interface methods
	5.4 Dual interfaces
	5.5 Unicode
	5.6 Asynchronous versus synchronous behavior
	5.7 ProgIds
	5.8 Implementation of DTM, DTM device type and hardware identification information
	5.8.1 Device identification
	5.8.2 Protocol-specific transformation style sheet (xsl)
	5.8.3 Semantic identification information
	5.8.4 Device assignment
	5.8.5 Regular expression specification

	5.9 Implementation of slave redundancy
	5.9.1 General
	5.9.2 Topology import/export

	6 Implementation of FDT services: FDT interfaces
	6.1 Overview of the FDT interfaces
	6.2 FDT objects
	6.2.1 FDT object model
	6.2.2 Avalability of interface methods

	6.3 Device Type Manager
	6.3.1 Interface IDtm
	6.3.2 Interface IDtm2
	6.3.3 Interface IDtmActiveXInformation
	6.3.4 Interface IDtmApplication
	6.3.5 Interface IDtmChannel
	6.3.6 Interface IDtmDocumentation
	6.3.7 Interface IDtmDiagnosis
	6.3.8 Interface IDtmImportExport
	6.3.9 Interface IDtmInformation
	6.3.10 Interface IDtmInformation2
	6.3.11 Interface IDtmOnlineDiagnosis
	6.3.12 Interface IDtmOnlineParameter
	6.3.13 Interface IDtmParameter
	6.3.14 Interface IFdtCommunicationEvents
	6.3.15 Interface IFdtCommunicationEvents2
	6.3.16 Interface IFdtEvents
	6.3.17 Interface IDtmHardwareIdentification
	6.3.18 Interface IDtmSingleDeviceDataAccess
	6.3.19 Interface IDtmSingleInstanceDataAccess

	6.4 DTM ActiveXControl
	6.4.1 Interface IDtmActiveXControl
	6.4.2 Init
	6.4.3 PrepareToRelease

	6.5 FDT Channel
	6.5.1 Interface IFdtChannel
	6.5.2 Interface IFdtChannelActiveXInformation
	6.5.3 Interface IFdtCommunication
	6.5.4 Interface IFdtChannelSubTopology
	6.5.5 Interface IFdtChannelSubTopology2
	6.5.6 Interface IFdtChannelScan
	6.5.7 Interface IFdtFunctionBlockData

	6.6 Channel ActiveXControl
	6.6.1 Interface IFdtChannelActiveXControl
	6.6.2 Interface IFdtChannelActiveXControl2

	6.7 Block Type Manager
	6.7.1 Interface IBtm
	6.7.2 Interface IBtmInformation
	6.7.3 Interface IBtmParameter

	6.8 BTM ActiveXControl
	6.8.1 General
	6.8.2 Interface IBtmActiveXControl

	6.9 Frame Application
	6.9.1 Interface IDtmEvents
	6.9.2 Interface IDtmEvents2
	6.9.3 Interface IDtmScanEvents
	6.9.4 Interface IDtmAuditTrailEvents
	6.9.5 Interface IFdtActiveX
	6.9.6 Interface IFdtActiveX2
	6.9.7 Interface IFdtBulkData
	6.9.8 Interface IFdtContainer
	6.9.9 Interface IFdtDialog
	6.9.10 Interface IFdtTopology
	6.9.11 Interface IDtmRedundancyEvents
	6.9.12 Interface IDtmSingleDeviceDataAccessEvents
	6.9.13 Interface IDtmSingleInstanceDataAccessEvents
	6.9.14 Interface IFdtBtmTopology

	7 FDT sequence charts
	7.1 DTM peer to peer communication
	7.1.1 General
	7.1.2 Establish a peer-to-peer connection between DTM and device
	7.1.3 Asynchronous connect for a peer-to-peer connection
	7.1.4 Asynchronous disconnect for a peer-to-peer connection
	7.1.5 Asynchronous transaction for a peer-to-peer connection

	7.2 Nested communication
	7.2.1 General
	7.2.2 Generate system topology
	7.2.3 Establish a system connection between DTM and device
	7.2.4 Asynchronous transaction for a system connection

	7.3 Topology scan
	7.3.1 Scan network
	7.3.2 Cancel topology scan
	7.3.3 Provisional scan result notifications
	7.3.4 Scan for communication hardware
	7.3.5 Manufacturer-specific device identification

	7.4 Registration of protocol-specific FDT schemas
	7.5 Configuration of a fieldbus master
	7.6 Starting and releasing applications
	7.7 Channel access
	7.8 DCS Channel assignment
	7.9 Printing of DTM-specific documents
	7.10 Printing of Frame Application-specific documents
	7.10.1 General
	7.10.2 Processing a document
	7.10.3 Rules for use of DTM-specific style sheets

	7.11 Propagation of changes
	7.12 Locking
	7.12.1 Locking for non-synchronized DTMs
	7.12.2 Locking for synchronized DTMs

	7.13 Instantiation and release
	7.13.1 Instantiation of a new DTM
	7.13.2 Instantiation of an existing DTM
	7.13.3 Instantiation of a DTM ActiveX(user interface
	7.13.4 Release of a DTM user interface

	7.14 Persistent storage of a DTM
	7.14.1 State machine of instance data
	7.14.2 Saving instance data of a DTM
	7.14.3 Reload of a DTM object for another instance
	7.14.4 Copy and versioning of a DTM instance

	7.15 Audit trail
	7.16 Comparison of two instance data sets
	7.16.1 Comparison without user interface
	7.16.2 Comparison with user interface

	7.17 Failsafe data access
	7.18 Set or modify device address with user interface
	7.19 Set or modify known device addresses without user interface
	7.20 Display or modify all child device addresses with user interface
	7.21 Device initiated data transfer
	7.22 Starting and releasing DTM user interface in modal dialog
	7.23 Parent component handling redundant slave
	7.24 Initialization of a Channel ActiveX control
	7.24.1 General
	7.24.2 Supports IFdtChannelActiveXcontrol2
	7.24.3 Does not support IFdtChannelActiveXControl2

	7.25 DTM upgrade
	7.25.1 General
	7.25.2 Saving data from a DTM to be upgraded
	7.25.3 Loading data in the replacement DTM

	7.26 Usage of IDtmSingleDeviceDataAccess::ReadRequest / Write Request
	7.27 Instantiation of DTM and BTM

	8 Installation issues
	8.1 Registry and device information
	8.1.1 Visibility of business objects of a DTM
	8.1.2 Component categories
	8.1.3 Registry entries
	8.1.4 Installation issues
	8.1.5 Microsoft’s standard component categories manager
	8.1.6 Building a Frame Application-database of supported devices
	8.1.7 DTM registration

	8.2 Paths and file information
	8.2.1 Path information provided by a DTM
	8.2.2 Paths and persistency
	8.2.3 Multi-user systems

	9 Description of data types, parameters and structures
	9.1 Ids
	9.2 Data type definitions

	Annex A (normative)FDT IDL
	Annex B (normative)Mapping of services to interface methods
	B.1 General
	B.2 DTM services
	B.3 Presentation object services
	B.4 General channel services
	B.5 Process channel services
	B.6 Communication Channel Services
	B.7 Frame Application Services

	Annex C (normative)FDT XML schemas
	C.1 General
	C.2 FDTDataTypesSchema
	C.3 FDTApplicationIdSchema
	C.4 FDTUserInformationSchema
	C.5 DTMInformationSchema
	C.6 DTMFunctionCallSchema
	C.7 DTMParameterSchema
	C.8 DTMDocumentationSchema
	C.9 DTMProtocolsSchema
	C.10 DTMSystemTagListSchema
	C.11 DTMAuditTrailSchema
	C.12 DTMDeviceStatusSchema
	C.13 DTMFunctionsSchema
	C.14 DTMChannelFunctionsSchema
	C.15 DTMOnlineCompareSchema
	C.16 FDTFailSafeDataSchema
	C.17 DTMTopologyScanSchema
	C.18 FDTOperationPhaseSchema
	C.19 DTMInitSchema
	C.20 FDTUserMessageSchema
	C.21 DTMInfoListSchema
	C.22 FDTTopologyImportExportSchema
	C.23 DTMDeviceListSchema
	C.24 DTMSystemGuiLabelSchema
	C.25 DTMStateSchema
	C.26 DTMEnvironmentSchema
	C.27 FDTConnectResponseSchema
	C.28 TypeRequestSchema
	C.29 FDTScanRequestSchema
	C.30 FDTxxxIdentSchema
	C.31 FDTxxxDeviceTypeIdentSchema
	C.32 FDTxxxScanIdentSchema
	C.33 DTMIdentSchema
	C.34 DTMScanIdentSchema
	C.35 DTMDeviceTypeIdentSchema
	C.36 DTMItemListSchema
	C.37 BtmDataTypesSchema
	C.38 BtmInformationSchema
	C.39 BtmParameterSchema
	C.40 BtmInitSchema
	C.41 BtmInfoListSchema

	Annex D (informative)FDT XML styles – Documentation
	Annex E (informative)FDT XSL Transformation
	E.1 Identification transformation
	E.2 Hint

	Annex F (normative)Channel schema
	F.1 FDTBasicChannelParameterSchema
	F.2 Template for Channel Schema

	Annex G (normative)FDT version interoperability guide
	G.1 Overview
	G.2 General
	G.3 Component interoperability
	G.4 FDT type library
	G.5 DTM and device versions
	G.6 Persistence
	G.7 Nested communication
	G.7.1 General
	G.7.2 Data exchange
	G.7.3 Communication channel upgrade
	G.7.4 Scenarios
	G.7.5 OnAddChild

	G.8 Implementation hints
	G.8.1 Interfaces
	G.8.2 Persistence

	Annex H (informative)Implementation with Net technology
	H.1 How FDT supports .NET based development
	H.2 Microsoft .NET Framework 1.1 and 2.0 compatibility
	H.3 Side-by-side installation and related problems
	H.4 How to avoid compatibility issues

	Annex I (informative)Trade names
	Bibliography
	Figures
	Figure 1 – Part 41 of the IEC 62453 series
	Figure 2 − Frame Application interfaces
	Figure 3 − DTM interfaces
	Figure 4 − FDT Client/server relationship via XML
	Figure 5 − Data access and storage
	Figure 6 − Communication
	Figure 7 − Documentation
	Figure 8 − Parameter verification in case of failsafe devices
	Figure 9 − State machine of a DTM
	Figure 10 − Device identification
	Figure 11 − Structural overview
	Figure 12 − Interfaces of FDT objects – DTM and DtmActiveXControl
	Figure 13 − Interfaces of FDT object – Frame Application
	Figure 14 − FDT objects – FDT-Channel
	Figure 15 − FDT objects – BTM and BtmActiveXControl
	Figure 16 − Peer to peer connection between DTM and device
	Figure 17 − Asynchronous connect (peer to peer)
	Figure 18 − Asynchronous disconnect (peer to peer)
	Figure 19 − Asynchronous transaction (peer to peer)
	Figure 20 − System-topology
	Figure 21 − Generation of system topology by Frame Application
	Figure 22 – Generation of system topology – Participation of DTM
	Figure 23 – System connection (across communication hierarchy)
	Figure 24 − Asynchronous transactions (system connection)
	Figure 25 − Scan network topology
	Figure 26 − Cancel topology scan
	Figure 27 − Provisional topology scan
	Figure 28 − Scan for communication hardware
	Figure 29 − Manufacturer-specific device identification
	Figure 30 − Add protocol-specific schemas to Frame Applications schema sub path
	Figure 31 − Frame Application reads protocol-specificdevice identification information of DTMDeviceTypes
	Figure 32 − Bus master configuration
	Figure 33 − Starting and releasing applications
	Figure 34 − Channel access
	Figure 35 − DCS channel assignment single DTM
	Figure 36 − Sequence of channel assignement for a single DTM
	Figure 37 − Modular DTM structure
	Figure 38 − Channel assignment for modular DTMs
	Figure 39 − Printing of DTM-specific documents
	Figure 40 − Printing of Frame Application-specific documents
	Figure 41 − Report generation (Frame Application style)
	Figure 42 − Report generation (device vendor-specific style)
	Figure 43 − Propagation of changes
	Figure 44 − Locking for non-synchronized DTMs
	Figure 45 − Locking for synchronized DTMs
	Figure 46 − Instantiation of a new DTM
	Figure 47 − Instantiation of an existing DTM
	Figure 48 − Instantiation of a DTM user interface
	Figure 49 − Release of a DTM user interface
	Figure 50 − State machine of instance data set
	Figure 51 – Persistence states of a data set
	Figure 52 − Saving instance data of a DTM
	Figure 53 − Copy and versioning of a DTM instance
	Figure 54 − Audit trail
	Figure 55 − Comparison without user interface
	Figure 56 − Comparison with user interface
	Figure 57 − Failsafe data access
	Figure 58 − Set or modify device address with user interface
	Figure 59 − Set or modify known device addresses without user interface
	Figure 60 − Display or modify all child device addresses with user interface
	Figure 61 − Device initiated data transfer
	Figure 62 − Modal DTM user interface
	Figure 63 − Handling of a redundant slave
	Figure 64 − Init of Channel ActiveX with IFdtChannelActiveXControl2
	Figure 65 − Init of Channel ActiveX® without IFdtChannelActiveXControl2
	Figure 66 − Saving data from a DTM to be upgraded
	Figure 67 − Loading data in the replacement DTM
	Figure 68 − Usage of IDtmSingleDeviceDataAccess
	Figure 69 − General sequence of creation and instantiation of blocks
	Figure E.1 – XSLT role

	Tables
	Table 1 – Definition of DTM state machine
	Table 2 − Task related DTM interfaces
	Table 3 − Task related DTM ActiveX® interfaces
	Table 4 − Task related FDT-Channel interfaces
	Table 5 − Task related Channel ActiveX(interfaces
	Table 6 − Task related BTM interfaces
	Table 7 − Task related BTM ActiveX(interfaces
	Table 8 − Task related Frame Application interfaces
	Table 9 − Semantic identification information
	Table 10 − Regular expressions
	Table 11 − Availability of DTM methods in different states
	Table 12 − Availability of Frame Application interfaces
	Table 13 – Description of instance data set states
	Table 14 – Description of persistent states
	Table 15 – Component categories
	Table 16 – Combinations of categories
	Table 17 – Example for DTM registration
	Table 18 – FDT-specific Ids
	Table 19 – Basic data types
	Table 20 – Helper objects for documentation
	Table B.1 − General services
	Table B.2 − DTM services related to installation
	Table B.3 − DTM services related to DTM information
	Table B.4 − DTM services related to DTM state machine
	Table B.5 − DTM services related to function
	Table B.6 − DTM services related to documentation
	Table B.7 − DTM services to access the instance data
	Table B.8 − DTM services to access diagnosis
	Table B.9 − DTM services to access the device data
	Table B.10 − DTM services related to network management information
	Table B.11 − DTM services related to online operation
	Table B.12 − DTM services related to FDT-Channel objects
	Table B.13 − DTM services related to import and export
	Table B.14 − DTM services related to data synchronization
	Table B.15 − General channel services
	Table B.16 − Channel services for IO related information
	Table B.17 − Channel services related to communication
	Table B.18 − Channel services related sub-topology management
	Table B.19 − Channel services related to functions
	Table B.20 − Channel services related to scan
	Table B.21 − FA services related to general events
	Table B.22 − FA services related to topology management
	Table B.23 − FA services related to redundancy
	Table B.24 − FA services related to storage of DTM data
	Table B.25 − FA services related to DTM data synchronization
	Table B.26 − FA services related to presentation
	Table B.27 − FA services related to audit trail
	Table C.1 – Description of general XML attributes
	Table C.2 – Description of general XML elements
	Table C.3 – Device classification ID
	Table C.4 – Device classification according to IEC TR 62390:2005, Annex G
	Table C.5 – Description of applicationId attribute
	Table C.6 – Description of applicationId elements
	Table C.7 – Description of user information attributes
	Table C.8 – Description of user information elements
	Table C.9 – Description of DTM information attributes
	Table C.10 – Description of DTM information elements
	Table C.11 – Description of function call attributes
	Table C.12 – Description of parameter document attributes
	Table C.13 – Description of parameter document elements
	Table C.14 – Description of documentation attributes
	Table C.15 – Description of documentation elements
	Table C.16 – Description of protocols element
	Table C.17 – Description of system tag attributes
	Table C.18 – Description of system tag elements
	Table C.19 – Description of audit trail attributes
	Table C.20 – Description of audit trail elements
	Table C.21 – Description of device status attribute
	Table C.22 – Description of device status elements
	Table C.23 – Description of function attributes
	Table C.24 – Description of function elements
	Table C.25 – Description of channel functions attributes
	Table C.26 – Description of channel function elements
	Table C.27 – Description of comparison attribute
	Table C.28 – Description of comparison elements
	Table C.29 – Description of fail safe attributes
	Table C.30 – Description of fail safe elements
	Table C.31 – Description of topology scan elements
	Table C.32 – Description of operation phase attribute
	Table C.33 – Description of operation phase element
	Table C.34 – Description of DTM init element
	Table C.35 – Description of user message attributes
	Table C.36 – Description of user message elements
	Table C.37 – Description of DTM info list elements
	Table C.38 – Description of topology attributes
	Table C.39 – Description of topology elements
	Table C.40 – Description of device list attributes
	Table C.41 – Description of device list elements
	Table C.42 – Description of gui label element
	Table C.43 – Description of DTM state element
	Table C.44 – Description of frame version element
	Table C.45 – Description of connect response element
	Table C.46 – Description of type request element
	Table C.47 – Description of scan request attributes
	Table C.48 – Description of scan request elements
	Table C.49 – Description of common identification attributes
	Table C.50 – Description of common identification element
	Table C.51 – Description of scan identification attributes
	Table C.52 – Description of scan identification elements
	Table C.53 – Description of device type identification element
	Table C.54 – Description of item list attributes
	Table C.55 – Description of item list elements
	Table C.56 – Description of BTM data type attributes
	Table C.57 – Description of BTM data type elements
	Table C.58 – Description of BTM information elements
	Table C.59 – Description of BTM parameter elements
	Table C.60 – Description of BTM init element
	Table C.61 – Description of BTM info list element
	Table F.1 – Description of basic channel attribute
	Table F.2 – Description of basic channel elements
	Table F.3 – Description of xxx channel parameter attribute
	Table F.4 – Description of xxx channel parameter elements
	Table G.1 − Interoperability between components of different versions

