INTERNATIONAL ISO/IEC
STANDARD 13235-1

First edition
1998-12-15

Information technology — Open Distributed
Processing — Trading function:
Specification

Technologies de l'information~> Traitement distribué ouvert — Fonction
commerciale: Spécificatiohs

I EC Reference number
it ® ISO/IEC 13235-1:1998(E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

Contents
Page
1 Scope and field of @PPHCALIONooiiiiiiie e e e e 1
2 NOIMALIVE REFEIENCES.....ciii ittt e e e e ettt e+ s—— e 1
3 [N 0] =1 1o o TP 1
4 (D= {1 T 1T 13U PRPPTRUPRRR 2
4.1 Definitions from ITU-T Rec. X.902 | ISO/IEC 107462cuuuuveiieeieeeee e i e eeiivrteeeereereenaaaaa e e e e e
4.2 petiniuons rom 1TU-T X.B0s [ISO/NEC 10740-3......cooii i e
5 Overvigw of the ODP Trading FUNCHON..........ccoiiiiiiiiiiie e e ee e e e e e e s e s s s rreeeeeee e s smmmmmegTasZals 3
5.1 DPiversity and SCalabilitycouviiiiieiiiiii e e S e 4
Lo 11T TR 1 = o L= £ P SO 4
LR T =0 1o Y PSP SOPN .- USRI 4
6 Enterprfise specification of the Trading FUNCHONcovviiiiiiiii i e e e e smmmmmmmemnnnes 5
G A ©70]010010] a1 1T= T PSP oo ST 5
B.2 ROIES ..ttt e et e e e e st e emmmeeeeeenn bbb eeeeenn 5
ST T XX (1Y) (=2 PPt S N ST PRPT 6
8.4 POlCIES ..eeiieiiiiiiiie e et e e e e e e e e b 6
ST 1 0 ox (1 [o 0 L= SO 6
7 Information specification of the Trading FUNCHIONooomernnriiiiir e os— 7
7.1 PVEIVIEW i€ e 7
A2 2 T TS [l oo o oT= o) S SO 8
7.3 LNV Z= L= T L STl 1= o - O 12
A S - (oo o =T o - U 13
A T)Y/ g - U 4T ToTod 1T o g - - P 13
8 Compytational specification of the Trading FUNCHON...........cvvviiiiiiiii e emccmmcmene . 21
8.1 Miewpoint COMMESPONUENCES. ...l ertieiiiriiiee ittt e e ettt e e s st e e e s st e e e s s anbbe e e e e e s s eeeeemmneeeas 22
8.2 LConcepts and data tYPES i eeee e it ne e 22
8.3 EXCEPLONS ..eeiiieiiiitieee e 5 N sttt ettt ettt e et e e e e bbb e e e e e b b e e e e e b b e e e e enans 35
8.4 PAbstract interfaces 37
8.5 FUNCHONAl It A S sttt e e e e e e e e e e e s e et e e e e e e e e e s s—— 39
8.6 Pynamic Property Evaluation iNtErfaCe..........ooiiiiiiiiiiiiiii e ... 55
8.7 JTrader ObJECt LEIMPIALEeiiiie e 56
9 Conformance statements and reference POINES........oocuueeiiieiiiiiii e .. 58
9.1 [Lonformance requirement for trading function interfaces as Server.........coccccvvvveeeeinciieeeibenn,
9.2 [Conformance requirements for query trader conformance class...........ccccoeevcvvviiiveveeeeeeiinnccccveeneeeen,
9.3 [onformance requirements for simple trader conformance class........ccccccvvvevviiiiieennnceeeeenfoe e,

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying and micro-
film, without permission in writing from the publisher.

ISO/IEC Copyright Office Case postale 56 CH-1211 Genéve 20 Switzerland

Printed in Switzerland

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

© ISO/IEC

ISO/IEC 13235-1:1998(E)

9.4 Conformance requirements for stand-alone trader conformance class............coccceeiiiiiiiniiiiiiieeeeeeen, 60
9.5 Conformance requirements for linked trader conformance Classeeevieiiiiiiiiiiniiiiiiiiiiieeeeeeeeee 61
9.6 Conformance requirements for proxy trader conformance Class............oocccuiiiiiiiiie 61
9.7 Conformance requirements for full-service trader conformance class............ccceeeeieiiiiiiiiiiiiiiiiieeeenn. 61
9.8 CONTOMMANCE TESES.....eeiiiiiiiieii ettt ettt et e e st e e e e s st b e e e e s aeb e e e e emmmeenennnmane s aae 61
Annex A — ODP-IDL based specification of the Trading FUNCHON............cccuiiiiiiiiiii e e 62
F N0 R [11 (oo [¥ od 1 o] PO PP PP PP POPPPPPPN 62
A.2 ODP Trading FUNCLION MOAUIE..........coiiiieitee et s 62
A.3 Dynamic Property MOGUIEueeiiiiiiiii ittt e e e e e e e e e e meeeeeeeeeean 69
Annex B — ODP Trading Function Constraint Language BNF (1 oo 71
B.L | INTOTUCTION. .. .eeiiieeei ittt et e e e et e e e e s e 1 o) . 71
B.2 | LanNQUAQE DASICSuuuiiiiiiiiiiiiiiiii ettt a e e e e AN 71
B.3 | The constraint language BNF 72
Annex C + ODP Trading Function constraint recipe language........cccccccvveeeeerannniiiiiiceeeed 80 e veee 15
C.1| INFOAUCTION.....eiiiiieiiiiiieee e et e et e e e e e e e s ssnrneeeeessnnnneeeeessnnnnneeees s s e Jafommmnnnnen e e e e e . 75
C.2| ThE reCIPE SYNTAX ..eeiiiiiiiiiiieeeiie ittt e e e e e e e e DA T e et e e e e e e e e " 75
C.3| Example 75
ANNex D 1 Service type rePOSITONYccoiiiiiiiiiiiiiiiiieiieeee et B Yottt e et ee e e e e e e e e e e e e e e e e e e aanas 76
D.1 | INrOTUCTION. .. .ceieieieeiiiiieee et e e e e e s et s e e e et s ORI 76
D.2| Service type repository 76

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

Foreword

© ISO/IEC

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the
specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the
development of International Standards through technical committees established by the respective organization to deal witl
particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other

international

In the field d
International
International

International
Subcommitte

Recommenddgtion X.950.

ISO/IEC 1323
Processing —

Part 1: S

Part 2: (]

Part 3: P

Annexes A to

f information technology, ISO and IEC have established a joint technical committeg;’ I
Standards adopted by the joint technical committee are circulated to national bodiesfor vo
Standard requires approval by at least 75 % of the national bodies casting a vote.

Standard ISO/IEC 13235-1 was prepared by Joint Technical Committee 1SO/IEGnfd@Enatior
e SC 3istributed application serviced collaboration with ITU-T. The identical text is publ
5 consists of the following parts, under the general Itifliermation technology — Opé
- Trading function
pecification

'BD)

rovision of trading function using OSI Directory<service

D form an integral part of this part of ISQ/IEC 13235.

'\rgnni7:\finne1 gn\/nrnmnnfnl and nnn-gn\/nrnmnnfnl’ inliaison with 1SQ and IEC _alsa take part in the work.

O/IEC JTC 1. Draft
ing. Publination as a

technology
shed as ITU-T

n Distributed

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

© ISO/IEC ISO/IEC 13235-1:1998(E)

Introduction

The rapid growth of distributed processing has lead to a need for a coordinating framework for the standardization of Op
Distributed Processing (ODP). The Reference Model of Open Distributed Processing (RM-ODP) provides such a framework
defines an architecture within which support of distribution, interoperability and portability can be integrated.

One of the components of the architecture (described in RM-ODP Part 3: Architecture) (ITU-T Rec. X.903 | ISO/IEC 10746-:
is the ODH Trading function. The trading function provides the means to offer a service and the mean$ to discover services
have been offered. This Recommendation | International Standard provides an architecture forysystems implementing
trading funftion and the specification of interfaces within the architecture.

NOTE - The specification of computational interfaces in this Recommendation | International Standard is tgchnically dlighed wit
OMG Trading Object Service.

The goals pf this Recommendation | International Standard are:

—| to provide a standard which is independent of any implementation;
—| to ensure implementations are capable of being made to interoperate (i.e. can be federated);
—| to provide sufficient detail to allow conformance claims to be assessed.

Annex A isla normative ODP-IDL specification of the trading function jaterface signatures.
Annex B is|la normative specification of the ODP trading function-constraint language.
Annex C i a normative specification of the ODP trading function constraint recipe language.

Annex D ig an informative description of a Service Type Repository.

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY — OPEN DISTRIBUTED PROCESSING -

1 S

The scope

TRADING FUNCTION: SPECIFICATION

cope and field of application

of this Recommendation | International Standard is:

It is not a ¢
this Recon

The field o
and discov]

2 N

The follow
provisions

an enterprise specification for the trading function;

an information specification for the trading function;

a computational specification for traders (i.e. objects providing the trading function);
conformance requirements in terms of conformance points.

oal of this Recommendation | International Standard to state how the trading function shoy
mendation | International Standard does not include an engineering specification.

application for this Recommendation | Intenational Standard is any/OBP system in which if
Pr services incrementally, dynamically and openly.

ormative References

ng Recommendations and International Standards centain provisions which, trough referer

Recommendations and Standards are subject to revision,” and parties to agreements based o

Internation
and Stand
Telecomm

3 N

h| Standard are encouraged to investigate the pessibility of applying the most recent edition
ards listed below. Members of IEC and SO maintain registers of currently valid Intern
Iinication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recomn

ITU-T Recommendation X.901 (1997) | ISO/IEC 10746-1:198f&rmation technology —
processing — Reference Model; Overview.

ITU-T Recommendation X.902(1995) | ISO/IEC 10746-2:198frmation technology — (
Processing — Reference Model: Foundations.

ITU-T Recommendation’ X.903 (1995) | ISO/IEC 10746-3:198frmation technology — (
Processing — Referenece Model: Architecture.

ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:19@8rmation technology — (
Processing —(Interface Definition Language.

ISO/IEC.13568), Information technology — The Z Specification Language.

otations

Id be realized. Theref

is required to introduc

ce in this text, constit

of this Recommendation | International Standard, At the time of publication, the editions ifdicated were valid. A

h this Recommendat
of the Recommendati
ational Standards. T|
hendations.

Dpen distributed
Dpen Distributed

Dpen Distributed

Dpen Distributed

The infor

tien cnnmfmnhnn of the fr:\rhnn function-is describhed ||e|nn the Z formal rlner\rlnhnn Ianglln

e. The signature of tl

computational mterface for the trading functlon is described using ODP Interface Deflnltlon Language, in clause 8 and

Annex A.

ITU-T Rec. X.950 (1997 E)

1

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

4 Definitions

4.1 Definitions from ITU-T Rec. X.902 | ISO/IEC 10746-2

This Specification is based on the framework of abstractions and concepts developed in RM-ODP and makes use of th
following definitions from RM-ODP Part 2: Foundations (see ITU-T Rec. X.902 | ISO/IEC 10746-2).

a) action;

b) activity;

c) behaviour;

d) behavioural compatibility;
e) binding;

f) client object;

g) [conformance pom,

h) |contract;

i) domain;

j) [stablishing behaviour;
k) [failure;

[) |dentifier;

m) [initiating object;

n) |instance;

0) |[interaction;

p) [interface;

g) |interface signature;

rN |hame;
s) |object;
t) |obligation;

u) |ODP system;

V) [permission;

w) [policy;

X) [prohibition;

y) |quality of service;
z) |reference point;
aa) [responding object;
bb) |role;

cc) |server object;
dd) [subtype;

ee) [supertype;

ff) lemplate;

gg) template type;
hh) trading;

ii) transparency;
i) type;

kk) viewpoint.

2 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

4.2 Definitions from ITU-T X.903 | ISO/IEC 10746-3

This Specification is based on the framework of abstractions and concepts developed in RM-ODP and makes use of
following definitions from RM-ODP Part 3: Architecture (see ITU-T Rec. X.903 | ISO/IEC 10746-3).

a)
b)
c)
d)
e)
f)
9)
h)

community;

computational interface template;
computational viewpoint;
dynamic schema,;

engineering viewpoint;
enterprise viewpoint;

exporter;

information viewpoint;

5 g

Invariant schema;
schema;

service export;
service import;
service offer;

static schema,;
technology viewpoint;
<X> federation.

verview of the ODP Trading Function

In the context of the ODP goal of providing distribution transparent utilization of services over heterg

networks,
finding of

The ODP
particular t
object thrg
Advertising
"import". E

To export,
available.

description
able to inte

he role of the Trading Function is to allow users:tofind potential services. It is a corollary
ervices will occur dynamically.

trading function facilitates the offering and.4the discovery of instances of interfaces whi
ypes. A trader is an object that supports,the Trading Function in a distributed environment
ugh which other objects can advertise ‘their capabilities and match their needs againg
a capability or offering a service_is-Called "export". Matching against needs or discovg
kport and import facilitate dynamie-discovery of and late binding to services.

an object gives the trader a description of a service together with the location of an interfag
To import, an object asks“the trader for a service having certain characteristics. The t
s of services and responds to the importer with the location(s) of matched service interfacq
ract with a matched, setvice. These interactions are shown in Figure 1.

geneous platforms al
of distributios that

ch provide services
. It can be viewed as
t advertised capabilit
ring services is calle

e at whicleehiat servi
ader checks against
(s). The importer is tl

3
T0727950-97/d01

Sequence of interactions:
1. Export

2. Import

3. Service Interaction

Figure 1 — Interaction between the trader and its clients

ITU-T Rec. X.950 (1997 E) 3

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

The service interaction could be decoupled from the trading interactions (export and import) by modelling a service provider
object and a service user object explicitly. This would imply interactions between service provider and exporter and between
importer and service user that are trading actions, as defined in ITU-T Rec. X.902 | ISO/IEC 10746-2. However, these implied
interactions need not conform to this Specification.

Due to the sheer number of service offers that will be offered worldwide, and the differing requirements that users of the
trading service will have, it is inevitable that the trading service will be split up and that the service offers wiltibeqzhrti

Each partition will, in the first instance, meet the trading needs of a community of clients (exporters and importers). Where a
client needs a scope for its trading activities that is wider than that provided by one partition, it will access otbes partiti
either directly or indirectly. Directly means that the client interacts with the traders handling those partitions. Inuieacisy,

that the client interacts with one trader only and this trader interacts with other traders responsible for other p#witions. T
latter possibility is referred to as federation of traders. In some cases, interceptors may be required between fedsrated trade

A user of a trader that interoperates with other traders, may associate with only one trader, and can transparently access t
service offers of other traders with which that trader can interoperate .

Thus, the trading function in an ODP environment allows:

— |objects to export (advertise) services;
— |objects to import information about one or more exported services, according to some-critefia;
— [federation of traders.

5.1 Diversity and scalability

The concept pf trading to discover new services is one that is applicable in a wide-range of scenarios. A trader may contain
large number]of offers of service and its implementation may be inclined to be based’upon a database. Qr, a trader may conta
a few offers gnly and so be implementable as a memory resident trader. These\two cases exhibit differept qualitiey: availabilit
and integrity in the first case and performance in the second. The variation in‘these scenarios illustrates the nedtityor scalab

both upwardq for very big systems and downwards for small, fast systems.

To discover gny arbitrary offer of service, a trader needs all offers to/he;-in some sense, visible to it. Ong partitiboldannot
every offer, many will necessarily be held at other partitions, therefore, in addition to a number of offers, |Ja tradesessst pos
information apout other partitions. However, there is no need for a trader to know about all other paftitions. Some of this
knowledge cgn be obtained indirectly via other traders.

The partitioning of the offer space and the limited knowledge held with one partition about other partitions is the basis for
meeting requfrements for both distribution and contextualisation of the trading function.

5.2 Linking traders

The requirements to contextualise the offer spaee and to distribute the trading function are both met by linking traders togeth
By linking to ¢ther traders, each trader makes-the offer space of those traders implicitly available to its own clients.

Each trader Has a horizon limited to those other traders to which it is explicitly linked. As those traders afe in tumyéatked
more traders| a large number of traders are reachable from a given starting trader. The traders are linked to form a directe
graph with th¢ information descriling the graph distributed among the traders. This graph is called the trading graph.

Links may crpss domain boundaries: administrative, technological or whatever. Trading may thus be alfederated system, i.e
one that sparfs many domaigs.

5.3 Policy

To meet the fliverse requirements likely to be placed upon the trading function, some degrees of freedpm are necessary whe
specifying themwwwlcmmnﬁmwmem&wwmﬂcaﬁon, thef concep

policy is used to provide a framework for describing the behaviour of any ODP conformant trading system.

This Specification identifies a number of policies and gives them semantics. Each policy partly determines the behaviour of a
trader. When claiming conformance, an implementation may need to state which combination of policies will ensure
conformant behaviour.

Policies may be communicated during interaction, in which case they relate to an expectation on subsequent behaviour.

4 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

6 Enterprise specification of the Trading Function

The scope of an enterprise specification is defined in RM-ODP Part 3: Architecture (see ITU-T Rec. X.903 | ISO/IEC 1074
3). This enterprise specification identifies the objectives and the policy statements that govern the activities of a tradil
function.

The objective of the trading function is to provide the means to offer and to discover instances of a particular type,of servi
with particular characteristics.

A trading community is comprised by members that have different roles, for example, trader, exporter and importer. An obje
can have several roles within the same community. For example, an object can both be an importer and an exporter.

The trading activities of the community are service exports and service imports. These activities are governed by a set
policies of the trading community. A service import activity may propagate from one trading community to another. In such
case the domains associated with these two traders are federated. These trader domain boundaries may coincide with

domain boundaries (e.g. type domain or security policy domain).

A policy is|a set of rules with a particular objective. Each rule constrains some aspects of a traders _behaviour cdhsistent v
the commqn objective. Members of the trading community are obliged to obey the rules of the palicies| These rules provide
guidelines for decisions to satisfy the community’s objectives. The rules are not prescribed in this’Spetification. Tise enterpr
specificatign identifies the set of policies that limit the trader in certain type of behaviour. Fhe policips identified arovid

framework]|within which the trader object's behaviour may be implemented or configured.

6.1 dommunities

6.1.1 thfading community. A community of objects established for the purpese of trading and gpverned by a trading
policy. The objects perform roles listed in 6.2.

A single trading community (at one level of abstraction) may be refined infe,a number of interworking tfading communities at
second, more detailed level of abstraction. Subject to community policy, the interworking of tradipg communities at th
detailed leyel is able to maintain the impression of the single abstract community, allowing objects with trader, importer ¢
exporter rgles in one subcommunity to interact with objects in any-other subcommunity.

6.2 Holes
Objects may play the following roles within a trading condmunity.

6.2.1 tfader. A role which registers service offers from exporter objects and returns service offers upon request to import
objects acgording to some criteria.

6.2.2 ekporter. A role which registers seryice offers with the trader object.
6.2.3

rmporter: A role which obtains service offers, satisfying some criteria, from the trader object.

6.2.4 tlfader administrator: A rolé which defines, manages, and enforces the trader policy of the trader object. The trade
administrator is the controlling object of a trader domain (the trader and its set of service offers).

6.2.5 service offer A role which maintains a description of a service.
NOTE —{The description may be the basis of a future contract.

ITU-T Rec. X.950 (1997 E) 5

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

6.3 Activities
The following activities are relevant to a trading community.
6.3.1 service exportA chain of actions by an exporter object and the trader object which establish and terminate a liaison

in which the trader object is permitted to provide the exporter object's service offer to a group of importer objects.

6.3.2 service import A chain of actions between an importer object and the trader object in which the importer object
obtains a number of service offers which meet some criteria.

6.4

The behaviours of enterprise objects within a trading community are governed by the policies of the trading community. Some
policies govern trading activities, and some policies place constraints on other aspects of behaviour of a trader aas other rol
in the trading community, consistent with the common objective of the community. Where an activity involves interactions
between objects, the resulting policy will be a compromise between the policies of the interacting objects. The compromise will
be reached vjaatorm of arbitration.
NOTE - Fdr example, a trader object may be governed by policies such that it is obliged to propagate a seatchi-tp amlepthudfi |
is also permitted to terminate a search after propagating a search to a depth of 1 link. If the trader object.is‘peobjiged)(ts meet
an importef’s requirement regarding depth of links to be traversed for a search, then there is a need, for some [ulés betarxina
conflicting policies.

6.4.1 Expprt activity policy: A set of rules related to the service export activity (i.e. the offering of se
might subsequently be discovered by other objects).

Policies

Fvices so that they
The policy may include, amongst other things:

an obligation for a service offer to be described in a specific way;

a prohibition of specified service import activities from discovering’the service offer;

an obligation for a service offer providing rules to be evaludted as part of a service import a

Ctivity.

Each exporte
the service e

6.4.2 Imp
services that

The policy may include, amongst other things:

6.4.3 Arb

The policy may include, amongst otherthings, an obligation to arbitrate in favour of the trader object’s rul

r may have its own export politiis would describe theleXporter's expectation of a service
port activity is governed by both the trader’s exportpolicy and the exporter’s export policy.

Drt activity policy: A set of rules related to the-service import activity (i.e. the attempt tg
meet a specified requirement.

an obligation to limit the use of resourges, including duration of activity;
permissions to propagate the service import to one or more interworking trading communitig

tration policy: A set of rules to_arbitrate on conflicting rules arising during trading activities.

use of resources during service import;
propagating servige\fmport activities.
ice offer acceptance policyA set of rules restricting the set of service offers that will be acce

e management policyA set of rules related to the specification of types and the relationship &
'he policyxmay be to defer to a type repository function with respect to either or both of these aspects
Fxamples would be to use name equivalence or to use signature subtyping in type matching.

Searchpolicy A set of rules guiding the search for suitable service offers through the trading sys

bXreatefore,

discover offered

ES ON:

bted by the trader.

etween types.

fem.

6.4.4 Ser

6.4.5 Typ
NOTE 1 -
NOTE 2 —

6.4.6

6.5

6.5.1

Structuring rules

Community rules

In a trading community there must be an object which assumes a trader role (a trader object). Becoming a member of a tradin
community enables an object to interact with the trader object in an importer or an exporter role. An object may assume the

exporter role,

the importer role, or both the exporter and importer roles.

An "enterprise" may include multiple trading communities. An object can be a member of multiple trading communities. The
trader object of one community may assume an importer or exporter role within another community of which it is a member.

The community may span several domains with respect to security, types, management, remuneration, etc.

Each trader, along with its set of service offers, is a trader domain. Thus, a set of trader domains which interopeeate within
trading community is a federation of traders.

ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

NOTE — Federated traders domains do not always require interceptors placed at their boundary in the engineering viewpoint.

6.5.2 Transfer rules

Exporter objects can export offers for services which they provide at their own interfaces, or may export offers for servici
provided by a distinct service provider object.

Importer objects can import service offers for their own use, or for use by distinct service user objects.

6.5.3 Delineation of authority rules

Each trader administrator object of a trading community has complete control over its own trader object.

The exporter object is responsible for the accuracy of its service offers.

For traders to be a member of an established federation of traders:

one trader is not obliged to perform an activity initiated by another trader;

each trader must have complete autonomy with respect to its own trader policies.

In particulgr, each trader determines its own trader search policies over the group of interworking trade

654 (
The trader
A trader ol
NOTE —

1)

2)

6.5.5 M

A service i
for subtypd
informatior

7

I

7.1 d

The scope
3). This inf
define the
language i
usual Z sty

uality of service rules
object is neither accountable nor responsible for the quality of services described in service

ject may be obliged to ensure the timely removal of service offers.
Two examples for achieving this are:

A trader service offer acceptance policy may oblige service offers to have/an expiry date. The trg
remove expired service offers.

A trader import policy may prohibit the trader object from returning sefvice offers which have expired

atching rules

mport requires computational interface signature type‘checking. It can, in addition, involve fU
or supertype relationships, behavioural compatibility and environment constraints. Furthe
, engineering, and technology aspects may also ke provided.

formation specification of the Trading Function

verview

of an information specification)is defined in RM-ODP Part 3: Architecture (see ITU-T Rec.
prmation specification describes the types of information and the relationships between thg
ODP trading function. It uses the information language defined in RM-ODP and where a
h terms of the formal specification notation Z. Paragraphs of formal notation are intersperse|
e.

IS.

offers.

der object is permitted

at the time oftan impo

rther levelsngf check
checking on enterpri

.903 | ISO/IEC 1074¢
m which are required
hpropriate interprets t
d with Englibk text in

ITU-T Rec. X.950 (1997 E) 7

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

The information specification in this clause defines:
— basic concepts for information used in this Specification;
— static, invariant and dynamic schemata for this Specification.

7.2 Basic concepts

7.2.1 Interfaces

A service is offered at an interface. There is a need to for a service offer to identify the interface signature typetarfdcene i
identifier of the service interface.

7.2.1.1 Interface signature type

The interface signature type identifies the signature of interfaces of objects.

1 sionatira tvynas ara farmalls dafinad hyvy ntraducina o anzan cat tn ranracant tha valuac thav .
In Z, interface-sighature-types-are-formally-defined-by-introducing-a-given-settorepresent-the-values-they can take:

[InterfaceSigfatureType]

7.2.1.2 Intefface identifier
An interface iflentifier identifies an interface at which a service is available or required.

In Z, interfacq identifiers are formally defined by a given set.

7.2.2 Seryice type
A service is g set of capabilities provided by an object at a computational’interface. A service is an instante of @service ty

A service type definition consists of an interface signature type, a sef\of service property definitions, and g setaftrtiies ab
modes of the|service properties.

Service property definitions are explicitly described in the formal specification in terms of names, value types and modes. The
valid modes are:

— |normal (read and write but optional presen¢e);

— [read-only (read but optional presence);

— |mandatory (read and write mandatoery*presence); and

— |read-only and mandatory (read only, mandatory presence).

A value type |s a set of values.
[Name, Valug]

ValueType =fPValue

Mode ::={ normal, readonly; mandatory, readonly _mandatory }

Service propgrties contaifinformation about computational aspects (such as the behaviour and the envijonment of an interface
as well as degcribing-the technology, engineering, information, and enterprise aspects of the service.

The formal definitien of service type is given in the Z sch&wmeviceType It groups together an interface signgture type and a
set of service|property definitions.

ServiceType
signature: InterfaceSignatureType
prop_defs Name-+ (ValueTypex Modée

8 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

In Z, functions are used to extract the set of property names which must be present (i.e. ritgydateryor readonly
mandatory and the set of property names which cannot be modified (i.e. thegaatenly or readonly mandatojy These
two functions are formally defined as follows:

mandatory_props ServiceType- > Name
readonly_props ServiceType- P Name

¥V s: ServiceType mandatory props =
{n: Name | second (s.prop_defssmandatory, readonly_mandatory}}

V s: ServiceType readonly_propss =

{n : Name | second (s.prop_defsereadonly, readonly_mandatory}}

7.2.3 Trvice type subtyping rules

The generdl rules for service subtyping for a conformant trader are as follows:

In the most general case, a service tyjea subtype of service typeif, and only if:

—| the interface signature typeofs a subtype of the interface signature type;of
—| all the named properties afare inb;

—| all of the named properties @have a value type which is a supertype-of the identically named propbrty in

—| all of the named properties @have a mode which is a supertype.6f'the mode of the ident|cally named property
inb.
NOTE —{The above rules are equivalent to the normal ODP interface subtyping)rules, if the properties are viewed as wjihrtt®ns,
type and mode as return arguments of the operations.

The Z representation requires that three relations are defined to represent interface signature subtyp|ng, value sugertyping
mode supdrtyping. The interface signature subtyping rules are those given in ITU-T

Rec. X.903 | ISO/IEC 10746-3 and are not further defined fiere. Formal definitions are given for supgrtyping relations acrc
the modes|and value types.

_is_sig| subtype_of : InterfaceSignatureType> InterfaceSignatureType

_is_valpe_supertype_of : ValueType— ValuéType
_is_mode_supertype_of: Mode« Mode

Vv a,b:Modes ais_mode_supertype.dfe

(a,b)ef{(normal,readonly),(normakmandatory),(normal, readonly _mandatory),
(readonly,readonly.mandatory), (mandatory,readonly _mandatory)}
V a,b:VhlueType ais_value/)supertype_di< bc a

is_spbtypecof : ServiceTypesServiceType

Vv a,b : BewiceType bis_subtype of &
b.signaturas_sig_subtype_add.signature A

dom a.prop_defs dom b.prop_defs\

(¥ n: dom a.prop_defs
first (a.prop_defs n$_value_supertype_ofirst (b.prop_defs nh
second (a.prop_defsis) mode_supertype_akcond (b.prop_defs n))

ITU-T Rec. X.950 (1997 E) 9

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

7.2.4 Service offer

A service offer advertises a service. It is an assertion made by an exporter about a service being offered for usedntother obj
at a computational interface. It consists of an instantiation of a service type, an identifier for the service offer atiflean ide
for the interface through which the service may be used. A service offer may also include a set of service offer property value

For Z, a given set is introduced to represent the service offer identifiers that are unambiguous within a trading community.

[ServiceOfferldentifier]

The formal Z definition of a service offer is given by the sch&ewiceOfferEach service offer must satisfy it's service type:

i.e. the service offer must have a value for all the properties defined by the service type as mandatory or readonly-mandatory
and all those prnpartinc which ara prnpnrtiac of-the-senvice t\]lpn must-have-values-drawnfrom-the-sets defined in the servic

type.

___ ServiceOffer

service type : ServiceType
prop|vals : Name~ Value

interface_identifier : Interfaceldentifier
service offer_identifier ServiceOfferldentifier

mandlatory_propservice_typec dom prop_vals
Vn: dom service_type.prop_defsdom prop_vals
prop_vals i first (service_type.prop_defs n)

7.2.5 Critgria and constraints
Policies in the enterprise viewpoint are represehnted by criteria and constraints in the information viewpoirt.

There are three aspects to specifying the Set of service offers which are acceptable results of a search |or selectaiction. Two
these are filtering relations over the seryice properties and service offer properties. The first defines the esseridgal propert
which cannot| be violated in order to*match. The second is a preference which acts as a selection filtef when there are mar
offers which fhatch the essential properties. The third aspect is a scoping relation which restricts the set jof serviceloffers w
are to be conppared with the matching rules. These specifications may be provided by both the importer gnd the trading systen
with the final specification being’a combination of the two. The trading system is defined in 7.3.

7.2.5.1 Mafching critefia

Rules which are applied to the total set of service offers to yield a smaller set of acceptable service offers

In Z , the majching crlterla may be expressed as the set of all possible service offers WhICh would sat|<fy the matching rules
The process of-applying . ay-then-be represe d-by-taking section of two sets.

MatchingCriteria==PServiceOffer

7.2.5.2 Preference criteria

Rules which are applied to the set of acceptable service offers to yield an ordered sequence of service offers.

10 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

In Z, the preference criteria may be expressed as a total function from sets of service offers to a sequence of sefliee offers.
application of these rules is formally described in 7.5.10.

PreferenceCriteria== PServiceOffer—» seqServiceOffer

7.2.5.3 Scope criteria

Rules which restrict the set of service offers which are to be compared with the matching rules.
In Z, scope criteria may be expressed as a set of service offers.

ScopeCriteria==PServiceOffer

7.2.5.4 Edge criteria

Rules whidh restrict the set of nodes reachable from a given node.

In Z, edge riteria can be expressed as associations:

EdgeCriterfja == Node x Node

7.2.5.5 Tlrader matching constraint
A constraint on the matching criteria imposed by policy of the trading system.

In Z, matghing constraints can be specified in the same manner as matching criteria. Applying these constraints may
represented by set intersection.

7.2.5.6 Tlrader preference constraint
A constraint on the preference criteria imposed by policy of the trading'system.

In Z, prefefence constraints are represented by a total function between two sets of preference criterla. The applisation of
function is described in 7.5.10.

PreferencgdConstrairnt= PreferenceCriteria— PreferenceCriteria

7.2.5.7 Tlrader scope constraint
A constraint on the scope criteria imposed by-trader policy.

In Z, scopg constraints are represented.by a set of service offers as for scope criteria.

7.2.5.8 Tlrading system constraints

For the fofmal Z specification)it is convenient to collect the constraints of the trading system together into the schen
TradingSys$temConstraint$his definition is used in 7.5.9.

___ TradingSystemCponstraints

trade]_matching MatchingCriteria
traden_seope ScopeCriteria
trader]_preference PreferenceConstraint

ITU-T Rec. X.950 (1997 E) 11

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

7.2.6 Sea

rch request

A search request is a specification of the importer policy applying to a particular search action.

In Z, a search request may be modelled as a schema consisting of the importer's matching, scope and preference criteria and
service type of the desired service. All offers which satisfy the importers matching requirements must have a servich type whic
is a subtype of the specified service type. This definition is used in 7.5.9.

__ Search Request

importer_matching MatchingCriteria
importer_scope ScopeCriteria
importer_preference PreferenceCriteria
importer_service_typeServiceType

Os:importer_matching s.service typas_subtype_ofimporter_service_type

7.3

The service
partitions. Th
directed grap
referred to as

There may b
partitioning m

An edge may|

The compong

Individual nod

[Node]

Invjlriant schema

ffer space will be partitioned and associated with any one partition will be knowledge, of a lir]
s pattern is repeated for focusing on any given partition. In the information speeification,
N, where the nodes represent the partitions and the edges represent the knowledge relating
the trading graph.

£ any number of bases upon which to partition the offer space, over and above distribd
ay be based upon:

properties of the location (e.g. machine architecture);
properties of the service offers (e.g. a security classification);
properties of the service (e.g. it's availability).

have properties that describe the perception of one partition when viewed from another par

nts of the trading system are:
A set pfferg of service offers which are availablefor import;
A set fode3 of nodes into which these service offers are partitioned;

A relationship ¢dge3 between nodes to-fepresent the edges of the trading graph, which goyj
of searches;

Sets édge_propertiesof properties which are associated with the edges;

Service offers are distinguished by their service offer identifiers, which are unique and u
captured by the invariants-of theadingSysterschema in Z.

es are formally definedin Z by introducing a given set.

All service offers must be-allocated to one, and only one node. No overlapping or sub-set relations K
permitted. Thjs restriction is captured by the partial fungtartition which maps each service offer in the tra|

single node.
service offer

n experter may export the same service to more than one node, by creating another servi
entifier.

hited numbyer of othe
his is modelled as
partitionds This grapt

tion. For example the

ition.

erns the propagation

hambiguous. This is

etween the nodes ar
fing system to a
ce offer with a differer

The computational viewpoint maps nodes INto traders. This mapping IS one-to-one (each node In the nformation viewpoint is a
single trader object). Hence in the computational viewpoint an edge corresponds to a computational interface between traders.

12

ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

The following Z schema represents the state of the trading system.

~__ TradingSystem
offers: P ServiceOffer

nodes: P Node

partition : ServiceOffer» Node

edges Node— Node

edge_properties (Nodex Nodg -+ P Property

dompatrtition = offers

ran partitionc nodes

dom edges’ ranedgesc nodes
domedge_properties edges
Vp.q. ; :

7.4 S

Static schsg

For the consistency and completeness of the formal Z specification, the action to initialise’a trading sy

When a trg

~Initia
Trad

tatic schema

ma applies the state of the trading system at a particular location in time.

ding system is created it has the null value for each state component:

ize
ngSysterh

offers

nodeg= &
partion’= &
edgeg= o

edge| properties &

/:Q

7.5 D
This subcla

tem is included.

ynamic schemata
huse presents dynamic informatien-schemata which describe changes of state associated with the following action
Export — Add a setryice offer to the service offer space of the trading system.
Withdraw — Withdraw a service offer from the service offer space of the trading sysfem.
Modify Offer — .Change the service property and service offer property values associafed with a service offe
whilst preserving the service offer identifier.
Add Edge <~ Add an edge to the trading system’s set of edges.
Remove’Edge- Remove an edge from the trading system'’s set of edges.
Modify. Edge — Change the properties of an edge.
Add Node — Add a node to the trading system's set of nodes.
Remove Node — Remove a node from the trading system's set of nodes.
Search — Search for the subset of service offers which satisfy some matching criteria and scopin
criteria.
Select — A useful specialisation of search which returns a sequence of service offers ordered accordir

to some preference constraint.

ITU-T Rec. X.950 (1997 E) 13

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

7.5.1 Export
The dynamic schema Export describes the behaviour of adding a service offer to the trading system.

Successful export of a service offer is as follows. The new service offer is added to the existing set of service offers and is
associated with a single node. The source of the service offer identifier component of the service offer is not idestified: it
generated by the trader, rather than the exporter. The service offer identifier is passed back to the exporter. The edg
relationships, and the properties associated with edges, are not changed.

The pre-condition for this action is that the new service offer identifier is not currently used in the trading systempderother
condition requires that the node with which the offer is to be associated exists in the trading system.

In Z, theExportschema represents the corresponding behaviour.

ExportOK

ATradingSystem

new |offer? ServiceOffer

nodef?: Node

service offer_identifier! ServiceOfferldentifier

Vv s: pfferse s.service_offer_identifiet new_offer?.service_offer_identifier
nodef?e nodes

offerg’= offersu {new_offerp

partition”= partition u {new_offer?— node?

servite_offer_identifier: new_offer?.service_offer_identifier

nodels' = nodes

edge| properties= edge_properties

edges= edges

If the pre-conditions of th&xportOK schema are not met, the statevof the trading system remains unchanged. In Z. this is
captured in tHe following error schema, the pre-condition for which'is the negation of the pre-condikiport®K

ExpartError

ETrafingSystem
new |offer?. ServiceOffer
nodef?: Node

Os: ¢offerse s.service offer_identifist-new_offer?.service_offer_identifier
nodef?¢ nodes

Exportwill sug¢ceed or fail depending on the pre-conditions of the above Z schemata.

Export2 ExpqrtOKv EXpoHError

7.5.2 Withdraw.

The dynamic [schema Withdraw removes a service offer from the trading system.

The offer is withdrawn from the set of offers. The edges and edge properties are unchanged. Note that this behaviour does n
specify how the action was initiated. Thus the behaviour applies whenever an offer is withdrawn by the trader, the exporter or
some other authorized agent.

The pre-condition for this action is that the service offer must exist in the trading system.

14 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

In Z, theWi

___ WithdrawOfferOK

ATra

ISO/IEC 13

thdrawschema represents the corresponding behaviour.

dingSystem

old_offer?: ServiceOffer

old_offer?e offers

offers’= offers\ {old_offer?
partition”= {old_offer%} < partition
nodes'= nodes

edges= edges

edge_properties= edge_properties

235-1:1998(E)

If the pre-conditions ofVithdrawOfferOKare not met, the state of the trading system remains unchanged.

WithdirawOfferError

ETra
old_¢

HingSystem
ffer?: ServiceOffer

old_¢

ffer?¢ offers

Withdraw(

Withdraw(

7.5.3 M

The dynanfic schema ModifyOffer defines the behaviour of modifying-the service properties and serv

with a ser
offer identi

A service ¢

In Z, theM
definition i
The other
behaviour
trader, the

Modi
ASer|
delet

new?

fferwill succeed or fail depending on the pre-conditions of the above Z.schemata.

ffer® WithdrawOfferOKv WithdrawOfferError
odify Offer

ice offer. This behaviour is not simply Withdraw follewedHEsport, because it also guarantg
ier is preserved.

ffer may be modified in three ways:
properties may be deleted, as long as they’are not mandatory properties;
new properties may be added, provided'that they are not already assigned a value in the
existing properties may be updated¢Zprovided that they are not readonly.

given to modify a service offer by replacing the service property values, provided that the
components of the offer are not affected: in particular the service offer identifier is pr
does not specify how thé action was initiated. Thus the behaviour applies whenever an
exporter or some other authorized agent.

fyServiceOfferOK
viceOffer
£? P Name

: Names Value

updafe’? .Name~ Value

ce properties associa
es that the service

service offer;

pdifyServiceOffeschema represents the corresponding behaviour. The definition is given in several steps. First,

above constiraints hol
pserved. Note that th
offer is modified by t

dom

dom

delete?~ mandatory_propservice_type £J

update? readonly_propsservice_types &

delete? dom update? dom prop_vals

new? dom prop_vals &

prop_vals'= (delete?< prop_vals)® update?u new?
service_typésignature = service_type.signature
interface_identifief= interface_identifier
service_offer_identifiet= service_offer_identifier

ITU-T Rec. X.950 (1997 E) 15

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

Error conditions for this behaviour arise when an attempt is made to:
— update or modify a non-existant property;
— modify a property which is either read-only or mandatory read-only; or
— add a new property which already exists in the service properties.

If this happens, all properties of the service offer remain unchanged, and the interface signature is also unchanged.

ModifyServiceOfferError

EServiceOffer
delete? P Name

new? : Name~ Value
update? : Name~ Value

(3 n {deleteu dom update? ng¢ dom prop_vals
v delete?™ mandatory_propservice_type: &

v doin update? readonly _propsservice_typez &
v do:[; new?™ dom prop_vals: &

The Z technigue of promotion is now employed to promotevthdifyServiceOffeschema so that it is appligd to a specific
offer in the trgding system. The offer to be modified is identified by the definition\ef\d framing schema,
dModifyOffeq] The framing schema states that:

— [the identifier of the offer to be changed is known to the trading-system;

— [after the action, the selected offer has been changed to the new value. All other offers afe unchanged and the
offer remains in the original node;

— |the edges and edge properties are unchanged.

OMofifyOffer

ATrafingSystem
ASeryiceOffer
modified_offer? ServiceOffer

modified_offerz offers
0SeryiceOffer modified_offer?
offer$’= (offers\ {6ServiceOffel). L {0ServiceOffef}
partijon”’=
({®ServiceOffer « paftition) L {6ServiceOffef— partition 6ServiceOffer
edgef = edges
edge| properties=tedge_properties
nodes = nodes

Error conditigns.for this behaviour arise when the pre-condition abMedifyOfferdoes not hold. This is whep an attempt is
made to modify an offer which is not present in the trading system. The trading system remains in the same state.

ModifyOfferError

STradingSystem
modified_offer? ServiceOffer

modified_offer? offers

16 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

Finally, the ModifyOffer behaviour is defined in terms ®fodifyServiceOfferthe framing schem@&ModifyOffer (which
identifies a particular offer to be modified) and the error conditions definédoitifyOfferError. The components ok
ServiceOffeare hidden so that they do not appear in the declaration pdddifyOffer, in line with the usual Z conventions.

ModifyOffer2 ((ModifyServiceOfferOk ®ModifyOffel) v ModifyOfferError) \
(service_type, prop_vals, service_offer_identifier, interface_identifier ,
service_typé prop_vals, service_offer_identifiinterface_identifier)

7.5.4 Add Edge

The dynamic schema AddEdge defines the behaviour associated with adding an edge to the trading graph. An edge is at
between the two nodes supplied, and the new edge properties are associated with this edge. The set of service offers an
nodes within the trading system remain unchanged.

The pre-cqnditions of this dynamic schema are that both nodes exist in the trading system, and thpt no edge already e
between tHese two nodes in the same direction.

In Z, theAddEdgeschema represents the corresponding behaviour.

~ AddHdgeOK
ATradingSystem
nodel?, node2?Node
new |edge_propertiesProperty

{nodp1?, node3?= nodes

(nodel1?, noded? edges

edgels= edgeso {nodel?— node2?}

edgel properties edge_properties) {(nodel?, node3?— newedge_properties?
offer$’= offers

nodes'= nodes

partiion”= partition

If the pre-conditions oAddEdgeOKare not met, thevstate of the trading system remains unchanged.

AddHdgeError
ETraflingSystem
nodefl?, node2?Node

nodefl 7z nodesv
nodeR?z nodesv
(nod¢1?, noded% edges

AddEdgew|ll sueceed or fail, depending on the pre-conditions of the above Z schemata.

AddEdge? AddEdgeOR/ AddEdgeErTor

7.5.5 Remove Edge

The dynamic schema RemoveEdgenoves an edge from the trading graph. The set of service offers and nodes within the
trading system remain unchanged by this dynamic schema. The properties associated with the edge are removed from
edge_properties

The pre-conditions for this action are that the edge supplied is in the current set of edges.

ITU-T Rec. X.950 (1997 E) 17

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)
In Z, theRemoveEdgsechema represents the corresponding behaviour.

RemoveEdgeOK

ATradingSystem
old_edge? Nodex Node

old_edge®* edges

edges= edges {old_edge?

edge_properties= {old_edge? <« edge_properties
offers’= offers

nodes'= nodes

partition”= partition

If the pre-confitions oRemoveEdgeOHKre not met, the state of the trading system remains unchanged.

RempveEdgeError
ETraflingSystem
old_gdge? Nodex Node

old_edge? edges

RemoveEdgwill succeed or fail depending on the pre-conditions of the above Z-schemata.

RemoveEdg§ RemoveEdgeO# RemoveEdgeError

7.5.6 Modify Edge

The dynamic|schema ModifyEdge modifies the properties associated with an edge. The old properties a
are replaced|by the new properties. The set of service.offers and set of nodes remains unchange

associated with all other edges.
The pre-condition for this action is that the suppliediedge must exist.

In Z, theModifyEdgeschema represents the cotresponding behaviour.

ModifyEdgeOK
ATraflingSystem

edgel”> Nodex Node

new |edge_propertie§PProperty

edgef’= edges

edge| properties edge_propertie® {edge?— new_edge_properties?
edgeE= edges

offery’ =/offers

nodeE=1nodes

5sociated with the edc
i, as do the properti

partition”= partition

If the pre-conditions of thModifyEdgeOKare not met, the state of the trading system remains unchanged.

~ ModifyEdgeError
ETradingSystem
edge? Nodex Node

edge? edges

18 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ModifyEdg

ModifyEdg

ISO/IEC 13
ewill succeed or fail depending on the pre-conditions of the above Z schemata.

€2 ModifyEdgeOKs ModifyEdgeError

7.5.7 Add Node

The dynamic schema AddNode describes the behaviour of adding a node to the trading system.

235-1:1998(E)

The pre-condition of this action is that the node to be added must not already exist within the trading system. Since the r
node was not an elementddes and hence not in the range of thatition function, no existing offers are mapped into the

new node.

This implies that new nodes do not contain offers.

In Z, theAddNodeschema represents the corresponding behaviour.

~__ AddNodeOK
ATradingSystem

new |

node? Node

new |
offerg
node
edge
edge

node# nodes

/= offers

K'= nodesu { new_node?

K= edges

| properties&= edge_properties

partijon”= partition

If the pre-¢

AddN
ZTra
new |

pnditions oAddNodeOKdo not hold, the state of the trading system‘is unchanged.

odeError

HingSystem
node? Node

new |

node& nodes

AddNodew

AddNode?

7.5.8 R

Il succeed or fail depending on the pre-conditions of the above Z schemata.

AddNodeOKs AddNodeError

emove Node

The dynanic schema RemoveNode.defines the behaviour of removing a node from the trading syste

that the no
other node

The compd
edges.

In Z, theRe

Rem

de to be removed is present in the trading system, that it contains no service offers and thg
S.

tational behaviour may combine this dynamic schema with other dynamic schemata for ren

moveNadschema represents the corresponding behaviour.

pveNodeOK

ATra

M. The pre-conditions
t it no longetdhas edg

noving service offers

ingSystem

old_node? Node

node

partit

old_node™] nodes

old_node ran partition
old_node? dom edges ran edges
offers’= offers

s'=nodes\ {old_node?

edge_properties= edge_properties
edges= edges

ion”= partition

ITU-T Rec. X.950 (1997 E) 19

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

If the pre-conditions oRemoveNodeOHo not hold, the state of the trading system is unchanged.

RemoveNodeError

ETradingSystem
old_node? Node

old_node nodesv
old_node ran partitionv
old_node* dom edges ran edges

RemoveNodwill succeed or fail depending on the pre-conditions of the above Z schemata.

RemoveNodé RemoveNodeO¥ RemoveNodeError

7.5.9

Seareh

reh

The dynamic
a set of serv
output is a se|

Offers which

In Z, theSea

schema Search is the behaviour which searches the trading system, restricted by some_seq
ce offers which satisfy some matching criteria. The action does not change the siate of
t of service offers. Its input is a search request.

Gatisfy the result of the search must satisfy the following conditions:
they must have the correct service type or a subtype thereof;

they must be contained in a node which is acceptable to both the requirements of the im
system’s constraints, and is reachable from the starting point;

they must match the importer's matching criteria;
they must satisfy the trading system's matching constraints.

chschema represents the corresponding behaviour. The formal specification of Search rg

matching cri
offers which
by stating th

Sear
=Tra
=Tra
Sear
starti
sear(

i

ria and search criteria as sets of service offers. The yesult of the search is obtained by sim
re returned must be reachable from the original starting point of the search. This property]

ChOK

dingSystem
HingSystemConstraints
chRequest?

ng_point? Node
h_resultt PServiceOffer

starti
let e:

{x:
sear(
imp

partiion (search_resulthc

ng_point?e nodes
EdgeCriteriee € [Jedges

Node| (starting_‘point?, Xe e+}
h_resulte
Drter_matehing? trader_matching™ importer_scope® trader_scope

is /made to search starting from a node which does not exist, no service offers are return

If an attempt

trading systeis.not changed.

ping criteria, and retu
the trading system. It

porter and the trading

presents the effect o
ple seh.idtbrsectio
is expressed formally

all such offers must be contained in a node which.appears in the transitive closedgethation.

ed and the state of tt

___ SearchError
ETradingSystem
=TradingSystemConstraints
SearchRequest?
starting_point? Node
search_resultt PServiceOffer

starting_point?z nodes
search_resultE &

20

ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

The behaviour of Search is fully described by combining the above Z schemata.

Search? SearchOKv SearchError

7.5.10 Select

The dynamic schema Select is the behaviour which orders a set of service offers according to some preference criteria.
criteria is a combination of the importer's preference and the trading system's constraints. These constraints include aspec
the arbitration policy of the trading community. The trading system's constraints modify the preference expressed by t
importer. The action does not change the state of the trader.

Selection

Search
seledtion!: seqServiceOffer

seledtion! = trader_preferen¢enporter_preference(search_resulj!

The formal Z specification uses the scheBsdectionto describe the application of prefefence criteria and constraints to the
result of a searctSelectremoves the search result from the signatu®ebdction

Select® Selection (search_resul)!

NOTE —{In the computational viewpoint, tBearchandSelectbehaviours are combined into the query operation.

8 Jomputational specification of the Trading.Function

The scopg¢ of the computational specification is defined in RM-ODP Part 3: Architecture (seq ITU-T Rec. X903
ISO/IEC 10746-3).

In the computational viewpoint, the interfaces of atrader with its environment are visible. The compytational specification
this Specification defines interface templates for @omputational interfces (client and server) that can b instantiaddrby a tr
object.

To enable|implementors to constrict conformance classes of traders (see clause 9) with different cpmbinations of interfa
(and thus gifferent functionality), the intéfaces in this Specification are grouped into two categories:

—| Functional interfaces, for grouping of operations based on the providion of functionality. The five functional
interfaces to a trader -are: Lookup; Register; Proxy; Link; and Admin. In addition, two [auxilliary interfaces ,
Offer Iterator and\Offer Id Iterator, are also specified.

—| Abstract interfaces, for grouping of read-only attributes based on the required support fgr a functional interfac
This Spegification specifies the abstract interfaces: Support Attributes; Import Attributes; Link Attributes; and
Trader €omponents.

The signatures for-the operations of the Admin and Link interfaces are defined to support portability ¢f Traders. Behaviour
specified for link rnanagement operations.

NOTE 1[-‘nternal administrative operations such as creation and deletion of trading interfaces are considered to bebepmrgtians
to the generic Object Management Function and are not defined by this Specification.

A trader may be a client to several RM-ODP generic functions which are the subject of future standardisation. For operation:
the interfaces of such server functions, neither signatures nor behaviour are specified by this Specification.

ODP-IDL (see ITU-T Rec. X.920 | ISO/IEC 14750) is used in this specification to express computational operation interfac
signatures. Use of this notation does not imply use of specific supporting mechanisms and protocols.

In addition to this computational specification, Annex A includes an ODP-IDL specification of the operational signatures in th
CosTrading module and the CosTradingDynamic module, and Annex D includes an ODP-IDL specification of the operation
signatures in the CosTradingRepos module.

NOTE 2 — The computational intefaces in this Specification are technically aligned with the OMG Trading Object Service.

ITU-T Rec. X.950 (1997 E) 21

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.1 Viewpoint correspondences

8.1.1 Correspondence with enterprise viewpoint

The policies expressed in the enterprise viewpoint are expressed in the computational viewpoint as operation parameters

trader attributes. Some of these operation parameters are expressed as constraints.

Each constraint can be expressed as a proposition that:

a named property exists;
a named property has a specified relationship to a stated value;

the values of two named properties have a specified relationship.

Any constraint can be set to a default value of true. A constraint may also be a conjunction, a disjunction
constraints.

or a negation of ot

Two action templates are identified for handling policies:

Consult action — Determines what constraints for governing behaviour apply in order-to
policy.

Arbitrate action — Produces a resultant constraint for performing a given operation by cg
policy (expressed as a constraint or input parameter) and the trader policy (reptesented by
ttribute or property values).

8.1.2 Corfespondence with information viewpoint

The informatipn specification defines a directed graph where partitions of offers afe placed at the nodes
constraint discernible from the information viewpoint is that, for a given direction; only one edge is allow
nodes. Two gdges, with opposite directions, are permitted between the same two nodes.

ndhere to the trader

mbining the client’s
a constraint and som

of the graph. The onl
ed between any two

The computajional specification defines trader objects, i.e. objects that provide a trading service at an inferfacebjettader o

may use a trgding service of another trader, i.e. it is linked to that other trader.

The relationship between these two viewpoint specifications is prescribed in this Specification. An information partition shall

correspond t¢ one and only one trader object. The possibility.of many partitions corresponding to a sing
allowed. Eaclp trading service interface has a single partition,ffom which all offers associated with that tra
can be reachgd in an import search.

An edge in the information viewpoint graph connects partitions that correspond to different trader object
correspond tq a link between those two traders. Thestarget partition is associated with the trading service
that link. All partitions corresponding to a given trader must either be associated with the trading service
or be reachable, in the information graph, fromuch an associated partition.

8.2 Concepts and data types

8.2.1

another.

8.2.1.2

le trader object is no
1ding sdadee inte

5, and thu$ must itsel
interfacebpointed t
nterfatcadsrthat

b a servicefon behalf

serviceadm®ent or it

An importer Uses a trader to search for services matching some criteria. An importer can be the potential

import a serviee-onbehatf-of-another:
8.2.2 Architecturaly neutral types and values

8.2.2.1 TypeCode

ODP-IDL does not include a primitive type for representing type descriptions. The ODP-IDL templates specified in this

Specification use the term "TypeCode" to represent type descriptions.

When implementing this ODP Function using a particular ODP infrastructure, the term "TypeCode" mus
appropriate type for representing type descriptions in that ODP infrastructure.

NOTE — For CORBA infrastructure, the term "TypeCode" should be defined as "CORBA::TypeCode".

22 ITU-T Rec. X.950 (1997 E)

t be defined using an

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.2.2.2 Nil interface reference value

In this Specification, the term "nil" is used to denote the interface reference value of a non-existing interface instance.
8.2.3 Service types

8.2.3.1 Service type information

Associated with each traded service is a service type which represents the information needed to describe a servic
comprises:

— an interface type which defines the computational signature of the service interface; and

— zero or more named property types. Typically these represent behavioural, non-functional, and nor
computational aspects that are not captured by the computational signature.

The property type defines the property value type, whether a property is mandatory, and whether a property is readonly. Tha
associated with a property type is the triple of <name, type, mode>, where the modes are:

erfum PropertyMode {
PROP_NORMAL, PROP_READONLY,
PROP_MANDATORY, PROP_MANDATORY_READONLY

h
A service type repository is used to hold the type information.
typedef Object TypeRepository;

A trader has an associated service type repository. However, this specification .does not require usg of any particular ser
type reposijtory interface. The type repository interface may or may not be part of'the trading object itsglf. A suitabkeigiterf
specified i Annex D.

Each servite type in a repository is identified by a unique ServiceTypeName:

typedef Istring ServiceTypeName;

NOTE —{The Istring typedef denotes the intention to support an interpational character set (not limited to Latint1) in its use.

An exporter specifies the service type of the service it is advertising; an importer specifies the service :[/pe it is seeking.

Service tyges can be related in a hierarchy that reflects;interface subtyping (e.g. by inheritance) and property typmnaggregat
This hieranchy provides the basis for deciding if a service of one type may be substituted for a servide of another type. Th
consideratjons are described more fully in the following service type model.

8.2.3.2 {ervice type model

This subcl@use corresponds to the information viewpoint specification of service type subtyping rules|in 7.2.3. These rules
expresed i this subclause using terms ffom the compuational language.

The service¢ type model is illustrated by the following BNF:

sgrvice <ServiceTypeNdme> [: <BaseServiceTypeName> [, <BaseServiceTypeName>]*] {
interface <InterfaceTypeName>;
[[mandatory] [readonly] property <IDLType> <PropertyName>;]*

L

The keywgrd “service® introduces a new ServiceTypeName. As the service type is visible to engl users and not just
programm;rs, it is-internationalizable.

The list of BaseServiceTypeNames lists those service types from which this service type is derived, which in turn defines wh

i thi i t bstituto f th i
services ofithis-service type can-substitute for other senvice.

The “interface” keyword introduces the InterfaceTypeName for this service. It is related by equivalence or by derivation to tt
InterfaceTypeNames in each of the BaseServiceTypeNames.

The properties clause is a list of property declarations. Each property declaration is marked by the keyword “property” and rr
be preceded by mode attributes “mandatory” and/or “readonly”. A property declaration is completed by an IDLType and
PropertyName. A service must support all the properties of each of its base service types, they must have identical prop
value types, and they must not lose any property mode attributes.

ITU-T Rec. X.950 (1997 E) 23

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

The property mode attributes have the following connotations:

Mandatory — An instance of this service type must provide an appropriate value for this property when exporting
its service offer.

Readonly — If an instance of this service type provides an appropriate value for this property when exporting its
service offer, the value for this property may not be changed by a subsequent invocation of the

Register::modify() operation.

The property strength graph is shown in Figure 2.

Summarising

provide a vallie for that property name, but if it does, it must be of the type specified’in the service type),

may be subs
subsequentlyj
be subseque
subsequently

From the abo
if, and only if:

8.2.4 Pro

Properties ar
obtain these
such offers.

(Default)
/ \ Increasing
Mandatory Readonly strength

Mandatory, readonly T0727960-97/d02

Figure 2 — Service property mode strength graph

if a property is defined without any modifiers, it is optional (i.e. an offer of that service ty

equently modified. The “mandatory” modifier indicates that & value must be provided,
modified. The “readonly” modifier indicates that the property is 0Optional, but that once give
ntly modified. Specifying both modifiers indicates that & value must be provided and
modified.

ve discussion, one can state the rules for service type.eonformance; a sefViseatgpbtype of 3

the interface type associated wlis either the same as, or is a subtype of, the interface type
all the properties defined anare also defined.if;

for all properties defined in both and;the mode of the property pimust be the same as, g
the mode of the property on

all properties defined ifi that are‘also defined i shall have, i3, the same property value ty,
subtype of the property valug typedn
Derties

b <name, value> paifrs. An exporter asserts values for properties of the service it is adver

type

typedef sequence<PropertyName> PropertyNameSeq;
typedief any ‘PropertyValue;
struct Property {

ef Istring PrapertyName;

pe is not tequired

hnd theglveperty
but that it may be

n a value, it may not
that it may not be

ervice tyjpe

Associated with

r stronger than,

De asinor a

ising. An importer ca

alues about a seryice and constrain its search for appropriate offers based on the property values associated w

PropértyName name;

PropertyValue value;

t),/pedef sequence<Property> PropertySeq;

enum HowManyProps { none, some, all };
union SpecifiedProps switch (HowManyProps) {

h

24

case some: PropertyNameSeq prop_names;

ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.2.5 Service offers

A service offer is the information asserted by an exporter about the service it is advertising. It contains:
— the service type name;
— areference to the interface that provides the service; and
— zero or more property values for the service.
An exporter must specify a value for all mandatory properties specified in the associated service type. In addition,ran expo

can also nominate values for named properties that are not specified in the service type. In such case, the tradegzdstoot oblig
do property type checking.

struct Offer {
Object reference;
PropertySeq properties;

nedef cpn'npnr‘p<()ﬁpr> ()f‘fpernl'

=

stfuct Offerinfo {

Object reference;
ServiceTypeName type;
PropertySeq properties;
5

8.2.5.1 Modifiable properties

The value pf a property in a service offer can optionally be modified, if:
—| the property mode is not readonly, whether optional or mandatory;vand
—| the trader supports the modify property functionality.

Such property values can be updated by explicit modify operations toithe trader. An exporter can control a service offer to
non-modifiable by exporting services with service types that have, read only properties. The modify| operation will return
Notimplemented exception if a trader does not support the modify\property functionality. An importer cgn also specify whethi
or not a trgder should consider offers with modifiable propertie€s/during matching.

8.2.5.2 [Qynamic properties

A service ¢ffer can optionally contain dynamic properiies. The value for a dynamic property is not held within a trader, it |
obtained op-demand from the interface of a dynamic property evaluator nominated by the exporter pf the service. That is
level of indjrection is required to obtain the valuedor a dynamic property. The structure of a dynamic prpperty value is:

e)xception DPEvalFailure {
CosTrading::PropertyName name;
TypeCode returned_type;

any extra_info;

inferface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in TypeCode returned_type,
in‘any extra_info
) raises(
DPEvalFailure
X

b

struct DynamicProp {
DynamicPropEval eval_if;
TypeCode returned_type;
any extra_info;

ITU-T Rec. X.950 (1997 E) 25

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

It contains the interface to the dynamic property evaluator, the data type of the returned dynamic property, and any extre
implementation dependent information. The trader recognizes this structure and, when the value of the property is required
invokes the evalDP operation from the appropriate DynamicPropEval interface. The dynamic property evaluator interface has
only one operation, whose signature is defined in this Specification for portability but its behaviour is not specifiety The on
restrictions imposed are that the property must not be readonly and that the trader must support the dynamic propert
functionality.

The use of such Properties has implications on the performance of a trader. An importer can specify whether or not a trade

should consider offers with dynamic properties during matching.

8.2.6

Offer identifier

An offer identifier is returned to an exporter when a service offer is advertised in a trader. It identifies the expartedffezrvi
and is quoted by the exporter when withdrawing and modifying the offer (where supported). It only has meaning to the trader
with which the service offer is registered.

typedef string Offerld;

typedief sequence<Offerld> OfferldSeq;

8.2.7 Offe

The total ser

r selection

ice offer space for an offer selection is potentially very large, including offers from all link

the trader usgs policies to identify the set S1 of service offers to examine. The service type and constrai

to produce th
offers to the i

8.2.7.1 Stal

Importers sel
well formed ¢

e set S2 that satisfy the service type and constraint. This is then orderedusing preferenc
mporter.

ndard constraint language

bct the set of service offers in which they have interest by use of-service type and a constr
Xpression conforming to a constraint language.

This Recomnjendation | International Standard defines the standard, mandatory language which is nec

between trad
used to write

type
Its main featy

Pro

Lite

Ops

If a proprietar
language use
by a trader th

8.2.7.2 Pre

Preferences

brs. Annex B defines the syntax and the expressive pawer of the constraint language. Thi
standard constraint expressions.

def Istring Constraint;
res are:

perty Value Types manipulation are “restricted to int, float, fixed, boolean, Istrin
Ichar/char types and sequences thereof. The character based types 3
using the collating sequence in effect for the given character sef

outside of this range can only be the subject of the “exists” operator.

als in the Censtraint are dynamically coerced as required for the Prope
are warking with. Literals can contain Istring.
rators are comparison, boolean connective, “in_set”, substring, arithmetic ¢

property existence.

y constraint language (outside the scope of this Specification) is used, then the name and
d is placed hetween << >> at the start of the constraint expression, The remainder of the
pat does not.support the quoted proprietary constraint language.

erences

hredlogically applied to the set of offers matched by application of the service type, con

bd tradealy Logic
Nt is thenSdpplied t

es before returning tl

hint. Théscdnstraint

pssary for interworkin
5 constraint language

g/string,
re ordered
. Types

ties they

perators,

ersion dithe constr
string is edt interpret

straint expression, an

various polici

Tl L 41 £ 41 £ ™S 1l Al +la Aot H ' £ 4l ol
CS. T AppneativiT UT T PITTICTCTILC S LAIT T LUTISIUTTTU AS UTC Ut TeITTmTAaAtoimuUT tTcTUTuUTl

o return matched offe

to the importer.
typedef Istring Preference;

The preference string can be considered as being composed of two portions. The first portion can be any of the following (not:
that these keywords are case sensitive):

max min with random first

26 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

The interpretation for the second portion is

ISO/IEC 13235-1:1998(E)

dependent on the first portion; it may be empty. The following describes tt

preferences:
Preference Description

max expression The pression is numeric. The matched offers are returned in a desgendar of
the expression.

min expression The @ression is numeric. The matched offers are returned in an asgendar of
the expression.

with expression The gxession is a Constraint gression. The matched offers are ordered such |that
those that are TRUE precede those that are FALSE.

random The order of returranthe matched offers is accordirto the followirg algorithm:
select an offer at random-from-the set of matched nffnrc, select-another offer at random
from the remaining set of matched offers, ..., select the single remaining offer.

first The order of returned matched offers is at the offers are discovered.

If no preference is specified, then the default preference of first applies. No combinations of the prefere
The expregsion associated with max, min, and with can refer to properties associated with the matchin

preference
two:
a
b

The offers|are returned to the importer in the order of first group’ in their preference order, followed

group.

If a propriptary preference language (outside the scope.of this Specification) is used, then the 1

preference
by a trader

8.2.73 U

Links repre

trading graph, in which the vertices are traders. A link describes the knowledge that one trader has
that it uses. It also includes informatiofi,of when to propagate or forward an operation to the targe
following infformation associated with'it;

The OMG

expression to the set of offers that match the service type and constraint expression, thg

nces are permitted.
y offers. When applyir

offer set isipartitione

a group of offers for which the preference expression could hé“evaluated (ordered accoiding to min, max, witt

and

a group of offers for which the preference expression could not be evaluated (e.g. thg preference express

refers to a property name that is optional for that service type).

by those in the seco

ame and version of

language used is placed between << >> atthe start of the preference. The remainder of the string isetbt interp

that does not support the quoted proprietary*language.

nks
sent paths for propagation of queries from a source trader to a target trader. Each link co

a Lookup interfacewprovided by the target trader, which supports the query operation;
a Register interface provided by the target trader, which supports the resolve operation;

the link’s default follow behaviour, which may be used and is pass&then an importer d
link_follows-tule policy;

the link's* limiting follow behaviour, which overrides an importer’s link_follow_rule if the
exceeds the limit set by the link.

DL for FollowOption is defined as:

enum FollowOption {

local_only,
if_no_local,
always

fresponds to an edge
pf another trading ser

t trader. A link has t|

pes not specify a

importer's request

ITU-T Rec. X.950 (1997 E) 27

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

where:

“local_only” indicates that the link is never followed unless explicitly named in an operation;
“if_no_local” indicates that the link is followed only if there are no local offers that satisfy the query; and
“always” indicates that the link is always followed except when overriden by some policy.

These values are ordered as follows:

local_

only < if_no_local < always

The OMG IDL for Linkinfo is defined as:

struct Linkinfo {

h

The above information is set for each link when it is created. A link name is given to the link when/it’i
uniquely identifies a link in a trader.

typedef Istring LinkName;

type
A link is unidi

Additional inf
source trader]

8.2.7.4 Pol
Policies provi

type

typedief sequence<PolicyName> PolicyNameSeq;
typedef any PolicyValue;

stru

h
type

Some policie

Policies can lpe grouped into two categories:

Different polig
the "Where" ¢

T
L
I

These policig

Lookup target;

Register target_reg;

FollowOption def_pass_on_follow_rule ;
FollowOption limiting_follow_rule;

5 created. The name

ef sequence<LinkName> LinkNameSeq;
rectional. Only the source trader is directly aware of a link; it is the source, trader that supports therfack.in

brmation may be kept with a link to describe characteristics of the. target trading service|as perceived by the

cies

de information to affect trader behaviour at run time. Policies-are represented as name valup pairs.

ef string PolicyName; // policy names restricted to Latinl

Policy {
PolicyName name;
PolicyValue value;

ef sequence<Policy> PolicySeq;

5 cannot be overridden while otherpolicies apply in the absence of further information and can be overridden.

those that scope the extent of a search;
those that determine the functionality applied to an operation.

ies are associated with different roles in the performance of the trading function. These ro
olumn of the following tables, are:

es, whichrare used

Trader
Link
Importer

5 are-further discussed in 8.2.7.5 through 8.2.7.9.

28

ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

8.2.7.4.1 Standardized scoping policies

The following lists the standardized scoping policies:

ISO/IEC 13235-1:1998(E)

1%

Name Where IDLType Description

def _search_card T unsigned long Defayper bound of offers to be searched; used ifino
search_card is specified..

max_search_card T unsigned long Maximum upper bound of offers to be searched.

search_card I unsigned long Nominatgaper bound of offers to be searched; will pe
overridden by max_search_card.

def_match_card T unsigned long Defauftpar bound of matched offers to be ordered;
used if no match card is specified.

max_[match_card T unsigned long Maximum upper bound of matched offers'tq be ordered.

match_card | unsigned long Nominateppar bound of offers to be erdered; will e
overridden by max_match_card.

def_return_card T unsigned long Defaulpper bound of ordered’offers to be|returned;
used if no return_card is spéeified.

max_feturn_card T unsigned long Maximun upper bound of ordered offers to lpe returned.

returr]_card | unsigned long Nominateppar bound of ordered offers to be| returned;
will be overridden by max_return_card.

def_hop_count T unsigned long Defaufiper bound of dgth of links to be traersed If
hop_count-is not specified.

max_hop_count T unsigned long Maximum upper bound of depth of links to Qe traversed.

hop_¢ount | unsigned long Nominategper bound of dgth of links to be traversed;
will be overridden by the trader’'s max_hop_count.

def_pass_on_follow_rule L FollowOnption Default link follow behaviour topassed on fqr @ar-
ticular link if an inporter does not pecify itq link_
follow_rule. It must not exceed limiting_follow_fule.

limiting_follow_rule L FaellowOption Limiting link follow behaviour for a particular lipk.

max_Jink_follow_policy T FollowOption per bound on the value of a link's limigjriollow rule
at the time of creation or modification of a link.

def_follow_policy T FollowOption Default link follow behaviour for a particular trader.

max_follow_policy T FollowOption Limitig link follow policy for all links of the trader -
overrides both link and importer policies.

link_fpllow_rule | FollowOption Nominated link follow behaviour; it will be oyerridden
by the trader's max_followpolicy and the| link's
limiting_follow_rule.

starting-.trader | TraderName An porter scges its search yb nominatirg that the
qQUEly operation starts at a remote trader, a trade
obliged to forward the wuest down a link even if th
link behaviour is local_only.

request_id | OctetSeq An identifier for a Queperation initiated # a source
trader actig as inporter on a link; a trader is not oféid
to generate an id, but is oblidged to pass it down a link.

exact_type_match boolean If TRUE, grdffers of exacy the serviceype gecified

=N

by the inmporter are considered; if FALSE (or
ungecified), offers of ap service ype that conforms tg
the importer’s service type are considered.

ITU-T Rec. X.950 (1997 E)

29

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

The ODP-IDL

types for TraderName and OctetSeq are:

typedef LinkNameSeq TraderName;
typedef sequence<octet> OctetSeq;

The results received by an importer are affected by the scoping policies. The hop_count and link follow policies set the scope
of the traders to visit. N1 is the total service offer space of those traders. Those offers that have conformant sereice type a
gathered into the set N2; the actual size of N2 may be further restricted by the search cardinality policies. Constraints are
applied to N2 to produce a set N3 of offers which satisfy both the service type and the constraints; N3 may be furéer restrict

by the match cardinality policies. The set N3 is then ordered using preferences to produce the set N4. The final set of offer:
returned to the importer, N5, may be further reduced by the returned cardinality policies.

This is illustrated by the diagram shown in Figure 3, where [N1| >= |N2| >= |[N3| = [N4| >= |[N5].

N — N — N

alrict COHSI- wvialert
Potential
dered
offers
offers

Matched
offers

Match
cardinality

Search

cardinali
N1 vy N2

Return

Ordered
offers

Returned
offers

Return
N5 cardipality N4

Figure 3 — Pipeline view of trader query steps,and cardinality constraint application

8.2.7.4.2 Stpndardised capability supported policies

There are thrge capabilities: proxy offer, dynamic ptéperties, and modify offers, that a trader may or may
not support a capability, then an importer can not override that capability with its policy pajameter. Hawever, i
s a capability and an importer does not wish to consider offers that require such functionalit

a trader doeg

trader supporll:

respect the i

The following

porter’s wish.

lists the standardised policies related to functionality supported:

T0727970-97/d03

not wish td support.

y, thenntlusttrader

30

Name Where IDLType Description
supparts_modifiable\properties T boolean Whether the trader supports property mqdification.
use_rhodifiable~properties | boolean Whether to consider offers with modifiedperties

in the search.
suppqrts.‘dynamic_properties T boolean Whether the trader supports dynamic preperties.
use_dynamic_properties I boolean Whether to consider offers wiithnuic properties in
the searchs.
supports_proxy_offers T boolean Whether the trader supports proxy offers.
use_ proxy_offers I boolean Whether to consider proxy offers in the search.

ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.2.7.5 Trader policies

Policies can be set for a trader as a whole. Trader policies are defined as attributes of the trader object. They are initi
specified when the trader is created, and can be modified/interrogated via the Admin interface. An importer can interrog:
these trader policies via its Lookup interface. An exporter can interrogate a trader’s functionality supported policies via i
Register interface.

8.2.7.6 Link follow behaviour

Each link in a trader has its own follow behaviour policies. A trader has a limiting follow policy, max_follow_policy, that
overrides all the links of that trader for any given query. Follow behaviour policies are specified for each link whes a link i
created. These policies, def pass_on_follow_rule and limiting_follow_rule, can be interrogated/modified via the Link interfac
The values they can have are limited by another trader policy, max_link_follow_policy, at the time of creation or modificatior
An importer can specify a link_follow_rule in a query. In the absence of an importer’'s link follow rule the trader's
def follow_policy is used.

After searching cal offers o to-a-quenya-trader must decide-whether to propagate the gquery alongljts links an
so, what value for the link_follow_rule to pass on in the policies argument.

The ODP-IDL for FollowOption is specified in 8.2.7.3.

The follow policy for a particular link is, therefore:

f the importer specified a link_follow_rule policy
min(trader.max_follow_policy, link.limiting_follow_rule,
query.link_follow_rule)

else
min(trader.max_follow_policy, link.limiting_follow_rule,
trader.def_follow_policy)

i.e. if this vplue is “if_no_local” and there were no local offers that matéh the query, the nested query ig performedlLié this
is “always”| the nested query is performed.

If a nested|query is permitted by the above rule, then the following logic determines the value for the “link_follow_nyle” poli
to be passed on to the linked trader.

f the importer specified a link_follow_rule policy
pass on min(query.link_follow_rule, link.limitingfollow_rule,
trader.max_follow_policy)

else
pass on min(link.def_pass_on_follow_\rule , trader.max_follow_policy)

8.2.7.7 Importer policies

An importdr can specify zero or moresimporter policies in its policy parameter. If an importer policy is{not specified then th
trader use$ its default policy. If an importer policy exceeds the limiting policy values set by the trader, then the tradesr ove
the importgr expectations with its\limiting policy value.

If a starting_trader policy parameter is used, trader implementations shall place this policy parameter gs the first #lement of
sequence Wwhen forwarding‘the query request to linked traders.

8.2.7.8 Hxporter palicies

There are po exporter policies specified in this Specification.

8.2.7.9 LUink{creation policies

At the time that a link is created, the default and limiting follow rules associated with the link are specified. Theaa hédes ¢
constrained by the max_link_follow_policy of the trader.

The trader first checks to see that the default rule is less than or equal to the limiting rule. If not, then an exapéidnlis r
then compar es the limiting rule against the trader's max_link_follow_policy, again raising an exception if the limitimg rule i
greater than the trader’'s max_link_follow_policy.

ITU-T Rec. X.950 (1997 E) 31

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.2.8 Interworking mechanisms

8.2.8.1 Link traversal control

The flexible nature of trader linkage allows arbitrary directed graphs of traders to be produced. This can
problem:

distinct set of connected edges) leading from a trader.

Loops can occur — The most trivial example of this is where two previously disjoint trader s
by exchanging links. This can result in the first trader propagating a query to the secon
returned immediately via the reverse link.

introducedfvo types

A single trader can be visited more than once during a search due to it appearing on more than one path (i.e

paces decide to join
d and then having it

To ensure that a search does not enter into an infinite loop, a hop_count is used to limit the depth of links to propaiate a se
The hop_count is decremented by one before propagating a query to other traders. The search propagation terminates at t

trader when the hop_count reaches zero.

To avoid the pnproductive revisiting of a particular trader while performing a query, a Requestld can be
trader for eagh query operation that it initiates for propagation to a target trader. The trader attribute ‘of e
to form Requestld.

typedef sequence<octet> OctetSeq;
attrijute OctetSeq request_id_stem;

A trader may|wish to remember the Requestld of all recent interworking query operations’ that it has b
When a query operation is received, such a trader checks this history and only processes the query if i
appearance.

In order for this to work, the administrator for a set of federated traders must have initialized the respecti
non-overlapp|ng values.

The Request|d is passed in an importer’'s policy parameter on the query.operation to the target trader. |
not support the use of the Requestld policy, the target trader need not process the Requestld but it must
the next linkef trader if the search propagates further.

8.2.8.2 Federated query example

To propagatd a query request in a trading graph, each source)trader acts as a client to the Lookup inte
its client’s query operation to its target trader.
Figure 4 usep a sequential search example, to illustrate the modification of hop count parameter as

through a set of linked traders in a trading graph. Wetassume that the link follow policies in the traders
follow behavipur:

a) |A query request is invoked atthe trading interface of T1 with an importer's hop count
hop_count 4. The trader scoping policy for T1 includes max_hop_centThe resultant hop|
or the search (after the“arbitration action that combines the trader policy and the
hop_count 4.

b) |We assume that nowmatch is found in T1 and the resulting follow policy is always. That
request to T3. A-modified importer hop_count policy of hop_ceuhis used. The local trader

or T3 includes max_hop_countl and the generation of T3_Request_id to avoid repeat or

3_Request _id is stored.

Assuming that no match is found in T3 and that the resulting follow policy is always, th
parameter for the query request at T4 is: hop_ceunand request_id T3_Request _id.

penerated by a sourc
quess idsestem i

ben asked to perform
is the opsration’s fir

e requesttad_ste

If the targes trader doe
pass the lRequestid o

face of ther target trac

B query request pass
Will resulysh “alwa

bolicy expressed as
| count applied
importer policy) is

s, T1 is to pass the
scoping policy
cyclic searches of

he same/traders. The resultant scoping policy applied for the search at T3 is hop lcamd the

b modified scoping

d)

Assuming that no match is found In T4. Even though the nugx dount=4 for T4, the search is not

propagated further. An unsuccessful search result will be passed back to T3, to T1, and finally to the user at T1.

Of course, if a query request is successfully completed at any of the traders on the linked search path, then the kst of match
service offers will be returned to the original user; whether the query request is propagated through the remaininggrading gra

depends upon the link follow policies; in this case, where it is assumed to be always, the query will still
commensurate with the hop count policy.

32 ITU-T Rec. X.950 (1997 E)

visit albdétke tr

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

8.2.8.3

A proxy off
service offt
than return

offer.
ty
st
h
If an impo

ISO/IEC 13235-1:1998(E)

query.hop_count = 4

/

—def_follow_policy = always

——max_hop_count =5

query.hop_count =3

'

T3

[] B<«— max_hop_count =1
® ® N B+ request_id_stem
——— def_follow_policy = always

query.hop_count =0

=

wrrxaciact id o T2 roquact id
HeSt—& T ¥ t €

GHery-Feq Geest—
‘/ — —

— def_follow_policy = always

—— max_hop_count = 4

] T0727980-97/d04
@ Service Offer

= Link
W Trader Attribute

Figure 4 — Flow of a query through a trader graph

roxy offers

er is a cross between a service offer@nd a form of restricted link. It includes the service type and properties o
br and, as such, is matched in the.same way. However, if the proxy offer matches the impofter’s requirements, ra
ing details of the offer, the query.request (modified) is forwarded to the Lookup interface agsociated with the pro

bedef Istring ConstraintRecipe;

uct ProxyInfo {
ServiceTypeName type;
Lookup target;
PropertySeq'properties;
boolean ifymatch_all;
ConstraintRecipe recipe;
PolicySeq policies_to_pass_on;

ter’s query results in a match to a proxy offer, the trader holding the proxy offer performg a nested query on tl

trader hiding behind the proxy offer with the following parameters:

The original type parameter is passed on unchanged.
A new constraint parameter is constructed following the ConstraintRecipe associated with the proxy offer.
The original preference parameter is passed on unchanged.

A new policies parameter is constructed by appending the policies_to_pass_on associated with the proxy offer
the original policies parameter.

The original desired_props parameter is passed on unchanged.
The calling trader supplies a value of how_many that makes sense given its resource constraints.

ITU-T Rec. X.950 (1997 E) 33

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

Proxy offers are a convenient way to package the encapsulation of a legacy system of “objects” into the trading system. |
permits clients to lookup these “objects” by matching the proxy offer; the nested call to the proxy trader, together with the
rewritten constraint expression and the additional policies appended to the original policy parameter, permits the dynamic
creation of a service instance which encapsulates the legacy object. Another possible use of proxies is for a serviceefactory t
advertised as a proxy offer; the nested call to the factory causes a new instance of the particular service to be manufactured.

A query may have matched a proxy offer due to a particular value of a property associated with the proxy offer. It is mandatory
that any offer returned by the proxy trader as a result of the nested query have the same value for that property so as not
violate the client’s expectations regarding the constraint.

A trader does not have to support the proxy offer functionality. However, if a trader supports such functionality, it maest prov
the Proxy interface for the export, withdraw, and describe of proxy offers. An importer can specify whether or not a trader

should consider proxy offers during matching.

8.2.9 Trader attributes
Each trader has-its—own hhnrnr\fnricfir\c’ nolicies far functionalities. cllppnrfnd, and pnlir\iﬂe for er\nping the extent of search
These charadteristics and policies are defined as attributes to the trader. These attributes are:
Name ODP-IDL Type Description
def_seargh_card unsigned long Default upper bound of offers to be searched for a Query operation.
Max_sedrch_card unsigned long Maximupper bound of offers to be searched |for a @uer
operation.
def_matgh_card unsigned long Defauftpar bound of matehed offers to be orderedpplyng a
Preference criteria.
max_mafch_card unsigned long Maximupper bound-of matched offers to be ordergdpplying
a Preference criteria:
def_returmn_card unsigned long Default upper bound of ordered offers to be returned to an inpporter.
max_retdrn_card unsigned long Maximuppar bound of ordered offers to be rdgturned to|an
importer.
def_hop_|count unsigned long Default upper bound of depth of links to be traversged.
max_hog_count unsigned long Maximum upper bound of depth of links to be traversed.
def_folloyv_policy FollowOption Default link-follow behaviour for a particular trader.
max_follgw_policy FollowOption Limitig link follow policy for all links of the trader |- overridgs
both link and importer policies.
max_link]| follow_policy FollewOption Most permissive follow policy allowed when creatind new links
supports| modifiable_properties boolean Whether the trader supports property modification.
supports] dynamic_properties boolean Whether the trader supports dynamic properties.
supports| proxy_offers boolean Whether the trader supports proxy offers.
max_list unsigned long The max_list attribute determines thperubound pf ap list
returned § the trader, namgl the returned offerpafameter in
query, and the next-n operation in offer-iterator and dffer-id iterator.
Type_repos Repository Interface to trader’s service repository.
request_{d_stem OctetSeq Identification of the trader, to be used as the stenpfodtiotion
of an id for a query request from one trader to anothqr.

These attributes are initially specified when a trader is created, and can be modified/interrogated via the Admin Interface.

34

ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.3 Exceptions

This Specification defines the exceptions raised by operations. Exceptions are parameterised to indicate the source of the €
The ODP-IDL segments below refer to some of the typedef's defined in clause 2.

When multiple exception conditions arise, only one exception is raised. The choice of exception to raise |
implementation-dependent.

8.3.1 For CosTrading module

8.3.1.1 Exceptions used in more than one interface
exception UnknownMaxLeft {};
exception Notimplemented {};

exception lllegalServiceType {

ServiceTypeName type;

h

exception UnknownServiceType {
ServiceTypeName type;

h

e)ception lllegalPropertyName {
PropertyName name;

exception DuplicatePropertyName {
PropertyName name;

h

exception PropertyTypeMismatch {
ServiceTypeName type;
Property prop;

h

exception MissingMandatoryProperty {
ServiceTypeName type;
PropertyName name;

exception lllegalConstraint {
Constraint constr;

h

exception InvalidLookupRef {
Lookup target;

¥

exception lllegalOfferld {
Offerld id,;

¥

e)ception UnknownOfferld {
Offerld id;

¥

exceptioniReadonlyDynamicProperty {
ServiceTypeName type;
RropertyName name;

h

exception DuplicatePolicyName {
PolicyName name;
h

8.3.1.2 Additional exceptions for Lookup interface

exception lllegalPreference {
Preference pref;
h

ITU-T Rec. X.950 (1997 E) 35

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.3.1.3

8.3.14

36

exception lllegalPolicyName {
PolicyName name;
2

exception PolicyTypeMismatch {
Policy the_policy;
2

exception InvalidPolicyValue {
Policy the_policy;
2

Additional exceptions for Register interface

exception InvalidObjectRef {
Object ref;
2

exception UnknownPropertyName {
PropertyName name;
2

exception InterfaceTypeMismatch {
ServiceTypeName type;
Object reference;

h

exception ProxyOfferld {
Offerld id;
I3

exception MandatoryProperty {
ServiceTypeName type;
PropertyName name;

h

exception ReadonlyProperty {
ServiceTypeName type;
PropertyName name;

h

exception NoMatchingOffers {
Constraint constr;
I3

exception lllegalTraderName {
[TraderName name;
I3

exception UnknownTraderName {
[TraderName name;
I3

exception RegisterNotSupported {
[TraderName name;
I3

Additionalkexceptions for Link interface

exception lllegalLinkName {

LinkName name;
2

exception UnknownLinkName {
LinkName name;
2

exception DuplicateLinkName {
LinkName name;
I3

exception DefaultFollowTooPermissive {
FollowOption def_pass_on_follow_rule ;
FollowOption limiting_follow_rule;

ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

exception LimitingFollowTooPermissive {
FollowOption limiting_follow_rule;
FollowOption max_link_follow_policy;

h
8.3.1.5 Additional exceptions for Proxy Offer interface

exception lllegalRecipe {
ConstraintRecipe recipe;

h

exception NotProxyOfferld {
Offerld id;

h

8.3.2 For CosTradingDynamic module

There is only a DynamicPropEval interface in this module, and the interface has only one operation which raises the exceptic

e)ception DPEvalFailure {
CosTrading::PropertyName name;
TypeCode returned_type;

any extra_info;

h
8.3.3 Hor CosTradingRepos module
There is only the ServiceTypeRepository interface in this module. The following, interface-specific exceptions can be raised:

e)xception ServiceTypeExists {
CosTrading::ServiceTypeName name;
h

e)ception InterfaceTypeMismatch {
CosTrading::ServiceTypeName base_service;
Identifier base_if;
CosTrading::ServiceTypeName derived_service;
Identifier derived_if;

exception HasSubTypes {
CosTrading::ServiceTypeName the_type;
CosTrading::ServiceTypeName sub_type;

exception AlreadyMasked {
CosTrading::ServiceTypeName:name;

exception NotMasked {
CosTrading::ServiceTypeName name;

e)ception ValueTypeRedefinition {
CosTrading::ServiceTypeName type_1;
PropStruct definition_1;
CosTrading::ServiceTypeName type_2;
PropStruct definition_2;

b

exception DuplicateServiceTypeName {
CosTrading::ServiceTypeName name;
h

8.4 Abstract interfaces

In order to enable the construction of traders with varying support for the different trader interfaces, this Specificegson def
several abstract interfaces from which each of the trading object service functional interfaces (Lookup, Register, Link, Pro
and Admin) are derived. Each of these abstract interfaces are documented below.

ITU-T Rec. X.950 (1997 E) 37

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

84.1

TraderComponents

interface TraderComponents {

h

readonly attribute Lookup lookup_if;
readonly attribute Register register_if;
readonly attribute Link link_if;
readonly attribute Proxy proxy_if;
readonly attribute Admin admin_if;

The functionality of a trader can be configured by composing the defined interfaces in one of a number of prescribed
combinations. The composition is not modelled through inheritance but rather by multiple interfaces to an object. Given one of
these interfaces a way of finding the other associated interfaces is needed. To facilitate this each trader functiomas interfac

derived from the TraderComponents interface.

The TraderComponents interface contains five readonly attributes that each provide a way to get a specific object reference.

Access to thd
interface.

8.4.2 Sup

intert

I3
In addition td
implementatic
functionality 3

The type repd

se attributes must return a nil object reference if the trading service in question does neot

portAttributes
ace SupportAttributes {

readonly attribute boolean supports_modifiable_properties;
readonly attribute boolean supports_dynamic_properties;
readonly attribute boolean supports_proxy_offers;
readonly attribute TypeRepository type_repos;

the ability of a trader implementation to selectively choosé-which functional interfaces
n may also choose not to support modifiable properties, dynamic properties, and/g
upported by a trader implementation can be determined.by.querying the readonly attributes

sitory used by the trader implementation can also bebtained from this interface.

DriAttributes
ace ImportAttributes {

readonly attribute unsigned long def_search_card;
readonly attribute unsigned long max_searchlcard;
readonly attribute unsigned long def_matcly,card;
readonly attribute unsigned long max_match_card,;
readonly attribute unsigned long def, feturn_card;
readonly attribute unsigned long max” return_card;
readonly attribute unsigned long(max_list;

readonly attribute unsigned long def_hop_count;
readonly attribute unsigned Iohg max_hop_count;
readonly attribute Follow@ption def_follow_policy;
readonly attribute FallowOption max_follow_policy;

S configuredswith default and maximum values of certain cardinality and link follow cons
values for-thiese constraints can be obtained by querying the attributes in this interface.

Attributes

support tat particul

to support, a trader
r proxy offers. The
in this interface.

traints that apply to

ace linkAttributes {

8.4.3 Imp
intert
5

Each trader

queries. The

8.4.4 Link
intert
b

readonly attribute FollowOption max_link_follow_policy;

When a trader creates a new link or modifies an existing link the max_link_follow_policy attribute will determine the most
permissive behaviour that the link will be allowed. The value for this constraint on link creation and modification can be
obtained from this interface.

38

ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.5 Functional interfaces

This subclause describes the five functional interfaces to a trading object service: Lookup, Register, Link, Admin, and Pro:
The two iterator interfaces needed for these functional interface are also described.

8.5.1 Lookup
interface Lookup : TraderComponents, SupportAttributes, ImportAttributes {

typedef Istring Preference;
enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyProps) {
case some: PropertyNameSeq prop_names;
3

exception lllegalPreference {

Prafaranca nraf-
—e+ereh pret
}1

exception lllegalPolicyName {
PolicyName name;
I3

exception PolicyTypeMismatch {
Policy the_policy;
I3

exception InvalidPolicyValue {
Policy the_policy;
2

void query (
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out Offerlterator offer_itr,
out PolicyNameSeq limits_applied
) raises (
lllegalServiceType,
UnknownServiceType,
lllegalConstraint,
lllegalPreference,
lllegalPolicyName,
PolicyTypeMismatch,
InvalidPolicyValue,
lllegalPropertyName,
DuplicateRropertyName,
DuplicatePolicyName

h
8.5.1.1 Query operation

8.5.1.1.1 'Sighatdre

void query (
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out Offerlterator offer _itr,
out PolicyNameSeq limits_applied

ITU-T Rec. X.950 (1997 E) 39

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

) raises (
lllegalServiceType,
UnknownServiceType,
lllegalConstraint,
lllegalPreference,
lllegalPolicyName,
PolicyTypeMismatch,
InvalidPolicyValue,
lllegalPropertyName,
DuplicatePropertyName,
DuplicatePolicyName

);
8.5.1.1.2 Function

The query operation is the means by which an object can obtain references to other objects that provide services meeting |
requirements.

The “type” pgrameter conveys the required service type. It is key to the central purpose of trading: te-pgrform an introduction
for future type safe interactions between importer and exporter. By stating a service type the impertgér implies the desirec
interface typ
does not obe

is also a
exact_type_

ell-formed query with respect to any subtypes. However, if \tHe importer specifies the policy of
atch TRUE, then only offers with the exact (no subtype) service typewequested are returned.

The “pref’ parameter is used to order those offers that match:the “constr” so that the offers returned bl the trader are in the
order of greaftest interest to the importer. If “pref” does not‘Obey the syntax rules for a legal preferenge expression, then ar
lllegalPreference exception is raised.

The “policies’| parameter allows the importer to specify\how the search should be performed as opposed fo what sort of service
should be fdund in the course of the search.-This can be viewed as parameterising the algorithms within the trader
implementatign. The “policies” are a sequence~of name-value pairs. The names available to an importer depend on the
implementatign of the trader. However, some‘names are standardised where they effect the interpretatiop of other parameters
where they miay impact linking and federation-of traders. If a policy nhame in this parameter does not obey| the syntaxtic rules f
legal PolicyName's, then an lllegalPolicyName exception is raised. If the type of the value associated with a policpwiffers fr
that specified| in this Specification, then-a PolicyTypeMismatch exception is raised. If subsequent procegsing of a PolicyValue
yields any erfors (e.g. the startingttrader policy value is malformed), then an InvalidPolicyValue exception is raised. If the
same policy name is included two,er more times in this parameter, the DuplicatePolicyName exception is|raised.

The “desired]| props” parameter defines the set of properties describing returned offers that are to be rgturned with the objec
reference. THere are three-possibilities: the importer wants none of the properties, all of the properties| but withoat having t
name them, gnd thirdly,’some properties the names of which are provided. If any of the “desired_props” hames do not obey th:
rules for identifiers, then' an IllegalPropertyName exception is raised. If the same property name is incluged two or more times
in this paramegter, the DuplicatePropertyName exception is raised. The desired_props parameter may name properties which a
not mandatoryy for the requested service type. If the named property is present in the matched serwce offer, it shaltibe return
The desired_krop ing” desired properties
the importer “should specify “prop eX|sts in the constramt.

The returned offers are passed back in one of two ways (or a combination of both). The “offers” return result conveys a list of
offers and the “offer_itr” is a reference to an interface at which offers can be obtained. The “how_many” parameter states how
many offers are to be returned via the “offers” result, any remaining offers are available via the iterator interface. If the
“how_many” exceeds the number of offers to be returned, then the “offer_itr” will be nil.

40 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

If any cardinality or other limits were applied by one or more traders in responding to a particular query, then th
“limits_applied” parameter will contain the names of the policies which limited the query. The sequence of names returned
“limits_applied” from any federated or proxy queries must be concatenated onto the names of limits applied locally ar

returned.

8.5.1.1.3 Importer policy specifications

struct LookupPolicies {
unsigned long search_card;
unsigned long match_card;
unsigned long return_card;
boolean use_modifiable_properties;
boolean use_dynamic_properties;
boolean use_proxy_offers;
TraderName starting_trader;
FollowOption link_follow_rule;

unsigned long hop count;
boolean exact_type_match;
OctetSeq request _id

h
The “seard
conforman
trader. If th

The “match_card” policy indicates to the trader the maximum number of matching offers to which the
should be ppplied. The lesser of this value and the trader’s max_match_card atfribute is used by the
specified,

h_card” policy indicates to the trader the maximum number of offers it should“consider
Ce and constraint expression match. The lesser of this value and the trader’s piax_search_
is policy is not specified, then the value of the trader’s def_search_card attribute is used.

en the value of the trader’s def_match_card attribute is used.

The “returrn
lesser of th
of the tradg

_card” policy indicates to the trader the maximum number of matching offers to return as a
is value and the trader’s max_return_card attribute is used by the trader. If this policy is not
r's def_return_card attribute is used.

The “use_
when cons
policy is T
included.

odifiable_properties” policy indicates whether the trader should consider offers which ha
ructing the set of offers to which type conformance and constraint processing should be a

when looking for typ
ard attribute is used |

breference specificatic
rader. If thipolicy is

result of this query. T
specifiedjatlien th

e modifiable propertic
pplied. If the value of |

UE, then such offers will be included; if FALSExthey will not. If this policy is not specifiedl, such offergwill b

The “use_dlynamic_properties” policy indicates whetherthe trader should consider offers which have glynamic properties wh

constructing the set of offers to which type conformanee and constraint processing should be applied.
is TRUE, then such offers will be included; if FALSE, they will not. If this policy is not specified, such off

The “use_jproxy_offers” policy indicates whether the trader should consider proxy offers when constru
which type|conformance and constraint processing should be applied. If the value of this policy is TR
be included; if FALSE, they will not. If thjs!policy is not specified, such offers will be included.

The “starting_trader” policy facilitateS the distribution of the trading service itself. It allows an importe
choosing tp explicitly navigate the links of the trading graph. If the policy is used in a query invocation,
it be the fitst policy-value pair;«this facilitates an optimal forwarding of the query operation. A “policie
include a Value for the “starting) trader” policy. Where this policy is present, the first name component
name held|in each link. If no/match is found the InvalidPolicyValue exception is raised. Otherwise, th
on the Lookup interfacesheld by the named link, but passing the “starting_trader” policy with the first co

The “link_follow_rule% policy indicates how the client wishes links to be followed in the resolution
discussion|in 8.2«7~for details.

If the valueayf this pol
ers will baeidclu

cting the set of offers
JE, then such offers w

I to scopén dypearc

it is recontinnded

5" parameteotneed n
is comparedeagainst 1
e trader invokes quer
mponent removed.

pf its query. See the

The “hop_¢ount” pollcy |nd|cates to the trader the maximum depth of hops across federatlon links th
the resolution”a he m

ht should be tolerated
inimum of the trader

max_hop_count attrlbute and the |mporters hop count pollcy, if provided, or the traders def "_hop_count attribute ifffit is not.
the resulting value is zero, then no federated queries are permitted. If it is greater than zero, then it must be deefersented b
passing on to a federated trader.

The “exact_type_match” policy indicates to the trader whether the importer’s service type must exactly match an offer’s servi
type; if not (and by default), then any offer of a type conformant to the importer’s service type is considered.

The “request_id” policy indicates to the trader the identifier of a Query operation that is initiated by a source trackes acting
importer on a link. The id is generated using the trader attribute request_id_stem. A trader is not obliged to generade such &
for a query operation for another trader, but it is obliged to pass it down a link to another trader.

ITU-T Rec. X.950 (1997 E) 41

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.5.2 Offer Iterator

8.5.2.1 Signature

interface Offerlterator {

h

8.5.2.2 Functions of offer iterator operations

unsigned long max_left (

) raises (
UnknownMaxLeft

)i

boolean next_n (
in unsigned long n,
out OfferSeq offers
)i

void destroy ();

The Offerlterator interface is used to return a set of service offers from the query operation by enabling fhe serdckeoffers t

extracted by guccessive operations on the Offerlterator interface.

The next_n operation returns a set of service offers in the output parameter “offers”. The‘opération rety
there are at |east n service offers remaining in the iterator. If there are fewer than mservice offers i
remaining sefvice offers are returned. The actual number of service offers returned can be determined
nce. The next_n operation returns TRUE if there are further service offers to be extracte
F if there are no further service offers to be extracted.

“offers” sequ
returns FALS

The max_left
raised if the i
offers through

The destroy g
8.5.3 Reg

intert

lazy evaluation).

ister

struct OfferInfo {

Object reference;
ServiceTypeName type;
PropertySeq properties;

exception InvalidObjectRef {
Object ref;
}

exception UnknownPRropertyName {

PropertyName name;
exception InterfaceTypeMismatch {
ServiceTypeName type;
Object reference;

}

xeeption ProxyOfferld {

operation returns the number of service offers remaining in-the iterator. The exception
ferator cannot determine the remaining number of service offers (e.g. if the iterator determines its iset of serv

peration destroys the iterator. No further operations ¢an be invoked on an iterator after it h3

ace Register : TraderComponents, SupportAttributes {

Offerld id;
L

exception MandatoryProperty {
ServiceTypeName type;
PropertyName name;

k

exception ReadonlyProperty {
ServiceTypeName type;
PropertyName name;

42 ITU-T Rec. X.950 (1997 E)

rns n senfice offers i
the iterallor, then a
from the length of the
d from the iterator. It

UnknownMaxLeft is

s been destroyed.

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

exception NoMatchingOffers {
Constraint constr;
2

exception lllegalTraderName {
TraderName name;
2

exception UnknownTraderName {
TraderName name;
2

exception RegisterNotSupported {
TraderName name;
b

Offerld export (
in Object reference,

In Service TypeName type,
in PropertySeq properties

) raises (
InvalidObjectRef,
lllegalServiceType,
UnknownServiceType,
InterfaceTypeMismatch,
lllegalPropertyName, // e.g. prop_name= "<foo-bar"
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
DuplicatePropertyName

);

void withdraw (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
ProxyOfferld

);

OfferInfo describe (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
ProxyOfferld

):

void modify (
in Offerld id,
in PropertyNameSeq del_list,
in PropertySeq modify_list

) raises (
Notimplemented,
lllegalOfferld,
UnknownOfferld,
ProxyOfferld,
lllegalPropertyName,

Linlcn

UTTINTTOUVVTIT I\J’J\,I I.yl‘lul LAY
Property TypeMismatch,
ReadonlyDynamicProperty,
MandatoryProperty,
ReadonlyProperty,
DuplicatePropertyName

ITU-T Rec. X.950 (1997 E) 43

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

void withdraw_using_constraint (
in ServiceTypeName type,
in Constraint constr

) raises (
lllegalServiceType,
UnknownServiceType,
lllegalConstraint,
NoMatchingOffers

)i

Register resolve (
in TraderName name

) raises (
lllegalTraderName,
UnknownTraderName,
RegisterNotSupported

);

I3
8.5.3.1 Exgort operation

8.5.3.1.1 Signature

Offerld export (
in Object reference,
in ServiceTypeName type,
in PropertySeq properties
raises (
InvalidObjectRef,
lllegalServiceType,
UnknownServiceType,
InterfaceTypeMismatch,
lllegalPropertyName, // e.g. prop_namer "<foo-bar"
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
DuplicatePropertyName

8.5.3.1.2 Fdnction

The export operation is the means by which a service is advertised, via a trader, to a community of pgtential importers. The
Offerld returrfed is the handle with which the exporter can identify the exported offer when attempting fo access it via other
operations. The Offerld is only meaningful in the context of the trader that generated it.

The “referendge” parameter is the information that enables a client to interact with a remote server. If a frader implementation
chooses to cpnsider certain types of object references (e.g. a nil object reference) to be un-exportable} then it may return tt
InvalidObjectRef exception in such‘eases.

The “type” parameter identifies.the service type, which contains the interface type of the “reference”(and a set of named
property typep that may be used in further describing this offer, i.e. it restricts what is acceptable in the pyoperttes. phrame

the string repfesentation-of.the “type” does not obey the rules for identifiers, then an lllegalServiceType exceptionlfs raised
the “type” is gyntacticatly‘correct but a trader is able to unambiguously determine that it is not a recogniged servtiea type, t

an Unknown$erviceType exception is raised. If the trader can determine that the interface type of the “reference” parameter i
not a subtypd of the,interface type specified in “type”, then an InterfaceTypeMismatch exception is raised

The “propertips® parameter is a list of named values that conform to the property value types defined for those names. The!
describe the service being offered. This description typically covers behavioural, non-functional and non-computational aspects
of the service. If any of the property names do not obey the syntax rules for PropertyNames, then an lllegalPropertyName
exception is raised. If the type of any of the property values is not the same as the declared type (declared in theeyervice ty
then a PropertyTypeMismatch exception is raised. If an attempt is made to assign a dynamic property value to a readonl
property, then the ReadonlyDynamicProperty exception is raised. If the

44 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

“properties” parameter omits any property declared in the service type with a mode of mandatory, then
MissingMandatoryProperty exception is raised. If two or more properties with the same property name are included in tt
parameter, the DuplicatePropertyName exception is raised.

8.5.3.2 Withdraw operation
8.5.3.2.1 Signature

void withdraw (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
ProxyOfferld

);
8.5.3.2.2 Function

The withdraw operation removes the service offer from the trader, i.e. after withdraw, the offer can-n@|onger be réiarned as
result of g query. The offer is identified by the “id” parameter which was originally returnéd -by| export. If the string
representation of “id” does not obey the rules for offer identifiers, then an lllegalOfferld exception is rajsed. If théefdl i

but there i3 no offer within the trader with that “id”, then an UnknownOfferld exception is raised. If the|id” identifgya pr
offer rathef than an ordinary offer, then a ProxyOfferld exception is raised.

8.5.3.3 Describe operation

8.5.3.3.1 [Signature

OfferInfo describe (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
ProxyOfferld

);
8.5.3.3.2 |Function

The descripe operation returns the information about‘@an offered service that is held by the trader. It gomprises thé “referer
of the offefed service, the “type” of the service offer and the “properties” that describe this offer ¢f service. The offer i
identified Ry the “id” parameter which was originally returned by export. If the string representation of|'id” does notobey th
rules for object identifiers, then an lllegalOffertd exception is raised. If the “id” is legal but there is no|offer wittnadére

with that “if”, then an UnknownOfferld exception is raised. If the “id” identifies a proxy offer rather tlan an ordinary offer,
then a ProxyOfferld exception is raised.

8.5.3.4 Mlodify operation

8.5.3.4.1 [Signature

void modify (
in Offerld. id,
in PropertyNameSeq del_list,
in"PropertySeq modify_list
) raises(
Notimplemented,
lllegalOfferld,
LinknownQfferld.
ProxyOfferld,
lllegalPropertyName,
UnknownPropertyName,
PropertyTypeMismatch,
ReadonlyDynamicProperty,
MandatoryProperty,
ReadonlyProperty,
DuplicatePropertyName);

ITU-T Rec. X.950 (1997 E) 45

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.5.3.4.2 Function

The modify operation is used to change the description of a service as held within a service offer. The object reference and tf

service type associated with the offer cannot be changed. This operation may:

a)
b)
c)

add new (non-mandatory) properties to describe an offer;
change the values of some existing (not readonly) properties;
delete existing (neither mandatory nor readonly) properties.

The modify operation either succeeds completely or it fails completely.

The offer is identified by the “id” parameter which was originally returned by export. If the string representation of 8§id” doe
not obey the rules for offer identifiers, then an lllegalOfferld exception is raised. If the “id” is legal but there is ndthufie

the trader with that “id”, then an UnknownOfferld exception is raised. If the “id” identifies a proxy offer rather thamanyordi
offer, then a ProxyOfferld exception is raised.

The “del_list”
query and d
PropertyNam
that “name”,
the Mandato
DuplicatePro

The “modify_
modify opera
of the origin
lllegalProper
exception is
exception is 1
property is of
more propert

The Notlmple

It is not poss
withdrawing 3
the Offerld. T|
8.5.3.5 Wit

8.5.351 Si

8.5.3.5.2 F{
The withdraw

's, then an lllegalPropertyName exception is ralsed If a “name” is legal but there is ne'proy
en an UnknownPropertyName exception is raised. If the list includes a property that\has a
yProperty exception is raised. If the same property name is included two or more’ times
pertyName exception is raised.

ion adds it. The modified (or added) property values are returned in future.query and descr
| values. If any of the names within the “modify_list” do not obey. the rules for Prope
Name exception is raised. If the list includes a property that has.a.readonly mode, then
raised unless that readonly property is not currently recordedYfor the offer. The Read
pised if an attempt is made to assign a dynamic property valué-to a readonly property. If the
a type that is not the same as the type expected, then the PropertyTypeMismatch excep
es with the same property name are included in this argument, the DuplicatePropertyName

mented exception shall be raised if, and only if, the supports_modifiable_properties attribute

nd then re-exporting. The purpose of modify is‘to change the description of the offered ser
his might be important where the Offerld hasbeen propagated around a community of objeq

hdraw Using Constraint operation

jnature

\void withdraw_using_constraint (
in ServiceTypeName type,
in Constraint constr

raises (
lllegalServiceType,
UnknownServiceType,
lllegalConstraint,
NoMatchingOffers

1

nction

| using’_constraint operation withdraws a set of offers from within a single trader. This set is

perty for thie offer wi
mandatory mode, thel
in this parameter, the

ist” parameter gives the names and values of properties to be changed. Ifithe’property is n¢t in the dféer, then t

be operations in plac
'tyName’s, then an
the ReadonlyPropert)
pnlyDynamicProperty
value ofezhy modifi
ion is raised. If two C
exception is raised.

yields FALSE.

ible to change the service type of an offer or the object reference of the service. This lpas to be achieved b

vice whilst preserving
ts.

dentifiedria the sa

way as a que

v operation identifies a set of offers to be returned to an importer.

The “type” parameter conveys the required service type. Each offer of the specified type will have the constraint expression

applied to it. |

f it matches the constraint expression, then the offer will be withdrawn.

If “type” does not obey the rules for service types, then an lllegalServiceType exception is raised. If the “type” isadlyntactic
correct but is not recognized as a service type by the trader, then an UnknownServiceType exception is raised.

The constraint “constr” is the means by which the client restricts the set of offers to those that are intended for withdrawal.
“constr” does not obey the syntax rules for a constraint, then an lllegalConstraint exception is raised. If the constraint fail
match with any offer of the specified service type, then a NoMatchingOffers exception is raised.

46

ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.5.3.6 Resolve operation

8.5.3.6.1 Signature

Register resolve (
in TraderName name
) raises (
lllegalTraderName,
UnknownTraderName,
RegisterNotSupported
);

8.5.3.6.2 Function

This operation is used to resolve a context relative name for another trader. In particular, it is used when exportiley to a tra
that is known by a name rather than by an interface reference. The client provides the name, which will be a sequence of n
components. If the content of the parameter cannot yield legal syntax for the first component, then the lllegalTraderNat
exception is raised. Otherwise, the first name component is compared against the name held in each]link. If no match is fot
or the trader does not support links, thekdownTraderName exception is raised. Otherwise, the trader-Qbtains the register_|if,
held as paft of the matched link. If the Register interface reference is not nil, then the trader binds tor}ye Registeanmterfa

invokes repolve but passes the TraderName with the first component removed; if it is nil,*then thp RegisterNotSupport
exception is raised. When a trader is able to match the first name component leaving no sesidual name, then that trader ref
the reference for the Register interface for that linked trader. In unwinding the recursion, intermediate traders return t
Register interface reference to their client (another trader).

854 Qffer Id Iterator
8.5.4.1 dignature

nterface Offerlditerator {

unsigned long max_left (

) raises (
UnknownMaxLeft

);

boolean next_n (
in unsigned long n,
out OfferldSeq ids
);
void destroy ();
b
8.5.4.2 Hunctions of Offer Id Iterator operations

The Offerlfliterator interface is used jto return a set of offer identifiers from the list_offers operatign and the list_proxie
operation ip the Admin interface by enabling the offer identifiers to be extracted by successive operatigns on the @iferlditera
interface.

The next_m operation returns a set of offer identifiers in the output parameter “ids”. The operation ret
there are gt least n offer\identifiers remaining in the iterator. If there are fewer than n offer identifierd in thetiteratdi,

remaining pffer identifiers are returned. The actual number of offer identifiers returned can be determined from the length
the “ids” s¢quencel. The next_n operation returns true if there are further offer identifiers to be extragted from thét iterator.
returns falge if there are no further offer identifiers to be extracted.

rns n offesidentifier

The max_|
raised if the
identifiers through Iazy evaluation).

ft operatlon returns the number of offer |dent|f|ers remammg |n the |terator The except|n UnknownMaxLetft i
fteT ') r f rdetermines iffeset of o

The destroy operation destroys the iterator. No further operations can be invoked on an iterator after it has been destroyed.

8.5.5 Admin

interface Admin : TraderComponents, SupportAttributes, ImportAttributes,
LinkAttributes {

typedef sequence<octet> OctetSeq;

readonly attribute OctetSeq request_id_stem;

ITU-T Rec. X.950 (1997 E) 47

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

unsigned long set_def_search_card (in unsigned long value);
unsigned long set_max_search_card (in unsigned long value);

unsigned long set_def_match_card (in unsigned long value);
unsigned long set_max_match_card (in unsigned long value);

unsigned long set_def_return_card (in unsigned long value);
unsigned long set_max_return_card (in unsigned long value);

unsigned long set_max_list (in unsigned long value);

boolean set_supports_modifiable_properties (in boolean value);
boolean set_supports_dynamic_properties (in boolean value);
boolean set_supports_proxy_offers (in boolean value);

unsigned long set_def_hop_count (in unsigned long value);
unsigned long set_max_hop_count (in unsigned long value);

FollowOption set_max_follow policy (in FollowOption policy):

h
8.5.5.1 Attr
The admin in
either Suppdg

set_<attributsg
as its functior

FollowOption set_def_follow_policy (in FollowOption policy);
FollowOption set_max_link_follow_policy (in FollowOption policy);
TypeRepository set_type_repos (in TypeRepository repository);
OctetSeq set_request_id_stem (in OctetSeq stem);

void list_offers (
in unsigned long how_many,
out OfferldSeq ids,
out OfferldIterator id_itr
raises (
Notimplemented

void list_proxies (
in unsigned long how_many,
out OfferldSeq ids,
out Offerldlterator id_itr
raises (
Notimplemented

butes and Set operations

erface enables the values of thétrader attributes to be read and written. All attributes are
rtAttributes, ImportAttributes; ttinkAttributes, or Admin. To set the trader “attribute”

value.

If the admin ipterface operation sé€t-‘support_proxy_offers is invoked with a value set to FALSE, for a trad

proxy_interfa
in this case, t
via the proxy

8.5.5.2 List
8.55.21 Si

Ce, the set_support—proxy_offer value does not affect the function of operations in the prox
he effect of the support_proxy_offers value being set to FALSE has the effect of making any
ntrface forthat trader not being available to satisfy queries on that trader’s lookup interface

Offers_operation

jnature

defined as readonly
to a new value,

_name> operations are defined in Admin. Each of these set operations returns the previods value of the attribut

er which supports the
y interface. However,
proxy offets exporte

void NiSt_offers (
in unsigned long how_many,
out OfferldSeq ids,
out OfferldIterator id_itr
) raises (
Notlmplemented
)i

48 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.5.5.2.2 Function

The list_offers operation allows the administrator of a trader to perform housekeeping by obtaining a handle on each of
offers within a trader, e.g. for garbage collection, etc. Only the identifiers of ordinary offers are returned, identifeetg of
offers are not returned via this operation. If the trader does not support the Register interface, the Notimplementedsexceptio
raised.

The returned identifiers are passed back in one of two ways (or a combination of both). The “ids” return result coneéys a list
offer identifiers and the “id_itr" is a reference to an interface at which additional offer identities can be obtained. Thi
“how_many” parameter states how many identifiers are to be returned via the “ids” result; any remaining are available via t
iterator interface. If the “how_many” exceeds to the number of offers held in the trader, then the “id_itr” is nil.

8.5.5.3 List Proxies operation

8.5.5.3.1 Signature

void list_proxies (
in unsigned long how_many,
out OfferldSeq ids,
out OfferldlIterator id_itr
) raises (
Notimplemented
);

8.5.5.3.2 |Function

The list_proxies operation returns the set of offer identifiers for proxy offers held by a trader. At njost “how_many” offel
identifiers pre returned via “ids”. If there are more than “how_many” offer identifiers, the remaindgr are returned via th
“id_itr” itergtor. If there are only “how_many” or fewer offer identifiers, the id _itr is nil. If the trader gloes not suipport t

Proxy interface, the Notimplemented exception is raised.

8.5.6 Ljnk

nterface Link : TraderComponents, SupportAttributes,
LinkAttributes {

struct LinkInfo {
Lookup target;
Register target_reg;
FollowOption def_pass_on_follow_rule ;
FollowOption limiting_follow_rule;

h

exception lllegalLinkName {
LinkName name;
I3

exception UnknownLinkName {
LinkName name;
2

exception DuplicateLinkName {
LinkName name;
I3

exception DefaultFollowTooPermissive {
FollowOption def_pass_on_follow_rule ;
FollowOption limiting_follow_rule;

i

exception LimitingFollowTooPermissive {
FollowOption limiting_follow_rule;
FollowOption max_link_follow_policy;

I3

void add_link (
in LinkName name,
in Lookup target,
in FollowOption def_pass_on_follow_rule ,
in FollowOption limiting_follow_rule

ITU-T Rec. X.950 (1997 E) 49

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

kh

8.5.6.1 Add

8.5.6.1.1 Si

8.5.6.1.2 F{

) raises (

lllegalLinkName,
DuplicateLinkName,
InvalidLookupRef, // e.g. nil
DefaultFollowTooPermissive,
LimitingFollowTooPermissive

):

void remove_link (

in LinkName name

) raises (

lllegalLinkName,
UnknownLinkName

);

Linkinfo describe_link (

in LinkName name

The add_link
service oper

The “name”

Lo L

ratses—
lllegalLinkName,
UnknownLinkName

LinkNameSeq list_links ();
void modify_link (

in LinkName name,
in FollowOption def_pass_on_follow_rule
in FollowOption limiting_follow_rule

raises (
lllegalLinkName,
UnknownLinkName,
DefaultFollowTooPermissive,
LimitingFollowTooPermissive

_Link operation

jnature
void add_link (

in LinkName name,
in Lookup target,
in FollowOption def_pass_on_follow_rule,
in FollowOption limiting_follow_rule

raises (
lllegalLinkName,
DuplicateLinkName,
InvalidLookupRef, #.e.g. nil
DefaultFollowTeeRermissive,
LimitingFollowTeoPermissive

1

nction

operation allows a trader subsequently to use the service of another trader in the perform

ance of its own tradin

If the parameter is no

legally formed, then the IIIegaILmkName exception is ralsed An exception of DupllcateLmkName is ralsed if the link name
already exists. The link name is also used as a component in a sequence of name components in haming a trader for resolvi

or forwarding

operations. The sequence of context relative link names provides a path to a trader.

The “target” parameter identifies the Lookup interface at which the trading service provided by the target trader can be
accessed. Should the Lookup interface parameter be nil, then an exception of InvalidLookupRef is raised. The target interfac
is used to obtain the associated Register interface, which will be subsequently returned as part of a describe_linkmaperation a
invoked as part of a resolve operation.

The “def_pass_on_follow_rule” parameter specifies the default link behaviour for the link if no link behaviour is specified on
an importer's query request. If the “def pass_on_follow_rule” exceeds the “limiting_follow_rule” specified in the next
parameter, then a DefaultFollowTooPermissive exception is raised.

50 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

The “limiting_follow_rule” parameter specifies the most permissive link follow behaviour that the link is willing to tolerate.
The exception LimitingFollowTooPermissive is raised if this parameter exceeds the trader's attribute of
“max_link_follow_policy” at the time of the link’s creation.

NOTE - It is possible for a link’s “limiting_follow_rule” to exceed the trader’s “max_link_follpelicy” later in the life of a link, as it
is possible that the trader could set its “max_link_follow_policy” to a more restrictive value after the creation of the link.

8.5.6.2 Remove Link operation

8.5.6.2.1 Signature

void remove_link (
in LinkName name
) raises (
lllegalLinkName,
UnknownLinkName

);
8.5.6.2.2 |Function

The remoye_link operation removes all knowledge of the target trader. The target trader cannot pubsequently be use
resolve, fofward, or propagate trading operations, from this trader.

The “namg” parameter identifies the link to be removed. The exception lllegalLinkName-is raised if the link is poorly formec
and the UrfknownLinkName exception is raised if the named link is not in the trader.

8.5.6.3 [Qescribe Link operation
8.5.6.3.1 [Signature

LinkInfo describe_link (
in LinkName name

) raises (
lllegalLinkName,
UnknownLinkName

);
8.5.6.3.2 [Function
The descripe_link operation returns information on a link-held in the trader.

The “name” parameter identifies the link whosé* description is required. For a malformed link| name, the exceptio
lllegalLinkNlame is raised. An UnknownLinkName-exception is raised if the named link is not found in the trader.

The operation returns a Linkinfo structure eomprising: the Lookup interface of the target trading servide, the Register interfa
of the target trading service, and the default, as well as, the limiting follow behaviour of the named link. If the tacget serv
does not syipport the Register interface,then that field of the Linkinfo structure is nil.

NOTE —|Given the description of the“Register::resolve() operation in 8.5.3.6, implementations may opt for|determiningténe Regis
interfacd when add_link is calledvand storing that information statically with the rest of the link state.

8.5.6.4 Lfist Links operation

8.5.6.4.1 [Signature
LinkNameSeq list_links ();

8.5.6.4.2 |Function

The list_links-operationreturns-atistofthe-names-ofalHradinglinks-within-the-trader—he-names-can-subsequentlyrbe used

other management operations, such as describe_link or remove_link.

8.5.6.5 Modify Link operation

8.5.6.5.1 Signature

void modify_link (
in LinkName name,
in FollowOption def_pass_on_follow_rule ,
in FollowOption limiting_follow_rule

ITU-T Rec. X.950 (1997 E) 51

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

) raises (
lllegalLinkName,
UnknownLinkName,
DefaultFollowTooPermissive,
LimitingFollowTooPermissive

);
8.5.6.5.2 Function

The modify_link operation is used to change the existing link follow behaviours of an identified link. The Lookup interface
reference of the target trader and the name of the link can not be changed.

The “name” parameter identifies the link whose follow behaviours are to be changed. A poorly formed “name” raises the
lllegalLinkName exception. An UnknownLinkName exception is raised if the link name is not known to the trader.

The “def pass_on follow_rule” parameter specifies the new default link behaviour for this Ilink. If the
“def_pass_on_follow_rule” exceeds the “limiting_follow rule” specified in the next parameter, then a
DefaultFollowTooPermissive exception 1S raised.

The “limiting) follow_rule” parameter specifies the new limit for the follow behaviour of thisylinkl. The exception
LimitingFollowTooPermissive is raised if the value exceeds the current “max_link_follow_policy” of'the trader.

8.5.7 Proxy
interface Proxy : TraderComponents, SupportAttributes {
typedef Istring ConstraintRecipe;

struct ProxyInfo {
ServiceTypeName type;
Lookup target;
PropertySeq properties;
boolean if_match_all;
ConstraintRecipe recipe;
PolicySeq policies_to_pass_on;

}

lexception lllegalRecipe {
ConstraintRecipe recipe;

)

lexception NotProxyOfferld {
Offerld id;

)

Offerld export_proxy (
in Lookup target,
in ServiceTypeName type,
in PropertySeq properties,
in boolean if_matchhall,
in ConstraintReCipe recipe,
in PolicySeq(poliCies_to_pass_on
raises (
lllegalServiceType,
UnknownServiceType,
InvalidLookupRef, // e.g. nil
lllegalPropertyName,
PropertyTypeMismatch,
ReadanlyDynamicPraperty
MissingMandatoryProperty,
lllegalRecipe,
DuplicatePropertyName,
DuplicatePolicyName

)i

void withdraw_proxy (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
NotProxyOfferld

)i

52 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

ProxyInfo describe_proxy (
in Offerld id

) raises (
lllegalOfferld,
UnknownOfferld,
NotProxyOfferld

h
8.5.7.1 Export Proxy operation

8.5.7.1.1 Signature

Offerld export_proxy (
in Lookup target,
in ServiceTypeName type,
in PropertySeq properties,

N boolean i_match_all,
in ConstraintRecipe recipe,
in PolicySeq policies_to_pass_on
) raises (
lllegalServiceType,
UnknownServiceType,
InvalidLookupRef, // e.g. nil
lllegalPropertyName,
Property TypeMismatch,
ReadonlyDynamicProperty,
MissingMandatoryProperty,
lllegalRecipe,
DuplicatePropertyName,
DuplicatePolicyName

);
8.5.7.1.2 |Function

The Proxy interface enables the export and subsequent manipulation of proxy offers. Proxy

offers enable run-tir

determinatjon of the interface at which a service is provided: The export_proxy operation adds a proxy offer to thettrader’s

of service o¢ffers.

Like normdl service offers, proxy offers have a seryvice type “type” and named property values “propeifties”. However, a pro»

offer does[not include an object reference at which the offered service is provided. Instead, this obj
when it is mpeeded for a query operation; it is obtained by invoking another query operation upon the *
held in the [proxy offer.

The “if_match_all” parameter, if TRUE,dndicates that the trader should consider this proxy offer as &
query based upon type conformance alone, i.e. it does not match the importer's constraint express
associated| with the proxy offer. This'is most often useful when the constraint expression supplied b
passed aldng in the secondary«guery operation.

The “recipg¢” parameter tells'the trader how to construct the constraint expression for the secondary qu
The recipe|language is described in Annex C; it permits the secondary constraint expression to be ma
properties pf the proxyoffer, and the primary constraint expression.

The “policips_to_pass_on” parameter provides a static set of <name, value> pairs for relaying on to
describes how the secondary policy parameter is generated from the primary po
_to .pass_on”.

bct reference is obtai
arget” Lookup interfa

. match to an importe
on against the prope
y the importer is simj

ery operatidn to “targ
de up of literdls, value

the “target” trader. T
icy parameter and

If a query operation matches the proxy offer (using the normal service type matching and property matching and preferel
algorithms), this primary query operation invokes a secondary query operation on the Lookup interface nominated in the prc
offer. Although the proxy offer nominates a Lookup interface, this interface is only required to conform syntactically to the

Lookup interface; it need not conform to the Lookup interface behaviour specified above.

The secondary query operation is invoked as follows:

in ServiceTypeName type The type is copied from primary query.

in Constraint constr The recipe in the proxy offer is “evaluated” to
parameter.

in Preference pref The preference is copied from the primary query.

ITU-T Rec. X.950 (199

provide the constr

7E) 53

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

n PolicySeq policies The “policies” (names and values) contained in the policies_to_pass_on
field of the proxy offer are appended to the policies of the primary query.

in SpecifiedProps desired_props The desired_props are copied from the primary query.

in unsigned long how_many The how_many parameter is set by the trader to reflect the

trader implementation’s preference for receiving the resultant offer as a
list or through an iterator.

out OfferSeq offers At most how_many offers are returned from the secondary query
operation via offers.

out Offerlterator offer_itr If the secondary query needs to return more than how_many offers, then
the remaining offers can be accessed via the iterator offer_itr. If there are
only how_manyor fewer offers, then offer_itr is nil.

out PolicyNarheSeq imits_applie roxy trader

The lllegalSqrviceType exception is raised if the service type name (type) is not well-formed. #he UnknownServiceType

exception is rpised if the service type name (type) is not known to the trader. The InvalidLookupRef.exception is rgited if tar

is not a valid Lookup interface reference (e.qg. if target is a nil object reference). The lllegalPropertyNamg excepédrifis rais

a property najme in “properties” is not well-formed. The PropertyTypeMismatch exception is raised if a prpperty value is not of

an appropriate type as determined by the service type. The ReadonlyDynamicProperty exgeption is raisefd if a dynamic propert
value was syipplied for a property that was flagged as readonly. The MissingMandatoryProperty gxception is raised if
“properties” does not contain one of the mandatory properties defined by the service-type. The lllegalRegipe exception is raise
if the recipe Js not well-formed. The DuplicatePropertyName exception is raised if'two or more propgrties, with the same

property namnfe, are included in the “properties” parameter. The DuplicateRolicyName exception is raised if two or more

policies, with the same policy nhame, are included in the “policies_to_pass_on*parameter.

Proxy offers gannot be modified; they must be withdrawn and re-exported:
8.5.7.2 Withdraw Proxy operation
8.5.7.2.1 Signature

void withdraw_proxy (
in Offerld id

raises (
lllegalOfferld,
UnknownOfferld,
NotProxyOfferld

)

8.5.7.2.2 Fynction
The withdraw]_proxy operation removesthe proxy offer identified by “id” from the trader.

The lllegalOfferld exception is gaised if “id” is not well-formed. The UnknownOfferld exception is raisgd if “id” does not
identify any dffer held by therader. The NotProxyOfferld exception is raised if “id” identifies a normal service offer rather
than a proxy offer.

8.5.7.3 Degcribe Proxy.operation
8.5.7.3.1 Signatare

ProxyInfo describe_proxy (
in Offerld id

) raises (

lllegalOfferld,

UnknownOfferld,

NotProxyOfferld

54 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.5.7.3.2 Function

The describe_proxy operation returns the information contained in the proxy offer identified by “id” in th

e trader.

The lllegalOfferld exception is raised if “id” is not well-formed. The UnknownOfferld exception is raised if “id” does not
identify any offer held by the trader. The NotProxyOfferld exception is raised if “id” identifies a normal service offer rather

than a proxy offer.

8.6 Dynamic Property Evaluation interface

8.6.1 Signature

module CosTradingDynamic {

exception DPEvalFailure {
CosTrading::PropertyName name;
TypeCode returned type;

any extra_info;

erface DynamicPropEval {

any evalDP (
in CosTrading::PropertyName name,
in TypeCode returned_type,
in any extra_info)

raises (DPEvalFailure);

uct DynamicProp {
DynamicPropEval eval_if;
TypeCode returned_type;
any extra_info;

kh

8.6.2 Hunctions of Dynamic Property Eval interface operations

The Dynan
held by the

When expprting a service offer (or proxy offer),cthe property with the dynamic value has an “any”
DynamicPilop structure rather than the normal® property value. A trader which supports dynamic
DynamicPirlop value as containing the information which enables a correctly-typed property value to

nicPropEval interface is provided by an expotter who wishes to provide a dynamic property
trader.

value in a service off

alue which contains
properties accepts tl
be obtained during t

evaluation [of a query. The export (or export_proxy) operation raises the PropertyTypeMismatch if the returned_type is n

appropriate for the property name as.defined by the service type.

Readonly properties may not have dynamic values. The export and modify operations on the R4
export_proxy operation on the Rroxy interface raise the ReadonlyDynamicProperty exception if dynam
readonly pfoperties.

When a qyery requires_ aidynamic property value, the evalDP operation is invoked on the eval_if inter;
structure. The property-name parameter is the name of the property whose value is being obtaine
extra_info [parameters are copied from the DynamicProp structure. The evalDP operation returns
contain a Value forthat property. The value should be of a type indicated by returned_type.

gister interface and
c values are assigne«

ace in the DynamicP1
. The returned_type
any value which sho

alue is required for tl

ception is raised if the value for t

he property cannot be determined. If the v

CONS prerete evartatotrtsSGeemet ome SeTtv

ffer (or proxy offer).

Other than the preceding rules, additional behaviour of the evalDP operation is not specified by this Specificationldn particu
the purpose of the extra_info data in determining the dynamic property value is implementation-specific.

If the trader does not support dynamic properties (indicated by the trader attribute supports_dynami
and export_proxy operations should not be parameterised by dynamic properties. The behaviour
circumstances is not specified by this Specification.

ITU-T Rec. X.950 (199

C_properties), the ex
of such traders in s

7E) 55

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

If the trader does not support dynamic properties or the importer has requested that dynamic properties are not used (via tt
policies parameter of the query operation), then dynamic property evaluation is not performed. If the value of a dynamic
property is required by the evaluation of a constraint or preference, then that evaluation is deemed to have failedvize that ser
offer (or proxy offer).

The describe operation of the Register interface and the describe_proxy operation of the Proxy interface do not perform
dynamic property evaluation, but return the DynamicProp structure as the value of the property. As these interfaces are used
create dynamic properties via the export and export_proxy operations, the other operations on these interfaces must ensure tl
the dynamic nature of the properties remains visible to the exporters.

The modify operation on the Register interface of a trader which supports dynamic properties must accept the establishmer
and modification of dynamic properties, consistent with the export operation. There is no restriction on a property value
changing from a static value stored by the trader into a dynamic value, and vice versa; however readonly static properties ma
not be modified to be dynamic.

8.7 Trager-objecttemplate

A basic computational object template for the trader contains:
— |computational interface templates for the interfaces that it can instantiate;
— |a behaviour specification;
— |an environment contract specification.

8.7.1 Intefface templates

This Specification provides the following interface templates:
— [trader components interface template;
— |support attributes interface template;
— |import attributes interface template;
— |link attributes interface template;
— |lookup interface template;
— |register interface template;
— |admin interface template;
— [link interface template;
— |proxy interface template;
— |offer iterator interface template;
— |offer id iterator interface template;
— |dynamic property evaluatoninterface template.

8.7.2 Behaviour specification

Instantiation ¢f an interface template in the server role requires an object to meet the behaviour specifications associated wi
the operationp contained in‘the interface.

Instantiation ¢f an interface template in the client role requires an object to be able to receive all possible termirtagons fo
operations it invokes on‘that interface.

When a trader.object instantiates a lookup interface in the client role in order to support services inyoked upon a lookup
interface in its server role, it shall pass the responses received from that client role interface to the server roleirinterface
accordance with the behaviour specification of the lookup interface template.

When a trader object instantiates a register interface in the client role in order to support services invoked upon a lookuf
interface in its server role, it shall pass the responses received from that client role interface to the server roleinnterface
accordance with the behaviour specification of the lookup interface template.

When a trader object instantiates a register interface in the client role in order to support services invoked upon a registe
interface in its server role, it shall pass the responses received from that client role interface to the server roleinnterface
accordance with the behaviour specification of the register interface template.

In addition there are other actions that the trader can perform.

56 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.7.2.1 Instantiating interface templates

The following templates can be instantiated:

NOTE —

lookup interface template (server role);
lookup interface template (client role);
register interface template (server role);
admin interface template (server role);

link interface template (server role);

proxy interface template (server role);

offer iterator interface template (server role);

offer id iterator interface template (server role).
There may be many instances of each of lookup (client role), offer iterator, offer id iterator interfaces.

Implement[ttions may instantiate other client role interfaces, for example type repository interfag
However, these are separate ODP functions and their standardization is beyond the scope of this.Spe

8722 A
The trader

The registg
The proxy

The link inferface updates the links.

The admin

8.7.2.3 (

All of the s
through thg

8.7.2.4 (
All of the g

through the query operation of the lookup interface.

8.7.25 (

The set of
the admin
operations

The set of
interface o

ctions regarding state

can access and modify its state. The following components of the state are identified:
the set of service offers;
the set of proxy offers;
the set of links;
the set of trader attributes.

r interface updates the service offers.

nterface updates the proxy offers.

interface updates the trader attributes.

ombined lookup-register object behaviour

ervice offers that are currently in the trader due to use of operations in register interface arg
b query operation of the lookup interface.

ombined lookup-proxy object behaviour

roxy offers that are currently~in the trader due to use of operations in proxy interface are

ombined admin-lookup object behaviour

service offers thatymay be returned is affected by the value of the support_dynamic_prope
interface operations. If the support_dynamic_properties attribute is set to value of FALSE
shall not return offers which include dynamic properties.

proxy .offers that may be returned is affected by the value of the support_proxy_offer attriby
perations. If the support_proxy_offer is set to value of FALSE, then subsequent query op

offers thI’OlIIgh a proxy offer, even if the query operation import policy parameter has use_proxy_offers

e or storage interfac
ification.

e availadtigrbedbe r

Available todoe return

ties attributeh set thro
, then subsequent qu

tegbeththradmin
erations shall not rett
value set to TRUE.

The set of service offers that may be returned is affected by the vlue of support_modifiable_properties attribute, set thwot
the admin interface operations. If the support_modifiable_properties attribute is set to FALSE, the subsequent query operati
shall not return offers which include modifiable properties.

8.7.2.6 Combined admin-register object behaviour

The availablity of the modify operation in the register interface, is affected by the value of the supports_modifiablegproperti

attribute of

the trader.

The ability to export service offers with dynamic properties, is affected by the value of the supports_dynamic_propertie
attribute of the trader. If the value of the supports_dynamic_properties attribute is set to FALSE, then export requests wh
include dynamic properties may be rejected.

ITU-T Rec. X.950 (1997 E) 57

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

8.7.2.7 Combined admin-proxy object behaviour

The functions associated with the proxy interface are not affected by the value of the supports_proxy_offer attribute. If the
value of the supports_proxy_offer attribute is set to FALSE, any proxy offers within the trader shall not be made available to
query operations on the lookup interface.

The ability to export proxy offers with dynamic properties, is affected by the value of the supports_dynamic_properties
attribute of the trader. If the value of the supports_dynamic_properties attribute is set to FALSE, then export_proxy requests
which include dynamic properties may be rejected.

8.7.2.8 Combined link-lookup object behaviour

All of the service offers that are available through the lookup interfaces of linked traders shall be recursively accessible by
query operation upon an initial lookup interface.

8.7.2.9 Combined link-register object behaviour

The resolve dperation on the register 15 only available it the trader 15 finked With other raders.

8.7.2.10 Arbjtration action

An arbitration| action template is a template for actions which combine a criteria argument (provided at an interfacerwith trad
criteria and pyoperty values (available from the trader's own state). The action produces a resultant crit¢ria which €orrespond
to the policy (in enterprise terms) for performing a given operation.

The arbitratign action represents some computational algorithm within the trader object. It correspohds to the enterprise
specification’$ arbitration policy.

8.7.2.11 Constraints on the occurence of actions

modifies the [link space. The behaviour of the admin interface modifies. the trader attributes. Therefgre no constraints on
interleaving df actions from operations on one interface with actions from operations on the other intefface are necessary t
ensure data dqonsistency. The behaviour of the proxy interface modifies the proxy offer space and offer idgntifiers.

The behavioyr of the export interface modifies the service offer space and 0ffer identities. The behavioir of the liek interfac

8.7.3 Envjronment contract

There may bg¢ an environment constraint that the first trading service interface that is instantiated, be gt a partioualar locati
This would allow other objects to be instantiated with knowledge of a trader.

No further enyironment constraints are identified.

9 Conformance statements and reference points

The following|operational interfaces are programmatic reference points for testing conformance:
— [the Lookup interface (as server) provided by the trader implementation under test;
— [the Register interface\(as server) provided by the trader implementation under test;
— [the Link interface (as server) provided by the trader implementation under test;
— [the Admin intérface (as server) provided by the trader implementation under test;
— [the Proxy. interface (as server) provided by the trader implementation under test;
— |a Lookup-interface (as client) of a linked trader, used by the trader implementation under test;
— |aRegister interface (as client) of a linked trader, used by the trader implementation under t¢st;
a-BDynamicProp interface(as-client)yof an-objectused-by the trader implementation-Uinder test during the

The behaviour defined for each of the normative operations in the computational specification shall be exhibited at the
conformance points associated with that behaviour.

In order to claim conformance, implementors shall state what engineering interface corresponds to each of the computationg
interfaces identified as conformance points.

In addition, the implementor shall state which communications mechanism is used and which transparencies are provided ove
which interfaces.

58 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

The following taxonomy is defined for specific implementation conformance classes of trading function objec
implementations:

Query trader: Can serve Lookup interface.
Simple trader: Can serve Lookup and Register interfaces.
Stand-alone trader: Can serve Lookup, Register and Admin interfaces.

Linked trader: Can serve Lookup, Register, Admin and Link interfaces; and can be client for Lookup anc

Register interfaces.
Proxy trader: Can serve Lookup, Register, Admin and Proxy interfaces; and can be client

for Lookup interface.

Full-servicetrader: Can serve Lookup, Register, Admin, Link and Proxy interfaces; and can be client for Lookuj

and Register interfaces.

Any of these specific trading object conformance classes may also be a client for the DynamicPropEval interface if it suppc
dynamic properties.

ns.

Subject to tiee conforn

b.

bte behaviour associa

Iterator interface type

ete behaviour associz
ype, with the followin

broperties attribute is
es passed in an expo

broperties attribute is
ps passed in an expc

th the value of the
br the DynamicPropE\

value of the readonl

te behaviour associat

The above|taxonomy results in five specific trading function object types relevant for conformance clai
9.1 Jonformance requirement for trading function interfaces as server

Since the iphterfaces to a trading object are separable, and support for these interfaces is'Selectable,
classes defined above, this subclause specifies the conformance requirements on a pef+ipterface basi
9.1.1 Lpokup interface

An implemgntation claiming conformance to the Lookup interface as server shallimplement the compl
with all the|operations and readonly attributes defined within the scope of the\Lookup interface type.
An implemgntation claiming conformance to the Lookup interface as server’shall also support the Offel|
server.

9.1.2 Hegister interface

An implemgntation claiming conformance to the Register interface as server shall implement the comp
with all the operations and readonly attributes defined within the scope of the Register interface f
permitted gxceptions:

—| An implementation which only allows the value of FALSE for the supports_modifiable_|
conformant, in which case it may reject a service offer which includes modifiable propert
operation, and may always respondto modify operation requests with an exception.

—| An implementation which only.allows the value of FALSE for the supports_dynamic_
conformant, in which case‘it-may reject a service offer which includes dynamic properti
operation.

—| An implementation -claiming conformance to the Register interface as server, w|
supports_dynamig_properties set to TRUE, shall also be able to assume the client role f
interface type.

—| An implementation claiming conformance to the Register interface as server, with the
attribute stupports_proxy_offers set to TRUE, shall also support the Proxy interface.

9.1.3 Ljnk interface
An implementation claiming conformance to the Link interface as server shall implement the comple
with all the|opefations and readonly attributes defined within the scope of the Link interface type.

9.14

Admin interface

An implementation claiming conformance to the Admin interface as server shall implement the complete behaviour associa

with all the

operations and readonly attributes defined within the scope of the Admin interface type.

An implementation claiming conformance to the Admin interface as server shall also support the Offerlditerator interface tyj

as server.

ITU-T Rec. X.950 (1997 E)

59

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

9.1.5

An implementation claiming conformance to the Proxy interface as server shall implement the complete behaviour associate
with all the operations defined within the scope of the Proxy interface type.

Proxy interface

An implementation claiming conformance to the Proxy interface as server shall also support the Offerlditerator interface type
as server.

9.1.6 Offerlterator interface

An implementation claiming conformance to the Offerlterator interface as server shall implement the complete behaviour
associated with all the operations defined within the scope of the Offerlterator interface type.

9.1.7 Offerldlterator interface

An implementation claiming conformance to the Offerlditerator interface as server shall implement the complete behaviour
associated with all the operations defined within the scope of the Offerlditerator interface type.

9.1.8

An implemen
associated w

NOTE - Th

DynamicPropEval interface

ation claiming conformance to the DynamicPropEval interface as server shall implement the required behaviour
th all the operations defined within the scope of the DynamicPropEval interface type.

e behaviour of this interface is limited to support of the interface signature.

9.1.9 Ser

ODP-IDL is (
imply use of s

ice subtyping rule conformance

sed in this Specification to express computational operation interfacé signatures. Use of this notation does not

pecific supporting mechanisms and protocols.

For conformdg
conformant t
protocol canr

nce, the architectural neutral service subtyping rules in 8.2.3.2_are the widest interpretat
ader. An implementation of these architectural neutral serviee subtyping rules in a sps
ot be more permissive than these service subtyping rules~A specific mechanism and prot

on of subtyping for a
cific mechanism and

bcol may not support

definition of subtyping which is not permitted by the ODP trading funetion:

The most res
mechanism g

trictive (lower bound) rules for subtyping of a confarmant trader implementation built on a particular supporting

nd protocol, allowed for conformance, are:
A service type b, is a subtype of service type a,if and only if:

the interface type of ST b may add operations to the interface type of ST a; and

all the named properties of ST a are'in ST b; and

* all of the named properties of ST a have a type which is identical to the type of the identically named

property in ST b; and
all of the named propérties of ST a have mode which is identical to the mode of the identically named

property in ST b.

9.2 Conformance requirements for query trader conformance class
A trading system implementation claiming conformance to the query trader conformance class, ghall conform to the
conformance|requirements-of the Lookup interface type as server.

Implementatipns conforming to this conformance class would not claim conformance to the register int¢rface, and would use

non-standard| means-for introducing service offers into the trader.

9.3 Cor

A trading system implementation claiming conformance to the simple trader conformance class, shall conform to the
conformance requirements of the Lookup and Register interface types as server.

formance requirements Tor simple trader conformance class

A simple trader shall conform to the combined lookup-register object behaviour specified in 8.7.2

9.4

A trading system implementaion claiming conformance to the stand-alone Trader conformance class, shall conform to the
conformance requirements of the Lookup, Register and Admin interface types as server.

Conformance requirements for stand-alone trader conformance class

A stand-alone trader shall conform to the combined lookup-register object behaviour specified in 8.7.2.

60 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

A stand-alone trader shall conform to the combined admin-register object behaviour specified in 8.7.2.

A stand-alone trader shall conform to the combined admin-lookup object behaviour specified in 8.7.2.

9.5 Conformance requirements for linked trader conformance class

A trading system implementaion claiming conformance to the linked trader conformance class, shall conform to tt
conformance requirements of the Lookup, Register, Admin and Link interface types as server; and shall be able to assume
client role for invoking operations on the Lookup interface type.

A linked trader shall conform to the combined lookup-register object behaviour specified in 8.7.2.
A linked trader shall conform to the combined admin-register object behaviour specified in 8.7.2.
A linked trader shall conform to the combined admin-lookup object behaviour specified in 8.7.2.

A linked trader shall conform to the combined lookup-link object behaviour specified in 8.7.2.

9.6 Jonformance requirements for proxy trader conformance class

A trading |system implementaion claiming conformance to the proxy trader conformancé. class,| shall conform to tt
conformange requirements of the Lookup, Register, Admin, and Proxy interface types as server; and shall be able to assum
client role for invoking operations on the Lookup interface type.

A proxy trader shall conform to the combined lookup-register object behaviour specified in 8.7.2.
A proxy trader shall conform to the combined admin-register object behaviour specified in 8.7.2.
A proxy trader shall conform to the combined admin-lookup object behaviourspecified in 8.7.2.
A proxy trader shall conform to the combined lookup-proxy object behavigur specified in 8.7.2.

A proxy trader shall conform to the combined admin-proxy object behaviour specified in 8.7.2.

9.7 Jonformance requirements for full-service trader. conformance class

A trading system implementaion claiming conformance to-the full-service trader conformance clasg, shall conform to t
conformange requirements of the Lookup, Register,. Admin, Link and Proxy interface types as server; and shall be able
assume the client role for invoking operations on the Lookup interface type.

A full-servige trader shall conform to the combinéd/lookup-register object behaviour specified in 8.7.2.
A full-servite trader shall conform to the combined admin-register object behaviour specified in 8.7.2.
A full-servite trader shall conform to theccombined admin-lookup object behaviour specified in 8.7.2.
A full-servite trader shall conform to‘the combined lookup-link object behaviour specified in 8.7.2.

A full-servige trader shall conform'to the combined lookup-proxy object behaviour specified in 8.7.2.

A full-servite trader shall conform to the combined admin-proxy object behaviour specified in 8.7.2.

9.8 Jdonformance tests

For each gonformane test, the implementation shall identify the programmatic reference points fof which conformance
claimed.

For each conformance test, the Implementor shalf State:
— what policy is in force for the duration of the test;

— what object state is assumed, with respect to the information specification, as a static schema, e.g. service off
held.

An implementation claiming conformance is required to provide the set of policies or circumstances under which an export
offer can be subsequently retrieved by a query operation.

Implementations claiming conformance to either the linked trader or full-service trader conformance classes shall be able
demonstrate the ability to propagate a query operation to a remote trader’s lookup interface.

Implementations claiming conformance to either the proxy trader or full-service trader conformance classes shall be able
demonstrate the ability to forward a query operation to a remote object via a proxy offer.

ITU-T Rec. X.950 (1997 E) 61

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

Annex A

ODP-IDL based specification of the Trading Function
(This annex forms an integral part of this Recommendation | International Standard)

A.l Introduction

This annex provides the ODP-IDL (see ITU-T Rec. X.920 | ISO/IEC 14750) specification of the interface signature for the
trading function’s computational specification. It specifies the signature for each computational operation in ODP-IDL,

according to the functional description (signature and semantics) provided in clause 8.

If there are any discrepancies between the ODP-IDL specifications in this annex and those in Clause 8, the specifitgtions in th

annex take precedence.

ODP-IDL is used in this Specification to express computational operation interface signatures. Use of this notation does not

imply use of gpecific SUppoTtNg MechaniSms and protocors.

ce Offerlterator;
ce Offerldlterator;

definitions used in more than one interface

ef string Istring;
ef Object TypeRepository;

ef Istring PropertyName;

ef sequencePropertyName> PropertyNameSeq;
ef any PropertyValue;

Property {

PropertyName name;

PropertyValue value;

ef sequenceProperty> PropertySeq;

Offer {
bject reference;
PropertySeq properti€s;

ef sequence@ffer> OfferSeq;
ef string Offerld;
ef sequenceOfferld > OfferldSeq;

eflstring ServiceTypeName; // similar structure to IR::Identifier

Service.

typedef Istring Constraint;

enum FollowOption {
local_only,
if_no_local,
always

62 ITU-T Rec. X.950 (1997 E)

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

typedef Istring LinkName;
typedef sequencelinkName> LinkNameSeq;
typedef LinkNameSeq TraderName;

typedef string PolicyName; // policy names restricted to Latinl
typedef sequencePolicyName> PolicyNameSeq;
typedef any PolicyValue;
struct Policy {
PolicyName name;
PolicyValue value;
h
typedef sequencePolicy> PolicySeq;

/I exceptions used in more than one interface

exception UnknownMaxLeft {};

ISO/IEC 13235-1:1998(E)

exception Notlmplemented {3+

exception lllegalServiceType {

ServiceTypeName type;

h

exception UnknownServiceType {
ServiceTypeName type;

h

exception lllegalPropertyName {
PropertyName name;

exception DuplicatePropertyName {
PropertyName name;

h

exception PropertyTypeMismatch {
ServiceTypeName type;
Property prop;

h

exception MissingMandatoryProperty {
ServiceTypeName type;
PropertyName name;

exception ReadonlyDynamicProperty
ServiceTypeName type;
PropertyName name;

exception lllegalConstraint{
Constraint constr;

h

e)ception InvalidkookupRef {
Lookup.target;

K

e)ception lllegalOfferld {
Offerld id,;

h

exception UnknownOfferld {
Offerld id,;

h

exception DuplicatePolicyName {
PolicyName name;
h

/l the interfaces

ITU-T Rec. X.950 (1997 E)

63

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

ISO/IEC 13235-1:1998(E)

interf

h

interf;

h

interf;

ace TraderComponents {

readonly attribute Lookup lookup_if;
readonly attribute Register register_if;
readonly attribute Link link_if;
readonly attribute Proxy proxy_if;
readonly attribute Admin admin_if;

ace SupportAttributes {

readonly attribute boolean supports_modifiable_properties;
readonly attribute boolean supports_dynamic_properties;
readonly attribute boolean supports_proxy_offers;
readonly attribute TypeRepository type_repos;

ace ImportAttributes {

b

intert

h

intert

readonly attribute unsigned long def_search_card;
readonly attribute unsigned long max_search_card;
readonly attribute unsigned long def_match_card;
readonly attribute unsigned long max_match_card;
readonly attribute unsigned long def_return_card;
readonly attribute unsigned long max_return_card;
readonly attribute unsigned long max_list;
readonly attribute unsigned long def_hop_count;
readonly attribute unsigned long max_hop_count;
readonly attribute FollowOption def_follow_policy;
readonly attribute FollowOption max_follow_policy;

ace LinkAttributes {

readonly attribute FollowOption max_link_follow_policy;

typedef Istring Preference;
enum HowManyProps { none, some, all };

union SpecifiedProps switch (HowManyPreps) {
case some: PropertyNameSeq prop, names;
}

lexception lllegalPreference {
Preference pref;
}

lexception lllegalPolicyName {
PolicyName name;
12

lexception PolicyTypeMismatch {
Policy-the” policy;
12

lexception InvalidPolicyValue {
Policy the_policy;

I

void query (
in ServiceTypeName type,
in Constraint constr,
in Preference pref,
in PolicySeq policies,
in SpecifiedProps desired_props,
in unsigned long how_many,
out OfferSeq offers,
out Offerlterator offer_itr,
out PolicyNameSeq limits_applied

64 ITU-T Rec. X.950 (1997 E)

ace Lookup : TraderComponents, SupportAttributes, ImportAttributes {

https://iecnorm.com/api/?name=4d77d370bc1ba32a40e1a4b3d173e084

