
Reference number
ISO/IEC 14496-2:1999(E)

© ISO/IEC 1999

INTERNATIONAL
STANDARD

ISO/IEC
14496-2

First edition
1999-12-01

Information technology — Coding of
audio-visual objects —

Part 2:
Visual

Technologies de l'information — Codage des objets audiovisuels —

Partie 2: Codage visuel

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

© ISO/IEC 1999
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office � Case postale 56 � CH-1211 Genève 20 � Switzerland
Printed in Switzerland

ii

Contents

1 Scope..1

2 Normative references..1

3 Definitions..2

4 Abbreviations and symbols ...8

4.1 Arithmetic operators ...9

4.2 Logical operators ..9

4.3 Relational operators..9

4.4 Bitwise operators ..10

4.5 Conditional operators ...10

4.6 Assignment..10

4.7 Mnemonics...10

4.8 Constants...10

5 Conventions...10

5.1 Method of describing bitstream syntax ..10

5.2 Definition of functions ..12

5.2.1 Definition of next_bits() function...12

5.2.2 Definition of bytealigned() function...12

5.2.3 Definition of nextbits_bytealigned() function...12

5.2.4 Definition of next_start_code() function ...12

5.2.5 Definition of next_resync_marker() function..12

5.2.6 Definition of transparent_mb() function ...13

5.2.7 Definition of transparent_block() function ...13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

iii

5.3 Reserved, forbidden and marker_bit...13

5.4 Arithmetic precision ...13

6 Visual bitstream syntax and semantics ..13

6.1 Structure of coded visual data...13

6.1.1 Visual object sequence ..14

6.1.2 Visual object ..14

6.1.3 Video object ...14

6.1.4 Mesh object..19

6.1.5 Face object...20

6.2 Visual bitstream syntax ..24

6.2.1 Start codes...24

6.2.2 Visual Object Sequence and Visual Object ..27

6.2.3 Video Object Layer..29

6.2.4 Group of Video Object Plane ...34

6.2.5 Video Object Plane and Video Plane with Short Header...34

6.2.6 Macroblock ..48

6.2.7 Block...54

6.2.8 Still Texture Object ...55

6.2.9 Mesh Object ...64

6.2.10 Face Object ..67

6.3 Visual bitstream semantics..77

6.3.1 Semantic rules for higher syntactic structures..77

6.3.2 Visual Object Sequence and Visual Object ..77

6.3.3 Video Object Layer..83

6.3.4 Group of Video Object Plane ...91

6.3.5 Video Object Plane and Video Plane with Short Header...91

6.3.6 Macroblock related..101

6.3.7 Block related..104

6.3.8 Still texture object ...104

6.3.9 Mesh object..109

6.3.10 Face object...112

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

iv

7 The visual decoding process...117

7.1 Video decoding process...117

7.2 Higher syntactic structures..118

7.3 VOP reconstruction...118

7.4 Texture decoding ..119

7.4.1 Variable length decoding..119

7.4.2 Inverse scan...120

7.4.3 Intra dc and ac prediction for intra macroblocks...121

7.4.4 Inverse quantisation ...123

7.4.5 Inverse DCT ...126

7.5 Shape decoding...126

7.5.1 Higher syntactic structures..127

7.5.2 Macroblock decoding ...127

7.5.3 Arithmetic decoding..136

7.5.4 Grayscale Shape Decoding ..138

7.6 Motion compensation decoding ..140

7.6.1 Padding process ...141

7.6.2 Half sample interpolation ...144

7.6.3 General motion vector decoding process ..144

7.6.4 Unrestricted motion compensation...146

7.6.5 Vector decoding processing and motion-compensation in progressive P-VOP........................146

7.6.6 Overlapped motion compensation ..148

7.6.7 Temporal prediction structure ...150

7.6.8 Vector decoding process of non-scalable progressive B-VOPs..150

7.6.9 Motion compensation in non-scalable progressive B-VOPs..151

7.7 Interlaced video decoding..155

7.7.1 Field DCT and DC and AC Prediction..155

7.7.2 Motion compensation ...155

7.8 Sprite decoding ...162

7.8.1 Higher syntactic structures..163

7.8.2 Sprite Reconstruction...163

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

v

7.8.3 Low-latency sprite reconstruction ..164

7.8.4 Sprite reference point decoding ..165

7.8.5 Warping..165

7.8.6 Sample reconstruction ...167

7.9 Generalized scalable decoding..167

7.9.1 Temporal scalability..169

7.9.2 Spatial scalability ..172

7.10 Still texture object decoding ..175

7.10.1 Decoding of the DC subband...175

7.10.2 ZeroTree Decoding of the Higher Bands ..176

7.10.3 Inverse Quantization...181

7.11 Mesh object decoding ..188

7.11.1 Mesh geometry decoding...188

7.11.2 Decoding of mesh motion vectors ..191

7.12 Face object decoding ...193

7.12.1 Frame based face object decoding ...193

7.12.2 DCT based face object decoding...194

7.12.3 Decoding of the viseme parameter fap 1..195

7.12.4 Decoding of the viseme parameter fap 2..196

7.12.5 Fap masking ..196

7.13 Output of the decoding process..196

7.13.1 Video data ..197

7.13.2 2D Mesh data ...197

7.13.3 Face animation parameter data ...197

8 Visual-Systems Composition Issues ..197

8.1 Temporal Scalability Composition ..197

8.2 Sprite Composition ...198

8.3 Mesh Object Composition..199

9 Profiles and Levels..199

9.1 Visual Object Types ..200

9.2 Visual Profiles..202

9.3 Visual Profiles@Levels...202

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

vi

9.3.1 Natural Visual ..202

9.3.2 Synthetic Visual...202

9.3.3 Synthetic/Natural Hybrid Visual...203

Annex A (normative) Coding transforms ...205

A.1 Discrete cosine transform for video texture...205

A.2 Discrete wavelet transform for still texture ..205

A.2.1 Adding the mean ...205

A.2.2 Wavelet filter ..206

A.2.3 Symmetric extension ..206

A.2.4 Decomposition level ...207

A.2.5 Shape adaptive wavelet filtering and symmetric extension ...207

Annex B (normative) Variable length codes and arithmetic decoding ...209

B.1 Variable length codes ...209

B.1.1 Macroblock type ..209

B.1.2 Macroblock pattern ...210

B.1.3 Motion vector...212

B.1.4 DCT coefficients ..214

B.1.5 Shape Coding ..227

B.1.6 Sprite Coding...233

B.1.7 DCT based facial object decoding...234

B.2 Arithmetic Decoding ...246

B.2.1 Aritmetic decoding for still texture object ..246

B.2.2 Arithmetic decoding for shape decoding ...251

B.2.3 Face Object Decoding...254

Annex C (normative) Face object decoding tables and definitions ..256

Annex D (normative) Video buffering verifier..269

D.1 Introduction ...269

D.2 Video Rate Buffer Model Definition ...269

D.3 Comparison between ISO/IEC 14496-2 VBV and the ISO/IEC 13818-2 VBV (Informative)..........272

D.4 Video Complexity Model Definition ...273

D.5 Video Reference Memory Model Definition ..274

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

vii

D.6 Interaction between VBV, VCV and VMV (informative)..274

D.7 Video Presentation Model Definition (informative)..275

Annex E (informative) Features supported by the algorithm...277

E.1 Error resilience ..277

E.1.1 Resynchronization ..277

E.1.2 Data Partitioning ...278

E.1.3 Reversible VLC..278

E.1.4 Decoder Operation..279

E.1.5 Adaptive Intra Refresh (AIR) Method ..282

E.2 Complexity Estimation ...284

E.3 Resynchronization in Case of Unknown Video Header Format ...284

Annex F (informative) Preprocessing and postprocessing ...286

F.1 Segmentation for VOP Generation ..286

F.1.1 Introduction ...286

F.1.2 Description of a combined temporal and spatial segmentation framework286

F.1.3 References...288

F.2 Bounding Rectangle of VOP Formation ...289

F.3 Postprocessing for Coding Noise Reduction ..290

F.3.1 Deblocking filter ..290

F.3.2 Deringing filter...292

F.3.3 Further issues..294

F.4 Chrominance Decimation and Interpolation Filtering for Interlaced Object Coding..................294

Annex G (normative) Profile and level indication and restrictions ...296

Annex H (informative) Patent statements ..298

H.1 Patent statements ...298

Annex I (informative) Bibliography ...300

Annex J (normative) View dependent object scalability ..301

J.1 Introduction ...301

J.2 Decoding Process of a View-Dependent Object ..301

J.2.1 General Decoding Scheme...301

J.2.2 Computation of the View-Dependent Scalability parameters...303

J.2.3 VD mask computation ..304

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

viii

J.2.4 Differential mask computation...305

J.2.5 DCT coefficients decoding...305

J.2.6 Texture update...305

J.2.7 IDCT ..306

Annex K (normative) Decoder configuration information..307

K.1 Introduction ...307

K.2 Description of the set up of a visual decoder (informative)..307

K.2.1 Processing of decoder configuration information...308

K.3 Specification of decoder configuration information..309

K.3.1 VideoObject ...309

K.3.2 StillTextureObject..309

K.3.3 MeshObject ..309

K.3.4 FaceObject ...310

Annex L (informative) Rate control ...311

L.1 Frame Rate Control ...311

L.1.1 Introduction ...311

L.1.2 Description...311

L.1.3 Summary ..314

L.2 Multiple Video Object Rate Control ...314

L.2.1 Initialization..315

L.2.2 Quantization Level Calculation for I-frame and first P-frame ...315

L.2.3 Update Rate-Distortion Model..317

L.2.4 Post-Frameskip Control..317

L.3 Macroblock Rate Control..319

L.3.1 Rate-Distortion Model ...319

L.3.2 Target Number of Bits for Each Macroblock ..319

L.3.3 Macroblock Rate Control..320

Annex M (informative) Binary shape coding ...322

M.1 Introduction ...322

M.2 Context-Based Arithmetic Shape Coding...322

M.2.1 Intra Mode ..322

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

ix

M.2.2 Inter Mode ..323

M.3 Texture Coding of Boundary Blocks...324

M.4 Encoder Architecture..324

M.5 Encoding Guidelines ..325

M.5.1 Lossy Shape Coding...325

M.5.2 Coding Mode Selection ..326

M.6 Conclusions...326

M.7 References...326

Annex N (normative) Visual profiles@levels ...328

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

x

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting.
Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 14496-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information
technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of audio-
visual objects :

— Part 1: Systems

— Part 2: Visual

— Part 3: Audio

— Part 4: Conformance testing

— Part 5: Reference testing

— Part 6: Delivery Multimedia Integration Framework (DMIF)

Annexes A to D, G, J, K and N form a normative part of this part of ISO/IEC 14496. Annexes E, F, H, I, L and M are
for information only.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

xi

Introduction

Purpose

This part of ISO/IEC 14496 was developed in response to the growing need for a coding method that can facilitate
access to visual objects in natural and synthetic moving pictures and associated natural or synthetic sound for
various applications such as digital storage media, internet, various forms of wired or wireless communication etc.
The use of ISO/IEC 14496 means that motion video can be manipulated as a form of computer data and can be
stored on various storage media, transmitted and received over existing and future networks and distributed on
existing and future broadcast channels.

Application

The applications of ISO/IEC 14496 cover, but are not limited to, such areas as listed below:

IMM Internet Multimedia

IVG Interactive Video Games

IPC Interpersonal Communications (videoconferencing, videophone, etc.)

ISM Interactive Storage Media (optical disks, etc.)

MMM Multimedia Mailing

NDB Networked Database Services (via ATM, etc.)

RES Remote Emergency Systems

RVS Remote Video Surveillance

WMM Wireless Multimedia

Profiles and levels

ISO/IEC 14496 is intended to be generic in the sense that it serves a wide range of applications, bitrates,
resolutions, qualities and services. Furthermore, it allows a number of modes of coding of both natural and synthetic
video in a manner facilitating access to individual objects in images or video, referred to as content based access.
Applications should cover, among other things, digital storage media, content based image and video databases,
internet video, interpersonal video communications, wireless video etc. In the course of creating ISO/IEC 14496,
various requirements from typical applications have been considered, necessary algorithmic elements have been
developed, and they have been integrated into a single syntax. Hence ISO/IEC 14496 will facilitate the bitstream
interchange among different applications.

This part of ISO/IEC 14496 includes one or more complete decoding algorithms as well as a set of decoding tools.
Moreover, the various tools of this part of ISO/IEC 14496 as well as that derived from ISO/IEC 13818-2 can be
combined to form other decoding algorithms. Considering the practicality of implementing the full syntax of ISO/IEC
14496-2, however, a limited number of subsets of the syntax are also stipulated by means of “profile” and “level”.

A “profile” is a defined subset of the entire bitstream syntax that is defined by this part of ISO/IEC 14496. Within the
bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the performance
of encoders and decoders depending upon the values taken by parameters in the bitstream.

In order to deal with this problem “levels” are defined within each profile. A level is a defined set of constraints
imposed on parameters in the bitstream. These constraints may be simple limits on numbers. Alternatively they
may take the form of constraints on arithmetic combinations of the parameters.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

xii

Object based coding syntax

Video object

A video object in a scene is an entity that a user is allowed to access (seek, browse) and manipulate (cut and
paste). The instances of video objects at a given time are called video object planes (VOPs). The encoding process
generates a coded representation of a VOP as well as composition information necessary for display. Further, at
the decoder, a user may interact with and modify the composition process as needed.

The full syntax allows coding of rectangular as well as arbitrarily shaped video objects in a scene. Furthermore, the
syntax supports both nonscalable coding and scalable coding. Thus it becomes possible to handle normal
scalabilities as well as object based scalabilities. The scalability syntax enables the reconstruction of useful video
from pieces of a total bitstream. This is achieved by structuring the total bitstream in two or more layers, starting
from a standalone base layer and adding a number of enhancement layers. The base layer can be coded using a
non-scalable syntax, or in the case of picture based coding, even using a syntax of a different video coding
standard.

To ensure the ability to access individual objects, it is necessary to achieve a coded representation of its shape. A
natural video object consists of a sequence of 2D representations (at different points in time) referred to here as
VOPs. For efficient coding of VOPs, both temporal redundancies as well as spatial redundancies are exploited. Thus
a coded representation of a VOP includes representation of its shape, its motion and its texture.

Face object

A 3D (or 2D) face object is a representation of the human face that is structured for portraying the visual
manifestations of speech and facial expressions adequate to achieve visual speech intelligibility and the recognition
of the mood of the speaker. A face object is animated by a stream of face animation parameters (FAP) encoded for
low-bandwidth transmission in broadcast (one-to-many) or dedicated interactive (point-to-point) communications.
The FAPs manipulate key feature control points in a mesh model of the face to produce animated visemes for the
mouth (lips, tongue, teeth), as well as animation of the head and facial features like the eyes. FAPs are quantized
with careful consideration for the limited movements of facial features, and then prediction errors are calculated and
coded arithmetically. The remote manipulation of a face model in a terminal with FAPs can accomplish lifelike
visual scenes of the speaker in real-time without sending pictorial or video details of face imagery every frame.

A simple streaming connection can be made to a decoding terminal that animates a default face model. A more
complex session can initialize a custom face in a more capable terminal by downloading face definition parameters
(FDP) from the encoder. Thus specific background images, facial textures, and head geometry can be portrayed.
The composition of specific backgrounds, face 2D/3D meshes, texture attribution of the mesh, etc. is described in
ISO/IEC 14496-1. The FAP stream for a given user can be generated at the user’s terminal from video/audio, or
from text-to-speech. FAPs can be encoded at bitrates up to 2-3kbit/s at necessary speech rates. Optional temporal
DCT coding provides further compression efficiency in exchange for delay. Using the facilities of ISO/IEC 14496-1,
a composition of the animated face model and synchronized, coded speech audio (low-bitrate speech coder or text-
to-speech) can provide an integrated low-bandwidth audio/visual speaker for broadcast applications or interactive
conversation.

Limited scalability is supported. Face animation achieves its efficiency by employing very concise motion animation
controls in the channel, while relying on a suitably equipped terminal for rendering of moving 2D/3D faces with non-
normative models held in local memory. Models stored and updated for rendering in the terminal can be simple or
complex. To support speech intelligibility, the normative specification of FAPs intends for their selective or complete
use as signaled by the encoder. A masking scheme provides for selective transmission of FAPs according to what
parts of the face are naturally active from moment to moment. A further control in the FAP stream allows face
animation to be suspended while leaving face features in the terminal in a defined quiescent state for higher overall
efficiency during multi-point connections.

The Face Animation specification is defined in ISO/IEC 14496-1 and this part of ISO/IEC 14496. This clause is
intended to facilitate finding various parts of specification. As a rule of thumb, FAP specification is found in the part
2, and FDP specification in the part 1. However, this is not a strict rule. For an overview of FAPs and their
interpretation, read subclauses “6.1.5.2 Facial animation parameter set”, “6.1.5.3 Facial animation parameter units”,
“6.1.5.4 Description of a neutral face” as well as the Table C-1. The viseme parameter is documented in subclause
“7.12.3 Decoding of the viseme parameter fap 1” and the Table C-5 in annex C. The expression parameter is

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

xiii

documented in subclause “7.12.4 Decoding of the expression parameter fap 2” and the Table C-3. FAP bitstream
syntax is found in subclauses “6.2.10 Face Object”, semantics in “6.3.10 Face Object”, and subclause “7.12 Face
object decoding” explains in more detail the FAP decoding process. FAP masking and interpolation is explained in
subclauses “6.3.11.1 Face Object Plane”, “7.12.1.1 Decoding of faps”, “7.12.5 Fap masking”. The FIT interpolation
scheme is documented in subclause “7.2.5.3.2.4 FIT” of ISO/IEC 14496-1. The FDPs and their interpretation are
documented in subclause “7.2.5.3.2.6 FDP” of ISO/IEC 14496-1. In particular, the FDP feature points are
documented in the Figure C-1.

Mesh object

A 2D mesh object is a representation of a 2D deformable geometric shape, with which synthetic video objects may
be created during a composition process at the decoder, by spatially piece-wise warping of existing video object
planes or still texture objects. The instances of mesh objects at a given time are called mesh object planes (mops).
The geometry of mesh object planes is coded losslessly. Temporally and spatially predictive techniques and variable
length coding are used to compress 2D mesh geometry. The coded representation of a 2D mesh object includes
representation of its geometry and motion.

Overview of the object based nonscalable syntax

The coded representation defined in the non-scalable syntax achieves a high compression ratio while preserving
good image quality. Further, when access to individual objects is desired, the shape of objects also needs to be
coded, and depending on the bandwidth available, the shape information can be coded lossy or losslessly.

The compression algorithm employed for texture data is not lossless as the exact sample values are not preserved
during coding. Obtaining good image quality at the bitrates of interest demands very high compression, which is not
achievable with intra coding alone. The need for random access, however, is best satisfied with pure intra coding.
The choice of the techniques is based on the need to balance a high image quality and compression ratio with the
requirement to make random access to the coded bitstream.

A number of techniques are used to achieve high compression. The algorithm first uses block-based motion
compensation to reduce the temporal redundancy. Motion compensation is used both for causal prediction of the
current VOP from a previous VOP, and for non-causal, interpolative prediction from past and future VOPs. Motion
vectors are defined for each 16-sample by 16-line region of a VOP or 8-sample by 8-line region of a VOP as
required. The prediction error, is further compressed using the discrete cosine transform (DCT) to remove spatial
correlation before it is quantised in an irreversible process that discards the less important information. Finally, the
shape information, motion vectors and the quantised DCT information, are encoded using variable length codes.

Temporal processing

Because of the conflicting requirements of random access to and highly efficient compression, three main VOP
types are defined. Intra coded VOPs (I-VOPs) are coded without reference to other pictures. They provide access
points to the coded sequence where decoding can begin, but are coded with only moderate compression. Predictive
coded VOPs (P-VOPs) are coded more efficiently using motion compensated prediction from a past intra or
predictive coded VOPs and are generally used as a reference for further prediction. Bidirectionally-predictive coded
VOPs (B-VOPs) provide the highest degree of compression but require both past and future reference VOPs for
motion compensation. Bidirectionally-predictive coded VOPs are never used as references for prediction (except in
the case that the resulting VOP is used as a reference for scalable enhancement layer). The organisation of the
three VOP types in a sequence is very flexible. The choice is left to the encoder and will depend on the
requirements of the application.

Coding of Shapes

In natural video scenes, VOPs are generated by segmentation of the scene according to some semantic meaning.
For such scenes, the shape information is thus binary (binary shape). Shape information is also referred to as alpha
plane. The binary alpha plane is coded on a macroblock basis by a coder which uses the context information,
motion compensation and arithmetic coding.

For coding of shape of a VOP, a bounding rectangle is first created and is extended to multiples of 16�16 blocks
with extended alpha samples set to zero. Shape coding is then initiated on a 16�16 block basis; these blocks are
also referred to as binary alpha blocks.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

xiv

Motion representation - macroblocks

The choice of 16�16 blocks (referred to as macroblocks) for the motion-compensation unit is a result of the trade-off
between the coding gain provided by using motion information and the overhead needed to represent it. Each
macroblock can further be subdivided to 8�8 blocks for motion estimation and compensation depending on the
overhead that can be afforded.

Depending on the type of the macroblock, motion vector information and other side information is encoded with the
compressed prediction error in each macroblock. The motion vectors are differenced with respect to a prediction
value and coded using variable length codes. The maximum length of the motion vectors allowed is decided at the
encoder. It is the responsibility of the encoder to calculate appropriate motion vectors. The specification does not
specify how this should be done.

Spatial redundancy reduction

Both source VOPs and prediction errors VOPs have significant spatial redundancy. This part of ISO/IEC 14496 uses
a block-based DCT method with optional visually weighted quantisation, and run-length coding. After motion
compensated prediction or interpolation, the resulting prediction error is split into 8�8 blocks. These are transformed
into the DCT domain where they can be weighted before being quantised. After quantisation many of the DCT
coefficients are zero in value and so two-dimensional run-length and variable length coding is used to encode the
remaining DCT coefficients efficiently.

Chrominance formats

This part of ISO/IEC 14496 currently supports the 4:2:0 chrominance format.

Pixel depth

This part of ISO/IEC 14496 supports pixel depths between 4 and 12 bits in luminance and chrominance planes.

Generalized scalability

The scalability tools in this part of ISO/IEC 14496 are designed to support applications beyond that supported by
single layer video. The major applications of scalability include internet video, wireless video, multi-quality video
services, video database browsing etc. In some of these applications, either normal scalabilities on picture basis
such as those in ISO/IEC 13818-2 may be employed or object based scalabilities may be necessary; both
categories of scalability are enabled by this part of ISO/IEC 14496.

Although a simple solution to scalable video is the simulcast technique that is based on transmission/storage of
multiple independently coded reproductions of video, a more efficient alternative is scalable video coding, in which
the bandwidth allocated to a given reproduction of video can be partially re-utilised in coding of the next reproduction
of video. In scalable video coding, it is assumed that given a coded bitstream, decoders of various complexities can
decode and display appropriate reproductions of coded video. A scalable video encoder is likely to have increased
complexity when compared to a single layer encoder. However, this part of ISO/IEC 14496 provides several
different forms of scalabilities that address non-overlapping applications with corresponding complexities.

The basic scalability tools offered are temporal scalability and spatial scalability. Moreover, combinations of these
basic scalability tools are also supported and are referred to as hybrid scalability. In the case of basic scalability, two
layers of video referred to as the lower layer and the enhancement layer are allowed, whereas in hybrid scalability
up to four layers are supported.

Object based Temporal scalability

Temporal scalability is a tool intended for use in a range of diverse video applications from video databases, internet
video, wireless video and multiview/stereoscopic coding of video. Furthermore, it may also provide a migration path
from current lower temporal resolution video systems to higher temporal resolution systems of the future.

Temporal scalability involves partitioning of VOPs into layers, where the lower layer is coded by itself to provide the
basic temporal rate and the enhancement layer is coded with temporal prediction with respect to the lower layer.
These layers when decoded and temporally multiplexed yield full temporal resolution. The lower temporal resolution
systems may only decode the lower layer to provide basic temporal resolution whereas enhanced systems of the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

xv

future may support both layers. Furthermore, temporal scalability has use in bandwidth constrained networked
applications where adaptation to frequent changes in allowed throughput are necessary. An additional advantage of
temporal scalability is its ability to provide resilience to transmission errors as the more important data of the lower
layer can be sent over a channel with better error performance, whereas the less critical enhancement layer can be
sent over a channel with poor error performance. Object based temporal scalability can also be employed to allow
graceful control of picture quality by controlling the temporal rate of each video object under the constraint of a given
bit-budget.

Spatial scalability

Spatial scalability is a tool intended for use in video applications involving multi quality video services, video
database browsing, internet video and wireless video, i.e., video systems with the primary common feature that a
minimum of two layers of spatial resolution are necessary. Spatial scalability involves generating two spatial
resolution video layers from a single video source such that the lower layer is coded by itself to provide the basic
spatial resolution and the enhancement layer employs the spatially interpolated lower layer and carries the full
spatial resolution of the input video source.

An additional advantage of spatial scalability is its ability to provide resilience to transmission errors as the more
important data of the lower layer can be sent over a channel with better error performance, whereas the less critical
enhancement layer data can be sent over a channel with poor error performance. Further, it can also allow
interoperability between various standards.

Hybrid scalability

There are a number of applications where neither the temporal scalability nor the spatial scalability may offer the
necessary flexibility and control. This may necessitate use of temporal and spatial scalability simultaneously and is
referred to as the hybrid scalability. Among the applications of hybrid scalability are wireless video, internet video,
multiviewpoint/stereoscopic coding etc.

Error Resilience

This part of ISO/IEC 14496 provides error robustness and resilience to allow accessing of image or video
information over a wide range of storage and transmission media. The error resilience tools developed for this part
of ISO/IEC 14496 can be divided into three major categories. These categories include synchronization, data
recovery, and error concealment. It should be noted that these categories are not unique to this part of ISO/IEC
14496, and have been used elsewhere in general research in this area. It is, however, the tools contained in these
categories that are of interest, and where this part of ISO/IEC 14496 makes its contribution to the problem of error
resilience.

Patents

The International Organization for Standarization (ISO) and International Electrotechnical Commission (IEC) draw
attention to the fact that it is claimed that compliance with this part of ISO/IEC 14496 may involve the use of patents
concerning the coded representation of picture information given in Annex H.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured ISO and IEC that they are willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the
statements of the holders of these patent rights are registered with ISO and IEC. Information may be obtained from
the patent offices of the organizations listed in Annex H.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 14496 may be the subject of
patent rights other than those identified above. ISO and IEC shall not be held responsible for identifying any or all
such patent rights.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

INTERNATIONAL STANDARD © ISO/IEC ISO/IEC 14496-2:1999 (E)

1

Information technology ���� Coding of audio-visual objects ����

Part 2: Visual

1 Scope

This part of ISO/IEC 14496 specifies the coded representation of picture information in the form of natural or
synthetic visual objects like video sequences of rectangular or arbitrarily shaped pictures, moving 2D meshes,
animated 3D face models and texture for synthetic objects. The coded representation allows for content based
access for digital storage media, digital video communication and other applications. ISO/IEC 14496 specifies also
the decoding process of the aforementioned coded representation. The representation supports constant bitrate
transmission, variable bitrate transmission, robust transmission, content based random access (including normal
random access), object based scalable decoding (including normal scalable decoding), object based bitstream
editing, as well as special functions such as fast forward playback, fast reverse playback, slow motion, pause and
still pictures. Synthetic objects and coding of special 2D/3D meshes, texture, and animation parameters are
provided for use with downloadable models to exploit mixed media and the bandwidth improvement associated with
remote manipulation of such models. ISO/IEC 14496 is intended to allow some level of interoperability with ISO/IEC
11172-2, ISO/IEC 13818-2 and ITU-T Recommendation H.263.

2 Normative references

The standards contain provisions which through reference in this text, constitute provisions of ISO/IEC 14496. At the
time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements
based on ISO/IEC 14496 are encouraged to investigate the possibility of applying the most recent editions of the
standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards

• ITU-T Recommendation T.81 (1992)|ISO/IEC 10918-1:1994, Information technology —Digital compression
and coding of continuous-tone still images: Requirements and guidelines.

• ISO/IEC 11172-1:1993, Information technology — Coding of moving pictures and associated audio for
digital storage media at up to about 1,5 Mbit/s — Part 1: Systems.

• ISO/IEC 11172-2:1993, Information technology — Coding of moving pictures and associated audio for
digital storage media at up to about 1,5 Mbit/s — Part 2: Video.

• ISO/IEC 11172-3:1993, Information technology — Coding of moving pictures and associated audio for
digital storage media at up to about 1,5 Mbit/s — Part 3: Audio.

• ITU-T Recommendation H.222.0(1995)|ISO/IEC 13818-1:1996, Information technology — Generic coding
of moving pictures and associated audio information: Systems.

• ITU-T Recommendation H.262(1995)|ISO/IEC 13818-2:1996, Information technology — Generic coding of
moving pictures and associated audio information: Video.

• ISO/IEC 13818-3:1998, Information technology — Generic coding of moving pictures and associated audio
information — Part 3: Audio.

• Recommendations and reports of the CCIR, 1990 XVIIth Plenary Assembly, Dusseldorf, 1990 Volume XI -
Part 1 Broadcasting Service (Television) Recommendation ITU-R BT.601-3, Encoding parameters of digital
television for studios.

• CCIR Volume X and XI Part 3 Recommendation ITU-R BR.648, Recording of audio signals.

• CCIR Volume X and XI Part 3 Report ITU-R 955-2, Satellite sound broadcasting to vehicular, portable and
fixed receivers in the range 500 - 3000Mhz.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

2

• IEEE Standard Specifications for the Implementations of 8 by 8 Inverse Discrete Cosine Transform, IEEE
Std 1180-1990, December 6, 1990.

• IEC Publication 908:1987, CD Digital Audio System.

• IEC Publication 461:1986, Time and control code for video tape recorder.

• ITU-T Recommendation H.261 (Formerly CCITT Recommendation H.261), Codec for audiovisual services
at px64 kbit/s.

• ITU-T Recommendation H.263, Video Coding for Low Bitrate Communication.

3 Definitions

3.1 AC coefficient: Any DCT coefficient for which the frequency in one or both dimensions is non-zero.

3.2 B-VOP; bidirectionally predictive-coded video object plane (VOP): A VOP that is coded using
motion compensated prediction from past and/or future reference VOPs.

3.3 backward compatibility: A newer coding standard is backward compatible with an older coding
standard if decoders designed to operate with the older coding standard are able to continue to operate
by decoding all or part of a bitstream produced according to the newer coding standard.

3.4 backward motion vector: A motion vector that is used for motion compensation from a reference VOP
at a later time in display order.

3.5 backward prediction: Prediction from the future reference VOP.

3.6 base layer: An independently decodable layer of a scalable hierarchy.

3.7 binary alpha block: A block of size 16x16 pels, colocated with macroblock, representing shape
information of the binary alpha map; it is also referred to as a bab.

3.8 binary alpha map: A 2D binary mask used to represent the shape of a video object such that the
pixels that are opaque are considered as part of the object where as pixels that are transparent are not
considered to be part of the object.

3.9 bitstream; stream: An ordered series of bits that forms the coded representation of the data.

3.10 bitrate: The rate at which the coded bitstream is delivered from the storage medium or network to the
input of a decoder.

3.11 block: An 8-row by 8-column matrix of samples, or 64 DCT coefficients (source, quantised or
dequantised).

3.12 byte aligned: A bit in a coded bitstream is byte-aligned if its position is a multiple of 8-bits from the first
bit in the stream.

3.13 byte: Sequence of 8-bits.

3.14 context based arithmetic encoding: The method used for coding of binary shape; it is also referred
to as cae.

3.15 channel: A digital medium or a network that stores or transports a bitstream constructed according to
ISO/IEC 14496.

3.16 chrominance format: Defines the number of chrominance blocks in a macroblock.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

3

3.17 chrominance component: A matrix, block or single sample representing one of the two colour
difference signals related to the primary colours in the manner defined in the bitstream. The symbols
used for the chrominance signals are Cr and Cb.

3.18 coded B-VOP: A B-VOP that is coded.

3.19 coded VOP: A coded VOP is a coded I-VOP, a coded P-VOP or a coded B-VOP.

3.20 coded I-VOP: An I-VOP that is coded.

3.21 coded P-VOP: A P-VOP that is coded.

3.22 coded video bitstream: A coded representation of a series of one or more VOPs as defined in this
part of ISO/IEC 14496.

3.23 coded representation: A data element as represented in its encoded form.

3.24 coding parameters: The set of user-definable parameters that characterise a coded video bitstream.
Bitstreams are characterised by coding parameters. Decoders are characterised by the bitstreams that
they are capable of decoding.

3.25 component: A matrix, block or single sample from one of the three matrices (luminance and two
chrominance) that make up a picture.

3.26 composition process: The (non-normative) process by which reconstructed VOPs are composed into
a scene and displayed.

3.27 compression: Reduction in the number of bits used to represent an item of data.

3.28 constant bitrate coded video: A coded video bitstream with a constant bitrate.

3.29 constant bitrate: Operation where the bitrate is constant from start to finish of the coded bitstream.

3.30 conversion ratio: The size conversion ratio for the purpose of rate control of shape.

3.31 data element: An item of data as represented before encoding and after decoding.

3.32 DC coefficient: The DCT coefficient for which the frequency is zero in both dimensions.

3.33 DCT coefficient: The amplitude of a specific cosine basis function.

3.34 decoder input buffer: The first-in first-out (FIFO) buffer specified in the video buffering verifier.

3.35 decoder: An embodiment of a decoding process.

3.36 decoding order: The order in which the VOPs are transmitted and decoded. This order is not
necessarily the same as the display order.

3.37 decoding (process): The process defined in this part of ISO/IEC 14496 that reads an input coded
bitstream and produces decoded VOPs or audio samples.

3.38 dequantisation: The process of rescaling the quantised DCT coefficients after their representation in
the bitstream has been decoded and before they are presented to the inverse DCT.

3.39 digital storage media; DSM: A digital storage or transmission device or system.

3.40 discrete cosine transform; DCT: Either the forward discrete cosine transform or the inverse discrete
cosine transform. The DCT is an invertible, discrete orthogonal transformation. The inverse DCT is
defined in annex A.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

4

3.41 display order: The order in which the decoded pictures are displayed. Normally this is the same order
in which they were presented at the input of the encoder.

3.42 editing: The process by which one or more coded bitstreams are manipulated to produce a new coded
bitstream. Conforming edited bitstreams must meet the requirements defined in this part of ISO/IEC
14496.

3.43 encoder: An embodiment of an encoding process.

3.44 encoding (process): A process, not specified in this part of ISO/IEC 14496, that reads a stream of
input pictures or audio samples and produces a valid coded bitstream as defined in this part of ISO/IEC
14496.

3.45 enhancement layer: A relative reference to a layer (above the base layer) in a scalable hierarchy. For
all forms of scalability, its decoding process can be described by reference to the lower layer decoding
process and the appropriate additional decoding process for the enhancement layer itself.

3.46 face animation parameter units, FAPU: Special normalized units (e.g. translational, angular, logical)
defined to allow interpretation of FAPs with any facial model in a consistent way to produce reasonable
results in expressions and speech pronunciation.

3.47 face animation parameters, FAP: Coded streaming animation parameters that manipulate the
displacements and angles of face features, and that govern the blending of visemes and face
expressions during speech.

3.48 face animation table, FAT: A downloadable function mapping from incoming FAPs to feature control
points in the face mesh that provides piecewise linear weightings of the FAPs for controlling face
movements.

3.49 face calibration mesh: Definition of a 3D mesh for calibration of the shape and structure of a baseline
face model.

3.50 face definition parameters, FDP: Downloadable data to customize a baseline face model in the
decoder to a particular face, or to download a face model along with the information about how to
animate it. The FDPs are normally transmitted once per session, followed by a stream of compressed
FAPs. FDPs may include feature points for calibrating a baseline face, face texture and coordinates to
map it onto the face, animation tables, etc.

3.51 face feature control point: A normative vertex point in a set of such points that define the critical
locations within face features for control by FAPs and that allow for calibration of the shape of the
baseline face.

3.52 face interpolation transform, FIT: A downloadable node type defined in ISO/IEC 14496-1 for optional
mapping of incoming FAPs to FAPs before their application to feature points, through weighted rational
polynomial functions, for complex cross-coupling of standard FAPs to link their effects into custom or
proprietary face models.

3.53 face model mesh: A 2D or 3D contiguous geometric mesh defined by vertices and planar polygons
utilizing the vertex coordinates, suitable for rendering with photometric attributes (e.g. texture, color,
normals).

3.54 feathering: A tool that tapers the values around edges of binary alpha mask for composition with the
background.

3.55 flag: A one bit integer variable which may take one of only two values (zero and one).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

5

3.56 forbidden: The term “forbidden” when used in the clauses defining the coded bitstream indicates that
the value shall never be used. This is usually to avoid emulation of start codes.

3.57 forced updating: The process by which macroblocks are intra-coded from time-to-time to ensure that
mismatch errors between the inverse DCT processes in encoders and decoders cannot build up
excessively.

3.58 forward compatibility: A newer coding standard is forward compatible with an older coding standard if
decoders designed to operate with the newer coding standard are able to decode bitstreams of the
older coding standard.

3.59 forward motion vector: A motion vector that is used for motion compensation from a reference frame
VOP at an earlier time in display order.

3.60 forward prediction: Prediction from the past reference VOP.

3.61 frame: A frame contains lines of spatial information of a video signal. For progressive video, these lines
contain samples starting from one time instant and continuing through successive lines to the bottom of
the frame.

3.62 frame period: The reciprocal of the frame rate.

3.63 frame rate: The rate at which frames are be output from the composition process.

3.64 future reference VOP: A future reference VOP is a reference VOP that occurs at a later time than the
current VOP in display order.

3.65 VOP reordering: The process of reordering the reconstructed VOPs when the decoding order is
different from the composition order for display. VOP reordering occurs when B-VOPs are present in a
bitstream. There is no VOP reordering when decoding low delay bitstreams.

3.66 hybrid scalability: Hybrid scalability is the combination of two (or more) types of scalability.

3.67 interlace: The property of conventional television frames where alternating lines of the frame represent
different instances in time. In an interlaced frame, one of the field is meant to be displayed first. This
field is called the first field. The first field can be the top field or the bottom field of the frame.

3.68 I-VOP; intra-coded VOP: A VOP coded using information only from itself.

3.69 intra coding: Coding of a macroblock or VOP that uses information only from that macroblock or VOP.

3.70 intra shape coding: Shape coding that does not use any temporal prediction.

3.71 inter shape coding: Shape coding that uses temporal prediction.

3.72 level: A defined set of constraints on the values which may be taken by the parameters of this part of
ISO/IEC 14496 within a particular profile. A profile may contain one or more levels. In a different
context, level is the absolute value of a non-zero coefficient (see “run”).

3.73 layer: In a scalable hierarchy denotes one out of the ordered set of bitstreams and (the result of) its
associated decoding process.

3.74 layered bitstream: A single bitstream associated to a specific layer (always used in conjunction with
layer qualifiers, e. g. “enhancement layer bitstream”).

3.75 lower layer: A relative reference to the layer immediately below a given enhancement layer (implicitly
including decoding of all layers below this enhancement layer).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

6

3.76 luminance component: A matrix, block or single sample representing a monochrome representation
of the signal and related to the primary colours in the manner defined in the bitstream. The symbol
used for luminance is Y.

3.77 Mbit: 1 000 000 bits.

3.78 macroblock: The four 8�8 blocks of luminance data and the two (for 4:2:0 chrominance format)
corresponding 8�8 blocks of chrominance data coming from a 16�16 section of the luminance
component of the picture. Macroblock is sometimes used to refer to the sample data and sometimes to
the coded representation of the sample values and other data elements defined in the macroblock
header of the syntax defined in this part of ISO/IEC 14496. The usage is clear from the context.

3.79 mesh: A 2D triangular mesh refers to a planar graph which tessellates a video object plane into
triangular patches. The vertices of the triangular mesh elements are referred to as node points. The
straight-line segments between node points are referred to as edges. Two triangles are adjacent if they
share a common edge.

3.80 mesh geometry: The spatial locations of the node points and the triangular structure of a mesh.

3.81 mesh motion: The temporal displacements of the node points of a mesh from one time instance to the
next.

3.82 motion compensation: The use of motion vectors to improve the efficiency of the prediction of sample
values. The prediction uses motion vectors to provide offsets into the past and/or future reference
VOPs containing previously decoded sample values that are used to form the prediction error.

3.83 motion estimation: The process of estimating motion vectors during the encoding process.

3.84 motion vector: A two-dimensional vector used for motion compensation that provides an offset from
the coordinate position in the current picture or field to the coordinates in a reference VOP.

3.85 motion vector for shape: A motion vector used for motion compensation of shape.

3.86 non-intra coding: Coding of a macroblock or a VOP that uses information both from itself and from
macroblocks and VOPs occurring at other times.

3.87 opaque macroblock: A macroblock with shape mask of all 255’s.

3.88 P-VOP; predictive-coded VOP: A picture that is coded using motion compensated prediction from the
past VOP.

3.89 parameter: A variable within the syntax of this part of ISO/IEC 14496 which may take one of a range of
values. A variable which can take one of only two values is called a flag.

3.90 past reference picture: A past reference VOP is a reference VOP that occurs at an earlier time than
the current VOP in composition order.

3.91 picture: Source, coded or reconstructed image data. A source or reconstructed picture consists of
three rectangular matrices of 8-bit numbers representing the luminance and two chrominance signals. A
“coded VOP” was defined earlier. For progressive video, a picture is identical to a frame.

3.92 prediction: The use of a predictor to provide an estimate of the sample value or data element currently
being decoded.

3.93 prediction error: The difference between the actual value of a sample or data element and its
predictor.

3.94 predictor: A linear combination of previously decoded sample values or data elements.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

7

3.95 profile: A subset of the syntax of this part of ISO/IEC 14496, defined in terms of Visual Object Types.

3.96 progressive: The property of film frames where all the samples of the frame represent the same
instances in time.

3.97 quantisation matrix: A set of sixty-four 8-bit values used by the dequantiser.

3.98 quantised DCT coefficients: DCT coefficients before dequantisation. A variable length coded
representation of quantised DCT coefficients is transmitted as part of the coded video bitstream.

3.99 quantiser scale: A scale factor coded in the bitstream and used by the decoding process to scale the
dequantisation.

3.100 random access: The process of beginning to read and decode the coded bitstream at an arbitrary
point.

3.101 reconstructed VOP: A reconstructed VOP consists of three matrices of 8-bit numbers representing the
luminance and two chrominance signals. It is obtained by decoding a coded VOP.

3.102 reference VOP: A reference VOP is a reconstructed VOP that was coded in the form of a coded I-
VOP or a coded P-VOP. Reference VOPs are used for forward and backward prediction when P-VOPs
and B-VOPs are decoded.

3.103 reordering delay: A delay in the decoding process that is caused by VOP reordering.

3.104 reserved: The term “reserved” when used in the clauses defining the coded bitstream indicates that
the value may be used in the future for ISO/IEC defined extensions.

3.105 scalable hierarchy: coded video data consisting of an ordered set of more than one video bitstream.

3.106 scalability: Scalability is the ability of a decoder to decode an ordered set of bitstreams to produce a
reconstructed sequence. Moreover, useful video is output when subsets are decoded. The minimum
subset that can thus be decoded is the first bitstream in the set which is called the base layer. Each of
the other bitstreams in the set is called an enhancement layer. When addressing a specific
enhancement layer, “lower layer” refers to the bitstream that precedes the enhancement layer.

3.107 side information: Information in the bitstream necessary for controlling the decoder.

3.108 run: The number of zero coefficients preceding a non-zero coefficient, in the scan order. The absolute
value of the non-zero coefficient is called “level”.

3.109 S-VOP: A picture that is coded using information obtained by warping whole or part of a static sprite.

3.110 saturation: Limiting a value that exceeds a defined range by setting its value to the maximum or
minimum of the range as appropriate.

3.111 source; input: Term used to describe the video material or some of its attributes before encoding.

3.112 spatial prediction: prediction derived from a decoded frame of the reference layer decoder used in
spatial scalability.

3.113 spatial scalability: A type of scalability where an enhancement layer also uses predictions from
sample data derived from a lower layer without using motion vectors. The layers can have different
VOP sizes or VOP rates.

3.114 static sprite: The luminance, chrominance and binary alpha plane for an object which does not vary in
time.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

8

3.115 start codes: 32-bit codes embedded in that coded bitstream that are unique. They are used for
several purposes including identifying some of the structures in the coding syntax.

3.116 stuffing (bits); stuffing (bytes): Code-words that may be inserted into the coded bitstream that are
discarded in the decoding process. Their purpose is to increase the bitrate of the stream which would
otherwise be lower than the desired bitrate.

3.117 temporal prediction: prediction derived from reference VOPs other than those defined as spatial
prediction.

3.118 temporal scalability: A type of scalability where an enhancement layer also uses predictions from
sample data derived from a lower layer using motion vectors. The layers have identical frame size,
and but can have different VOP rates.

3.119 top layer: the topmost layer (with the highest layer_id) of a scalable hierarchy.

3.120 transparent macroblock: A macroblock with shape mask of all zeros.

3.121 variable bitrate: Operation where the bitrate varies with time during the decoding of a coded bitstream.

3.122 variable length coding; VLC: A reversible procedure for coding that assigns shorter code-words to
frequent events and longer code-words to less frequent events.

3.123 video buffering verifier; VBV: Part of a hypothetical decoder that is conceptually connected to the
output of the encoder. Its purpose is to provide a constraint on the variability of the data rate that an
encoder or editing process may produce.

3.124 video complexity verifier; VCV: Part of a hypothetical decoder that is conceptually connected to the
output of the encoder. Its purpose is to provide a constraint on the maximum processing requirements
of the bitstream that an encoder or editing process may produce.

3.125 video memory verifier; VMV: Part of a hypothetical decoder that is conceptually connected to the
output of the encoder. Its purpose is to provide a constraint on the maximum reference memory
requirements of the bitstream that an encoder or editing process may produce.

3.126 video presentation verifier; VPV: Part of a hypothetical decoder that is conceptually connected to the
output of the encoder. Its purpose is to provide a constraint on the maximum presentation memory
requirements of the bitstream that an encoder or editing process may produce.

3.127 video session: The highest syntactic structure of coded video bitstreams. It contains a series of one or
more coded video objects.

3.128 viseme: the physical (visual) configuration of the mouth, tongue and jaw that is visually correlated with
the speech sound corresponding to a phoneme.

3.129 warping: Processing applied to extract a sprite VOP from a static sprite. It consists of a global spatial
transformation driven by a few motion parameters (0,2,4,6,8), to recover luminance, chrominance and
shape information.

3.130 zigzag scanning order: A specific sequential ordering of the DCT coefficients from (approximately) the
lowest spatial frequency to the highest.

4 Abbreviations and symbols

The mathematical operators used to describe this part of ISO/IEC 14496 are similar to those used in the C
programming language. However, integer divisions with truncation and rounding are specifically defined. Numbering
and counting loops generally begin from zero.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

9

4.1 Arithmetic operators

+ Addition.

- Subtraction (as a binary operator) or negation (as a unary operator).

++ Increment. i.e. x++ is equivalent to x = x + 1

- - Decrement. i.e. x-- is equivalent to x = x - 1

�

�

��
��
��

Multiplication.

^ Power.

/ Integer division with truncation of the result toward zero. For example, 7/4 and -7/-4 are truncated to 1
and -7/4 and 7/-4 are truncated to -1.

// Integer division with rounding to the nearest integer. Half-integer values are rounded away from zero
unless otherwise specified. For example 3//2 is rounded to 2, and -3//2 is rounded to -2.

/// Integer division with sign dependent rounding to the nearest integer. Half-integer values when positive
are rounded away from zero, and when negative are rounded towards zero. For example 3///2 is
rounded to 2, and -3///2 is rounded to -1.

//// Integer division with truncation towards the negative infinity.

÷ Used to denote division in mathematical equations where no truncation or rounding is intended.

% Modulus operator. Defined only for positive numbers.

Sign() Sign(x) �
1 x �� 0

� 1 x � 0
�
�
�

Abs() Abs(x) �
x x �� 0

� x x � 0

��
��
��

f (i)
i�a

i�b

� The summation of the f(i) with i taking integral values from a up to, but not including b.

4.2 Logical operators

|| Logical OR.

&& Logical AND.

! Logical NOT.

4.3 Relational operators

> Greater than.

>= Greater than or equal to.

� Greater than or equal to.

< Less than.

<= Less than or equal to.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

10

� Less than or equal to.

== Equal to.

!= Not equal to.

max [, � ,] the maximum value in the argument list.

min [, � ,] the minimum value in the argument list.

4.4 Bitwise operators

& AND

| OR

>> Shift right with sign extension.

<< Shift left with zero fill.

4.5 Conditional operators

?: (? :
if is true,

otherwise.
condition a b

a condition

b
) �

�
�
�

4.6 Assignment

= Assignment operator.

4.7 Mnemonics

The following mnemonics are defined to describe the different data types used in the coded bitstream.

bslbf Bit string, left bit first, where “left” is the order in which bit strings are written in this part of ISO/IEC
14496. Bit strings are generally written as a string of 1s and 0s within single quote marks, e.g. ‘1000
0001’. Blanks within a bit string are for ease of reading and have no significance. For convenience large
strings are occasionally written in hexadecimal, in this case conversion to a binary in the conventional
manner will yield the value of the bit string. Thus the left most hexadecimal digit is first and in each
hexadecimal digit the most significant of the four bits is first.

uimsbf Unsigned integer, most significant bit first.

simsbf Signed integer, in twos complement format, most significant (sign) bit first.

vlclbf Variable length code, left bit first, where “left” refers to the order in which the VLC codes are written. The
byte order of multibyte words is most significant byte first.

4.8 Constants

� 3,141 592 653 58�

e 2,718 281 828 45�

5 Conventions

5.1 Method of describing bitstream syntax

The bitstream retrieved by the decoder is described in subclause 6.2. Each data item in the bitstream is in bold type.
It is described by its name, its length in bits, and a mnemonic for its type and order of transmission.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

11

The action caused by a decoded data element in a bitstream depends on the value of that data element and on data
elements previously decoded. The decoding of the data elements and definition of the state variables used in their
decoding are described in subclause 6.3. The following constructs are used to express the conditions when data
elements are present, and are in normal type:

while (condition) { If the condition is true, then the group of data elements

data_element occurs next in the data stream. This repeats until the

. . . condition is not true.

}

do {

data_element The data element always occurs at least once.

. . .

} while (condition) The data element is repeated until the condition is not true.

if (condition) { If the condition is true, then the first group of data

data_element elements occurs next in the data stream.

. . .

} else { If the condition is not true, then the second group of data

data_element elements occurs next in the data stream.

. . .

}

for (i = m; i < n; i++) { The group of data elements occurs (n-m) times. Conditional

data_element constructs within the group of data elements may depend

. . . on the value of the loop control variable i, which is set to

} m for the first occurrence, incremented by one for

the second occurrence, and so forth.

/* comment � */ Explanatory comment that may be deleted entirely without

in any way altering the syntax.

This syntax uses the ‘C-code’ convention that a variable or expression evaluating to a non-zero value is equivalent
to a condition that is true and a variable or expression evaluating to a zero value is equivalent to a condition that is
false. In many cases a literal string is used in a condition. For example;

if (video_object_layer_shape == “rectangular”) �

In such cases the literal string is that used to describe the value of the bitstream element in subclause 6.3. In this
example, we see that “rectangular” is defined in a Table 6-14 to be represented by the two bit binary number ‘00’.

As noted, the group of data elements may contain nested conditional constructs. For compactness, the brackets { }
are omitted when only one data element follows.

data_element [n] data_element [n] is the n+1th element of an array of data.

data_element [m][n] data_element [m][n] is the m+1, n+1th element of a two-dimensional array of data.

data_element [l][m][n] data_element [l][m][n] is the l+1, m+1, n+1th element of a three-dimensional array of data.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

12

While the syntax is expressed in procedural terms, it should not be assumed that subclause 6.2 implements a
satisfactory decoding procedure. In particular, it defines a correct and error-free input bitstream. Actual decoders
must include means to look for start codes in order to begin decoding correctly, and to identify errors, erasures or
insertions while decoding. The methods to identify these situations, and the actions to be taken, are not
standardised.

5.2 Definition of functions

Several utility functions for picture coding algorithm are defined as follows:

5.2.1 Definition of next_bits() function

The function next_bits() permits comparison of a bit string with the next bits to be decoded in the bitstream.

5.2.2 Definition of bytealigned() function

The function bytealigned () returns 1 if the current position is on a byte boundary, that is the next bit in the bitstream
is the first bit in a byte. Otherwise it returns 0.

5.2.3 Definition of nextbits_bytealigned() function

The function nextbits_bytealigned() returns a bit string starting from the next byte aligned position. This permits
comparison of a bit string with the next byte aligned bits to be decoded in the bitstream. If the current location in the
bitstream is already byte aligned and the 8 bits following the current location are ‘01111111’, the bits subsequent to
these 8 bits are returned. The current location in the bitstream is not changed by this function.

5.2.4 Definition of next_start_code() function

The next_start_code() function removes any zero bit and a string of 0 to 7 ‘1’ bits used for stuffing and locates the
next start code.

next_start_code() { No. of bits Mnemonic

zero_bit 1 ‘0’

while (!bytealigned())

one_bit 1 ‘1’

}

This function checks whether the current position is byte aligned. If it is not, a zero stuffing bit followed by a number
of one stuffing bits may be present before the start code.

5.2.5 Definition of next_resync_marker() function

The next_resync_marker() function removes any zero bit and a string of 0 to 7 ‘1’ bits used for stuffing and locates
the next resync marker; it thus performs similar operation as next_start_code() but for resync_marker.

next_resync_marker() { No. of bits Mnemonic

zero_bit 1 ‘0’

while (!bytealigned())

one_bit 1 ‘1’

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

13

5.2.6 Definition of transparent_mb() function

The function transparent_mb() returns 1 if the current macroblock consists only of transparent pixels. Otherwise it
returns 0.

5.2.7 Definition of transparent_block() function

The function transparent_block(j) returns 1 if the 8x8 with index j consists only of transparent pixels. Otherwise it
returns 0. The index value for each block is defined in Figure 6-5.

5.3 Reserved, forbidden and marker_bit

The terms “reserved” and “forbidden” are used in the description of some values of several fields in the coded
bitstream.

The term “reserved” indicates that the value may be used in the future for ISO/IEC defined extensions.

The term “forbidden” indicates a value that shall never be used (usually in order to avoid emulation of start codes).

The term “marker_bit” indicates a one bit integer in which the value zero is forbidden (and it therefore shall have the
value ‘1’). These marker bits are introduced at several points in the syntax to avoid start code emulation.

The term “zero_bit” indicates a one bit integer with the value zero.

5.4 Arithmetic precision

In order to reduce discrepancies between implementations of this part of ISO/IEC 14496, the following rules for
arithmetic operations are specified.

(a) Where arithmetic precision is not specified, such as in the calculation of the IDCT, the precision shall be
sufficient so that significant errors do not occur in the final integer values.

(b) Where ranges of values are given, the end points are included if a square bracket is present, and excluded
if a round bracket is used. For example, [a , b) means from a to b, including a but excluding b.

6 Visual bitstream syntax and semantics

6.1 Structure of coded visual data

Coded visual data can be of several different types, such as video data, still texture data, 2D mesh data or facial
animation parameter data.

Synthetic objects and their attribution are structured in a hierarchical manner to support both bitstream scalability
and object scalability. ISO/IEC 14496-1 of the specification provides the approach to spatial-temporal scene
composition including normative 2D/3D scene graph nodes and their composition supported by Binary Interchange
Format Specification. At this level, synthetic and natural object composition relies on ISO/IEC 14496-1 with
subsequent (non-normative) rendering performed by the application to generate specific pixel-oriented views of the
models.

Coded video data consists of an ordered set of video bitstreams, called layers. If there is only one layer, the coded
video data is called non-scalable video bitstream. If there are two layers or more, the coded video data is called a
scalable hierarchy.

One of the layers is called base layer, and it can always be decoded independently. Other layers are called
enhancement layers, and can only be decoded together with the lower layers (previous layers in the ordered set),
starting with the base layer. The multiplexing of these layers is discussed in ISO/IEC 14496-1. The base layer of a
scalable set of streams can be coded by other standards. The Enhancement layers shall conform to this part of
ISO/IEC 14496. In general the visual bitstream can be thought of as a syntactic hierarchy in which syntactic
structures contain one or more subordinate structures.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

14

Visual texture, referred to herein as still texture coding, is designed for maintaining high visual quality in the
transmission and rendering of texture under widely varied viewing conditions typical of interaction with 2D/3D
synthetic scenes. Still texture coding provides for a multi-layer representation of luminance, color and shape. This
supports progressive transmission of the texture for image build-up as it is received by a terminal. Also supported is
the downloading of the texture resolution hierarchy for construction of image pyramids used by 3D graphics APIs.
Quality and SNR scalability are supported by the structure of still texture coding.

Coded mesh data consists of a single non-scalable bitstream. This bitstream defines the structure and motion of a
2D mesh object. Texture that is to be mapped onto the mesh geometry is coded separately.

Coded face animation parameter data consists of one non-scaleable bitstream. It defines the animation of the
facemodel of the decoder. Face animation data is structured as standard formats for downloadable models and their
animation controls, and a single layer of compressed face animation parameters used for remote manipulation of
the face model. The face is a node in a scene graph that includes face geometry ready for rendering. The shape,
texture and expressions of the face are generally controlled by the bitstream containing instances of Facial Definition
Parameter (FDP) sets and/or Facial Animation Parameter (FAP) sets. Upon initial or baseline construction, the face
object contains a generic face with a neutral expression. This face can receive FAPs from the bitstream and be
subsequently rendered to produce animation of the face. If FDPs are transmitted, the generic face is transformed
into a particular face of specific shape and appearance. A downloaded face model via FDPs is a scene graph for
insertion in the face node.

6.1.1 Visual object sequence

Visual object sequence is the highest syntactic structure of the coded visual bitstream.

A visual object sequence commences with a visual_object_sequence_start_code which is followed by one or more
visual objects coded concurrently. The visual object sequence is terminated by a
visual_object_sequence_end_code.

6.1.2 Visual object

A visual object commences with a visual_object_start_code, is followed by profile and level identification, and a
visual object id, and is followed by a video object, a still texture object, a mesh object, or a face object.

6.1.3 Video object

A video object commences with a video_object_start_code, and is followed by one or more video object layers.

6.1.3.1 Progressive and interlaced sequences

This part of ISO/IEC 14496 deals with coding of both progressive and interlaced sequences.

The sequence, at the output of the decoding process, consists of a series of reconstructed VOPs separated in time
and are readied for display via the compositor.

6.1.3.2 Frame

A frame consists of three rectangular matrices of integers; a luminance matrix (Y), and two chrominance matrices
(Cb and Cr).

6.1.3.3 VOP

A reconstructed VOP is obtained by decoding a coded VOP. A coded VOP may have been derived from either a
progressive or interlaced frame.

6.1.3.4 VOP types

There are four types of VOPs that use different coding methods:

1. An Intra-coded (I) VOP is coded using information only from itself.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

15

2. A Predictive-coded (P) VOP is a VOP which is coded using motion compensated prediction from a past
reference VOP.

3. A Bidirectionally predictive-coded (B) VOP is a VOP which is coded using motion compensated prediction from
a past and/or future reference VOP(s).

4. A sprite (S) VOP is a VOP for a sprite object.

6.1.3.5 I-VOPs and group of VOPs

I-VOPs are intended to assist random access into the sequence. Applications requiring random access, fast-forward
playback, or fast reverse playback may use I-VOPs relatively frequently.

I-VOPs may also be used at scene cuts or other cases where motion compensation is ineffective.

Group of VOP (GOV) header is an optional header that can be used immediately before a coded I-VOP to indicate
to the decoder:

1) the modulo part (i.e. the full second units) of the time base for the next VOP after the GOV header in
display order

2) if the first consecutive B-VOPs immediately following the coded I-VOP can be reconstructed properly in the
case of a random access.

In a non scalable bitstream or the base layer of a scalable bitstream, the first coded VOP following a GOV header
shall be a coded I-VOP.

6.1.3.6 Format

In this format the Cb and Cr matrices shall be one half the size of the Y-matrix in both horizontal and vertical
dimensions. The Y-matrix shall have an even number of lines and samples.

The luminance and chrominance samples are positioned as shown in Figure 6-1.The two variations in the vertical
and temporal positioning of the samples for interlaced VOPs are shown in Figure 6-2 and Figure 6-3.

Figure 6-4 shows the vertical and temporal positioning of the samples in a progressive frame.

Represent luminance samples

Represent chrominance samples

Figure 6-1 -- The position of luminance and chrominance samples in 4:2:0 data

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

16

Top
Field

Bottom
Field

time

Figure 6-2 -- Vertical and temporal positions of samples in an interlaced frame with top_field_first=1

time

Top
Field

Bottom
Field

Figure 6-3 -- Vertical and temporal position of samples in an interlaced frame with top_field_first=0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

17

time

Frame

Figure 6-4 -- Vertical and temporal positions of samples in a progressive frame

The binary alpha plane for each VOP is represented by means of a bounding rectangle as described in clause F.2,
and it has always the same number of lines and pixels per line as the luminance plane of the VOP bounding
rectangle. The positions between the luminance and chrominance pixels of the bounding rectangle are defined in
this clause according to the 4:2:0 format. For the progressive case, each 2x2 block of luminance pixels in the
bounding rectangle associates to one chrominance pixel. For the interlaced case, each 2x2 block of luminance
pixels of the same field in the bounding rectangle associates to one chrominance pixel of that field.

In order to perform the padding process on the two chrominance planes, it is necessary to generate a binary alpha
plane which has the same number of lines and pixels per line as the chrominance planes. Therefore, when non-
scalable shape coding is used, this binary alpha plane associated with the chrominance planes is created from the
binary alpha plane associated with the luminance plane by the subsampling process defined below:

For each 2x2 block of the binary alpha plane associated with the luminance plane of the bounding rectangle (of the
same frame for the progressive and of the same field for the interlaced case), the associated pixel value of the
binary alpha plane associated with the chrominance planes is set to 255 if any pixel of said 2x2 block of the binary
alpha plane associated with the luminance plane equals 255.

6.1.3.7 VOP reordering

When a video object layer contains coded B-VOPs, the number of consecutive coded B-VOPs is variable and
unbounded. The first coded VOP shall not be a B-VOP.

A video object layer may contain no coded P-VOPs. A video object layer may also contain no coded I-VOPs in
which case some care is required at the start of the video object layer and within the video object layer to effect both
random access and error recovery.

The order of the coded VOPs in the bitstream, also called decoding order, is the order in which a decoder
reconstructs them. The order of the reconstructed VOPs at the output of the decoding process, also called the
display order, is not always the same as the decoding order and this subclause defines the rules of VOP reordering
that shall happen within the decoding process.

When the video object layer contains no coded B-VOPs, the decoding order is the same as the display order.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

18

When B-VOPs are present in the video object layer re-ordering is performed according to the following rules:

If the current VOP in decoding order is a B-VOP the output VOP is the VOP reconstructed from that B-VOP.

If the current VOP in decoding order is a I-VOP or P-VOP the output VOP is the VOP reconstructed from the
previous I-VOP or P-VOP if one exists. If none exists, at the start of the video object layer, no VOP is output.

The following is an example of VOPs taken from the beginning of a video object layer. In this example there are two
coded B-VOPs between successive coded P-VOPs and also two coded B-VOPs between successive coded I- and
P-VOPs. VOP ‘1I’ is used to form a prediction for VOP ‘4P’. VOPs ‘4P’ and ‘1I’ are both used to form predictions for
VOPs ‘2B’ and ‘3B’. Therefore the order of coded VOPs in the coded sequence shall be ‘1I’, ‘4P’, ‘2B’, ‘3B’.
However, the decoder shall display them in the order ‘1I’, ‘2B’, ‘3B’, ‘4P’.

At the encoder input,

1

I

2

B

3

B

4

P

5

B

6

B

7

P

8

B

9

B

10

I

11

B

12

B

13

P

At the encoder output, in the coded bitstream, and at the decoder input,

1

I

4

P

2

B

3

B

7

P

5

B

6

B

10

I

8

B

9

B

13

P

11

B

12

B

At the decoder output,

1

I

2

B

3

B

4

P

5

B

6

B

7

P

8

B

9

B

10

I

11

B

12

B

13

P

6.1.3.8 Macroblock

A macroblock contains a section of the luminance component and the spatially corresponding chrominance
components. The term macroblock can either refer to source and decoded data or to the corresponding coded data
elements. A skipped macroblock is one for which no information is transmitted. Presently there is only one
chrominance format for a macroblock, namely, 4:2:0 format. The orders of blocks in a macroblock is illustrated
below:

A 4:2:0 Macroblock consists of 6 blocks. This structure holds 4 Y, 1 Cb and 1 Cr Blocks and the block order is
depicted in Figure 6-5.

1

2
4

3
5

0

Y CrCb

Figure 6-5 -- 4:2:0 Macroblock structure

The organisation of VOPs into macroblocks is as follows.

For the case of a progressive VOP, the interlaced flag (in the VOP header) is set to “0” and the organisation of lines
of luminance VOP into macroblocks is called frame organization and is illustrated in Figure 6-6. In this case, frame
DCT coding is employed.

For the case of interlaced VOP, the interlaced flag is set to “1” and the organisation of lines of luminance VOP into
macroblocks can be either frame organization or field organization and thus both frame and field DCT coding may
be used in the VOP.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

19

• In the case of frame DCT coding, each luminance block shall be composed of lines from two fields alternately.
This is illustrated in Figure 6-6.

• In the case of field DCT coding, each luminance block shall be composed of lines from only one of the two
fields. This is illustrated in Figure 6-7.

Only frame DCT coding is applied to the chrominance blocks. It should be noted that field based predictions may be
applied for these chrominance blocks which will require predictions of 8x4 regions (after half-sample filtering).

Figure 6-6 -- Luminance macroblock structure in frame DCT coding

Figure 6-7 -- Luminance macroblock structure in field DCT coding

6.1.3.9 Block

The term block can refer either to source and reconstructed data or to the DCT coefficients or to the corresponding
coded data elements.

When the block refers to source and reconstructed data it refers to an orthogonal section of a luminance or
chrominance component with the same number of lines and samples. There are 8 lines and 8 samples/line in the
block.

6.1.4 Mesh object

A 2D triangular mesh refers to a tessellation of a 2D visual object plane into triangular patches. The vertices of the
triangular patches are called node points. The straight-line segments between node points are called edges. Two
triangles are adjacent if they share a common edge.

A dynamic 2D mesh consists of a temporal sequence of 2D triangular meshes, where each mesh has the same
topology, but node point locations may differ from one mesh to the next. Thus, a dynamic 2D mesh can be specified
by the geometry of the initial 2D mesh and motion vectors at the node points for subsequent meshes, where each

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

20

motion vector points from a node point of the previous mesh in the sequence to the corresponding node point of the
current mesh. The dynamic 2D mesh can be used to create 2D animations by mapping texture from e.g. a video
object plane onto successive 2D meshes.

A 2D dynamic mesh with implicit structure refers to a 2D dynamic mesh of which the initial mesh has either uniform
or Delaunay topology. In both cases, the topology of the initial mesh does not have to be coded (since it is implicitly
defined), only the node point locations of the initial mesh have to be coded. Note that in both the uniform and
Delaunay case, the mesh is restricted to be simple, i.e. it consists of a single connected component without any
holes, topologically equivalent to a disk.

A mesh object represents the geometry and motion of a 2D triangular mesh. A mesh object consists of one or more
mesh object planes, each corresponding to a 2D triangular mesh at a certain time instance. An example of a mesh
object is shown in the figure below.

A sequence of mesh object planes represents the piece-wise deformations to be applied to a video object plane or
still texture object to create a synthetic animated video object. Triangular patches of a video object plane are to be
warped according to the motion of corresponding triangular mesh elements. The motion of mesh elements is
specified by the temporal displacements of the mesh node points.

The syntax and semantics of the mesh object pertains to the mesh geometry and mesh motion only; the video object
to be used in an animation is coded separately. The warping or texture mapping applied to render visual object
planes is handled in the context of scene composition. Furthermore, the syntax does not allow explicit encoding of
other mesh properties such as colors or texture coordinates.

Figure 6-8 -- Mesh object with uniform triangular geometry

6.1.4.1 Mesh object plane

There are two types of mesh object planes that use different coding methods.

An intra-coded mesh object plane codes the geometry of a single 2D mesh. An intra-coded mesh is either of uniform
or Delaunay type. In the case of a mesh of uniform type, the mesh geometry is coded by a small set of parameters.
In the case of a mesh of Delaunay type, the mesh geometry is coded by the locations of the node points and
boundary edge segments. The triangular mesh structure is specified implicitly by the coded information.

A predictive-coded mesh object plane codes a 2D mesh using temporal prediction from a past reference mesh
object plane. The triangular structure of a predictive-coded mesh is identical to the structure of the reference mesh
used for prediction; however, the locations of node points may change. The displacements of node points represent
the motion of the mesh and are coded by specifying the motion vectors of node points from the reference mesh
towards the predictive-coded mesh.

The locations of mesh node points correspond to locations in a video object or still texture object. Mesh node point
locations and motion vectors are represented and coded with half pixel accuracy.

6.1.5 Face object

Conceptually the face object consists of a collection of nodes in a scene graph which are animated by the facial
object bitstream. The shape, texture and expressions of the face are generally controlled by the bitstream containing
instances of Facial Definition Parameter (FDP) sets and/or Facial Animation Parameter (FAP) sets. Upon
construction, the Face object contains a generic face with a neutral expression. This face can already be rendered.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

21

It is also immediately capable of receiving the FAPs from the bitstream, which will produce animation of the face:
expressions, speech etc. If FDPs are received, they are used to transform the generic face into a particular face
determined by its shape and (optionally) texture. Optionally, a complete face model can be downloaded via the FDP
set as a scene graph for insertion in the face node.

The FDP and FAP sets are designed to allow the definition of a facial shape and texture, as well as animation of
faces reproducing expressions, emotions and speech pronunciation. The FAPs, if correctly interpreted, will produce
reasonably similar high level results in terms of expression and speech pronunciation on different facial models,
without the need to initialize or calibrate the model. The FDPs allow the definition of a precise facial shape and
texture in the setup phase. If the FDPs are used in the setup phase, it is also possible to produce more precisely the
movements of particular facial features. Using a phoneme/bookmark to FAP conversion it is possible to control facial
models accepting FAPs via TTS systems. The translation from phonemes to FAPs is not standardized. It is
assumed that every decoder has a default face model with default parameters. Therefore, the setup stage is not
necessary to create face animation. The setup stage is used to customize the face at the decoder.

6.1.5.1 Structure of the face object bitstream

A face object is formed by a temporal sequence of face object planes. This is depicted as follows in Figure 6-9.

-------------------- Face Object
Plane n

Face Object
Plane 2

Face Object
Plane 1

Face Object

Figure 6-9 -- Structure of the face object bitstream

A face object represents a node in an ISO/IEC 14496 scene graph. An ISO/IEC 14496 scene is understood as a
composition of Audio-Visual objects according to some spatial and temporal relationships. The scene graph is the
hierarchical representation of the ISO/IEC 14496 scene structure (see ISO/IEC 14496-1).

Alternatively, a face object can be formed by a temporal sequence of face object plane groups (called segments for
simplicity), where each face object plane group itself is composed of a temporal sequence of 16 face object planes,
as depicted in the following:

face object:

Face Object
Plane Group n

Face Object
Plane Group 2

Face Object
Plane Group 1

face object plane group:

Face Object
Plane 16

Face Object
Plane 2

Face Object
Plane 1

When the alternative face object bitstream structure is employed, the bitstream is decoded by DCT-based face
object decoding as described in subclause 7.12.2. Otherwise, the bitstream is decoded by the frame-based face
object decoding. Refer to Table C-1 for a specification of default minimum and maximum values for each FAP

6.1.5.2 Facial animation parameter set

The FAPs are based on the study of minimal facial actions and are closely related to muscle actions. They represent
a complete set of basic facial actions, and therefore allow the representation of most natural facial expressions.
Exaggerated values permit the definition of actions that are normally not possible for humans, but could be desirable
for cartoon-like characters.

The FAP set contains two high level parameters visemes and expressions. A viseme is a visual correlate to a
phoneme. The viseme parameter allows viseme rendering (without having to express them in terms of other
parameters) and enhances the result of other parameters, insuring the correct rendering of visemes. Only static
visemes which are clearly distinguished are included in the standard set. Additional visemes may be added in future
extensions of the standard. Similarly, the expression parameter allows definition of high level facial expressions. The
facial expression parameter values are defined by textual descriptions. To facilitate facial animation, FAPs that can

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

22

be used together to represent natural expression are grouped together in FAP groups, and can be indirectly
addressed by using an expression parameter. The expression parameter allows for a very efficient means of
animating faces. In annex C, a list of the FAPs is given, together with the FAP grouping, and the definitions of the
facial expressions.

6.1.5.3 Facial animation parameter units

All the parameters involving translational movement are expressed in terms of the Facial Animation Parameter Units
(FAPU). These units are defined in order to allow interpretation of the FAPs on any facial model in a consistent way,
producing reasonable results in terms of expression and speech pronunciation. They correspond to fractions of
distances between some key facial features and are defined in terms of distances between feature points. The
fractional units used are chosen to allow enough precision. annex C contains the list of the FAPs and the list of the
FDP feature points. For each FAP the list contains the name, a short description, definition of the measurement
units, whether the parameter is unidirectional (can have only positive values) or bi-directional, definition of the
direction of movement for positive values, group number (for coding of selected groups), FDP subgroup number
(annex C) and quantisation step size. FAPs act on FDP feature points in the indicated subgroups. The
measurement units are shown in Table 6-1, where the notation 3.1.y represents the y coordinate of the feature point
3.1; also refer to Figure 6-10.

Table 6-1 -- Facial Animation Parameter Units

Description FAPU Value

IRISD0 = 3.1.y – 3.3.y = 3.2.y – 3.4.y Iris diameter (by definition it is equal to
the distance between upper ad lower
eyelid) in neutral face

IRISD = IRISD0 / 1024

ES0 = 3.5.x – 3.6.x Eye separation ES = ES0 / 1024

ENS0 = 3.5.y – 9.15.y Eye - nose separation ENS = ENS0 / 1024

MNS0 = 9.15.y – 2.2.y Mouth - nose separation MNS = MNS0 / 1024

MW0 = 8.3.x – 8.4.x Mouth width MW = MW0 / 1024

AU Angle Unit 10-5 rad

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

23

MW0

MNS0

ENS0

ES0 IRISD0

Figure 6-10 -- The Facial Animation Parameter Units

6.1.5.4 Description of a neutral face

At the beginning of a sequence, the face is supposed to be in a neutral position. Zero values of the FAPs
correspond to a neutral face. All FAPs are expressed as displacements from the positions defined in the neutral
face. The neutral face is defined as follows:

• the coordinate system is right-handed; head axes are parallel to the world axes

• gaze is in direction of Z axis

• all face muscles are relaxed

• eyelids are tangent to the iris

• the pupil is one third of IRISD0

• lips are in contact; the line of the lips is horizontal and at the same height of lip corners

• the mouth is closed and the upper teeth touch the lower ones

• the tongue is flat, horizontal with the tip of tongue touching the boundary between upper and lower teeth
(feature point 6.1 touching 9.11 in annex C)

6.1.5.5 Facial definition parameter set

The FDPs are used to customize the proprietary face model of the decoder to a particular face or to download a
face model along with the information about how to animate it. The definition and description of FDP fields is given
in annex C. The FDPs are normally transmitted once per session, followed by a stream of compressed FAPs.
However, if the decoder does not receive the FDPs, the use of FAPUs ensures that it can still interpret the FAP
stream. This insures minimal operation in broadcast or teleconferencing applications. The FDP set is specified in

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

24

BIFS syntax (see ISO/IEC 14496-1). The FDP node defines the face model to be used at the receiver. Two options
are supported:

• calibration information is downloaded so that the proprietary face of the receiver can be configured using facial
feature points and optionally a 3D mesh or texture.

• a face model is downloaded with the animation definition of the Facial Animation Parameters. This face model
replace the proprietary face model in the receiver.

6.2 Visual bitstream syntax

6.2.1 Start codes

Start codes are specific bit patterns that do not otherwise occur in the video stream.

Each start code consists of a start code prefix followed by a start code value. The start code prefix is a string of
twenty three bits with the value zero followed by a single bit with the value one. The start code prefix is thus the bit
string ‘0000 0000 0000 0000 0000 0001’.

The start code value is an eight bit integer which identifies the type of start code. Many types of start code have just
one start code value. However video_object_start_code and video_object_layer_start_code are represented by
many start code values.

All start codes shall be byte aligned. This shall be achieved by first inserting a bit with the value zero and then, if
necessary, inserting bits with the value one before the start code prefix such that the first bit of the start code prefix
is the first (most significant) bit of a byte. For stuffing of 1 to 8 bits, the codewords are as follows in Table 6-2.

Table 6-2-- Stuffing codewords

Bits to be stuffed Stuffing Codeword

1 0

2 01

3 011

4 0111

5 01111

6 011111

7 0111111

8 01111111

Table 6-3 defines the start code values for all start codes used in the visual bitstream.

Table 6-3 — Start code values

name start code value
(hexadecimal)

video_object_start_code 00 through 1F

video_object_layer_start_code 20 through 2F

reserved 30 through AF

visual_object_sequence__start_code B0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

25

visual_object_sequence_end_code B1

user_data_start_code B2

group_of_vop_start_code B3

video_session_error_code B4

visual_object_start_code B5

vop_start_code B6

reserved B7-B9

face_object_start_code BA

face_object_plane_start_code BB

mesh_object_start_code BC

mesh_object_plane_start_code BD

still_texture_object_start_code BE

texture_spatial_layer_start_code BF

texture_snr_layer_start_code C0

reserved C1-C5

System start codes (see note) C6 through FF

NOTE System start codes are defined in ISO/IEC 14496-1

The use of the start codes is defined in the following syntax description with the exception of the
video_session_error_code. The video_session_error_code has been allocated for use by a media interface to
indicate where uncorrectable errors have been detected.

This syntax for visual bitstreams defines two types of information:

1. Configuration information

a. Global configuration information, referring to the whole group of visual objects that will be simultaneously
decoded and composited by a decoder (VisualObjectSequence()).

b. Object configuration information, referring to a single visual object (VO). This is associated with
VisualObject().

c. Object layer configuration information, referring to a single layer of a single visual object (VOL)
VisualObjectLayer()

2. Elementary stream data, containing the data for a single layer of a visual object.
IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:19
99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

26

Elementary Stream
Visual Object 1

Layer 1

Elementary Stream
Visual Object 1

Layer 2

Elementary Stream
Visual Object 2

Layer 1

VO 1
VOL 1
Header

VO 1
VOL 2
Header

VO 1
Header

VO 2
VOL 1
Header

Visual Object
Sequence
Header

VO 2
Header

Figure 6-11 -- Example Visual Information – Logical Structure

Configuration Information
in containers provided by
MPEG-4 Systems

Elementary Stream
Visual Object 1 Layer 1

Elementary Stream
Visual Object 1 Layer 2

Elementary Stream
Visual Object 2 Layer 1

VO 1
VOL 1
Header

VO 1
VOL 2
Header

VO 1
Header

VO 2
VOL 1
Header

Visual Object
Sequence
Header

VO 2
Header

MPEG-4 Systems

Figure 6-12 -- Example Visual Bitstream – Separate Configuration Information / Elementary Stream.

Elementary Stream
Visual Object 1

Layer 1

Elementary Stream
Visual Object 1

Layer 2

VO 1
VOL 1
Header

VO 1
VOL 2
Header

VO 1
Header

Visual Object
Sequence
Header

VO 1
Header

Visual Object
Sequence
Header

Elementary Stream
Visual Object 2

Layer 1

VO 2
VOL 1
Header

VO 2
Header

Visual Object
Sequence
Header

Figure 6-13 -- Example Visual Bitstream – Combined Configuration Information / Elementary Stream

The following functions are entry points for elementary streams, and entry into these functions defines the
breakpoint between configuration information and elementary streams:

1. Group_of_VideoObjectPlane(),

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

27

2. VideoObjectPlane(),
3. video_plane_with_short_header(),
4. MeshObject(),
5. FaceObject().

For still texture objects, configuration information ends and elementary stream data begins in StilTextureObject()
immediately before the first call to wavelet_dc_decode(), as indicated by the comment in subclause 6.2.8.

There is no overlap of syntax between configuration information and elementary streams.

The configuration information contains all data that is not part of an elementary stream, including that defined by
VisualObjectSequence(), VisualObject() and VideoObjectLayer().

ISO/IEC 14496-2 does not provide for the multiplexing of multiple elementary streams into a single bitstream. One
visual bitstream contains exactly one elementary stream, which describes one layer of one visual object. A visual
decoder must conceptually have a separate entry port for each layer of each object to be decoded.

Visual objects coded in accordance with this Part may be carried within a Systems bitstream as defined by ISO/IEC
14496-1. The coded visual objects may also be free standing or carried within other types of systems.
Configuration information may be carried separately from or combined with elementary stream data:

1. Separate Configuration / Elementary Streams (e.g. Inside ISO/IEC 14496-1 Bitstreams)

When coded visual objects are carried within a Systems bitstream defined by ISO/IEC 14496-1, configuration
information and elementary stream data are always carried separately. Configuration information and elementary
streams follow the syntax below, subject to the break points between them defined above. The Systems
specification ISO/IEC 14496-1 defines containers that are used to carry Visual Object and Visual Object Layer
configuration information. A separate container is used for each object. For video objects, a separate container is
also used for each layer. VisualObjectSequence headers are not carried explicitly, but the information is contained
in other parts of the Systems bitstream.

2. Combined Configuration / Elementary Streams

The elementary stream data associated with a single layer may be wrapped in configuration information defined in
accordance with the syntax below. A visual bitstream may contain at most one instance of each of
VisualObjectSequence(), VisualObject() and VideoObjectLayer(). The Visual Object Sequence Header must be
identical for all streams input simultaneously to a decoder. The Visual Object Headers for each layer of a multilayer
object must be identical.

6.2.2 Visual Object Sequence and Visual Object

VisualObjectSequence() { No. of bits Mnemonic

visual_object_sequence_start_code 32 bslbf

profile_and_level_indication 8 uimsbf

while (next_bits()== user_data_start_code){

user_data()

}

VisualObject()

visual_object_sequence_end_code 32 bslbf

}

VisualObject() { No. of bits Mnemonic

visual_object_start_code 32 bslbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

28

is_visual_object_identifier 1 uimsbf

if (is_visual_object_identifier) {

visual_object_verid 4 uimsbf

visual_object_priority 3 uimsbf

}

visual_object_type 4 uimsbf

if (visual_object_type == “video ID” || visual_object_type == “still texture ID“)
{

video_signal_type()

}

next_start_code()

while (next_bits()== user_data_start_code){

user_data()

}

if (visual_object_type == “video ID”) {

video_object_start_code 32 bslbf

VideoObjectLayer()

}

else if (visual_object_type == “still texture ID”) {

StillTextureObject()

}

else if (visual_object_type == “mesh ID”) {

MeshObject()

}

else if (visual_object_type == “face ID”) {

FaceObject()

}

if (next_bits() != “0000 0000 0000 0000 0000 0001”)

next_start_code()

}

video_signal_type() { No. of bits Mnemonic

video_signal_type 1 bslbf

if (video_signal_type) {

video_format 3 uimsbf

video_range 1 bslbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

29

colour_description 1 bslbf

if (colour_description) {

colour_primaries 8 uimsbf

transfer_characteristics 8 uimsbf

matrix_coefficients 8 uimsbf

}

}

}

6.2.2.1 User data

user_data() { No. of bits Mnemonic

user_data_start_code 32 bslbf

while(next_bits() != ‘0000 0000 0000 0000 0000 0001’) {

user_data 8 uimsbf

}

next_start_code()

}

6.2.3 Video Object Layer

VideoObjectLayer() { No. of bits Mnemonic

if(next_bits() == video_object_layer_start_code) {

short_video_header = 0

video_object_layer_start_code 32 bslbf

random_accessible_vol 1 bslbf

video_object_type_indication 8 uimsbf

is_object_layer_identifier 1 uimsbf

if (is_object_layer_identifier) {

video_object_layer_verid 4 uimsbf

video_object_layer_priority 3 uimsbf

}

aspect_ratio_info 4 uimsbf

if (aspect_ratio_info == “extended_PAR”) {

par_width 8 uimsbf

par_height 8 uimsbf

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

30

vol_control_parameters 1 bslbf

if (vol_control_parameters) {

chroma_format 2 uimsbf

low_delay 1 uimsbf

vbv_parameters 1 blsbf

if (vbv_parameters) {

first_half_bit_rate 15 uimsbf

marker_bit 1 bslbf

latter_half_bit_rate 15 uimsbf

marker_bit 1 bslbf

first_half_vbv_buffer_size 15 uimsbf

marker_bit 1 bslbf

latter_half_vbv_buffer_size 3 uimsbf

first_half_vbv_occupancy 11 uimsbf

marker_bit 1 blsbf

latter_half_vbv_occupancy 15 uimsbf

marker_bit 1 blsbf

}

}

video_object_layer_shape 2 uimsbf

marker_bit 1 bslbf

vop_time_increment_resolution 16 uimsbf

marker_bit 1 bslbf

fixed_vop_rate 1 bslbf

if (fixed_vop_rate)

fixed_vop_time_increment 1-16 uimsbf

if (video_object_layer_shape != “binary only”) {

if (video_object_layer_shape == “rectangular”) {

marker_bit 1 bslbf

video_object_layer_width 13 uimsbf

marker_bit 1 bslbf

video_object_layer_height 13 uimsbf

marker_bit 1 bslbf

}

interlaced 1 bslbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

31

obmc_disable 1 bslbf

sprite_enable 1 bslbf

if (sprite_enable) {

sprite_width 13 uimsbf

marker_bit 1 bslbf

sprite_height 13 uimsbf

marker_bit 1 bslbf

sprite_left_coordinate 13 simsbf

marker_bit 1 bslbf

sprite_top_coordinate 13 simsbf

marker_bit 1 bslbf

no_of_sprite_warping_points 6 uimsbf

sprite_warping_accuracy 2 uimsbf

sprite_brightness_change 1 bslbf

low_latency_sprite_enable 1 bslbf

}

not_8_bit 1 bslbf

if (not_8_ bit) {

quant_precision 4 uimsbf

bits_per_pixel 4 uimsbf

}

if (video_object_layer_shape==”grayscale”) {

no_gray_quant_update 1 bslbf

composition_method 1 bslbf

linear_composition 1 bslbf

}

quant_type 1 bslbf

if (quant_type) {

load_intra_quant_mat 1 bslbf

if (load_intra_quant_mat)

intra_quant_mat 8*[2-64] uimsbf

load_nonintra_quant_mat 1 bslbf

if (load_nonintra_quant_mat)

nonintra_quant_mat 8*[2-64] uimsbf

if(video_object_layer_shape==”grayscale”) {

load_intra_quant_mat_grayscale 1 bslbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

32

if(load_intra_quant_mat_grayscale)

intra_quant_mat_grayscale 8*[2-64] uimsbf

load_nonintra_quant_mat_grayscale 1 bslbf

if(load_nonintra_quant_mat_grayscale)

nonintra_quant_mat_grayscale 8*[2-64] uimsbf

}

}

complexity_estimation_disable 1 bslbf

if (!complexity_estimation_disable)

define_vop_complexity_estimation_header()

resync_marker_disable 1 bslbf

data_partitioned 1 bslbf

if(data_partitioned)

reversible_vlc 1 bslbf

scalability 1 bslbf

if (scalability) {

hierarchy_type 1 bslbf

ref_layer_id 4 uimsbf

ref_layer_sampling_direc 1 bslbf

hor_sampling_factor_n 5 uimsbf

hor_sampling_factor_m 5 uimsbf

vert_sampling_factor_n 5 uimsbf

vert_sampling_factor_m 5 uimsbf

enhancement_type 1 bslbf

}

}

else

resync_marker_disable 1 bslbf

next_start_code()

while (next_bits()== user_data_start_code){

user_data()

}

if (sprite_enable && !low_latency_sprite_enable)

VideoObjectPlane()

do {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

33

if (next_bits() == group_of_vop_start_code)

Group_of_VideoObjectPlane()

VideoObjectPlane()

} while ((next_bits() == group_of_vop_start_code) ||

(next_bits() == vop_start_code))

} else {

short_video_header = 1

do {

video_plane_with_short_header()

} while(next_bits() == short_video_start_marker)

}

}

define_vop_complexity_estimation_header() { No. of bits Mnemonic

estimation_method 2 uimsbf

if (estimation_method ==’00’){

shape_complexity_estimation_disable 1

if (!shape_complexity_estimation_disable) { bslbf

opaque 1 bslbf

transparent 1 bslbf

intra_cae 1 bslbf

inter_cae 1 bslbf

no_update 1 bslbf

upsampling 1 bslbf

}

texture_complexity_estimation_set_1_disable 1 bslbf

if (!texture_complexity_estimation_set_1_disable) {

intra_blocks 1 bslbf

inter_blocks 1 bslbf

inter4v_blocks 1 bslbf

not_coded_blocks 1 bslbf

}

marker_bit 1 bslbf

texture_complexity_estimation_set_2_disable 1 bslbf

if (!texture_complexity_ estimation_set_2_disable) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

34

dct_coefs 1 bslbf

dct_lines 1 bslbf

vlc_symbols 1 bslbf

vlc_bits 1 bslbf

}

motion_compensation_complexity_disable 1 bslbf

If (!motion_compensation_complexity_disable) {

apm 1 bslbf

npm 1 bslbf

interpolate_mc_q 1 bslbf

forw_back_mc_q 1 bslbf

halfpel2 1 bslbf

halfpel4 1 bslbf

}

marker_bit 1 bslbf

}

}

6.2.4 Group of Video Object Plane

Group_of_VideoObjectPlane() { No. of bits Mnemonic

group_vop_start_codes 32 bslbf

time_code 18

closed_gov 1 bslbf

broken_link 1 bslbf

next_start_code()

while (next_bits()== user_data_start_code){

user_data()

}

}

6.2.5 Video Object Plane and Video Plane with Short Header

VideoObjectPlane() { No. of bits Mnemonic

vop_start_code 32 bslbf

vop_coding_type 2 uimsbf

do {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

35

modulo_time_base 1 bslbf

} while (modulo_time_base != ‘0’)

marker_bit 1 bslbf

vop_time_increment 1-16 uimsbf

marker_bit 1 bslbf

vop_coded 1 bslbf

if (vop_coded == ’0’) {

next_start_code()

return()

}

if ((video_object_layer_shape != “binary only”) &&

(vop_coding_type == “P”))

vop_rounding_type 1 bslbf

if (video_object_layer_shape != “rectangular”) {

if(!(sprite_enable && vop_coding_type == “I”)) {

vop_width 13 uimsbf

marker_bit 1 bslbf

vop_height 13 uimsbf

marker_bit 1 bslbf

vop_horizontal_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf

vop_vertical_mc_spatial_ref 13 simsbf

}

if ((video_object_layer_shape != “ binary only”) &&

scalability && enhancement_type)

background_composition 1 bslbf

change_conv_ratio_disable 1 bslbf

vop_constant_alpha 1 bslbf

if (vop_constant_alpha)

vop_constant_alpha_value 8 bslbf

}

if (!complexity_estimation_disable)

read_vop_complexity_estimation_header()

if (video_object_layer_shape != “binary only”) {

intra_dc_vlc_thr 3 uimsbf

if (interlaced) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

36

top_field_first 1 bslbf

alternate_vertical_scan_flag 1 bslbf

}

}

if (sprite_enable && vop_coding_type == “S”) {

if (no_sprite_points > 0)

sprite_trajectory()

if (sprite_brightness_change)

brightness_change_factor()

if (sprite_transmit_mode != “stop”

&& low_latency_sprite_enable) {

do {

sprite_transmit_mode 2 uimsbf

if ((sprite_transmit_mode == “piece”) ||

(sprite_transmit_mode == “update”))

decode_sprite_piece()

} while (sprite_transmit_mode != “stop” &&

sprite_transmit_mode != “pause”)

}

next_start_code()

return()

}

if (video_object_layer_shape != “binary only”) {

vop_quant 3-9 uimsbf

if(video_object_layer_shape==”grayscale”)

vop_alpha_quant 6 uimsbf

if (vop_coding_type != “I”)

vop_fcode_forward 3 uimsbf

if (vop_coding_type == “B”)

vop_fcode_backward 3 uimsbf

if (!scalability) {

if (video_object_layer_shape != “rectangular”

&& vop_coding_type != “I”)

vop_shape_coding_type 1 bslbf

motion_shape_texture()

while (nextbits_bytealigned() == resync_marker) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

37

video_packet_header()

motion_shape_texture()

}

}

else {

if (enhancement_type) {

load_backward_shape 1 bslbf

if (load_backward_shape) {

backward_shape_width 13 uimsbf

marker_bit 1 bslbf

backward_shape_ height 13 uimsbf

marker_bit 1 bslbf

backward_shape_horizontal_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf

backward_shape_vertical_mc_spatial_ref 13 simsbf

backward_shape()

load_forward_shape 1 bslbf

if (load_forward_shape) {

forward_shape_width 13 uimsbf

marker_bit 1 bslbf

forward_shape_height 13 uimsbf

marker_bit 1 bslbf

forward_shape_horizontal_mc_spatial_ref 13 simsbf

marker_bit 1 bslbf

forward_shape_vertical_mc_spatial_ref 13 simsbf

forward_shape()

}

}

}

ref_select_code 2 uimsbf

combined_motion_shape_texture()

}

}

else {

combined_motion_shape_texture()

while (nextbits_bytealigned() == resync_marker) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

38

video_packet_header()

combined_motion_shape_texture()

}

}

next_start_code()

}

6.2.5.1 Complexity Estimation Header

read_vop_complexity_estimation_header() { No. of bits Mnemonic

if (estimation_method==’00’){

if (vop_coding_type==“I”){

if (opaque) dcecs_opaque 8 uimsbf

if (transparent) dcecs_transparent 8 uimsbf

if (intra_cae) dcecs_intra_cae 8 uimsbf

if (inter_cae) dcecs_inter_cae 8 uimsbf

if (no_update) dcecs_no_update 8 uimsbf

if (upsampling) dcecs_upsampling 8 uimsbf

if (intra_blocks) dcecs_intra_blocks 8 uimsbf

if (not_coded_blocks) dcecs_not_coded_blocks 8 uimsbf

if (dct_coefs) dcecs_dct_coefs 8 uimsbf

if (dct_lines) dcecs_dct_lines 8 uimsbf

if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf

if (vlc_bits) dcecs_vlc_bits 4 uimsbf

}

if (vop_coding_type==“P”){

if (opaque) dcecs_opaque 8 uimsbf

if (transparent) dcecs_transparent 8 uimsbf

if (intra_cae) dcecs_intra_cae 8 uimsbf

if (inter_cae) dcecs_inter_cae 8 uimsbf

if (no_update) dcecs_no_update 8 uimsbf

if (upsampling) dcecs_upsampling 8 uimsbf

if (intra) dcecs_intra_blocks 8 uimsbf

if (not_coded) dcecs_not_coded_blocks 8 uimsbf

if (dct_coefs) dcecs_dct_coefs 8 uimsbf

if (dct_lines) dcecs_dct_lines 8 uimsbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

39

if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf

if (vlc_bits) dcecs_vlc_bits 4 uimsbf

if (inter_blocks) dcecs_inter_blocks 8 uimsbf

if (inter4v_blocks) dcecs_inter4v_blocks 8 uimsbf

if (apm) dcecs_apm 8 uimsbf

if (npm) dcecs_npm 8 uimsbf

if (forw_back_mc_q)dcecs_forw_back_mc_q 8 uimsbf

if (halfpel2) dcecs_halfpel2 8 uimsbf

if (halfpel4) dcecs_halfpel4 8 uimsbf

}

if (vop_coding_type==“B”){

if (opaque) dcecs_opaque 8 uimsbf

if (transparent) dcecs_transparent 8 uimsbf

if (intra_cae) dcecs_intra_cae 8 uimsbf

if (inter_cae) dcecs_inter_cae 8 uimsbf

if (no_update) dcecs_no_update 8 uimsbf

if (upsampling) dcecs_upsampling 8 uimsbf

if (intra_blocks) dcecs_intra_blocks 8 uimsbf

if (not_coded_blocks) dcecs_not_coded_blocks 8 uimsbf

if (dct_coefs) dcecs_dct_coefs 8 uimsbf

if (dct_lines) dcecs_dct_lines 8 uimsbf

if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf

if (vlc_bits) dcecs_vlc_bits 4 uimsbf

if (inter_blocks) dcecs_inter_blocks 8 uimsbf

if (inter4v_blocks) dcecs_inter4v_blocks 8 uimsbf

if (apm) dcecs_apm 8 uimsbf

if (npm) dcecs_npm 8 uimsbf

if (forw_back_mc_q)dcecs_forw_back_mc_q 8 uimsbf

if (halfpel2) dcecs_halfpel2 8 uimsbf

if (halfpel4) dcecs_halfpel4 8 uimsbf

if (interpolate_mc_q) dcecs_interpolate_mc_q 8 uimsbf

}

if (vop_coding_type==‘S’){

if (intra_blocks) dcecs_intra_blocks 8 uimsbf

if (not_coded_blocks) dcecs_not_coded_blocks 8 uimsbf

if (dct_coefs) dcecs_dct_coefs 8 uimsbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

40

if (dct_lines) dcecs_dct_lines 8 uimsbf

if (vlc_symbols) dcecs_vlc_symbols 8 uimsbf

if (vlc_bits) dcecs_vlc_bits 4 uimsbf

if (inter_blocks) dcecs_inter_blocks 8 uimsbf

if (inter4v_blocks) dcecs_inter4v_blocks 8 uimsbf

if (apm) dcecs_apm 8 uimsbf

if (npm) dcecs_npm 8 uimsbf

if (forw_back_mc_q) dcecs_forw_back_q 8 uimsbf

if (halfpel2) dcecs_halfpel2 8 uimsbf

if (halfpel4) dcecs_halfpel4 8 uimsbf

if (interpolate_mc_q) dcecs_interpolate_mc_q 8 uimsbf

}

}

}

6.2.5.2 Video Plane with Short Header

video_plane_with_short_header() { No. of bits Mnemonic

short_video_start_marker 22 bslbf

temporal_reference 8 uimsbf

marker_bit 1 bslbf

zero_bit 1 bslbf

split_screen_indicator 1 bslbf

document_camera_indicator 1 bslbf

full_picture_freeze_release 1 bslbf

source_format 3 bslbf

picture_coding_type 1 bslbf

four_reserved_zero_bits 4 bslbf

vop_quant 5 uimsbf

zero_bit 1 bslbf

do{

pei 1 bslbf

if (pei == “1”)

psupp 8 bslbf

} while (pei == “1”)

gob_number = 0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

41

for(i=0; i<num_gobs_in_vop; i++)

gob_layer()

if(next_bits() == short_video_end_marker)

short_video _end_marker 22 uimsbf

while(!bytealigned())

zero_bit 1 bslbf

}

gob_layer() { No. of bits Mnemonic

gob_header_empty = 1

if(gob_number != 0) {

if (next_bits() == gob_resync_marker) {

gob_header_empty = 0

gob_resync_marker 17 bslbf

gob_number 5 uimsbf

gob_frame_id 2 bslbf

quant_scale 5 uimsbf

}

}

for(i=0; i<num_macroblocks_in_gob; i++)

macroblock()

if(next_bits() != gob_resync_marker &&
nextbits_bytealigned() == gob_resync_marker)

while(!bytealigned())

zero_bit 1 bslbf

gob_number++

}

video_packet_header() { No. of bits Mnemonic

next_resync_marker()

resync_marker 17-23 uimsbf

macroblock_number 1-14 vlclbf

if (video_object_layer_shape != “binary only”)

quant_scale 5 uimsbf

header_extension_code 1 bslbf

if (header_extension_code) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

42

do {

modulo_time_base 1 bslbf

} while (modulo_time_base != ‘0’)

marker_bit 1 bslbf

vop_time_increment 1-16 bslbf

marker_bit 1 bslbf

vop_coding_type 2 uimsbf

if (video_object_layer_shape != “binary only”) {

intra_dc_vlc_thr 3 uimsbf

if (vop_coding_type != “I”)

vop_fcode_forward 3 uimsbf

if (vop_coding_type == “B”)

vop_fcode_backward 3 uimsbf

}

}

}

6.2.5.3 Motion Shape Texture

motion_shape_texture() { No. of bits Mnemonic

if (data_partitioned)

data_partitioned_motion _shape_texture()

else

combined_motion_shape_texture()

}

combined_motion_shape_texture() { No. of bits Mnemonic

do{

macroblock()

} while (nextbits_bytealigned() != resync_marker && nextbits_bytealigned()
!= ‘000 0000 0000 0000 0000 0000’)

}

data_partitioned_motion_shape_texture() { No. of bits Mnemonic

if (vop_coding_type == “I”) {

data_partitioned_i_vop()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

43

} else if (vop_coding_type == “P”) {

data_partitioned_p_vop()

} else if (vop_coding_type == “B”) {

combined_motion_shape_texture()

}

NOTE Data partitioning is not supported in B-VOPs.

data_partitioned_i_vop() { No. of bits Mnemonic

do{

if (video_object_layer_shape != “rectangular”){

bab_type 1-3

if (bab_type >= 4) {

if (!change_conv_rate_disable) conv_ratio 1-2

scan_type 1

binary_arithmetic_code()

}

}

if (!transparent_mb()) {

mcbpc 1-9 vlclbf

if (mb_type == 4)

dquant 2 bslbf

if (use_intra_dc_vlc) {

for (j = 0; j < 4; j++) {

if (!transparent_block(j)) {

dct_dc_size_luminance 2-11 vlclbf

if (dct_dc_size_luminance > 0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_luminance > 8)

marker_bit 1 bslbf

}

}

for (j = 0; j < 2; j++) {

dct_dc_size_chrominance 2-12 vlclbf

if (dct_dc_size_chrominance > 0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_chrominance > 8)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

44

marker_bit 1 bslbf

}

}

}

} while (next_bits() != dc_marker)

dc_marker /* 110 1011 0000 0000 0001 */ 19 bslbf

for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {

ac_pred_flag 1 bslbf

cbpy 1-6 vlclbf

}

}

for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {

for (j = 0; j < block_count; j++)

block(j)

}

}

}

NOTE The value of block_count is 6 in the 4:2:0 format. The value of alpha_block_count is 4.

data_partitioned_p_vop() { No. of bits Mnemonic

do{

if (video_object_layer_shape != “rectangular”){

bab_type 1-7 vlclbf

if ((bab_type == 1) || (bab_type == 6)) {

mvds_x 1-18 vlclbf

mvds_y 1-18 vlclbf

}

if (bab_type >= 4) {

if (!change_conv_rate_disable) conv_ratio 1-2 vlclbf

scan_type 1 bslbf

binary_arithmetic_code()

}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

45

if (!transparent_mb()) {

not_coded 1 bslbf

if (!not_coded) {

mcbpc 1-9 vlclbf

if (derived_mb_type < 3)

motion_coding(“forward”, derived_mb_type)

}

}

} while (next_bits() != motion_marker)

motion_marker /* 1 1111 0000 0000 0001 */ 17 bslbf

for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {

if (!not_coded){

if (derived_mb_type >= 3)

ac_pred_flag 1 bslbf

cbpy 1-6 vlclbf

if (derived_mb_type == 1 || derived_mb_type == 4)

dquant 2 bslbf

if (derived_mb_type >= 3 && use_intra_dc_vlc) {

for (j = 0; j < 4; j++) {

if (!transparent_block(j)) {

dct_dc_size_luminance 2-11 vlclbf

if (dct_dc_size_luminance > 0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_luminance > 8)

marker_bit 1 bslbf

}

}

for (j = 0; j < 2; j++) {

dct_dc_size_chrominance 2-12 vlclbf

if (dct_dc_size_chrominance > 0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_chrominance > 8)

marker_bit 1 bslbf

}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

46

}

}

}

for (i = 0; i < mb_in_video_packet; i++) {

if (!transparent_mb()) {

if (! not_coded) {

for (j = 0; j < block_count; j++)

block(j)

}

}

}

}

NOTE The value of block_count is 6 in the 4:2:0 format. The value of alpha_block_count is 4.

motion_coding(mode, type_of_mb) { No. of bits Mnemonic

motion_vector(mode)

if (type_of_mb == 2) {

for (i = 0; i < 3; i++)

motion_vector(mode)

}

}

6.2.5.4 Sprite coding

decode_sprite_piece() { No. of bits Mnemonic

piece_quant 5 bslbf

piece_width 9 bslbf

piece_height 9 bslbf

marker_bit 1 bslbf

piece_xoffset 9 bslbf

piece_yoffset 9 bslbf

sprite_shape_texture()

}

sprite_shape_texture() { No. of bits Mnemonic

if (sprite_transmit_mode == “piece”) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

47

for (i=0; i < piece_height; i++) {

for (j=0; j < piece_width; j++) {

if (!send_mb()) {

macroblock()

}

}

}

}

if (sprite_transmit_mode == “update”) {

for (i=0; i < piece_height; i++) {

for (j=0; j < piece_width; j++) {

macroblock()

}

}

}

}

sprite_trajectory() { No. of bits Mnemonic

for (i=0; i < no_of_sprite_warping_points; i++) {

warping_mv_code(du[i])

warping_mv_code(dv[i])

}

}

warping_mv_code(d) { No. of bits Mnemonic

dmv_length 2-12 uimsbf

if (dmv_length != ‘00’)

dmv_code 1-14 uimsbf

marker_bit 1 bslbf

}

brightness_change_factor() { No. of bits Mnemonic

brightness_change_factor_size 1-4 uimsbf

brightness_change_factor_code 5-10 uimsbf

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

48

6.2.6 Macroblock

macroblock() { No. of bits Mnemonic

if (vop_coding_type != “B”) {

if (video_object_layer_shape != “rectangular”

&& !(sprite_enable && low_latency_sprite_enable

&& sprite_transmit_mode == “update”))

mb_binary_shape_coding()

if (video_object_layer_shape != “binary only”) {

if (!transparent_mb()) {

if (vop_coding_type != “I” && !(sprite_enable

&& sprite_transmit_mode == “piece”))

not_coded 1 bslbf

if (!not_coded || vop_coding_type == “I”) {

mcbpc 1-9 vlclbf

if (!short_video_header &&

(derived_mb_type == 3 ||

derived_mb_type == 4))

ac_pred_flag 1 bslbf

if (derived_mb_type != “stuffing”)

cbpy 1-6 vlclbf

else

return()

if (derived_mb_type == 1 ||

derived_mb_type == 4)

dquant 2 bslbf

if (interlaced)

interlaced_information()

if (!(ref_select_code==‘11’ && scalability)

&& vop_coding_type != “S”) {

if (derived_mb_type == 0 ||

derived_mb_type == 1) {

motion_vector(“forward”)

if (interlaced && field_prediction)

motion_vector(“forward”)

}

if (derived_mb_type == 2) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

49

for (j=0; j < 4; j++)

if (!transparent_block(j))

motion_vector(“forward”)

}

}

for (i = 0; i < block_count; i++)

if(!transparent_block(i))

block(i)

}

}

}

}

else {

if (video_object_layer_shape != “rectangular”)

mb_binary_shape_coding()

if ((co_located_not_coded != 1

|| (scalability && (ref_select_code != '11'

|| enhancement_type == 1)))

&& video_object_layer_shape != “binary only”) {

if (!transparent_mb()) {

modb 1-2 vlclbf

if (modb != ‘1’) {

mb_type 1-4 vlclbf

if (modb == ‘00’)

cbpb 3-6 vlclbf

if (ref_select_code != ‘00’ || !scalability) {

if (mb_type != “1” && cbpb!=0)

dbquant 1-2 vlclbf

if (interlaced)

interlaced_information()

if (mb_type == ‘01’ ||

mb_type == ‘0001’) {

motion_vector(“forward”)

if (interlaced && field_prediction)

motion_vector(“forward”)

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

50

if (mb_type == ‘01’ || mb_type == ‘001’) {

motion_vector(“backward”)

if (interlaced && field_prediction)

motion_vector(“backward”)

}

if (mb_type == “1”)

motion_vector(“direct”)

}

if (ref_select_code == ‘00’ && scalability &&

cbpb !=0) {

dbquant 1-2 vlclbf

if (mb_type == ‘01’ || mb_type == ‘1’)

motion_vector(“forward”)

}

for (i = 0; i < block_count; i++)

if(!transparent_block(i))

block(i)

}

}

}

}

if(video_object_layer_shape==“grayscale”

&& !transparent_mb()) {

if(vop_coding_type==”I” || (vop_coding_type==”P”

&& !not_coded

&& (derived_mb_type==3 || derived_mb_type==4))) {

coda_i 1 bslbf

if(coda_i==”coded”) {

ac_pred_flag_alpha 1 bslbf

cbpa 1-6 vlclbf

for(i=0;i<alpha_block_count;i++)

if(!transparent_block())

alpha_block(i)

}

} else { /* P or B macroblock */

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

51

if(vop_coding_type == ”P”

|| co_located_not_coded != 1) {

coda_pb 1-2 vlclbf

if(coda_pb==”coded”) {

cbpa 1-6 vlclbf

for(i=0;i<alpha_block_count;i++)

if(!transparent_block())

alpha_block(i)

}

}

}

}

}

NOTE The value of block_count is 6 in the 4:2:0 format. The value of alpha_block_count is 4.

6.2.6.1 MB Binary Shape Coding

mb_binary_shape_coding() { No. of bits Mnemonic

bab_type 1-7 vlclbf

if ((vop_coding_type == ‘P’) || (vop_coding_type == ‘B’)) {

if ((bab_type==1) || (bab_type == 6)) {

mvds_x 1-18 vlclbf

mvds_y 1-18 vlclbf

}

}

if (bab_type >=4) {

if (!change_conv_ratio_disable)

conv_ratio 1-2 vlcbf

scan_type 1 bslbf

binary_arithmetic_code()

}

}

backward_shape () { No. of bits Mnemonic

for(i=0; i<backward_shape_height/16; i++)

for(j=0; j<backward_shape_width/16; j++) {

bab_type 1-3 vlclbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

52

if (bab_type >=4) {

if (!change_conv_ratio_disable)

conv_ratio 1-2 vlcbf

scan_type 1 bslbf

binary_arithmetic_code()

}

}

}

forward_shape () { No. of bits Mnemonic

for(i=0; i<forward_shape_height/16; i++)

for(j=0; j<forward_shape_width/16; j++) {

bab_type 1-3 vlclbf

if (bab_type >=4) {

if (!change_conv_ratio_disable)

conv_ratio 1-2 vlcbf

scan_type 1 bslbf

binary_arithmetic_code()

}

}

}

6.2.6.2 Motion vector

motion_vector (mode) { No. of bits Mnemonic

if (mode == „direct“) {

horizontal_mv_data 1-13 vlclbf

vertical_mv_data 1-13 vlclbf

}

else if (mode == „forward“) {

horizontal_mv_data 1-13 vlclbf

if ((vop_fcode_forward != 1)&&(horizontal_mv_data != 0))

horizontal_mv_residual 1-6 uimsbf

vertical_mv_data 1-13 vlclbf

if ((vop_fcode_forward != 1)&&(vertical_mv_data != 0))

vertical_mv_residual 1-6 uimsbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

53

}

else if (mode == „backward“) {

horizontal_mv_data 1-13 vlclbf

if ((vop_fcode_backward != 1)&&(horizontal_mv_data != 0))

horizontal_mv_residual 1-6 uimsbf

vertical_mv_data 1-13 vlclbf

if ((vop_fcode_backward != 1)&&(vertical_mv_data != 0))

vertical_mv_residual 1-6 uimsbf

}

}

6.2.6.3 Interlaced Information

interlaced_information() { No. of bits Mnemonic

if ((derived_mb_type == 3) || (derived_mb_type == 4) ||

(cbp != 0))

dct_type 1 bslbf

if (((vop_coding_type == “P”) &&

((derived_mb_type == 0) || (derived_mb_type == 1))) ||

((vop_coding_type == “B”) && (mb_type != “1”))) {

field_prediction 1 bslbf

if (field_prediction) {

if (vop_coding_type == “P” ||

(vop_coding_type == “B” &&

mb_type != “001”)) {

forward_top_field_reference 1 bslbf

forward_bottom_field_reference 1 bslbf

}

if ((vop_coding_type == “B”) &&

(mb_type != “0001”)) {

backward_top_field_reference 1 bslbf

backward_bottom_field_reference 1 bslbf

}

}

}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

54

6.2.7 Block

The detailed syntax for the term “DCT coefficient” is fully described in clause 7.

block(i) { No. of bits Mnemonic

last = 0

if(!data_partitioned &&
(derived_mb_type == 3 || derived_mb_type == 4)) {

if(short_video_header == 1)

intra_dc_coefficient 8 uimsbf

else if (use_intra_dc_vlc == 1) {

if (i<4) {

dct_dc_size_luminance 2-11 vlclbf

if(dct_dc_size_luminance != 0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_luminance > 8)

marker_bit 1 bslbf

} else {

dct_dc_size_chrominance 2-12 vlclbf

if(dct_dc_size_chrominance !=0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_chrominance > 8)

marker_bit 1 bslbf

}

}

}

if (pattern_code[i])

while (! last)

DCT coefficient 3-24 vlclbf

}

NOTE “last” is defined to be the LAST flag resulting from reading the most recent DCT coefficient.

6.2.7.1 Alpha Block

The syntax for DCT coefficient decoding is the same as for block(i) in subclause 6.2.7.

alpha_block(i) { No. of bits Mnemonic

last = 0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

55

if(!data_partitioned &&
(vop_coding_type == “I” ||

(vop_coding_type == “P” && !not_coded &&

(derived_mb_type == 3 || derived_mb_type == 4)))) {

dct_dc_size_alpha 2-11 vlclbf

if(dct_dc_size_alpha != 0)

dct_dc_differential 1-12 vlclbf

if (dct_dc_size_alpha > 8)

marker_bit 1 bslbf

}

if (pattern_code[i])

while (! last)

DCT coefficient 3-24 vlclbf

}

NOTE “last” is defined to be the LAST flag resulting from reading the most recent DCT coefficient.

6.2.8 Still Texture Object

StillTextureObject() { No. of bits Mnemonic

still_texture_object_start_code 32 bslbf

texture_object_id 16 uimsbf

marker_bit 1 bslbf

wavelet_filter_type 1 uimsbf

wavelet_download 1 uimsbf

wavelet_decomposition_levels 4 uimsbf

scan_direction 1 bslbf

start_code_enable 1 bslbf

texture_object_layer_shape 2 uimsbf

quantization_type 2 uimsbf

if (quantization_type == 2) {

spatial_scalability_levels 4 uimsbf

if (spatial_scalability_levels !=

wavelet_decomposition_levels) {

use_default_spatial_scalability 1 uimsbf

if (use_default_spatial_layer_size == 0)

for (i=0; i<spatial_scalability_levels – 1; i++)

wavelet_layer_index 4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

56

}

if (wavelet_download == “1”){

uniform_wavelet_filter 1 uimsbf

if (uniform_wavelet_filter == “1”)

download_wavelet_filters()

else

for (i=0; i<wavelet_decomposition_levels; i++)

download_wavelet_filters()

}

wavelet_stuffing 3 uimsbf

if(texture_object_layer_shape == “00”){

texture_object_layer_width 15 uimsbf

marker_bit 1 bslbf

texture_object_layer_height 15 uimsbf

marker_bit 1 bslbf

}

else {

horizontal_ref 15 imsbf

marker_bit 1 bslbf

vertical_ref 15 imsbf

marker_bit 1 bslbf

object_width 15 uimsbf

marker_bit 1 bslbf

object_height 15 uimsbf

marker_bit 1 bslbf

shape_object_decoding ()

}

/* configuration information precedes this point; elementary stream data follows.
See annex K */

for (color = “y”, “u”, “v”){

wavelet_dc_decode()

}

if(quantization_type == 1){

TextureLayerSQ ()

}

else if (quantization_type == 2){

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

57

if (start_code_enable == 1) {

do {

TextureSpatialLayerMQ ()

} while (next_bits() == texture_spatial_layer_start_code)

} else {

for (i =0; i<spatial_scalability_levels; i++)

TextureSpatialLayerMQNSC ()

}

}

else if (quantization_type == 3){

for (color = “y”, “u”, “v”)

do{

quant_byte 8 uimsbf

} while(quant_byte >>7)

max_bitplanes 5 uimsbf

if (scan_direction == 0) {

do {

TextureSNRLayerBQ ()

} while (next_bits() == texture_snr_layer_start_code)

} else {

do {

TextureSpatialLayerBQ ()

} while (next_bits() == texture_spatial_layer_start_code)

}

}

}

6.2.8.1 TextureLayerSQ

TextureLayerSQ() { No. of bits Mnemonic

if (scan_direction == 0) {

for (“y”, “u”, “v”) {

do {

quant_byte 8 uimsbf

} while (quant_byte >> 7)

for (i=0; i<wavelet_decomposition_levels; i++)

if (i!=0 || color!= “u“,“v“) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

58

max_bitplane[i] 5 uimsbf

if ((i+1)%4==0)

marker_bit 1 bslbf

}

}

for (i = 0; i<tree_blocks; i++)

for (color = “y”, “u”, “v”)

arith_decode_highbands_td()

} else {

if (start_code_enable) {

do {

TextureSpatialLayerSQ()

} while (next_bits() == texture_spatial_layer_start_code)

} else {

for (i = 0; i< wavelet_decomposition_levels; i++)

TextureSpatialLayerSQNSC()

}

}

}

6.2.8.2 TextureSpatialLayerSQ

TextureSpatialLayerSQ() { No. of bits Mnemonic

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf

TextureSpatialLayerSQNSC()

}

6.2.8.3 TextureSpatialLayerSQNSC

TextureSpatialLayerSQNSC() { No. of bits Mnemonic

for (color=“y“,“u“,“v“) {

if ((first_wavelet_layer && color==“y“) ||

(second_wavelet_layer && color==“u“,“v“))

do {

quant_byte 8 uimsbf

} while (quant_byte >> 7)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

59

if (color ==“y“)

max_bitplanes 5 uimbsf

else if (!first_wavelet_layer)

max_bitplanes 5 uimbsf

}

arith_decode_highbands_bb()

}

6.2.8.4 TextureSpatialLayerMQ

TextureSpatialLayerMQ() { No. of bits Mnemonic

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf

snr_scalability_levels 5 uimsbf

do {

TextureSNRLayerMQ()

} while (next_bits() == texture_snr_layer_start_code)

}

6.2.8.5 TextureSpatialLayerMQNSC

TextureSpatialLayerMQNSC() { No. of bits Mnemonic

snr_scalability_levels 5 uimsbf

for (i =0; i<snr_scalability_levels; i++)

TextureSNRLayerMQNSC ()

}

6.2.8.6 TextureSNRLayerMQ

TextureSNRLayerMQ(){

texture_snr_layer_start_code 32 bslbf

texture_snr_layer_id 5 uimsbf

TextureSNRLayerMQNSC()

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

60

6.2.8.7 TextureSNRLayerMQNSC

TextureSNRLayerMQNSC(){ No. of bits Mnemonic

if (spatial_scalability_levels == wavelet_decomposition_levels

&& spatial_layer_id == 0) {

for (color = “y“) {

do {

quant_byte 8 uimsbf

} while (quant_byte >> 7)

for (i=0; i<spatial_layers; i++) {

max_bitplane[i] 5 uimsbf

if ((i+1)%4 == 0)

marker_bit 1 bslbf

}

}

}

else {

for (color=“y”, “u”, “v”) {

do {

quant_byte 8 uimsbf

} while (quant_byte >> 7)

for (i=0; i<spatial_layers; i++) {

max_bitplane[i] 5 uimsbf

if ((i+1)%4 == 0)

marker_bit 1 bslbf

}

}

}

if (scan_direction == 0) {

for (i = 0; i<tree_blocks; i++)

for (color = “y”, “u”, “v”)

if (wavelet_decomposition_layer_id != 0 || color != “u”, “v”)

arith_decode_highbands_td()

} else {

for (i = 0; i< spatial_layers; i++) {

for (color = “y”, “u”, “v”) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

61

if (wavelet_decomposition_layer_id != 0 || color != “u”, “v”)

arith_decode_highbands_bb()

}

}

}

}

6.2.8.8 TextureSpatialLayerBQ

TextureSpatialLayerBQ() { No. of bits Mnemonic

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf

for (i=0; i<max_bitplanes; i++) {

texture_snr_layer_start_code 32 bslbf

texture_snr_layer_id 5 uimsbf

TextureBitPlaneBQ()

next_start_code()

}

}

6.2.8.9 TextureBitPlaneBQ

TextureBitPlaneBQ () { No. of bits Mnemonic

for (color = “y”, “u”, “v”)

if (wavelet_decomposition_layer_id == 0){

all_nonzero[color] 1 bslbf

if (all_nonzero[color] == 0) {

all_zero[color] 1 bslbf

if (all_zero[color]==0) {

lh_zero[color] 1 bslbf

hl_zero[color] 1 bslbf

hh_zero[color] 1 bslbf

}

}

}

if (wavelet_decomposition_layer_id != 0 ||color != “u”, “v”){

if(all_nonzero[color]==1 || all_zero[color]==0){

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

62

if (scan_direction == 0)

arith_decode_highbands_bilevel_bb()

else

arith_decode_highbands_bilevel_td()

}

}

}

}

6.2.8.10 TextureSNRLayerBQ

TextureSNRLayerBQ() { No. of bits Mnemonic

texture_snr_layer_start_code 32 bslbf

texture_snr_layer_id 5 uimsbf

for (i=0; i<wavelet_decomposition_levels; i++) {

texture_spatial_layer_start_code 32 bslbf

texture_spatial_layer_id 5 uimsbf

TextureBitPlaneBQ()

next_start_code ()

}

}

6.2.8.11 DownloadWaveletFilters

download_wavelet_filters(){ No. of bits Mnemonic

lowpass_filter_length 4 uimsbf

highpass_filter_length 4 uimsbf

do{

if (wavelet_filter_type == 0) {

filter_tap_integer 16 imsbf

marker_bit 1 bslbf

} else {

filter_tap_float_high 16 uimsbf

marker_bit 1 bslbf

filter_tap_float_low 16 uimsbf

marker_bit 1 bslbf

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

63

} while (lowpass_filter_length--)

do{

if (wavelet_filter_type == 0){

filter_tap_integer 16 imsbf

marker_bit 1 bslbf

} else {

filter_tap_float_high 16 uimsbf

marker_bit 1 bslbf

filter_tap_float_low 16 uimsbf

marker_bit 1 bslbf

}

} while (highpass_filter_length--)

if (wavelet_filter_type == 0) {

integer_scale 16 uimsbf

marker_bit

}

}

6.2.8.12 Wavelet dc decode

wavelet_dc_decode() { No. of bits Mnemonic

mean 8 uimsbf

do{

quant_dc_byte 8 uimsbf

} while(quant_dc_byte >>7)

do{

band_offset_byte 8 uimsbf

} while (band_offset_byte >>7)

do{

band_max_byte 8 uimsbf

} while (band_max_byte >>7)

arith_decode_dc()

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

64

6.2.8.13 Wavelet higher bands decode

wavelet_ higher_bands_decode() { No. of bits Mnemonic

do{

root_max_alphabet_byte 8 uimsbf

} while (root_max_alphabet_byte >>7)

marker_bit 1 bslbf

do{

valz_max_alphabet_byte 8 uimsbf

} while (valz_max_alphabet_byte >>7)

do{

valnz_max_alphabet_byte 8 uimsbf

} while (valnz_max_alphabet_byte >>7)

arith_decode_highbands()

}

6.2.8.14 Shape Object Decoding

shape_object_decoding() { No. of bits Mnemonic

change_conv_ratio_disable 1 bslbf

sto_constant_alpha 1 bslbf

if (sto_constant_alpha)

sto_constant_alpha_value 8 bslbf

for (i=0; i<((object_width+15)/16)*((object_height+15)/16); i++){

bab_type 1-2 vlclbf

if (bab_type ==4) {

if (!change_conv_ratio_disable)

conv_ratio 1-2 vlcbf

scan_type 1 bslbf

binary_arithmetic_decode()

}

}

}

6.2.9 Mesh Object

MeshObject() { No. of bits Mnemonic

mesh_object_start_code 32 bslbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

65

do{

MeshObjectPlane()

} while (next_bits_bytealigned() ==

mesh_object_plane_start_code ||

next_bits_bytealigned() != ‘0000 0000 0000 0000 0000 0001’)

}

6.2.9.1 Mesh Object Plane

MeshObjectPlane() { No. of bits Mnemonic

MeshObjectPlaneHeader()

MeshObjectPlaneData()

}

MeshObjectPlaneHeader() { No. of bits Mnemonic

if (next_bits_bytealigned()==‘0000 0000 0000 0000 0000 0001’){

next_start_code()

mesh_object_plane_start_code 32 bslbf

}

is_intra 1 bslbf

mesh_mask 1 bslbf

temporal_header()

}

MeshObjectPlaneData() { No. of bits Mnemonic

if (mesh_mask == 1) {

if (is_intra == 1)

mesh_geometry()

else

mesh_motion()

}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

66

6.2.9.2 Mesh geometry

mesh_geometry() { No. of bits Mnemonic

mesh_type _code 2 bslbf

if (mesh_type_code == ‘01’) {

nr_of_mesh_nodes_hor 10 uimsbf

nr_of_mesh_nodes_vert 10 uimsbf

marker_bit 1 uimsbf

mesh_rect_size_hor 8 uimsbf

mesh_rect_size_vert 8 uimsbf

triangle_split_code 2 bslbf

}

else if (mesh_type_code == ‘10’) {

nr_of_mesh_nodes 16 uimsbf

marker_bit 1 uimsbf

nr_of_boundary_nodes 10 uimsbf

marker_bit 1 uimsbf

node0_x 13 simsbf

marker_bit 1 uimsbf

node0_y 13 simsbf

marker_bit 1 uimsbf

for (n=1; n < nr_of_mesh_nodes; n++) {

delta_x_len_vlc 2-12 vlclbf

if (delta_x_len_vlc)

delta_x 1-14 vlclbf

delta_y_len_vlc 2-12 vlclbf

if (delta_y_len_vlc)

delta_y 1-14 vlclbf

}

}

}

6.2.9.3 Mesh motion

mesh_motion() { No. of bits Mnemonic

motion_range_code 3 bslbf

for (n=0; n <nr_of_mesh_nodes; n++) {

node_motion_vector_flag 1 bslbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

67

if (node_motion_vector_flag == ‘0’) {

delta_mv_x_vlc 1-13 vlclbf

if ((motion_range_code != 1) && (delta_mv_x_vlc != 0))

delta_mv_x_res 1-6 uimsbf

delta_mv_y_vlc 1-13 vlclbf

if ((motion_range_code != 1) && (delta_mv_y_vlc != 0))

delta_mv_y_res 1-6 uimsbf

}

}

}

6.2.10 Face Object

fba_object() { No. of bits Mnemonic

face_object_start_code 32 bslbf

do {

fba_object_plane()

} while(!(

(nextbits_bytealigned() == ‘000 0000 0000 0000 0000 0000’) &&

(nextbits_bytealigned() != face_object_plane_start_code)))

}

6.2.10.1 Face Object Plane

fba_object_plane() { No. of bits Mnemonic

fba_object_plane_header()

fba_object_plane_data()

}

fba_object_plane_header() { No. of bits Mnemonic

if (nextbits_bytealigned()==‘000 0000 0000 0000 0000 0000’){

next_start_code()

fba_object_plane_start_code 32 bslbf

}

is_intra 1 bslbf

fba_object_mask 2 bslbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

68

temporal_header()

}

fba_object_plane_data() { No. of bits Mnemonic

if(fba_object_mask &’01’) {

if(is_intra) {

fap_quant 5 uimsbf

for (group_number = 1; group_number <= 10; group_number++) {

marker_bit 1 uimsbf

fap_mask_type 2 bslbf

if(fap_mask_type == ‘01’|| fap_mask_type == ‘10’)

fap_group_mask[group_number] 2-16 vlcbf

}

fba_suggested_gender 1 bslbf

fba_object_coding_type 1 bslbf

if(fba_object_coding_type == 0) {

is_i_new_max 1 bslbf

is_i_new_min 1 bslbf

is_p_new_max 1 bslbf

is_p_new_min 1 bslbf

decode_new_minmax()

decode_ifap()

}

if(fba_object_coding_type == 1)

decode_i_segment()

}

else {

if(fba_object_coding_type == 0)

decode_pfap()

if(fba_object_coding_type == 1)

decode_p_segment()

}

}

}

temporal_header() { No. of bits Mnemonic

if (is_intra) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

69

is_frame_rate 1 bslbf

if(is_frame_rate)

decode_frame_rate()

is_time_code 1 bslbf

if (is_time_code)

time_code 18 bsIbf

}

skip_frames 1 bslbf

if(skip_frames)

decode_skip_frames()

}

6.2.10.2 Decode frame rate and skip frames

decode_frame_rate(){ No. of bits Mnemonic

frame_rate 8 uimsbf

seconds 4 uimsbf

frequency_offset 1 uimsbf

}

decode_skip_frames(){ No. of bits Mnemonic

do{

number_of_frames_to_skip 4 uimsbf

} while (number_of_frames_to_skip = “1111”)

}

6.2.10.3 Decode new minmax

decode_new_minmax() { No. of bits Mnemonic

if (is_i_new_max) {

for (group_number = 2, j=0, group_number <= 10, group_number++)

for (i=0; i < NFAP[group_number]; i++, j++) {

if (!(i & 0x3))

marker_bit 1 uimsbf

if (fap_group_mask[group_number] & (1 <<i))

i_new_max[j] 5 uimsbf

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

70

if (is_i_new_min) {

for (group_number = 2, j=0, group_number <= 10, group_number++)

for (i=0; i < NFAP[group_number]; i++, j++) {

if (!(i & 0x3))

marker_bit 1 uimsbf

if (fap_group_mask[group_number] & (1 <<i))

i_new_min[j] 5 uimsbf

}

if (is_p_new_max) {

for (group_number = 2, j=0, group_number <= 10, group_number++)

for (i=0; i < NFAP[group_number]; i++, j++) {

if (!(i & 0x3))

marker_bit 1 uimsbf

if (fap_group_mask[group_number] & (1 <<i))

p_new_max[j] 5 uimsbf

}

if (is_p_new_min) {

for (group_number = 2, j=0, group_number <= 10, group_number++)

for (i=0; i < NFAP[group_number]; i++, j++) {

if (!(i & 0x3))

marker_bit 1 uimsbf

if (fap_group_mask[group_number] & (1 <<i))

p_new_min[j] 5 uimsbf

}

}

}

6.2.10.4 Decode ifap

decode_ifap(){ No. of bits Mnemonic

for (group_number = 1, j=0; group_number <= 10; group_number++) {

if (group_number == 1) {

if(fap_group_mask[1] & 0x1)

decode_viseme()

if(fap_group_mask[1] & 0x2)

decode_expression()

} else {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

71

for (i= 0; i<NFAP[group_number]; i++, j++) {

if(fap_group_mask[group_number] & (1 << i)) {

aa_decode(ifap_Q[j],ifap_cum_freq[j])

}

}

}

}

}

6.2.10.5 Decode pfap

decode_pfap(){ No. of bits Mnemonic

for (group_number = 1, j=0; group_number <= 10; group_number++) {

if (group_number == 1) {

if(fap_group_mask[1] & 0x1)

decode_viseme()

if(fap_group_mask[1] & 0x2)

decode_expression()

} else {

for (i= 0; i<NFAP[group_number]; i++, j++) {

if(fap_group_mask[group_number] & (1 << i)) {

aa_decode(pfap_diff[j], pfap_cum_freq[j])

}

}

}

}

}

6.2.10.6 Decode viseme and expression

decode_viseme() { No. of bits Mnemonic

aa_decode(viseme_select1Q, viseme_select1_cum_freq) vlclbf

aa_decode(viseme_select2Q, viseme_select2_cum_freq) vlclbf

aa_decode(viseme_blendQ, viseme_blend_cum_freq) vlclbf

viseme_def 1 bslbf

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

72

decode_expression() { No. of bits Mnemonic

aa_decode(expression_select1Q, expression_select1_cum_freq) vlclbf

aa_decode(expression_intensity1Q,

expression_intensity1_cum_freq)

vlclbf

aa_decode(expression_select2Q, expression_select2_cum_freq) vlclbf

aa_decode(expression_intensity2Q,

expression_intensity2_cum_freq)

vlclbf

aa_decode(expression_blendQ, expression_blend_cum_freq) vlclbf

init_face 1 bslbf

expression_def 1 bslbf

}

6.2.10.7 Face Object Plane Group

face_object_plane_group() { No. of bits Mnemonic

face_object_plane_start_code 32 bslbf

is_intra 1 bslbf

if (is_intra) {

face_paramset_mask 2 bslbf

is_frame_rate 1 bslbf

if(is_frame_rate)

decode_frame_rate()

is_time_code 1 bslbf

if(is_time_code)

time_code 18

skip_frames 1 bslbf

if(skip_frames)

decode_skip_frames()

if(face_paramset_mask ==’01’) {

fap_quant_index 5 uimsbf

for (group_number = 1 to 10) {

marker_bit 1 uimsbf

fap_mask_type 2 bslbf

if(fap_mask_type == ‘01’|| fap_mask_type == ‘10’)

fap_group_mask[group_number] 2-16 vlcbf

}

decode_i_segment()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

73

} else {

face_object_group_prediction()

}

next_start_code()

}

6.2.10.8 Face Object Group Prediction

face_object_group_prediction() { No. of bits Mnemonic

skip_frames 1 bslbf

if(skip_frames)

decode_skip_frames()

if(face_paramset_mask ==’01’) {

decode_p_segment()

}

}

6.2.10.9 Decode i_segment

decode_i_segment(){ No. of bits Mnemonic

for (group_number= 1, j=0; group_number<= 10; group_number++) {

if (group_number == 1) {

if(fap_group_mask[1] & 0x1)

decode_i_viseme_segment()

if(fap_group_mask[1] & 0x2)

decode_i_expression_segment()

} else {

for(i=0; i<NFAP[group_number]; i++, j++) {

if(fap_group_mask[group_number] & (1 << i)) {

decode_i_dc(dc_Q[j])

decode_ac(ac_Q[j])

}

}

}

}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

74

6.2.10.10 Decode p_segment

decode_p_segment(){ No. of bits Mnemonic

for (group_number = 1, j=0; group_number <= 10; group_number++) {

if (group_number == 1) {

if(fap_group_mask[1] & 0x1)

decode_p_viseme_segment()

if(fap_group_mask[1] & 0x2)

decode_p_expression_segment()

} else {

for (i=0; i<NFAP[group_number]; i++, j++) {

If(fap_group_mask[group_number] & (1 << i)) {

decode_p_dc(dc_Q[j])

decode_ac(ac_Q[j])

}

}

}

}

}

6.2.10.11 Decode viseme and expression

decode_i_viseme_segment(){ No. of bits Mnemonic

viseme_segment_select1q[0] 4 uimsbf

viseme_segment_select2q[0] 4 uimsbf

viseme_segment_blendq[0] 6 uimsbf

viseme_segment_def[0] 1 bslbf

for (k=1; k<16, k++) {

viseme_segment_select1q_diff[k] vlclbf

viseme_segment_select2q_diff[k] vlclbf

viseme_segment_blendq_diff[k] vlclbf

viseme_segment_def[k] 1 bslbf

}

}

decode_p _viseme_segment(){ No. of bits Mnemonic

for (k=0; k<16, k++) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

75

viseme_segment_select1q_diff[k] vlclbf

viseme_segment_select2q_diff[k] vlclbf

viseme_segment_blendq_diff[k] vlclbf

viseme_segment_def[k] 1 bslbf

}

}

decode_i_expression_segment(){ No. of bits Mnemonic

expression_segment_select1q[0] 4 uimsbf

expression_segment_select2q[0] 4 uimsbf

expression_segment_intensity1q[0] 6 uimsbf

expression_segment_intensity2q[0] 6 uimsbf

expression_segment_init_face[0] 1 bslbf

expression_segment_def[0] 1 bslbf

for (k=1; k<16, k++) {

expression_segment_select1q_diff[k] vlclbf

expression_segment_select2q_diff[k] vlclbf

expression_segment_intensity1q_diff[k] vlclbf

expression_segment_intensity2q_diff[k] vlclbf

expression_segment_init_face[k] 1 bslbf

expression_segment_def[k] 1 bslbf

}

}

decode_p _expression_segment(){ No. of bits Mnemonic

for (k=0; k<16, k++) {

expression_segment_select1q_diff[k] vlclbf

expression_segment_select2q_diff[k] vlclbf

expression_segment_intensity1q_diff[k] vlclbf

expression_segment_intensity2q_diff[k] vlclbf

expression_segment_init_face[k] 1 bslbf

expression_segment_def[k] 1 bslbf

}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

76

decode_i_dc(dc_q) { No. of bits Mnemonic

dc_q 16 simsbf

if(dc_q == -256*128)

dc_q 31 simsbf

}

decode_p_dc(dc_q_diff) { No. of bits Mnemonic

dc_q_diff vlclbf

dc_q_diff = dc_q_diff- 256

if(dc_q_diff == -256)

dc_q_diff 16 simsbf

if(dc_Q == 0-256*128)

dc_q_diff 32 simsbf

}

decode_ac(ac_Q[i]) { No. of bits Mnemonic

this = 0

next = 0

while(next < 15) {

count_of_runs vlclbf

if (count_of_runs == 15)

next = 16

else {

next = this+1+count_of_runs

for (n=this+1; n<next; n++)

ac_q[i][n] = 0

ac_q[i][next] vlclbf

if(ac_q[i][next] == 256)

decode_i_dc(ac_q[i][next])

else

ac_q[i][next] = ac_q[i][next]-256

this = next

}

}

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

77

6.3 Visual bitstream semantics

6.3.1 Semantic rules for higher syntactic structures

This subclause details the rules that govern the way in which the higher level syntactic elements may be combined
together to produce a legal bitstream. Subsequent subclauses detail the semantic meaning of all fields in the video
bitstream.

6.3.2 Visual Object Sequence and Visual Object

visual_object_sequence_start_code: The visual_object_sequence_start_code is the bit string ‘000001B0’ in
hexadecimal. It initiates a visual session.

profile_and_level_indication: This is an 8-bit integer used to signal the profile and level identification. The
meaning of the bits is given in Table G-1.

visual_object_sequence_end_code: The visual_object_sequence_end_code is the bit string ‘000001B1’ in
hexadecimal. It terminates a visual session.

visual_object_start_code: The visual_object_start_code is the bit string ‘000001B5’ in hexadecimal. It initiates a
visual object.

is_visual_object_identifier: This is a 1-bit code which when set to ‘1’ indicates that version identification and
priority is specified for the visual object. When set to ‘0’, no version identification or priority needs to be specified.

visual_object_verid: This is a 4-bit code which identifies the version number of the visual object. Its meaning is
defined in Table 6-4.

Table 6-4 -- Meaning of visual_object_verid

visual_object_verid Meaning

0000 reserved

0001 ISO/IEC 14496-2

0010 - 1111 reserved

visual_object_priority: This is a 3-bit code which specifies the priority of the visual object. It takes values between
1 and 7, with 1 representing the highest priority and 7, the lowest priority. The value of zero is reserved.

visual_object_type: The visual_object_type is a 4-bit code given in Table 6-5 which identifies the type of the
visual object.

Table 6-5 -- Meaning of visual object type

code visual object type

0000 reserved

0001 video ID

0010 still texture ID

0011 mesh ID

0100 face ID

0101 reserved

: :

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

78

: :

1111 reserved

video_object_start_code: The video_object_start_code is a string of 32 bits. The first 27 bits are ‘0000 0000 0000
0000 0000 0001 000‘ in binary and the last 5-bits represent one of the values in the range of ‘00000’ to ‘11111’ in
binary. The video_object_start_code marks a new video object.

video_object_id: This is given by the last 5-bits of the video_object_start_code. The video_object_id uniquely
identifies a video object.

video_signal_type: A flag which if set to ‘1’ indicates the presence of video_signal_type information.

video_format: This is a three bit integer indicating the representation of the pictures before being coded in
accordance with this part of ISO/IEC 14496. Its meaning is defined in Table 6-6. If the video_signal_type() is not
present in the bitstream then the video format may be assumed to be “Unspecified video format”.

Table 6-6 -- Meaning of video_format

video_format Meaning

000 Component

001 PAL

010 NTSC

011 SECAM

100 MAC

101 Unspecified video format

110 Reserved

111 Reserved

video_range: This one-bit flag indicates the black level and range of the luminance and chrominance signals.

colour_description: A flag which if set to ‘1’ indicates the presence of colour_primaries, transfer_characteristics
and matrix_coefficients in the bitstream.

colour_primaries: This 8-bit integer describes the chromaticity coordinates of the source primaries, and is defined
in Table 6-7.

Table 6-7 -- Colour Primaries

Value Primaries

0 (forbidden)

1 Recommendation ITU-R BT.709

primary x y

green 0,300 0,600

blue 0,150 0,060

red 0,640 0,330

white D65 0,3127 0,3290

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

79

2 Unspecified Video

Image characteristics are unknown.

3 Reserved

4 Recommendation ITU-R BT.470-2 System M

primary x y

green 0,21 0,71

blue 0,14 0,08

red 0,67 0,33

white C 0,310 0,316

5 Recommendation ITU-R BT.470-2 System B, G

primary x y

green 0,29 0,60

blue 0,15 0,06

red 0,64 0,33

white D65 0,3127 0,3290

6 SMPTE 170M

primary x y

green 0,310 0,595

blue 0,155 0,070

red 0,630 0,340

white D65 0,3127 0,3290

7 SMPTE 240M (1987)

primary x y

green 0,310 0,595

blue 0,155 0,070

red 0,630 0,340

white D65 0,3127 0,3290

8 Generic film (colour filters using Illuminant C)

primary x y

green 0,243 0,692 (Wratten 58)

blue 0,145 0,049 (Wratten 47)

red 0,681 0,319 (Wratten 25)

9-255 Reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the chromaticity is
assumed to be that corresponding to colour_primaries having the value 1.

transfer_characteristics: This 8-bit integer describes the opto-electronic transfer characteristic of the source
picture, and is defined in Table 6-8.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

80

Table 6-8 -- Transfer Characteristics

Value Transfer Characteristic

0 (forbidden)

1 Recommendation ITU-R BT.709

V = 1,099 Lc
0,45 - 0,099

for 1� Lc � 0,018

V = 4,500 Lc

for 0,018> Lc � 0

2 Unspecified Video

Image characteristics are unknown.

3 reserved

4 Recommendation ITU-R BT.470-2 System M

Assumed display gamma 2,2

5 Recommendation ITU-R BT.470-2 System B, G

Assumed display gamma 2,8

6 SMPTE 170M

V = 1,099 Lc
0,45 - 0,099

for 1� Lc � 0,018

V = 4,500 Lc

for 0,018> Lc � 0

7 SMPTE 240M (1987)

V = 1,1115 Lc
0,45 - 0,1115

for Lc� 0,0228

V = 4,0 Lc

for 0,0228> Lc

8 Linear transfer characteristics

i.e. V = Lc

9 Logarithmic transfer characteristic (100:1 range)

V = 1.0-Log10(Lc)/2

for 1= Lc = 0.01

V= 0.0

for 0.01> Lc

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

81

10 Logarithmic transfer characteristic (316.22777:1 range)

V = 1.0-Log10(Lc)/2.5

for 1= Lc = 0.0031622777

V= 0.0

for 0.0031622777> Lc

11-255 reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the transfer
characteristics are assumed to be those corresponding to transfer_characteristics having the value 1.

matrix_coefficients: This 8-bit integer describes the matrix coefficients used in deriving luminance and
chrominance signals from the green, blue, and red primaries, and is defined in Table 6-9.

In this table:

E’Y is analogue with values between 0 and 1

E’PB and E’PR are analogue between the values -0,5 and 0,5

E’R, E’G and E’B are analogue with values between 0 and 1

White is defined as E’y=1, E’PB=0, E’PR=0; E’R =E’G =E’B=1.

Y, Cb and Cr are related to E’Y, E’PB and E’PR by the following formulae:

if video_range=0:

Y = (219 * 2n-8 * E’Y) + 2n-4.

Cb = (224 * 2n-8 * E’PB) + 2n-1

Cr = (224 * 2n-8 * E’PR) + 2n-1

if video_range=1:

Y = ((2n -1) * E’Y)

Cb = ((2n -1) * E’PB) + 2n-1

Cr = ((2n -1) * E’PR) + 2n-1

for n bit video.

For example, for 8 bit video,

video_range=0 gives a range of Y from 16 to 235, Cb and Cr from 16 to 240;

video_range=1 gives a range of Y from 0 to 255, Cb and Cr from 0 to 255.

Table 6-9 -- Matrix Coefficients

Value Matrix

0 (forbidden)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

82

1 Recommendation ITU-R BT.709

E’Y = 0,7152 E’G + 0,0722 E’B + 0,2126 E’R

E’PB = -0,386 E’G + 0,500 E’B -0,115 E’R

E’PR = -0,454 E’G - 0,046 E’B + 0,500 E’R

2 Unspecified Video

Image characteristics are unknown.

3 reserved

4 FCC

E’Y = 0,59 E’G + 0,11 E’B + 0,30 E’R

E’PB = -0,331 E’G + 0,500 E’B -0,169 E’R

E’PR = -0,421 E’G - 0,079 E’B + 0,500 E’R

5 Recommendation ITU-R BT.470-2 System B, G

E’Y = 0,587 E’G + 0,114 E’B + 0,299 E’R

E’PB = -0,331 E’G + 0,500 E’B -0,169 E’R

E’PR = -0,419 E’G - 0,081 E’B + 0,500 E’R

6 SMPTE 170M

E’Y = 0,587 E’G + 0,114 E’B + 0,299 E’R

E’PB = -0,331 E’G + 0,500 E’B -0,169 E’R

E’PR = -0,419 E’G - 0,081 E’B + 0,500 E’R

7 SMPTE 240M (1987)

E’Y = 0,701 E’G + 0,087 E’B + 0,212 E’R

E’PB = -0,384 E’G + 0,500 E’B -0,116 E’R

E’PR = -0,445 E’G - 0,055 E’B + 0,500 E’R

8-255 reserved

In the case that video_signal_type() is not present in the bitstream or colour_description is zero the matrix
coefficients are assumed to be those corresponding to matrix_coefficients having the value 1.

In the case that video_signal_type() is not present in the bitstream, video_range is assumed to have the value 0 (a
range of Y from 16 to 235 for 8-bit video).

6.3.2.1 User data

user_data_start_code: The user_data_start_code is the bit string ‘000001B2’ in hexadecimal. It identifies the
beginning of user data. The user data continues until receipt of another start code.

user_data: This is an 8 bit integer, an arbitrary number of which may follow one another. User data is defined by
users for their specific applications. In the series of consecutive user_data bytes there shall not be a string of 23 or
more consecutive zero bits.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

83

6.3.3 Video Object Layer

video_object_layer_start_code: The video_object_layer_start_code is a string of 32 bits. The first 28 bits are
‘0000 0000 0000 0000 0000 0001 0010‘ in binary and the last 4-bits represent one of the values in the range of
‘0000’ to ‘1111’ in binary. The video_object_layer_start_code marks a new video object layer.

video_object_layer_id: This is given by the last 4-bits of the video_object_layer_start_code. The
video_object_layer_id uniquely identifies a video object layer.

short_video_header: The short_video_header is an internal flag which is set to 1 when an abbreviated header
format is used for video content. This indicates video data which begins with a short_video_start_marker rather than
a longer start code such as visual_object_ start_code. The short header format is included herein to provide
forward compatibility with video codecs designed using the earlier video coding specification ITU-T
Recommendation H.263. All decoders which support video objects shall support both header formats
(short_video_header equal to 0 or 1) for the subset of video tools that is expressible in either form.

video_plane_with_short_header(): This is a syntax layer encapsulating a video plane which has only the limited
set of capabilities available using the short header format.

random_accessible_vol: This flag may be set to “1” to indicate that every VOP in this VOL is individually
decodable. If all of the VOPs in this VOL are intra-coded VOPs and some more conditions are satisfied then
random_accessible_vol may be set to “1”. The flag random_accessible_vol is not used by the decoding process.
random_accessible_vol is intended to aid random access or editing capability. This shall be set to “0” if any of the
VOPs in the VOL are non-intra coded or certain other conditions are not fulfilled.

video_object_type_indication: Constrains the following bitstream to use tools from the indicated object type only,
e.g. Simple Object or Core Object, as shown in Table 6-10.

Table 6-10 -- FLC table for video_object_type indication

Video Object Type Code

Reserved 00000000

Simple Object Type 00000001

Simple Scalable Object Type 00000010

Core Object Type 00000011

Main Object Type 00000100

N-bit Object Type 00000101

Basic Anim. 2D Texture 00000110

Anim. 2D Mesh 00000111

Simple Face 00001000

Still Scalable Texture 00001001

Reserved 00001010 - 11111111

is_object_layer_identfier: This is a 1-bit code which when set to ‘1’ indicates that version identification and priority
is specified for the visual object layer. When set to ‘0’, no version identification or priority needs to be specified.

video_object_layer_verid: This is a 4-bit code which identifies the version number of the video object layer. Its
meaning is defined in Table 6-11. If both visual_object_verid and video_object_layer_verid exist, the semantics of
video_object_layer_verid supersedes the other.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

84

Table 6-11 -- Meaning of video_object_layer_verid

video_object_layer_verid Meaning

0000 reserved

0001 ISO/IEC 14496-2

0010 - 1111 reserved

video_object_layer_priority: This is a 3-bit code which specifies the priority of the video object layer. It takes
values between 1 and 7, with 1 representing the highest priority and 7, the lowest priority. The value of zero is
reserved.

aspect_ratio_info: This is a four-bit integer which defines the value of pixel aspect ratio. Table 6-12 shows the
meaning of the code. If aspect_ratio_info indicates extended PAR, pixel_aspect_ratio is represented by par_width
and par_height. The par_width and par_height shall be relatively prime.

Table 6-12 -- Meaning of pixel aspect ratio

aspect_ratio_info pixel aspect ratios

0000 Forbidden

0001 1:1 (Square)

0010 12:11 (625-type for 4:3 picture)

0011 10:11 (525-type for 4:3 picture)

0100 16:11 (625-type stretched for 16:9 picture)

0101 40:33 (525-type stretched for 16:9 picture)

0110-1110 Reserved

1111 extended PAR

par_width: This is an 8-bit unsigned integer which indicates the horizontal size of pixel aspect ratio. A zero value is
forbidden.

par_height: This is an 8-bit unsigned integer which indicates the vertical size of pixel aspect ratio. A zero value is
forbidden.

vol_control_parameters: This a one-bit flag which when set to ‘1’ indicates presence of the following parameters:
chroma_format, low_delay, and vbv_parameters.

chroma_format: This is a two bit integer indicating the chrominance format as defined in the Table 6-13.

Table 6-13 -- Meaning of chroma_format

chroma_format Meaning

00 reserved

01 4:2:0

10 reserved

11 reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

85

low_delay : This is a one-bit flag which when set to ‘1’ indicates the VOL contains no B-VOPs.

vbv_parameters: This is a one-bit flag which when set to ‘1’ indicates presence of following VBV parameters:
first_half_bit_rate, latter_half_bit_rate, first_half_vbv_buffer_size, latter_half_vbv_buffer_size,
first_half_vbv_occupancy and latter_half_vbv_occupancy. The VBV constraint is defined in annex D.

first_half_bit_rate, latter_half_bit_rate: The bit rate is a 30-bit unsigned integer which specifies the bitrate of the
bitstream measured in units of 400 bits/second, rounded upwards. The value zero is forbidden. This value is divided
to two parts. The most significant bits are in first_half_bit_rate (15 bits) and the least significant bits are in
latter_half_bit_rate (15 bits). The marker_bit is inserted between the first_half_bit_rate and the latter_half_bit_rate in
order to avoid the resync_marker emulation. The instantaneous video object layer channel bit rate seen by the
encoder is denoted by Rvol(t) in bits per second. If the bit_rate (i.e. first_half_bit_rate and latter_half_bit_rate) field in
the VOL header is present, it defines a peak rate (in units of 400 bits per second; a value of 0 is forbidden) such that
Rvol(t) <= 400 � bit_rate Note that Rvol(t) counts only visual syntax for the current elementary stream (also see annex
D).

first_half_vbv_buffer_size, latter_half_vbv_buffer_size: vbv_buffer_size is an 18-bit unsigned integer. This
value is divided into two parts. The most significant bits are in first_half_vbv_buffer_size (15 bits) and the least
significant bits are in latter_half_vbv_buffer_size (3 bits), The VBV buffer size is specified in units of 16384 bits. The
value 0 for vbv_buffer_size is forbidden. Define B = 16384 � vbv_buffer_size to be the VBV buffer size in bits.

first_half_vbv_occupancy, latter_half_vbv_occupancy: The vbv_occupancy is a 26-bit unsigned integer. This
value is divided to two parts. The most significant bits are in first_half_vbv_occupancy (11 bits) and the least
significant bits are in latter_half_vbv_occupancy (15 bits). The marker_bit is inserted between the
first_vbv_buffer_size and the latter_half_vbv_buffer_size in order to avoid the resync_marker emulation. The value
of this integer is the VBV occupancy in 64-bit units just before the removal of the first VOP following the VOL
header. The purpose for the quantity is to provide the initial condition for VBV buffer fullness.

video_object_layer_shape: This is a 2-bit integer defined in Table 6-14. It identifies the shape type of a video
object layer.

Table 6-14 -- Video Object Layer shape type

Shape format Meaning

00 rectangular

01 binary

10 binary only

11 grayscale

vop_time_increment_resolution: This is a 16-bit unsigned integer that indicates the number of evenly spaced
subintervals, called ticks, within one modulo time. One modulo time represents the fixed interval of one second. The
value zero is forbidden.

fixed_vop_rate: This is a one-bit flag which indicates that all VOPs are coded with a fixed VOP rate. It shall only be
'1' if and only if all the distances between the display time of any two successive VOPs in the display order in the
video object layer are constant. In this case, the VOP rate can be derived from the fixed_VOP_time_increment. If it
is '0' the display time between any two successive VOPs in the display order can be variable thus indicated by the
time stamps provided in the VOP header.

fixed_vop_time_increment: This value represents the number of ticks between two successive VOPs in the
display order. The length of a tick is given by VOP_time_increment_resolution. It can take a value in the range of
[0,VOP_time_increment_resolution). The number of bits representing the value is calculated as the minimum
number of unsigned integer bits required to represent the above range. fixed_VOP_time_increment shall only be
present if fixed_VOP_rate is '1' and its value must be identical to the constant given by the distance between the
display time of any two successive VOPs in the display order. In this case, the fixed VOP rate is given as
(VOP_time_increment_resolution / fixed_VOP_time_increment). A zero value is forbidden.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

86

EXAMPLE
VOP time = tick � vop_time_increment

= vop_time_increment / vop_time_increment_resolution

Table 6-15 -- Examples of vop_time_increment_resolution, fix_vop_time_increment, and
vop_time_increment

Fixed VOP rate =
1/VOP time

vop_time_increment_
resolution

fixed_vop_time_
increment

vop_time_increment

15Hz 15 1 0, 1, 2, 3, 4,…

7.5Hz 15 2 0, 2, 4, 6, 8,…

29.97…Hz 30000 1001 0, 1001, 2002, 3003,…

59.94…Hz 60000 1001 0, 1001, 2002, 3003,…

video_object_layer_width: The video_object_layer_width is a 13-bit unsigned integer representing the width of
the displayable part of the luminance component in pixel units. The width of the encoded luminance component of
VOPs in macroblocks is (video_object_layer_width+15)/16. The displayable part is left-aligned in the encoded
VOPs.

video_object_layer_height: The video_object_layer_height is a 13-bit unsigned integer representing the height of
the displayable part of the luminance component in pixel units. The height of the encoded luminance component of
VOPs in macroblocks is (video_object_layer_height+15)/16. The displayable part is top-aligned in the encoded
VOPs.

interlaced: This is a 1 bit flag which, when set to “1” indicates that the VOP may contain interlaced video. When
this flag is set to “0”, the VOP is of non-interlaced (or progressive) format.

obmc_disable: This is a one-bit flag which when set to ‘1’ disables overlapped block motion compensation.

sprite_enable: This is a one-bit flag which when set to ‘1’ indicates the presence of sprites.

sprite_width: This is a 13-bit unsigned integer which identifies the horizontal dimension of the sprite.

sprite_height: This is a 13-bit unsigned integer which identifies the vertical dimension of the sprite.

sprite_left_coordinate – This is a 13-bit signed integer which defines the left-edge of the sprite. The value of
sprite_left_coordinate shall be divisible by two.

sprite_top_coordinate: This is a 13-bit signed integer which defines the top edge of the sprite. The value of
sprite_left_coordinate shall be divisible by two.

no_of_sprite_warping_points: This is a 6-bit unsigned integer which represents the number of points used in
sprite warping. When its value is 0 and when sprite_enable is set to ‘1’, warping is identity (stationary sprite) and no
coordinates need to be coded. When its value is 4, a perspective transform is used. When its value is 1,2 or 3, an
affine transform is used. Further, the case of value 1 is separated as a special case from that of values 2 or 3.
Table 6-16 shows the various choices.

Table 6-16 -- Number of point and implied warping function

Number of points warping function

0 Stationary

1 Translation

2,3 Affine

4 Perspective

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

87

sprite_warping_accuracy – This is a 2-bit code which indicates the quantization accuracy of motion vectors used
in the warping process for sprites. Table 6-17 shows the meaning of various codewords

Table 6-17 -- Meaning of sprite warping accuracy codewords

code sprite_warping_accuracy

00 ½ pixel

01 ¼ pixel

10 1/8 pixel

11 1/16 pixel

sprite_brightness_change: This is a one-bit flag which when set to ‘1’ indicates a change in brightness during
sprite warping, alternatively, a value of ‘0’ means no change in brightness.

low_latency_sprite_enable: This is a one-bit flag which when set to "1" indicates the presence of low_latency
sprite, alternatively, a value of "0" means basic sprite.

not_8_bit: This one bit flag is set when the video data precision is not 8 bits per pixel.

quant_precision: This field specifies the number of bits used to represent quantiser parameters. Values between 3
and 9 are allowed. When not_8_bit is zero, and therefore quant_precision is not transmitted, it takes a default value
of 5.

bits_per_pixel: This field specifies the video data precision in bits per pixel. It may take different values for
different video object layers within a single video object. A value of 12 in this field would indicate 12 bits per pixel.
This field may take values between 4 and 12. When not_8_bit is zero and bits_per_pixel is not present, the video
data precision is always 8 bits per pixel, which is equivalent to specifying a value of 8 in this field. The same number
of bits per pixel is used in the luminance and two chrominance planes. The alpha plane, used to specify shape of
video objects, is always represented with 8 bits per pixel.

no_gray_quant_update: This is a one bit flag which is set to ‘1’ when a fixed quantiser is used for the decoding of
grayscale alpha data. When this flag is set to ‘0’, the grayscale alpha quantiser is updated on every macroblock by
generating it anew from the luminance quantiser value, but with an appropriate scale factor applied. See the
description in subclause 7.5.4.3.

composition_method: This is a one bit flag which indicates which blending method is to be applied to the video
object in the compositor. When set to ‘0’, cross-fading shall be used. When set to ‘1’, additive mixing shall be used.
See subclause 7.5.4.6.

linear_composition: This is a one bit flag which indicates the type of signal used by the compositing process.
When set to ‘0’, the video signal in the format from which it was produced by the video decoder is used. When set to
‘1’, linear signals are used. See subclause 7.5.4.6.

quant_type: This is a one-bit flag which when set to ‘1’ that the first inverse quantisation method and when set to
‘0’ indicates that the second inverse quantisation method is used for inverse quantisation of the DCT coefficients.
Both inverse quantisation methods are described in subclause 7.4.4. For the first inverse quantization method, two
matrices are used, one for intra blocks the other for non-intra blocks.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

88

The default matrix for intra blocks is:

8 17 18 19 21 23 25 27

17 18 19 21 23 25 27 28

20 21 22 23 24 26 28 30

21 22 23 24 26 28 30 32

22 23 24 26 28 30 32 35

23 24 26 28 30 32 35 38

25 26 28 30 32 35 38 41

27 28 30 32 35 38 41 45

The default matrix for non-intra blocks is:

16 17 18 19 20 21 22 23

17 18 19 20 21 22 23 24

18 19 20 21 22 23 24 25

19 20 21 22 23 24 26 27

20 21 22 23 25 26 27 28

21 22 23 24 26 27 28 30

22 23 24 26 27 28 30 31

23 24 25 27 28 30 31 33

load_intra_quant_mat: This is a one-bit flag which is set to ‘1’ when intra_quant_mat follows. If it is set to ‘0’ then
there is no change in the values that shall be used.

intra_quant_mat: This is a list of 2 to 64 eight-bit unsigned integers. The new values are in zigzag scan order and
replace the previous values. A value of 0 indicates that no more values are transmitted and the remaining, non-
transmitted values are set equal to the last non-zero value. The first value shall always be 8 and is not used in the
decoding process.

load_nonintra_quant_mat: This is a one-bit flag which is set to ‘1’ when nonintra_quant_mat follows. If it is set to
‘0’ then there is no change in the values that shall be used.

nonintra_quant_mat: This is a list of 2 to 64 eight-bit unsigned integers. The new values are in zigzag scan order
and replace the previous values. A value of 0 indicates that no more values are transmitted and the remaining, non-
transmitted values are set equal to the last non-zero value. The first value shall not be 0.

load_intra_quant_mat_grayscale: This is a one-bit flag which is set to ‘1’ when intra_quant_mat_grayscale
follows. If it is set to ‘0’ then there is no change in the quantisation matrix values that shall be used.

intra_quant_mat_grayscale: This is a list of 2 to 64 eight-bit unsigned integers defining the grayscale intra alpha
quantisation matrix to be used. The semantics and the default quantisation matrix are identical to those of
intra_quant_mat.

load_nonintra_quant_mat_grayscale: This is a one-bit flag which is set to ‘1’ when
nonintra_quant_mat_grayscale follows. If it is set to ‘0’ then there is no change in the quantisation matrix values that
shall be used.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

89

nonintra_quant_mat_grayscale: This is a list of 2 to 64 eight-bit unsigned integers defining the grayscale nonintra
alpha quantisation matrix to be used. The semantics and the default quantisation matrix are identical to those of
nonintra_quant_mat.

complexity_estimation_disable: This is a one-bit flag which, when set to '1', disables complexity estimation
header in each VOP.

estimation_method : Setting of the of the estimation method,it is „00“ for Version 1.

shape_complexity_estimation_disable: This is a one-bit flag which when set to '1' disables shape complexity
estimation.

opaque: Flag enabling transmission of the number of luminance and chrominance blocks coded using opaque
coding mode in % of the total number of blocks (bounding rectangle).

transparent: Flag enabling transmission of the number of luminance and chrominance blocks coded using
transparent mode in % of the total number of blocks (bounding rectangle).

intra_cae: Flag enabling transmission of the number of luminance and chrominance blocks coded using IntraCAE
coding mode in % of the total number of blocks (bounding rectangle).

inter_cae: Flag enabling transmission of the number of luminance and chrominance blocks coded using InterCAE
coding mode in % of the total number of blocks (bounding rectangle).

no_update: Flag enabling transmission of the number of luminance and chrominance blocks coded using no
update coding mode in % of the total number of blocks (bounding rectangle).

upsampling: Flag enabling transmission of the number of luminance and chrominance blocks which need
upsampling from 4-4- to 8-8 block dimensions in % of the total number of blocks (bounding rectangle).

texture_complexity_estimation_set_1_disable: Flag to disable texture parameter set 1.

intra_blocks: Flag enabling transmission of the number of luminance and chrominance Intra or Intra+Q coded
blocks in % of the total number of blocks (bounding rectangle).

inter_blocks: Flag enabling transmission of the number of luminance and chrominance Inter and Inter+Q coded
blocks in % of the total number of blocks (bounding rectangle).

inter4v_blocks: Flag enabling transmission of the number of luminance and chrominance Inter4V coded blocks in
% of the total number of blocks (bounding rectangle).

not_coded_blocks: Flag enabling transmission of the number of luminance and chrominance Non Coded blocks
in % of the total number of blocks (bounding rectangle).

texture_complexity_estimation_set_2_disable: Flag to disable texture parameter set 2.

dct_coefs: Flag enabling transmission of the number of DCT coefficients % of the maximum number of coefficients
(coded blocks).

dct_lines: Flag enabling transmission of the number of DCT8x1 in % of the maximum number of DCT8x1 (coded
blocks).

vlc_symbols: Flag enabling transmission of the average number of VLC symbols for macroblock.

vlc_bits: Flag enabling transmission of the average number of bits for each symbol.

motion_compensation_complexity_disable: Flag to disable motion compensation parameter set.

apm (Advanced Prediction Mode): Flag enabling transmission of the number of luminance block predicted using
APM in % of the total number of blocks for VOP (bounding rectangle).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

90

npm (Normal Prediction Mode): Flag enabling transmission of the number of luminance and chrominance blocks
predicted using NPM in % of the total number of luminance and chrominance for VOP (bounding rectangle).

interpolate_mc_q: Flag enabling transmission of the number of luminance and chrominance interpolated blocks in
% of the total number of blocks for VOP (bounding rectangle).

forw_back_mc_q: Flag enabling transmission of the number of luminance and chrominance predicted blocks in %
of the total number of blocks for VOP (bounding rectangle).

halfpel2: Flag enabling transmission of the number of luminance and chrominance block predicted by a half-pel
vector on one dimension (horizontal or vertical) in % of the total number of blocks (bounding rectangle).

halfpel4: Flag enabling transmission of the number of luminance and chrominance block predicted by a half-pel
vector on two dimensions (horizontal and vertical) in % of the total number of blocks (bounding rectangle).

resync_marker_disable: This is a one-bit flag which when set to ‘1‘ indicates that there is no resync_marker in
coded VOPs. This flag can be used only for the optimization of the decoder operation. Successful decoding can be
carried out without taking into account the value of this flag.

data_partitioned: This is a one-bit flag which when set to ‘1’ indicates that the macroblock data is rearranged
differently, specifically, motion vector data is separated from the texture data (i.e., DCT coefficients).

reversible_vlc: This is a one-bit flag which when set to ‘1’ indicates that the reversible variable length tables (Table
B-23, Table B-24 and Table B-25) should be used when decoding DCT coefficients. These tables can only be used
when data_partition flag is enabled. Note that this flag shall be treated as ‘0’ in B-VOPs. Use of escape sequence
(Table B-24 and Table B-25) for encoding the combinations listed in Table B-23 is prohibited.

scalability: This is a one-bit flag which when set to ‘1’ indicates that the current layer uses scalable coding. If the
current layer is used as base-layer then this flag is set to ‘0’.

hierarchy_type: The hierarcical relation between the associated hierarchy layer and its hierarchy embedded layer
is defined as shown in Table 6-18.

Table 6-18 -- Code table for hierarchy_type

Description Code

ISO/IEC 14496-2 Spatial Scalability 0

ISO/IEC 14496-2 Temporal Scalability 1

ref_layer_id: This is a 4-bit unsigned integer with value between 0 and 15. It indicates the layer to be used as
reference for prediction(s) in the case of scalability.

ref_layer_sampling_direc: This is a one-bit flag which when set to ‘1’ indicates that the resolution of the reference
layer (specified by reference_layer_id) is higher than the resolution of the layer being coded. If it is set to ‘0’ then the
reference layer has the same or lower resolution then the resolution of the layer being coded.

hor_sampling_factor_n: This is a 5-bit unsigned integer which forms the numerator of the ratio used in horizontal
spatial resampling in scalability. The value of zero is forbidden.

hor_sampling_factor_m: This is a 5-bit unsigned integer which forms the denominator of the ratio used in
horizontal spatial resampling in scalability. The value of zero is forbidden.

vert_sampling_factor_n: This is a 5-bit unsigned integer which forms the numerator of the ratio used in vertical
spatial resampling in scalability. The value of zero is forbidden.

vert_sampling_factor_m: This is a 5-bit unsigned integer which forms the denominator of the ratio used in vertical
spatial resampling in scalability. The value of zero is forbidden.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

91

enhancement_type: This is a 1-bit flag which is set to ‘1’ when the current layer enhances the partial region of the
reference layer. If it is set to ‘0’ then the current layer enhances the entire region of the reference layer. The default
value of this flag is ‘0’.

6.3.4 Group of Video Object Plane

group_vop_start_code•••The group_vop_start_code is the bit string ‘000001B3’ in hexadecimal. It identifies the
beginning of a GOV header.

time_code•••This is a 18-bit integer containing the following: time_code_hours, time_code_minutes, marker_bit and
time_code_seconds as shown in Table 6-19. The parameters correspond to those defined in the IEC standard
publication 461 for “time and control codes for video tape recorders”. The time code specifies the modulo part (i.e.
the full second units) of the time base for the first object plane (in display order) after the GOV header.

Table 6-19 -- Meaning of time_code

time_code range of value No. of bits Mnemonic

time_code_hours 0 - 23 5 uimsbf

time_code_minutes 0 - 59 6 uimsbf

marker_bit 1 1 bslbf

time_code_seconds 0 - 59 6 uimsbf

closed_gov•••This is a one-bit flag which indicates the nature of the predictions used in the first consecutive B-
VOPs (if any) immediately following the first coded I-VOP after the GOV header .The closed_gov is set to ‘1’ to
indicate that these B-VOPs have been encoded using only backward prediction or intra coding. This bit is provided
for use during any editing which occurs after encoding. If the previous pictures have been removed by editing,
broken_link may be set to ‘1’ so that a decoder may avoid displaying these B-VOPs following the first I-VOP
following the group of plane header. However if the closed_gov bit is set to ‘1’, then the editor may choose not to set
the broken_link bit as these B-VOPs can be correctly decoded.

broken_link•••This is a one-bit flag which shall be set to ‘0’ during encoding. It is set to ‘1’ to indicate that the first
consecutive B-VOPs (if any) immediately following the first coded I-VOP following the group of plane header may
not be correctly decoded because the reference frame which is used for prediction is not available (because of the
action of editing). A decoder may use this flag to avoid displaying frames that cannot be correctly decoded.

6.3.5 Video Object Plane and Video Plane with Short Header

vop_start_code: This is the bit string ‘000001B6’ in hexadecimal. It marks the start of a video object plane.

vop_coding_type: The vop_coding_type identifies whether a VOP is an intra-coded VOP (I), predictive-coded
VOP (P), bidirectionally predictive-coded VOP (B) or sprite coded VOP (S). The meaning of vop_coding_type is
defined in Table 6-20.

Table 6-20 -- Meaning of vop_coding_type

vop_coding_type coding method

00 intra-coded (I)

01 predictive-coded (P)

10 bidirectionally-predictive-coded (B)

11 sprite (S)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

92

modulo_time_base: This value represents the local time base in one second resolution units (1000 milliseconds).
It consists of a number of consecutive ‘1’ followed by a ‘0’. Each ‘1’ represents a duration of one second that have
elapsed. For I- and P-VOPs of a non scalable bitstream and the base layer of a scalable bitstream, the number of
‘1’s indicate the number of seconds elapsed since the synchronization point marked by time_code of the previous
GOV header or by modulo_time_base of the previously decoded I- or P-VOP, in decoding order. For B-VOP of non
scalable bitstream and base layer of scalable bitstream, the number of ‘1’s indicate the number of seconds elapsed
since the synchronization point marked in the previous GOV header, I-VOP, or P-VOP, in display order. For I-, P-, or
B-VOPs of enhancement layer of scalable bitstream, the number of ‘1’s indicate the number of seconds elapsed
since the synchronization point marked in the previous GOV header, I-VOP, P-VOP, or B-VOP, in display order.

vop_time_increment: This value represents the absolute vop_time_increment from the synchronization point
marked by the modulo_time_base measured in the number of clock ticks. It can take a value in the range of
[0,vop_time_increment_resolution). The number of bits representing the value is calculated as the minimum number
of unsigned integer bits required to represent the above range. The local time base in the units of seconds is
recovered by dividing this value by the vop_time_increment_resolution.

vop_coded: This is a 1-bit flag which when set to ‘0’ indicates that no subsequent data exists for the VOP. In this
case, the following decoding rule applies: For an arbitrarily shaped VO (i.e. when the shape type of the VO is either
‘binary’ or ‘binary only’), the alpha plane of the reconstructed VOP shall be completely transparent. For a rectangular
VO (i.e. when the shape type of the VO is ‘rectangular’), the corresponding rectangular alpha plane of the VOP,
having the same size as its luminance component, shall be completely transparent. If there is no alpha plane being
used in the decoding and composition process of a rectangular VO, the reconstructed VOP is filled with the
respective content of the immediately preceding VOP for which vop_coded!=0.

vop_rounding_type: This is a one-bit flag which signals the value of the parameter rounding_control used for pixel
value interpolation in motion compensation for P-VOPs. When this flag is set to ‘0’, the value of rounding_control is
0, and when this flag is set to ‘1’, the value of rounding_control is 1. When vop_rounding_type is not present in the
VOP header, the value of rounding_control is 0.

vop_width: This is a 13-bit unsigned integer which specifies the horizontal size, in pixel units, of the rectangle that
includes the VOP. The width of the encoded luminance component of VOP in macroblocks is (vop_width+15)/16.
The rectangle part is left-aligned in the encoded VOP. A zero value is forbidden.

vop_height: This is a 13-bit unsigned integer which specifies the vertical size, in pixel units, of the rectangle that
includes the VOP. The height of the encoded luminance component of VOP in macroblocks is (vop_height+15)/16.
The rectangle part is top-aligned in the encoded VOP. A zero value is forbidden.

vop_horizontal_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the horizontal
position of the top left of the rectangle defined by horizontal size of vop_width. The value of
vop_horizontal_mc_spatial_ref shall be divisible by two. This is used for decoding and for picture composition.

vop_vertical_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the vertical position of
the top left of the rectangle defined by vertical size of vop_width. The value of vop_vertical_mc_spatial_ref shall be
divisible by two for progressive and divisible by four for interlaced motion compensation. This is used for decoding
and for picture composition.

background_composition: This flag only occurs when scalability flag has a value of “1. This flag is used in
conjunction with enhancement_type flag. If enhancement_type is “1” and this flag is “1”, background composition
specified in subclause 8.1 is performed. If enhancement type is “1” and this flag is “0”, any method can be used to
make a background for the enhancement layer.

change_conv_ratio_disable: This is a 1-bit flag which when set to ‘1’ indicates that conv_ratio is not sent at the
macroblock layer and is assumed to be 1 for all the macroblocks of the VOP. When set to ‘0’, the conv_ratio is
coded at macroblock layer.

vop_constant_alpha: This bit is used to indicate the presence of vop_constant_alpha_value. When this is set to
one, vop_constant_alpha_value is included in the bitstream.

vop_constant_alpha_value: This is an unsigned integer which indicates the scale factor to be applied as a post
processing phase of binary or grayscale shape decoding. See subclause 7.5.4.2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

93

intra_dc_vlc_thr: This is a 3-bit code allows a mechanism to switch between two VLC’s for coding of Intra DC
coefficients as per Table 6-21.

Table 6-21 -- Meaning of intra_dc_vlc_thr

index meaning of intra_dc_vlc_thr code

0 Use Intra DC VLC for entire VOP 000

1 Switch to Intra AC VLC at running Qp >=13 001

2 Switch to Intra AC VLC at running Qp >=15 010

3 Switch to Intra AC VLC at running Qp >=17 011

4 Switch to Intra AC VLC at running Qp >=19 100

5 Switch to Intra AC VLC at running Qp >=21 101

6 Switch to Intra AC VLC at running Qp >=23 110

7 Use Intra AC VLC for entire VOP 111

Where running Qp is defined as the DCT quantization parameter for luminance and chrominance used for
immediately previous coded macroblock, except for the first coded macroblock in a VOP or a video packet. At the
first coded macroblock in a VOP or a video packet, the running Qp is defined as the quantization parameter value
for the current macroblock.

top_field_first: This is a 1-bit flag which when set to “1” indicates that the top field (i.e., the field containing the top
line) of reconstructed VOP is the first field to be displayed (output by the decoding process). When top_field_first is
set to “0” it indicates that the bottom field of the reconstructed VOP is the first field to be displayed.

alternate_vertical_scan_flag: This is a 1-bit flag which when set to “1” indicates the use of alternate vertical scan
for interlaced VOPs.

sprite_transmit_mode: This is a 2-bit code which signals the transmission mode of the sprite object. At video
object layer initialization, the code is set to “piece” mode. When all object and quality update pieces are sent for the
entire video object layer, the code is set to the “stop”mode. When an object piece is sent, the code is set to “piece”
mode. When an update piece is being sent, the code is set to the “update” mode. When all sprite object pieces
andquality update pieces for the current VOP are sent, the code is set to “pause” mode. Table 6-22 shows the
different sprite transmit modes.

Table 6-22 -- Meaning of sprite transmit modes

code sprite_transmit_mode

00 stop

01 piece

10 update

11 pause

vop_quant: This is an unsigned integer which specifies the absolute value of quant to be used for dequantizing the
macroblock until updated by any subsequent dquant, dbquant, or quant_scale. The length of this field is specified by
the value of the parameter quant_precision. The default length is 5-bits which carries the binary representation of
quantizer values from 1 to 31 in steps of 1.

vop_alpha_quant: This is a an unsigned integer which specifies the absolute value of the initial alpha plane
quantiser to be used for dequantising macroblock grayscale alpha data. The alpha plane quantiser cannot be less
than 1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

94

vop_fcode_forward: This is a 3-bit unsigned integer taking values from 1 to 7; the value of zero is forbidden. It is
used in decoding of motion vectors.

vop_fcode_backward: This is a 3-bit unsigned integer taking values from 1 to 7; the value of zero is forbidden. It is
used in decoding of motion vectors.

vop_shape_coding_type: This is a 1 bit flag which specifies whether inter shape decoding is to be carried out for
the current P VOP. If vop_shape_coding_type is equal to ‘0’, intra shape decoding is carried out, otherwise inter
shape decoding is carried out.

Coded data for the top-left macroblock of the bounding rectangle of a VOP shall immediately follow the VOP header,
followed by the remaining macroblocks in the bounding rectangle in the conventional left-to-right, top-to-bottom scan
order. Video packets shall also be transmitted following the conventional left-to-right, top-to-bottom macroblock scan
order. The last MB of one video packet is guaranteed to immediately precede the first MB of the following video
packet in the MB scan order.

load_backward_shape: This is a one-bit flag which when set to ‘1’ implies that the backward shape of the previous
VOP in the same layer is copied to the forward shape for the current VOP and the backward shape of the current
VOP is decoded from the bitstream. When this flag is set to ‘0’, the forward shape of the previous VOP is copied to
the forward_shape of the current VOP and the backward shape of the previous VOP in the same layer is copied to
the backward shape of the current VOP. This flag shall be ‘1’ when (1) background_composition is ‘1’ and
vop_coded of the previous VOP in the same layer is ‘0’ or (2) background_composition is ‘1’ and the current VOP is
the first VOP in the current layer.

backward_shape_width: This is a 13-bit unsigned integer which specifies the horizontal size, in pixel units, of the
rectangle that includes the backward shape. A zero value is forbidden.

backward_shape_height: This is a 13-bit unsigned integer which specifies the vertical size, in pixel units, of the
rectangle that includes the backward shape. A zero value is forbidden.

backward_shape_horizontal_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the
horizontal position of the top left of the rectangle that includes the backward shape. This is used for decoding and
for picture composition.

backward_shape_vertical_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the
vertical position of the top left of the rectangle that includes the backward shape. This is used for decoding and for
picture composition.

backward_shape(): The decoding process of the backward shape is identical to the decoding process for the shape
of I-VOP with binary only mode (video_object_layer_shape = “10”).

load_forward_shape: This is a one-bit flag which when set to ‘1’ implies that the forward shape is decoded from
the bitstream. This flag shall be ‘1’ when (1) background_composition is ‘1’ and vop_coded of the previous VOP in
the same layer is ‘0’ or (2) background_composition is ‘1’ and the current VOP is the first VOP in the current layer.

forward_shape_width: This is a 13-bit unsigned integer which specifies the horizontal size, in pixel units, of the
rectangle that includes the forward shape. A zero value is forbidden.

forward_shape_height: This is a 13-bit unsigned integer which specifies the vertical size, in pixel units, of the
rectangle that includes the forward shape. A zero value is forbidden.

forward_shape_horizontal_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the
horizontal position of the top left of the rectangle that includes the forward shape. This is used for decoding and for
picture composition.

forward_shape_vertical_mc_spatial_ref: This is a 13-bit signed integer which specifies, in pixel units, the vertical
position of the top left of the rectangle that includes the forward shape. This is used for decoding and for picture
composition.

forward_shape(): The decoding process of the backward shape is identical to the decoding process for the shape of
I-VOP with binary only mode (video_object_layer_shape = “10”).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

95

ref_select_code: This is a 2-bit unsigned integer which specifies prediction reference choices for P- and B-VOPs in
enhancement layer with respect to decoded reference layer identified by ref_layer_id. The meaning of allowed
values is specified in Table 7-13 and Table 7-14.

resync_marker: This is a binary string of at least 16 zero’s followed by a one‘0 0000 0000 0000 0001’. For an I-
VOP or a VOP where video_object_layer_shape has the value “binary_only”, the resync marker is 16 zeros followed
by a one. The length of this resync marker is dependent on the value of vop_fcode_forward, for a P-VOP, and the
larger value of either vop_fcode_forward and vop_fcode_backward for a B-VOP. The relationship between the
length of the resync_marker and appropriate fcode is given by 16 + fcode. The resync_marker is (15+fcode) zeros
followed by a one. It is only present when resync_marker_disable flag is set to ‘0’. A resync marker shall only be
located immediately before a macroblock and aligned with a byte

macroblock_number: This is a variable length code with length between 1 and 14 bits. It identifies the macroblock
number within a VOP. The number of the top-left macroblock in a VOP shall be zero. The macroblock number
increases from left to right and from top to bottom. The actual length of the code depends on the total number of
macroblocks in the VOP calculated according to Table 6-23, the code itself is simply a binary representation of the
macroblock number.

Table 6-23 -- Length of macroblock_number code

length of macroblock_number code ((vop_width+15)/16) *
((vop_height+15)/16)

1 1-2

2 3-4

3 5-8

4 9-16

5 17-32

6 33-64

7 65-128

8 129-256

9 257-512

10 513-1024

11 1025-2048

12 2049-4096

13 4097-8192

14 8193-16384

quant_scale: This is an unsigned integer which specifies the absolute value of quant to be used for dequantizing
the macroblock of the video packet until updated by any subsequent dquant. The length of this field is specified by
the value of the parameter quant_precision. The default length is 5-bits.

header_extension_code: This is a 1-bit flag which when set to ‘1’ indicates the prescence of additional fields in the
header. When header_extension_code is is se to ‘1’, modulo_time_base, vop_time_increment and vop_coding_type
are also included in the video packet header. Furthermore, if the vop_coding_type is equal to either a P or B VOP,
the appropriate fcodes are also present.

use_intra_dc_vlc: The value of this internal flag is set to 1 when the values of intra_dc_thr and the DCT quantiser
for luminance and chrominace indicate the usage of the intra DC VLCs shown in Table B-13 - Table B-15 for the
decoding of intra DC coefficients. Otherwise, the value of this flag is set to 0.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

96

motion_marker: This is a 17-bit binary string ‘1 1111 0000 0000 0001’. It is only present when the
data_partitioned flag is set to ‘1’.In the data partitioning mode, a motion_marker is inserted after the motion data
(prior to the texture data). The motion_marker is unique from the motion data and enables the decoder to determine
when all the motion information has been received correctly.

dc_marker: This is a 19 bit binary string ‘110 1011 0000 0000 0001’. It is present when the data_partitioned flag is
set to ‘1’. It is used for I-VOPs. In the data partitioning mode, a dc_marker is inserted into the bitstream after the
mcbpc, dquant and dc data but before the ac_pred flag and remaining texture information.

6.3.5.1 Definition of DCECS variable values

The semantic of all complexity estimation parameters is defined at the VO syntax level. DCECS variables represent
% values. The actual % values have been converted to 8 bit words by normalization to 256. To each 8 bit word a
binary 1 is added to prevent start code emulation (i.e 0% = ‘00000001’, 99.5% = ‘11111111’ and is conventionally
considered equal to one). The binary ‘00000000’ string is a forbidden value. The only parameter expressed in their
absolute value is the dcecs_vlc_bits parameter expressed as a 4 bit word.

dcecs_opaque: 8 bit number representing the % of luminance and chrominance blocks using opaque coding mode
on the total number of blocks (bounding rectangle).

dcecs_transparent: 8 bit number representing the % of luminance and chrominance blocks using transparent
coding mode on the total number of blocks (bounding rectangle).

dcecs_intra_cae: 8 bit number representing the % of luminance and chrominance blocks using IntraCAE coding
mode on the total number of blocks (bounding rectangle).

dcecs_inter_cae: 8 bit number representing the % of luminance and chrominance blocks using InterCAE coding
mode on the total number of blocks (bounding rectangle).

dcecs_no_update: 8 bit number representing the % of luminance and chrominance blocks using no update coding
mode on the total number of blocks (bounding rectangle).

dcecs_upsampling: 8 bit number representing the % of luminance and chrominance blocks which need
upsampling from 4-4- to 8-8 block dimensions on the total number of blocks (bounding rectangle).

dcecs_intra_blocks: 8 bit number representing the % of luminance and chrominance Intra or Intra+Q coded
blocks on the total number of blocks (bounding rectangle).

dcecs_not_coded_blocks: 8 bit number representing the % of luminance and chrominance Non Coded blocks on
the total number of blocks (bounding rectangle).

dcecs_dct_coefs: 8 bit number representing the % of the number of DCT coefficients on the maximum number of
coefficients (coded blocks).

dcecs_dct_lines: 8 bit number representing the % of the number of DCT8x1 on the maximum number of DCT8x1
(coded blocks).

dcecs_vlc_symbols: 8 bit number representing the average number of VLC symbols for macroblock.

dcecs_vlc_bits: 4 bit number representing the average number of bits for each symbol.

dcecs_inter_blocks: 8 bit number representing the % of luminance and chrominance Inter and Inter+Q coded
blocks on the total number of blocks (bounding rectangle).

dcecs_inter4v_blocks: 8 bit number representing the % of luminance and chrominance Inter4V coded blocks on
the total number of blocks (bounding rectangle).

dcecs_apm (Advanced Prediction Mode): 8 bit number representing the % of the number of luminance block
predicted using APM on the total number of blocks for VOP (bounding rectangle).

dcecs_npm (Normal Prediction Mode): 8 bit number representing the % of luminance and chrominance blocks
predicted using NPM on the total number of luminance and chrominance blocks for VOP (bounding rectangle).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

97

dcecs_forw_back_mc_q: 8 bit number representing the % of luminance and chrominance predicted blocks on the
total number of blocks for VOP (bounding rectangle).

dcecs_halfpel2: 8 bit number representing the % of luminance and chrominance blocks predicted by a half-pel
vector on one dimension (horizontal or vertical) on the total number of blocks (bounding rectangle).

dcecs_halfpel4: 8 bit number representing the % of luminance and chrominance blocks predicted by a half-pel
vector on two dimensions (horizontal and vertical) on the total number of blocks (bounding rectangle).

dcecs_interpolate_mc_q: 8 bit number representing the % of luminance and chrominance interpolated blocks in
% of the total number of blocks for VOP (bounding rectangle).

6.3.5.2 Video Plane with Short Header

video_plane_with_short_header() – This data structure contains a video plane using an abbreviated header format.
Certain values of parameters shall have pre-defined and fixed values for any video_plane_with_short_header, due
to the limited capability of signaling information in the short header format. These parameters having fixed values
are shown in Table 6-24.

Table 6-24 -- Fixed Settings for video_plane_with_short_header()

Parameter Value

video_object_layer_shape “rectangular”

obmc_disable 1

quant_type 0

resync_marker_disable 1

data_partitioned 0

block_count 6

reversible_vlc 0

vop_rounding_type 0

vop_fcode_forward 1

vop_coded 1

interlaced 0

complexity_estimation_disable 1

use_intra_dc_vlc 0

scalability 0

not_8_bit 0

bits_per_pixel 8

colour_primaries 1

transfer_characteristics 1

matrix_coefficients 6

short_video_start_marker: This is a 22-bit start marker containing the value ‘0000 0000 0000 0000 1000 00’. It is
used to mark the location of a video plane having the short header format. short_video_start_marker shall be byte
aligned by the insertion of zero to seven zero-valued bits as necessary to achieve byte alignment prior to
short_video_start_marker.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

98

temporal_reference: This is an 8-bit number which can have 256 possible values. It is formed by incrementing its
value in the previously transmitted video_plane_with_short_header() by one plus the number of non-transmitted
pictures (at 30000/1001 Hz) since the previously transmitted picture. The arithmetic is performed with only the eight
LSBs.

split_screen_indicator: This is a boolean signal that indicates that the upper and lower half of the decoded picture
could be displayed side by side. This bit has no direct effect on the encoding or decoding of the video plane.

document_camera_indicator: This is a boolean signal that indicates that the video content of the vop is sourced
as a representation from a document camera or graphic representation, as opposed to a view of natural video
content. This bit has no direct effect on the encoding or decoding of the video plane.

full_picture_freeze_release: This is a boolean signal that indicates that resumption of display updates should be
activated if the display of the video content has been frozen due to errors, packet losses, or for some other reason
such as the receipt of a external signal. This bit has no direct effect on the encoding or decoding of the video plane.

source_format: This is an indication of the width and height of the rectangular video plane represented by the
video_plane_with_short_header. The meaning of this field is shown in Table 6-25. Each of these source formats
has the same vop time increment resolution which is equal to 30000/1001 (approximately 29.97) Hz and the same
width:height pixel aspect ratio (288/3):(352/4), which equals 12:11 in relatively prime numbers and which defines a
CIF picture as having a width:height picture aspect ratio of 4:3.

Table 6-25 -- Parameters Defined by source_format Field

source_format
value

Source Format
Meaning

vop_width vop_height num_macroblocks_in_
gob

num_gobs_in_
vop

000 reserved reserved reserved reserved reserved

001 sub-QCIF 128 96 8 6

010 QCIF 176 144 11 9

011 CIF 352 288 22 18

100 4CIF 704 576 88 18

101 16CIF 1408 1152 352 18

110 reserved reserved reserved reserved reserved

111 reserved reserved reserved reserved reserved

picture_coding_type: This bit indicates the vop_coding_type. When equal to zero, the vop_coding_type is “I”, and
when equal to one, the vop_coding_type is “P”.

four_reserved_zero_bits: This is a four-bit field containing bits which are reserved for future use and equal to
zero.

pei: This is a single bit which, when equal to one, indicates the presence of a byte of psupp data following the pei
bit.

psupp: This is an eight bit field which is present when pei is equal to one. The pei + psupp mechanism provides for
a reserved method of later allowing the definition of backward-compatible data to be added to the bitstream.
Decoders shall accept and discard psupp when pei is equal to one, with no effect on the decoding of the video data.
The pei and psupp combination pair may be repeated if present. The ability for an encoder to add pei and psupp to
the bitstream is reserved for future use.

gob_number: This is a five-bit number which indicates the location of video data within the video plane. A group of
blocks (or GOB) contains a number of macroblocks in raster scanning order within the picture. For a given
gob_number, the GOB contains the num_macroblocks_per_gob macroblocks starting with macroblock_number =

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

99

gob_number * num_macroblocks_per_gob. The gob_number can either be read from the bitstream or inferred from
the progress of macroblock decoding as shown in the syntax description pseudo-code.

num_gobs_in_vop: This is the number of GOBs in the vop. This parameter is derived from the source_format as
shown in Table 6-25.

gob_layer(): This is a layer containing a fixed number of macroblocks in the vop. Which macroblocks which belong
to each gob can be determined by gob_number and num_macroblocks_in_gob.

gob_resync_marker: This is a fixed length code of 17 bits having the value ‘0000 0000 0000 0000 1’ which may
optionally be inserted at the beginning of each gob_layer(). Its purpose is to serve as a type of resynchronization
marker for error recovery in the bitstream. The gob_resync_marker codes may (and should) be byte aligned by
inserting zero to seven zero-valued bits in the bitstream just prior to the gob_resync_marker in order to obtain byte
alignment. The gob_resync_marker shall not be present for the first GOB (for which gob_number = 0).

gob_number: This is a five-bit number which indicates which GOB is being processed in the vop. Its value may
either be read following a gob_resync_marker or may be inferred from the progress of macroblock decoding. All
GOBs shall appear in the bitstream of each video_plane_with_short_header(), and the GOBs shall appear in a
strictly increasing order in the bitstream. In other words, if a gob_number is read from the bitstream after a
gob_resync_marker, its value must be the same as the value that would have been inferred in the absence of the
gob_resync_marker.

gob_frame_id: This is a two bit field which is intended to help determine whether the data following a
gob_resync_marker can be used in cases for which the vop header of the video_plane_with_short_header() may
have been lost. gob_frame_id shall have the same value in every GOB header of a given
video_plane_with_short_header(). Moreover, if any field among the split_screen_indicator or
document_camera_indicator or full_picture_freeze_release or source_format or picture_coding_type as indicated in
the header of a video_plane_with_short_header() is the same as for the previous transmitted picture in the same
video object, gob_frame_id shall have the same value as in that previous video_plane_with_short_header().
However, if any of these fields in the header of a certain video_plane_with_short_header() differs from that in the
previous transmitted video_plane_with_short_header() of the same video object, the value for gob_frame_id in that
picture shall differ from the value in the previous picture.

num_macroblocks_in_gob: This is the number of macroblocks in each group of blocks (GOB) unit. This
parameter is derived from the source_format as shown in Table 6-25.

short_video_end_marker: This is a 22-bit end of sequence marker containing the value ‘0000 0000 0000 0000
1111 11’. It is used to mark the end of a sequence of video_plane_with_short_header(). short_video_end_marker
may (and should) be byte aligned by the insertion of zero to seven zero-valued bits to achieve byte alignment prior
to short_video_end_marker.

6.3.5.3 Shape coding

bab_type: This is a variable length code between 1 and 7 bits. It indicates the coding mode used for the bab. There
are seven bab_types as depicted in Table 6-26 . The VLC tables used depend on the decoding context i.e. the
bab_types of blocks already received. For I-VOPs, the context-switched VLC table of Table B-27 is used. For P-
VOPs and B-VOPs, the context switched table of Table B-28 is used.

Table 6-26 -- List of bab_types and usage

bab_type Semantic Used in

0 MVDs==0 && No Update P,B VOPs

1 MVDs!=0 && No Update P,B VOPs

2 transparent All VOP types

3 opaque All VOP types

4 intraCAE All VOP types

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

100

5 MVDs==0 && interCAE P,B VOPs

6 MVDs!=0 && interCAE P,B VOPs

The bab_type determines what other information fields will be present for the bab shape. No further shape
information is present if the bab_type = 0, 2 or 3. Opaque means that all pixels of the bab are part of the object.
Transparent means that none of the bab pixels belong to the object. IntraCAE means the intra-mode CAE decoding
will be required to reconstruct the pixels of the bab. No_update means that motion compensation is used to copy the
bab from the previous VOP’s binary alpha map. InterCAE means the motion compensation and inter_mode CAE
decoding are used to reconstruct the bab. MVDs refers to the motion vector difference for shape.

mvds_x: This is a VLC code between 1 and 18 bits. It represents the horizontal element of the motion vector
difference for the bab. The motion vector difference is in full integer precision. The VLC table is shown is Table
B-29.

mvds_y: This is a VLC code between 1 and 18 bits. It represents the vertical element of the motion vector
difference for the bab. The motion vector difference is in full integer precision. If mvds_x is ‘0’, then the VLC table of
Table B-30 , otherwise the VLC table of Table B-29 is used.

conv_ratio: This is VLC code of length 1-2 bits. It specifies the factor used for sub-sampling the 16x16 pixel bab.
The decoder must up-sample the decoded bab by this factor. The possible values for this factor are 1, 2 and 4 and
the VLC table used is given in Table B-31.

scan_type: This is a 1-bit flag where a value of ‘0’ implies that the bab is in transposed form i.e. the BAB has been
transposed prior to coding. The decoder must then transpose the bab back to its original form following decoding. If
this flag is ‘1’, then no transposition is performed.

binary_arithmetic_code(): This is a binary arithmetic decoder representing the pixel values of the bab. This code
may be generated by intra cae or inter cae depending on the bab_type. Cae decoding relies on the knowledge of
intra_prob[] and inter_prob[], probability tables given in annex B.

6.3.5.4 Sprite coding

warping_mv_code(dmv) : The codeword for each differential motion vector consists of a VLC indicating the length
of the dmv code (dmv_length) and a FLC, dmv_code-, with dmv_length bits. The codewords are listed in Table
B-33.

brightness_change_factor (): The codeword for brightness_change_factor consists of a variable length code
denoting brightness_change_factor_size and a fix length code, brightness_change_factor, of
brightness_change_factor_size bits (sign bit included). The codewords are listed in Table B-34.

send_mb(): This function returns 1 if the current macroblock has already been sent previously and “not coded”.
Otherwise it returns 0.

piece_quant: This is a 5-bit unsigned interger which indicates the quant to be used for a sprite-piece until updated
by a subsequent dquant. The piece_quant carries the binary representation of quantizer values from 1 to 31 in
steps of 1.

piece_width: This value specifies the width of the sprite piece measured in macroblock units.

piece_height: This value specifies the height of the sprite piece measured in macroblock units.

piece_xoffset: This value specifies the horizontal offset location, measured in macroblock units from the left edge
of the sprite object, for the placement of the sprite piece into the sprite object buffer at the decoder.

piece_yoffset: This value specifies the vertical offset location, measured in macroblock units from the top edge of
the sprite object.

decode_sprite_piece (): It decodes a selected region of the sprite object or its update. It also decodes the
parameters required by the decoder to properly incorporate the pieces. All the static-sprite-object pieces will be

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

101

encoded using a subset of the I-VOP syntax. And the static-sprite-update pieces use a subset of the P-VOP
syntax. The sprite update is defined as the difference between the original sprite texture and the reconstructed
sprite assembled from all the sprite object pieces.

sprite_shape_texture(): For the static-sprite-object pieces, shape and texture are coded using the macroblock layer
structure in I-VOPs. And the static-sprite-update pieces use the P-VOP inter-macroblock syntax -- except that there
are no motion vectors and shape information included in this syntax structure. Macroblocks raster scanning is
employed to encode a sprite piece; however, whenever the scan encounters a macroblock which has been part of
some previously sent sprite piece, then the block is not coded and the corresponding macroblock layer is empty.

6.3.6 Macroblock related

not_coded: This is a 1-bit flag which signals if a macroblock is coded or not. When set to’1’ it indicates that a
macroblock is not coded and no further data is included in the bitstream for this macroblock; decoder shall treat this
macroblock as ‘inter’ with motion vector equal to zero and no DCT coefficient data. When set to ‘0’ it indicates that
the macroblock is coded and its data is included in the bitstream.

mcbpc: This is a variable length code that is used to derive the macroblock type and the coded block pattern for
chrominance . It is always included for coded macroblocks. Table B-6 and Table B-7 list all allowed codes for mcbpc
in I- and P-VOPs respectively. The values of the column “MB type” in these tables are used as the variable
“derived_mb_type” which is used in the respective syntax part for motion and texture decoding. In P-vops using the
short video header format (i.e., when short_video_header is 1), mcbpc codes indicating macroblock type 2 shall not
be used.

ac_pred_flag: This is a 1-bit flag which when set to ‘1’ indicates that either the first row or the first column of ac
coefficients are differentially coded for intra coded macroblocks.

cbpy: This variable length code represents a pattern of non-transparent luminance blocks with at least one non
intra DC transform coefficient, in a macroblock. Table B-8 – Table B-11 indicate the codes and the corresponding
patterns they indicate for the respective cases of intra- and inter-MBs.

dquant: This is a 2-bit code which specifies the change in the quantizer, quant, for I- and P-VOPs. Table 6-27 lists
the codes and the differential values they represent. The value of quant lies in range of 1 to 2quant_precision-1; if the value
of quant after adding dquant value is less than 1 or exceeds 2quant_precision-1, it shall be correspondingly clipped to 1 and
2quant_precision-1. If quant_precision takes its default value of 5, the range of allowed values for quant is [1:31].

Table 6-27 -- dquant codes and corresponding values

dquant code value

00 -1

01 -2

10 1

11 2

co_located_not_coded: The value of this internal flag is set to 1 when the current VOP is a B-VOP, the future
reference VOP is a P-VOP, and the co-located macroblock in the future reference VOP is skipped (i.e. coded as
not_coded = '1'). Otherwise the value of this flag is set to 0. The co-located macroblock is the macroblock which has
the same horizontal and vertical index with the current macroblock in the B-VOP. If the co-located macroblock lies
outside of the bounding rectangle, this macroblock is considered to be not skipped.

modb: This is a variable length code present only in coded macroblocks of B-VOPs. It indicates whether mb_type
and/or cbpb information is present for a macroblock. The codes for modb are listed in Table B-3.

mb_type: This variable length code is present only in coded macroblocks of B-VOPs. Further, it is present only in
those macroblocks for which one motion vector is included. The codes for mb_type are shown in Table B-4 for B-
VOPs for no scalability and in Table B-5 for B-VOPs with scalability. When mb_type is not present (i.e. modb==‘1’)
for a macroblock in a B-VOP, the macroblock type is set to the default type. The default macroblock type for the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

102

enhancement layer of spatially scalable bitstreams (i.e. ref_select_code == '00' && scalability = '1') is "forward mc +
Q". Otherwise, the default macroblock type is "direct".

cbpb: This is a 3 to 6 bit code representing coded block pattern in B-VOPs, if indicated by modb. Each bit in the
code represents a coded/no coded status of a block; the leftmost bit corresponds to the top left block in the
macroblock. For each non-transparent blocks with coefficients, the corresponding bit in the code is set to ‘1’. When
cbpb is not present (i.e. modb==‘1’ or ‘01’) for a macroblock in a B-VOP, no coefficients are coded for all the non-
transparent blocks in this macroblock.

dbquant: This is a variable length code which specifies the change in quantizer for B-VOPs. Table 6-28 lists the
codes and the differential values they represent. If the value of quant after adding dbquant value is less than 1 or
exceeds 2quant_precision-1, it shall be correspondingly clipped to 1 and 2quant_precision-1. If quant_precision takes its default
value of 5, the range of allowed values for the quantzer for B-VOPs is [1:31].

Table 6-28 -- dbquant codes and corresponding values

dbquant code value

10 -2

0 0

11 2

coda_i: This is a one-bit flag which is set to “1” to indicate that all the values in the grayscale alpha macroblock are
equal to 255 (AlphaOpaqueValue). When set to “0”, this flag indicates that one or more 8x8 blocks are coded
according to cbpa.

ac_pred_flag_alpha: This is a one-bit flag which when set to ‘1’ indicates that either the first row or the first column
of ac coefficients are to be differentially decoded for intra alpha macroblocks. It has the same effect for alpha as the
corresponding luminance flag.

cbpa: This is the coded block pattern for grayscale alpha texture data. For I, P and B VOPs, this VLC is exactly the
same as the INTER (P) cbpy VLC described in Table B-8 � Table B-11. cbpa is followed by the alpha block data
which is coded in the same way as texture block data. Note that grayscale alpha blocks with alpha all equal to zero
(transparent) are not included in the bitstream.

coda_pb: This is a VLC indicating the coding status for P or B alpha macroblocks. The semantics are given in the
table below (Table 6-29). When this VLC indicates that the alpha macroblock is all opaque, this means that all
values are set to 255 (AlphaOpaqueValue).

Table 6-29 -- coda_pb codes and corresponding values

coda_pb Meaning

1 alpha residue all zero

01 alpha macroblock all opaque

00 alpha residue coded

6.3.6.1 MB Binary Shape Coding

bab_type: This defines the coding type of the current bab according to Table B-27 and Table B-28 for intra and
inter mode, respectively.

mvds_x: This defines the size of the x-component of the differential motion vector for the current bab according to
Table B-29.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

103

mvds_y: This defines the size of the y-component of the differential motion vector for the current bab according to
Table B-29 if mvds_x!=0 and according to Table B-30 if mvds_x==0.

conv_ratio: This defines the upsampling factor according to Table B-31 to be applied after decoding the current
shape information

scan_type: This defines according to Table 6-30 whether the current bordered to be decoded bab and the eventual
bordered motion compensated bab need to be transposed

Table 6-30 -- scan_type

scan_type meaning

0 transpose bab as in matrix transpose

1 do not transpose

binary_arithmetic_code() –This is a binary arithmetic decoder that defines the context dependent arithmetically to be
decoded binary shape information. The meaning of the bits is defined by the arithmetic decoder according to
subclause 7.5.3

6.3.6.2 Motion vector

horizontal_mv_data: This is a variable length code, as defined in Table B-12, which is used in motion vector
decoding as described in subclause 7.6.3.

vertical_mv_data: This is a variable length code, as defined in Table B-12, which is used in motion vector
decoding as described in subclause 7.6.3.

horizontal_mv_residual: This is an unsigned integer which is used in motion vector decoding as described in
subclause 7.6.3. The number of bits in the bitstream for horizontal_mv_residual, r_size, is derived from either
vop_fcode_forward or vop_fcode_backward as follows;

r_size = vop_fcode_forward - 1 or r_size = vop_fcode_backward - 1

vertical_mv_residual: This is an unsigned integer which is used in motion vector decoding as described in
subclause 7.6.3. The number of bits in the bitstream for vertical_mv_residual, r_size, is derived from either
vop_fcode_forward or vop_fcode_backward as follows;

r_size = vop_fcode_forward - 1 or r_size = vop_fcode_backward - 1

6.3.6.3 Interlaced Information

dct_type: This is a 1-bit flag indicating whether the macroblock is frame DCT coded or field DCT coded. If this flag
is set to “1”, the macroblock is field DCT coded; otherwise, the macroblock is frame DCT coded. This flag is only
present in the bitstream if the interlaced flag is set to “1” and the macroblock is coded (coded blcok pattern is non-
zero) or intra-coded. Boundary blocks are always coded in frame-based mode.

field_prediction: This is a 1-bit flag indicating whether the macroblock is field predicted or frame predicted. This
flag is set to ‘1’ when the macroblock is predicted using field motion vectors. If it is set to ‘0’ then frame prediction
(16x16 or 8x8) will be used. This flag is only present in the bitstream if the interlaced flag is set to “1” and the
derived_mb_type is “0” or “1” in the P-VOP or an non-direct mode macroblock in the B-VOP.

forward_top_field_reference: This is a 1-bit flag which indicates the reference field for the forward motion
compensation of the top field. When this flag is set to ‘0’, the top field is used as the reference field. If it is set to ‘1’
then the bottom field will be used as the reference field. This flag is only present in the bitstream if the
field_prediction flag is set to “1” and the macroblock is not backward predicted.

forward_bottom_field_reference: This is a 1-bit flag which indicates the reference field for the forward motion
compensation of the bottom field. When this flag is set to ‘0’, the top field is used as the reference field. If it is set to

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

104

‘1’ then the bottom field will be used as the reference field. This flag is only present in the bitstream if the
field_prediction flag is set to “1” and the macroblock is not backward predicted.

backward_top_field_reference: This is a 1-bit flag which indicates the reference field for the backward motion
compensation of the top field. When this flag is set to ‘0’, the top field is used as the reference field. If it is set to ‘1’
then the bottom field will be used as the reference field. This flag is only present in the bitstream if the
field_prediction flag is set to “1” and the macroblock is not forward predicted.

backward_bottom_field_reference: This is a 1-bit flag which indicates the reference field for the backward motion
compensation of the bottom field. When this flag is set to ‘0’, the top field is used as the reference field. If it is set to
‘1’ then the bottom field will be used as the reference field.. This flag is only present in the bitstream if the
field_prediction flag is set to “1” and the macroblock is not forward predicted.

6.3.7 Block related

intra_dc_coefficient: This is a fixed length code that defines the value of an intra DC coefficient when the short
video header format is in use (i.e., when short_video_header is “1”). It is transmitted as a fixed length unsigned
integer code of size 8 bits, unless this integer has the value 255. The values 0 and 128 shall not be used – they are
reserved. If the integer value is 255, this is interpreted as a signalled value of 128. The integer value is then
multiplied by a dc_scaler value of 8 to produce the reconstructed intra DC coefficient value.

dct_dc_size_luminance: This is a variable length code as defined in Table B-13 that is used to derive the value of
the differential dc coefficients of luminance values in blocks in intra macroblocks. This value categorizes the
coefficients according to their size.

dct_dc_differential: This is a variable length code as defined in Table B-15 that is used to derive the value of the
differential dc coefficients in blocks in intra macroblocks. After identifying the category of the dc coefficient in size
from dct_dc_size_luminance or dct_dc_size_chrominance, this value denotes which actual difference in that
category occurred.

dct_dc_size_chrominance: This is a variable length code as defined in Table B-14 that is used to derive the value
of the differential dc coefficients of chrominance values in blocks in intra macroblocks. This value categorizes the
coefficients according to their size.

pattern_code[i]: The value of this internal flag is set to 1 if the block or alpha block with the index value i includes
one or more DCT coefficients that are decoded using at least one of Table B-16 to Table B-25. Otherwise the value
of this flag is set to 0.

6.3.7.1 Alpha block related

dct_dc_size_alpha: This is a variable length code for coding the alpha block dc coefficient. Its semantics are the
same as dct_dc_size_luminance in subclause 6.3.7.

6.3.8 Still texture object

still_texture_object_start_code: The still_texture_object_start_code is a string of 32 bits. The first 24 bits are
‘0000 0000 0000 0000 0000 0001’ and the last 8 bits are defined in Table 6-3.

texture_object_id: This is given by 16-bits representing one of the values in the range of ‘0000 0000 0000 0000’
to ‘1111 1111 1111 1111’ in binary. The texture_object_layer_id uniquely identifies a texture object layer.

wavelet_filter_type: This field indicates the arithmetic precision which is used for the wavelet decomposition as
the following:

Table 6-31 -- Wavelet type

wavelet_filter_type Meaning

0 integer

1 Double float

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

105

wavelet_download: This field indicates if the 2-band filter bank is specificed in the bitstream:

Table 6-32 -- Wavelet downloading flag

wavelet_download meaning

0 default filters

1 specified in bitstream

The default filter banks are described in subclause B.2.2.

wavelet_decomposition_levels: This field indicates the number of levels in the wavelet decomposition of the
texture.

scan_direction: This field indicates the scan order of AC coefficients. In single-quant and multi-quant mode, if this
flag is `0’, then the coefficients are scanned in the tree-depth fashion. If it is `1’, then they are scanned in the
subband by subband fashion. In bilevel_quant mode, if the flag is `0’, then they are scanned in bitplane by bitplane
fashion. Within each bitplane, they are scanned in a subband by subband fashion. If it is “1”, they are scanned from
the low wavelet decomposition layer to high wavelet decomposition layer. Within each wavelet decomposition layer,
they are scanned from most significant bitplane down to the least significant bitplane.

start_code_enable: If this flag is enabled (disable =0; enabled = 1), the start code followed by an ID to be inserted
in to each spatial scalability layer and/or each SNR scalability layer.

texture_object_layer_shape: This is a 2-bit integer defined in Table 6-33. It identifies the shape type of a texture
object layer.

Table 6-33 -- Texture Object Layer Shape type

texture_object_layer_shape Meaning

00 rectangular

01 binary

10 reserved

11 reserved

quantization_type: This field indicates the type of quantization as shown in Table 6-34.

Table 6-34 -- The quantization type

quantization_type Code

single quantizer 01

multi quantizer 10

bi-level quantizer 11

spatial_scalability_levels: This field indicates the number of spatial scalability layers supported in the bitstream.
This number can be from 1 to wavelet_decomposition_levels.

use_default_spatial_scalability: This field indicates how the spatial scalability levels are formed. If its value is
one, then default spatial scalability is used, starting from (¼)^(spatial_scalability_levels-1)-th of the full resolution up
to the full resolution, where ^ is a power operation. If its value is zero, the spatial scalability is specified by
wavelet_layer_index described below.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

106

wavelet_layer_index: This field indicates the identification number of wavelet_decomposition layer used for spatial
scalability. The index starts with 0 (i.e., root_band) and ends at (wavelet_decomposition_levels–1) (i.e., full
resolution).

uniform_wavelet_filter: If this field is “1”, then the same wavelet filter is applied for all wavelet layers. If this field is
“0”, then different wavelet filters may be applied for the wavelet decomposition. Note that the same filters are used
for both luminance and chromanence. Since the chromanence’s width and height is half that of the luminance, the
last wavelet filter applied to the luminance is skipped when the chromanence is synthesized.

wavelet_stuffing: These 3 stuffing bits are reserved for future expansion. It is currently defined to be ‘111’.

texture_object_layer_width: The texture_object_layer_width is a 15-bit unsigned integer representing the width of
the displayable part of the luminance component in pixel units. A zero value is forbidden.

texture_object_layer_height: The texture_object_layer_height is a 15-bit unsigned integer representing the height
of the displayable part of the luminance component in pixel units. A zero value is forbidden.

horizontal_ref: This is a 15-bit integer which specifies, in pixel units, the horizontal position of the top left of the
rectangle defined by horizontal size of object_width. The value of horizontal_ref shall be divisible by two. This is
used for decoding and for picture composition.

vertical_ref: This is a 15-bit integer which specifies, in pixel units, the vertical position of the top left of the rectangle
defined by vertical size of object_height. The value of vertical_ref shall be divisible by two. This is used for decoding
and for picture composition.

object_width: This is a 15-bit unsigned integer which specifies the horizontal size, in pixel units, of the rectangle
that includes the object. A zero value is forbidden.

object_height: This is a 15-bit unsigned integer which specifies the vertical size, in pixel units, of the rectangle that
includes the object. A zero value is forbidden.

quant_byte: This field defines one byte of the quantization step size for each scalability layer. A zero value is
forbidden. The quantization step size parameter, quant, is decoded using the function get_param(): quant =
get_param(7);

max_bitplanes: This field indicates the number of maximum bitplanes in bilevel_quant mode.

6.3.8.1 Texture Layer Decoding

tree_blocks: The tree block is that wavelet coefficients are organized in a tree structure which is rooted in the low-
low band (DC band) of the wavelet decomposition, then extends into the higher frequency bands at the same spatial
location. Note the DC band is encoded separately.

spatial_layers: This field is equivalent to the maximum number of the wavelet decomposition layers in that
scalability layer.

arith_decode_highbands_td(): This is an arithmetic decoder for decoding the quantized coefficient values of the
higher bands (all bands except DC band) within a single tree block. The bitstream is generated by an adaptive
arithmetic encoder. The arithmetic decoding relies on the initialization of the uniform probability distribution models
described in subclause B.2.2. This decoder uses only integer arithmetic. It also uses an adaptive probability model
based on the frequency counts of the previously decoded symbols. The maximum range (or precision) specified is
(2^16) - 1 (16 bits). The maximum frequency count for the magnitude and residual models is 127, and for all other
models it is 127. The arithmetic coder used is identical to the one used in arith_decode_highbands_bilevel_td().

texture_spatial_layer_start_code: The texture_spatial_layer_start_code is a string of 32 bits. The 32 bits are
‘0000 0000 0000 0000 0000 0001 1011 1111’ in binary. The texture_spatial_layer_start_code marks the start of a
new spatial layer.

texture_spatial_layer_id: This is given by 5-bits representing one of the values in the range of ‘00000’ to ‘11111’
in binary. The texture_spatial_layer_id uniquely identifies a spatial layer.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

107

arith_decode_highbands_bb(): This is an arithmetic decoder for decoding the quantized coefficient values of the
higher bands (all bands except DC band) within a single band. The bitstream is generated by an adaptive arithmetic
encoder. The arithmetic decoding relies on the initialization of the uniform probability distribution models described
in subclause B.2.2. This decoder uses arithmetic. It also uses an adaptive probability model based on the frequency
counts of the previously decoded symbols. The maximum range (or precision) specified is (2^16) - 1 (16 bits). The
maximum frequency count for the magnitude and residual models is 127, and for all other models it is 127.

snr_scalability_levels: This field indicates the number of levels of SNR scalability supported in this spatial
scalability level.

texture_snr_layer_start_code: The texture_snr_layer_start_code is a string of 32 bits. The 32 bits are ‘0000 0000
0000 0000 0000 0001 1100 0000’ in binary. The texture_snr_layer_start_code marks the start of a new snr layer.

texture_snr_layer_id: This is given by 5-bits representing one of the values in the range of ‘00000’ to ‘11111’ in
binary. The texture_snr_layer_id uniquely identifies an SNR layer.

NOTE All the start codes start at the byte boundary. Appropriate number of bits is stuffed before any start code to
byte-align the bitstream.

all_nonzero: This flag indicates whether some of the subbands of the current layer contain only zero coefficients.
The value ‘0’ for this flag indicates that one or more of the subbands contain only zero coefficients. The value ‘1’ for
this flag indicates the all the subbands contain some nonzero coefficients

all_zero: This flag indicates whether all the coefficients in the current layer are zero or not. The value ‘0’ for this flag
indicates that the layer contains some nonzero coefficients. The value ‘1’ for this flag indicates that the layer only
contains zero coefficients, and therefore the layer is skipped.

lh_zero, hl_zero, hh_zero: This flag indicates whether the LH/HL/HH subband of the current layer contains only all
zero coefficients. The value ‘1’ for this flag indicates that the LH/HL/HH subband contains only zero coefficients, and
therefore the subband is skipped. The value ‘0’ for this flag indicates that the LH/HL/HH subband contains some
nonzero coefficients

arith_decode_highbands_bilevel_bb(): This is an arithmetic decoder for decoding the quantized coefficient
values of the higher bands in the bilevel_quant mode (all bands except DC band). The bitstream is generated by an
adaptive arithmetic encoder. The arithmetic decoding relies on the initialization of the uniform probability distribution
models described. The arith_decode_highbands_bilevel() function uses bitplane scanning, and a different probability
model as described in subclause B.2.2. In this mode, The maximum range (or precision) specified is (2^16) - 1 (16
bits). The maximum frequency count is 127. It uses the lh/hl/hh_zero flags to see if any of the LH/HL/HH are all zero
thus not decoded . For example if lh_zero=1 and hh_zero=1 only hl_zero is decoded.

arith_decode_highbands_bilevel_td(): This is an arithmetic decoder for decoding the quantized coefficient
values of the higher bands in the bilevel_quant mode (all bands except DC band). The bitstream is generated by an
adaptive arithmetic encoder. The arithmetic decoding relies on the initialization of the uniform probability distribution
models described. The arith_decode_highbands_bilevel() function uses bitplane scanning, and a different probability
model as described in subclause B.2.2. In this mode, The maximum range (or precision) specified is (2^16) - 1 (16
bits). The maximum frequency count is 127. It uses the lh/hl/ll_zero flags to see if any of the LH/HL/HH are all zero
thus not decoded. For example if lh_zero=1 and hh_zero=1 only hl_zero is decoded.

lowpass_filter_length: This field defines the length of the low pass filter in binary ranging from “0001” (length of 1)
to “1111” (length of 15.)

highpass_filter_length: This field defines the length of the high pass filter in binary ranging from “0001” (length of
1) to “1111” (length of 15.)

filter_tap_integer: This field defines an integer filter coefficient in a 16 bit signed integer. The filter coefficients are
decoded from the left most tap to the right most tap order.

filter_tap_float_high: This field defines the left 16 bits of a floating filter coefficient which is defined in 32-bit IEEE
floating format. The filter coefficients are decoded from the left most tap to the right most tap order.

filter_tap_float_low: This field defines the right 16 bits of a floating filter coefficient which is defined in 32-bit IEEE
floating format. The filter coefficients are decoded from the left most tap to the right most tap order.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

108

integer_scale: This field defines the scaling factor of the integer wavelet, by which the output of each composition
level is divided by an integer division operation. A zero value is forbidden.

mean: This field indicates the mean value of one color component of the texture.

quant_dc_byte: This field indicates the quantization step size for one color component of the DC subband. A zero
value is forbidden. The quantization step size parameter, quant_dc, is decoded using the function get_param():
quant = get_param(7);

band_offset_byte: This field defines one byte of the absolute value of the parameter band_offset. This parameter
is added to each DC band coefficient obtained by arithmetic decoding. The parameter band_offset is decoded using
the function get_param():

band_offset = -get_param(7);

where function get_param() is defined as

int get_param(int nbit)

{

int count = 0;

int word =0;

int value = 0;

int module = 1<<(nbit);

do{

word= get_next_word_from_bitstream(nbit+1);

value += (word & (module-1)) << (count * nbit);

count ++;

} while(word>> nbit);

return value;

}

The function get_next_word_from_bitstream(x) reads the next x bits from the input bitstream.

band_max_byte: This field defines one byte of the maximum value of the DC band. The parameter
band_max_value is decoded using function get_param():

band_max_value = get_param(7);

arith_decode_dc(): This is an arithmetic decoder for decoding the quantized coefficient values of DC band only.
No zerotree symbol is decoded since the VAL is assumed for all DC coefficient values. This bitstream is generated
by an adaptive arithmetic encoder. The arithmetic decoding relies on the initialization of a uniform probability
distribution model described in subclause B.2.2. The arith_decode_dc() function uses the same arithmetic decoder
as described in arith_decode_highbands_td() but it uses different scanning, and a different probability model (DC).

root_max_alphabet_byte: This field defines one byte of the maximum absolute value of the quantized coefficients
of the three lowest AC bands. This parameter is decoded using the function get_param():

root_max_alphabet = get_param (7);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

109

valz_max_alphabet_byte-- This field defines one byte of the maximum absolute value of the quantized coefficients
of the 3 highest AC bands. The parameter valz_max is decoded using the function get_param():

valz_max_alphabet = get_param (7);

valnz_max_alphabet_byte: This field defines one byte of the maximum absolute value of the quantized
coefficients which belong to the middle AC bands (the bands between the 3 lowest and the 3 highest AC bands).
The parameter valnz_max_alphabet is decoded using the function get_param():

valnz_max_alphabet = get_param (7);

6.3.8.2 Shape Object decoding

change_conv_ratio_disable: This specifies whether conv_ratio is encoded at the shape object decoding function.
If it is set to “1” when disable.

sto_constant_alpha: This is a 1-bit flag when set to ‘1’, the opaque alpha values of the binary mask are replaced
with the alpha value specified by sto_constant_alpha_value.

sto_constant_alpha_value: This is an 8-bit code that gives the alpha value to replace the opaque pixels in the
binary alpha mask. Value ‘0’ is forbidden.

bab_type: This is a variable length code of 1-2 bits. It indicates the coding mode used for the bab. There are three
bab_types as depicted in Table 6-35. The VLC tables used depend on the decoding context i.e. the bab_types of
blocks already received.

Table 6-35 -- List of bab_types and usage

bab_type Semantic code

2 transparent 10

3 opaque 0

4 intraCAE 11

The bab_type determines what other information fields will be present for the bab shape. No further shape
information is present if the bab_type = 2 or 3. opaque means that all pixels of the bab are part of the object.
transparent means that none of the bab pixels belong to the object. IntraCAE means the intra-mode CAE decoding
will be required to reconstruct the pixels of the bab.

conv_ratio: This is VLC code of length 1-2 bits. It specifies the factor used for sub-sampling the 16x16 pixel bab.
The decoder must up-sample the decoded bab by this factor. The possible values for this factor are 1, 2 and 4 and
the VLC table used is given in Table B-31.

scan_type: This is a 1-bit flag where a value of ‘0’ implies that the bab is in transposed form i.e. the bab has been
transposed prior to coding. The decoder must then transpose the bab back to its original form following decoding. If
this flag is ‘1’, then no transposition is performed.

binary_arithmetic_decode(): This is a binary arithmetic decoder representing the pixel values of the bab. Cae
decoding relies on the knowledge of intra_prob[], probability tables given in annex B.

6.3.9 Mesh object

mesh_object_start_code: The mesh_object_start_code is the bit string ‘000001BC’ in hexadecimal. It initiates a
mesh object.

6.3.9.1 Mesh object plane

mesh_object_plane_start_code: The mesh_object_plane_start_code is the bit string ‘000001BD’ in hexadecimal.
It initiates a mesh object plane.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

110

is_intra: This is a 1-bit flag which when set to ‘1’ indicates that the mesh object is coded in intra mode. When set to
‘0’ it indicates that the mesh object is coded in predictive mode.

6.3.9.2 Mesh geometry

mesh_type_code: This is a 2-bit integer defined in Table 6-36. It indicates the type of initial mesh geometry to be
decoded.

Table 6-36 -- Mesh type code

mesh type code mesh geometry

00 forbidden

01 uniform

10 Delaunay

11 reserved

nr_of_mesh_nodes_hor: This is a 10-bit unsigned integer specifying the number of nodes in one row of a uniform
mesh.

nr_of_mesh_nodes_vert: This is a 10-bit unsigned integer specifying the number of nodes in one column of a
uniform mesh.

mesh_rect_size_hor: This is a 8-bit unsigned integer specifying the width of a rectangle of a uniform mesh
(containing two triangles) in half pixel units.

mesh_rect_size_vert: This is a 8-bit unsigned integer specifying the height of a rectangle of a uniform mesh
(containing two triangles) in half pixel units.

triangle_split_code: This is a 2-bit integer defined in Table 6-37. It specifies how rectangles of a uniform mesh are
split to form triangles.

Table 6-37 -- Specification of the triangulation type

triangle split code Split

00 top-left to right bottom

01 bottom-left to top right

10 alternately top-left to bottom-right and bottom-left to top-right

11 alternately bottom-left to top-right and top-left to bottom-right

nr_of_mesh_nodes: This is a 16-bit unsigned integer defining the total number of nodes (vertices) of a (non-
uniform) Delaunay mesh. These nodes include both interior nodes as well as boundary nodes.

nr_of_boundary_nodes: This is a 10-bit unsigned integer defining the number of nodes (vertices) on the boundary
of a (non-uniform) Delaunay mesh.

node0_x: This is a 13-bit signed integer specifying the x-coordinate of the first boundary node (vertex) of a mesh in
half-pixel units with respect to a local coordinate system.

node0_y: This is a 13-bit signed integer specifying the y-coordinate of the first boundary node (vertex) of a mesh in
half-pixel units with respect to a local coordinate system.

delta_x_len_vlc: This is a variable-length code specifying the length of the delta_x code that follows. The
delta_x_len_vlc and delta_x codes together specify the difference between the x-coordinates of a node (vertex) and

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

111

the previously encoded node (vertex). The definition of the delta_x_len_vlc and delta_x codes are given in Table
B-33, the table for sprite motion trajectory coding.

delta_x: This is an integer that defines the value of the difference between the x-coordinates of a node (vertex) and
the previously encoded node (vertex) in half pixel units. The number of bits in the bitstream for delta_x is
delta_x_len_vlc.

delta_y_len_vlc: This is a variable-length code specifying the length of the delta_y code that follows. The
delta_y_len_vlc and delta_y codes together specify the difference between the y-coordinates of a node (vertex) and
the previously encoded node (vertex). The definition of the delta_y_len_vlc and delta_y codes are given in Table
B-33, the table for sprite motion trajectory coding.

delta_y: This is an integer that defines the value of the difference between the y-coordinates of a node (vertex) and
the previously encoded node (vertex) in half pixel units. The number of bits in the bitstream for delta_y is
delta_y_len_vlc.

6.3.9.3 Mesh motion

motion_range_code: This is a 3-bit integer defined in Table 6-38. It specifies the dynamic range of motion vectors
in half pel units.

Table 6-38 -- motion range code

motion range code motion vector range

1 [-32, 31]

2 [-64, 63]

3 [-128, 127]

4 [-256, 255]

5 [-512, 511]

6 [-1024, 1023]

7 [-2048, 2047]

node_motion_vector_flag: This is a 1 bit code specifying whether a node has a zero motion vector. When set to
‘1’ it indicates that a node has a zero motion vector, in which case the motion vector is not encoded. When set to ‘0’,
it indicates the node has a nonzero motion vector and that motion vector data shall follow.

delta_mv_x_vlc: This is a variable-length code defining (together with delta_mv_x_res) the value of the difference
in the x-component of the motion vector of a node compared to the x-component of a predicting motion vector. The
definition of the delta_mv_x_vlc codes are given in Table B-12, the table for motion vector coding (MVD). The value
delta_mv_x_vlc is given in half pixel units.

delta_mv_x_res: This is an integer which is used in mesh node motion vector decoding using an algorithm
equivalent to that described in the section on video motion vector decoding, subclause 7.6.3. The number of bits in
the bitstream for delta_mv_x_res is motion_range_code-1.

delta_mv_y_vlc: This is a variable-length code defining (together with delta_mv_y_res) the value of the difference
in the y-component of the motion vector of a node compared to the y-component of a predicting motion vector. The
definition of the delta_mv_y_vlc codes are given in Table B-12, the table for motion vector coding (MVD). The value
delta_mv_y_vlc is given in half pixel units.

delta_mv_y_res: This is an integer which is used in mesh node motion vector decoding using an algorithm
equivalent to that described in the section on video motion vector decoding, subclause 7.6.3. The number of bits in
the bitstream for delta_mv_y_res is motion_range_code-1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

112

6.3.10 Face object

fba_object_start_code: The fba_object_start_code is the bit string ‘000001BA’ in hexadecimal. It initiates a face
object.

fba_object_coding_type: This is a 1-bit integer indicating which coding method is used. Its meaning is described
in Table 6-39.

Table 6-39 -- fba_object_coding_type

type value Meaning

0 predictive coding

1 DCT (face_object_plane_group)

fba_suggested_gender: This is a 1-bit integer indicating the suggested gender for the face model. It does not bind
the decoder to display a facial model of suggested gender, but indicates that the content would be more suitable for
display with the facial model of indicated gender, if the decoder can provide one. If fba_suggested_gender is 1, the
suggested gender is male, otherwise it is female.

6.3.10.1 Face object plane

face_paramset_mask: This is a 2-bit integer defined in Table 6-40. It indicates whether FAP data are present in
the face_frame.

Table 6-40 -- Face parameter set mask

mask value Meaning

00 unused

01 FAP present

10 reserved

11 reserved

face_object_plane_start_code: The face_frame_start_code is the bit string ‘000001BB’ in hexadecimal. It initiates
a face object plane.

is_frame_rate: This is a 1-bit flag which when set to ‘1’ indicates that frame rate information follows this bit field.
When set to ‘0’ no frame rate information follows this bit field.

is_time_code: This is a 1-bit flag which when set to ‘1’ indicates that time code information follows this bit field.
When set to ‘0’ no time code information follows this bit field.

time_code: This is a 18-bit integer containing the following: time_code_hours, time_code_minutes, marker_bit and
time_code_seconds as shown in Table 6-41. The parameters correspond to those defined in the IEC standard
publication 461 for “time and control codes for video tape recorders”. The time code specifies the modulo part (i.e.
the full second units) of the time base for the current object plane.

Table 6-41 -- Meaning of time_code

time_code range of value No. of bits Mnemonic

time_code_hours 0 - 23 5 uimsbf

time_code_minutes 0 - 59 6 uimsbf

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

113

marker_bit 1 1 bslbf

time_code_seconds 0 - 59 6 uimsbf

skip_frames: This is a 1-bit flag which when set to ‘1’ indicates that information follows this bit field that indicates
the number of skipped frames. When set to ‘0’ no such information follows this bit field.

fap_mask_type: This is a 2-bit integer. It indicates if the group mask will be present for the specified fap group, or
if the complete faps will be present; its meaning is described in Table 6-42. In the case the type is ‘10’ the ‘0’ bit in
the group mask indicates interpolate fap.

Table 6-42 -- fap mask type

mask type Meaning

00 no mask nor fap

01 group mask

10 group mask’

11 fap

fap_group_mask[group_number]: This is a variable length bit entity that indicates, for a particular group_number
which fap is represented in the bitstream. The value is interpreted as a mask of 1-bit fields. A 1-bit field in the mask
that is set to ‘1’ indicates that the corresponding fap is present in the bitstream. When that 1-bit field is set to ‘0’ it
indicates that the fap is not present in the bitstream. The number of bits used for the fap_group_mask depends on
the group_number, and is given in Table 6-43.

Table 6-43 -- fap group mask bits

group_number No. of bits

1 2

2 16

3 12

4 8

5 4

6 5

7 3

8 10

9 4

10 4

NFAP[group_number] : This indicates the number of FAPs in each FAP group. Its values are specified in the
following table:

Table 6-44 -- NFAP definition

group_number NFAP[group_number]

1 2

2 16

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

114

3 12

4 8

5 4

6 5

7 3

8 10

9 4

10 4

fap_quant: This is a 5-bit unsigned integer which is the quantization scale factor used to compute the FAPi table
step size.

is_i_new_max: This is a 1-bit flag which when set to ‘1’ indicates that a new set of maximum range values for I
frame follows these 4, 1-bit fields.

is_i_new_min: This is a 1-bit flag which when set to ‘1’ indicates that a new set of minimum range values for I
frame follows these 4, 1-bit fields.

is_p_new_max: This is a 1-bit flag which when set to ‘1’ indicates that a new set of maximum range values for P
frame follows these 4, 1-bit fields.

is_p_new_min: This is a 1-bit flag which when set to ‘1’ indicates that a new set of minimum range values for P
frame follows these 4, 1-bit fields.

6.3.10.2 Face Object Prediction

skip_frames: This is a 1-bit flag which when set to ‘1’ indicates that information follows this bit field that indicates
the number of skipped frames. When set to ‘0’ no such information follows this bit field.

6.3.10.3 Decode frame rate and frame skip

frame_rate: This is an 8 bit unsigned integer indicating the reference frame rate of the sequence.

seconds: This is a 4 bit unsigned integer indicating the fractional reference frame rate. The frame rate is computed
as follows frame rate = (frame_rate + seconds/16).

frequency_offset: This is a 1-bit flag which when set to ‘1’ indicates that the frame rate uses the NTSC frequency
offset of 1000/1001. This bit would typically be set when frame_rate = 24, 30 or 60, in which case the resulting frame
rate would be 23.97, 29.94 or 59.97 respectively. When set to ‘0’ no frequency offset is present. I.e. if
(frequency_offset ==1) frame rate = (1000/1001) * (frame_rate + seconds/16).

number_of_frames_to_skip: This is a 4-bit unsigned integer indicating the number of frames skipped. If the
number_of_frames_to skip is equal to 15 (pattern “1111”) then another 4-bit word follows allowing to skip up to 29
frames(pattern “11111110”). If the 8-bits pattern equals “11111111”, then another 4-bits word will follow and so on,
and the number of frames skipped is incremented by 30. Each 4-bit pattern of ‘1111’ increments the total number of
frames to skip with 15.

6.3.10.4 Decode new minmax

i_new_max[j]: This is a 5-bit unsigned integer used to scale the maximum value of the arithmetic decoder used in
the I frame.

i_new_min[j]: This is a 5-bit unsigned integer used to scale the minimum value of the arithmetic decoder used in
the I frame.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

115

p_new_max[j]: This is a 5-bit unsigned integer used to scale the maximum value of the arithmetic decoder used in
the P frame.

p_new_min[j]: This is a 5-bit unsigned integer used to scale the minimum value of the arithmetic decoder used in
the P frame.

6.3.10.5 Decode viseme and expression

viseme_def: This is a 1-bit flag which when set to ‘1’ indicates that the mouth FAPs sent with the viseme FAP may
be stored in the decoder to help with FAP interpolation in the future.

expression_def: This is a 1-bit flag which when set to ‘1’ indicates that the FAPs sent with the expression FAP
may be stored in the decoder to help with FAP interpolation in the future.

6.3.10.6 Face object plane group

face_object_plane_start_code: Defined in subclause 6.3.10.1.

is_intra: This is a 1-bit flag which when set to ‘1’ indicates that the face object is coded in intra mode. When set to
‘0’ it indicates that the face object is coded in predictive mode.

face_paramset_mask: Defined in subclause 6.3.10.1.

is_frame_rate: Defined in subclause 6.3.10.1.

is_time_code: Defined in subclause 6.3.10.1.

time_code: Defined in subclause 6.3.10.1.

skip_frames: Defined in subclause 6.3.10.1.

Fap_quant_index: This is a 5-bit unsigned integer used as the index to a fap_scale table for computing the
quantization step size of DCT coefficients. The value of fap_scale is specified in the following list:

fap_scale[0 - 31] = { 1, 1, 2, 3, 5, 7, 8, 10, 12, 15, 18, 21, 25, 30, 35, 42,

50, 60, 72, 87, 105, 128, 156, 191, 234, 288, 355, 439, 543, 674, 836, 1039}

fap_mask_type: Defined in subclause 6.3.10.1.

fap_group_mask[group_number] : Defined in subclause 6.3.10.1.

6.3.10.7 Face Object Group Prediction

skip_frames: See the definition in subclause 6.3.10.1.

6.3.10.8 Decode frame rate and frame skip

frame_rate: See the definition in subclause 6.3.10.3.

frequency_offset: See the definition in subclause 6.3.10.3.

number_of_frames_to_skip: See the definition in subclause 6.3.10.3.

6.3.10.9 Decode viseme_segment and expression_segment

viseme_segment_select1q[k]: This is the quantized value of viseme_select1 at frame k of a viseme FAP
segment.

viseme_segment_select2q[k]: This is the quantized value of viseme_select2 at frame k of a viseme FAP
segment.

viseme_segment_blendq[k]: This is the quantized value of viseme_blend at frame k of a viseme FAP segment.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

116

viseme_segment_def[k]: This is a 1-bit flag which when set to ‘1’ indicates that the mouth FAPs sent with the
viseme FAP at frame k of a viseme FAP segment may be stored in the decoder to help with FAP interpolation in the
future.

viseme_segment_select1q_diff[k]: This is the prediction error of viseme_select1 at frame k of a viseme FAP
segment.

viseme_segment_select2q_diff[k]: This is the prediction error of viseme_select2 at frame k of a viseme FAP
segment.

viseme_segment_blendq_diff[k]: This is the prediction error of viseme_blend at frame k of a viseme FAP
segment.

expression_segment_select1q[k]: This is the quantized value of expression_select1 at frame k of an expression
FAP segment.

expression_segment_select2q[k]: This is the quantized value of expression_select2 at frame k of an expression
FAP segment.

expression_segment_intensity1q[k]: This is the quantized value of expression_intensity1 at frame k of an
expression FAP segment

expression_segment_intensity2q[k]: This is the quantized value of expression_intensity2 at frame k of an
expression FAP segment

expression_segment_select1q_diff[k]: This is the prediction error of expression_select1 at frame k of an
expression FAP segment.

expression_segment_select2q_diff[k]: This is the prediction error of expression_select2 at frame k of an
expression FAP segment.

expression_segment_intensity1q_diff[k]: This is the prediction error of expression_intensity1 at frame k of an
expression FAP segment.

expression_segment_intensity2q_diff[k]: This is the prediction error of expression_intensity2 at frame k of an
expression FAP segment.

expression_segment_init_face[k]: This is a 1-bit flag which indicates the value of init_face at frame k of an
expression FAP segment.

expression_segment_def[k]: This is a 1-bit flag which when set to ‘1’ indicates that the FAPs sent with the
expression FAP at frame k of a viseme FAP segment may be stored in the decoder to help with FAP interpolation in
the future.

6.3.10.10 Decode i_dc, p_dc, and ac

dc_q: This is the quantized DC component of the DCT coefficients. For an intra FAP segment, this component is
coded as a signed integer of either 16 bits or 31 bits. The DCT quantization parameters of the 68 FAPs are
specified in the following list:

DCTQP[1 - 68] = {1, 1, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5,

7.5, 7.5, 7.5, 15, 15, 15, 15, 5, 10, 10,

10, 10, 425, 425, 425, 425, 5, 5, 5, 5,

7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 20, 20,

20, 20, 10, 10, 10, 10, 255, 170, 255, 255,

7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5, 7.5,

15, 15, 15, 15, 10, 10, 10, 10}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

117

For DC coefficients, the quantization stepsize is obtained as follows:

qstep[i] = fap_scale[fap_quant_inex] * DCTQP[i] ÷ 3.0

dc_q_diff: This is the quantized prediction error of a DC coefficient of an inter FAP segment. Its value is computed
by subtracting the decoded DC coefficient of the previous FAP segment from the DC coefficient of the current FAP
segment. It is coded by a variable length code if its value is within [-255, +255]. Outside this range, its value is
coded by a signed integer of 16 or 32 bits.

count_of_runs: This is the run length of zeros preceding a non-zero AC coefficient.

ac_q[i][next]: This is a quantized AC coefficients of a segment of FAPi. For AC coefficients, the quantization
stepsize is three times larger than the DC quantization stepsize and is obtained as follows:

qstep[i] = fap_scale[fap_quant_inex] * DCTQP[i]

7 The visual decoding process

This clause specifies the decoding process that the decoder shall perform to recover visual data from the coded
bitstream. As shown in Figure 7-1, the visual decoding process includes several decoding processes such as shape-
motion-texture decoding, still texture decoding, mesh decoding, and face decoding processes. After decoding the
coded bitstream, it is then sent to the compositor to integrate various visual objects.

Texture
Decoding

Mesh
Decoding

Motion
Compensation
Decoding

Shape
Decoding

Face
Decoding

Still Texture
Decoding

Entropy
Decoding
and Visual
Demux

To
Composition

Figure 7-1 -- A high level view of basic visual decoding; specialized decoding such as scalable, sprite and
error resilient decoding are not shown

In subclauses 7.1 through 7.9 the VOP decoding process is specified in which shape, motion, texture decoding
processes are the major contents. The still texture object decoding is described in subclauses 7.10. Subclause 7.11
includes the mesh decoding process, and subclause 7.12 features the face object decoding process. The output of
the decoding process is explained in subclause 7.13.

7.1 Video decoding process

This subclause specifies the decoding process that a decoder shall perform to recover VOP data from the coded
video bitstream.

With the exception of the Inverse Discrete Cosine Transform (IDCT) the decoding process is defined such that all
decoders shall produce numerically identical results. Any decoding process that produces identical results to the
process described here, by definition, complies with this part of ISO/IEC 14496.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

118

The IDCT is defined statistically such that different implementations for this function are allowed. The IDCT
specification is given in annex A.

Figure 7-2 is a diagram of the Video Decoding Process without any scalability feature. The diagram is simplified for
clarity. The same decoding scheme is applied when decoding all the VOPs of a given session

NOTE Throughout this part of ISO/IEC 14496 two dimensional arrays are represented as name[q][p] where ‘q’ is
the index in the vertical dimension and ‘p’ the index in the horizontal dimension.

Coded Bit Stream
(Shape)

Coded
Bit Stream

(Texture)

Shape
Decoding

Motion
Decoding

Coded Bit Stream
(Motion)

Variable
Length

Decoding

Inverse
Scan

Inverse

Quantization
IDCT

Motion
Compen-

sation

Previous
Reconstructed

VOP

Demultiplexer

video_object_layer_shape

Texture Decoding

VOP
Recon-

struction

Inverse
DC & AC

Prediction

Figure 7-2 -- Simplified Video Decoding Process

The decoder is mainly composed of three parts: shape decoder, motion decoder and texture decoder. The
reconstructed VOP is obtained by combining the decoded shape, texture and motion information.

7.2 Higher syntactic structures

The various parameters and flags in the bitstream for VideoObjectLayer(), Group_of_VideoObjectPlane(),
VideoObjectPlane(), video_plane_with_short_header(), macroblock() and block(), as well as other syntactic
structures related to them shall be interpreted as discussed earlier. Many of these parameters and flags affect the
decoding process. Once all the macroblocks in a given VOP have been processed, the entire VOP will have been
reconstructed. In case the bitstream being decoded contains B-VOPs, reordering of VOPs may be needed as
discussed in subclause 6.1.3.7.

7.3 VOP reconstruction

The luminance and chrominance values of a VOP from the decoded texture and motion information are
reconstructed as follows:

1. In case of INTRA macroblocks, the luminance and chrominance values f[y][x] from the decoded texture data
form the luminance and chrominance values of the VOP: d[y][x] = f[y][x].

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

119

2. In case of INTER macroblocks, first the prediction values p[y][x] are calculated using the decoded motion vector
information and the texture information of the respective reference VOPs. Then, the decoded texture data f[y][x]
is added to the prediction values, resulting in the final luminance and chrominance values of the VOP: d[y][x] =
p[y][x] + f[y][x]

3. Finally, the calculated luminance and chrominance values of the reconstructed VOP are saturated so that

0 � d[y][x] � 2bits_per_pixel – 1 , for all x, y.

7.4 Texture decoding

This subclause describes the process used to decode the texture information of a VOP. The process of video
texture decoding is given in Figure 7-3.

Variable
Length
Decoding

Inverse Scan

Inverse DC &
AC Prediction

Inverse
Quantization

Inverse DCT Motion
Compensation

VOP Memory

Coded Data

Decoded Pels

QFS[n]

QF[v][u] f[y][x] d[y][x]

Reconstructed VOP

f[y][x]F[v][u]

PQF[v][u]

Figure 7-3 -- Video Texture Decoding Process

7.4.1 Variable length decoding

This subclause explains the decoding process. Subclause 7.4.1.1 specifies the process used for the DC coefficients
(n=0) in an intra coded block. (n is the index of the coefficient in the appropriate zigzag scan order). Subclause
7.4.1.2 specifies the decoding process for all other coefficients; AC coefficients (0�n) and DC coefficients in non-
intra coded blocks.

7.4.1.1 DC coefficients decoding in intra blocks

Differential DC coefficients in blocks in intra macroblocks are encoded as variable length code denoting dct_dc_size
as defined in Table B-13 and Table B-14 in annex B, and a fixed length code dct_dc_differential (Table B-15). The
dct_dc_size categorizes the dc coefficients according to their “size”. For each category additional bits are appended
to the dct_dc_size code to uniquely identify which difference in that category actually occurred (Table B-15). This is
done by appending a fixed length code, dct_dc_differential, of dct_dc_size bits. The final value of the decoded dc
coefficient is the sum of this differential dc value and the predicted value.

When short_video_header is 1, the dc coefficient of an intra block is not coded differentially. It is instead transmitted
as a fixed length unsigned integer code of size 8 bits, unless this integer has the value 255. The values 0 and 128
shall not be used – they are reserved. If the integer value is 255, this is interpreted as a signaled value of 128.

7.4.1.2 Other coefficients

The ac coefficients are obtained by decoding the variable length codes to produce EVENTs. An EVENT is a
combination of a last non-zero coefficient indication (LAST; “0”: there are more nonzero coefficients in this block, “1”:
this is the last nonzero coefficient in this block), the number of successive zeros preceding the coded coefficient
(RUN), and the non-zero value of the coded coefficient (LEVEL).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

120

When short_video_header is 1, the most commonly occurring EVENTS are coded with the variable length codes
given in Table B-17 (for all coefficients other than intra DC whether in intra or inter blocks). The last bit “s” denotes
the sign of level, “0” for positive and “1” for negative.

When short_video_header is 0, the variable length code table is different for intra blocks and inter blocks. The most
commonly occurring EVENTs for the luminance and chrominance components of intra blocks in this case are
decoded by referring to Table B-16. The most commonly occurring EVENTs for the luminance and chrominance
components of inter blocks in this case are decoded by referring to Table B-17. The last bit “s” denotes the sign of
level, “0” for positive and “1” for negative. The combinations of (LAST, RUN, LEVEL) not represented in these tables
are decoded as described in subclause 7.4.1.3.

7.4.1.3 Escape code

Many possible EVENTS have no variable length code to represent them. In order to encode these statistically rare
combinations an Escape Coding method is used. The escape codes of DCT coefficients are encoded in five modes.
The first three of these modes are used when short_video_header is 0 and in the case that the reversible VLC
tables are not used, and the fourth is used when short_video_header is 1. In the case that the reversible VLC tables
are used, the fifth escape coding method as in Table B-23 is used. Their decoding process is specified below.

Type 1 : ESC is followed by “0”, and the code following ESC + ”0” is decoded as a variable length code using the
standard Tcoef VLC codes given in Table B-16 and Table B-17, but the values of LEVEL are modified following
decoding to give the restored value LEVELS, as follows:

LEVELS= sign(LEVEL+) x [abs(LEVEL+) + LMAX]

where LEVEL+ is the value after variable length decoding and LMAX is obtained from Table B-19 and Table B-20
as a function of the decoded values of RUN and LAST.

Type 2 : ESC is followed by “10”, and the code following ESC + “10” is decoded as a variable length code using the
standard Tcoef VLC codes given in Table B-16 and Table B-17, but the values of RUN are modified following
decoding to give the restored value RUNS, as follows:

RUNS= RUN+ + (RMAX + 1)

where RUN+ is the value after variable length decoding. RMAX is obtained from Table B-21 and Table B-22 as a
function of the decoded values of LEVEL and LAST.

Type 3 : ESC is followed by “11”, and the code following ESC + “11” is decoded as fixed length codes. This type of
escape codes are represented by 1-bit LAST, 6-bit RUN and 12-bit LEVEL. A marker bit is inserted before and after
the 12-bit-LEVEL in order to avoid the resync_marker emulation. Use of this escape sequence for encoding the
combinations listed in Table B-16 and Table B-17 is prohibited. The codes for RUN and LEVEL are given in Table
B-18.

Type 4: The fourth type of escape code is used if and only if short_video_header is 1. In this case, the 15 bits
following ESC are decoded as fixed length codes represented by 1-bit LAST, 6-bit RUN and 8-bit LEVEL. The
values 0000 0000 and 1000 000 for LEVEL are not used (they are reserved).

7.4.1.4 Intra dc coefficient decoding for the case of switched vlc encoding

At the VOP layer, using quantizer value as the threshold, a 3 bit code (intra_dc_vlc_thr) allows switching between 2
VLCs (DC Intra VLC and AC Intra VLC) when decoding DC coefficients of Intra macroblocks, see Table 6-21.

NOTE When the intra AC VLC is turned on, Intra DC coefficients are not handled separately any more, but treated
the same as all other coefficients. That means that a zero Intra DC coefficient will not be coded but will simply
increase the run for the following AC coefficients. The definitions of mcbpc and cbpy in subclause 6.3.6 are changed
accordingly.

7.4.2 Inverse scan

This subclause specifies the way in which the one dimensional data, QFS[n] is converted into a two-dimensional
array of coefficients denoted by PQF[v][u] where u and v both lie in the range of 0 to 7. Let the data at the output of
the variable length decoder be denoted by QFS[n] where n is in the range of 0 to 63. Three scan patterns are
defined as shown in Figure 7-4. The scan that shall be used is determined by the following method. For intra blocks,
if acpred_flag=0, zigzag scan is selected for all blocks in a macroblock. Otherwise, DC prediction direction is used to
select a scan on block basis. For instance, if the DC prediction refers to the horizontally adjacent block, alternate-

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

121

vertical scan is selected for the current block. Otherwise (for DC prediction referring to vertically adjacent block),
alternate-horizontal scan is used for the current block. For all other blocks, the 8x8 blocks of transform coefficients
are scanned in the “zigzag” scanning direction.

0 1 2 3 10 11 12 13 0 4 6 20 22 36 38 52 0 1 5 6 14 15 27 28

4 5 8 9 17 16 15 14 1 5 7 21 23 37 39 53 2 4 7 13 16 26 29 42

6 7 19 18 26 27 28 29 2 8 19 24 34 40 50 54 3 8 12 17 25 30 41 43

20 21 24 25 30 31 32 33 3 9 18 25 35 41 51 55 9 11 18 24 31 40 44 53

22 23 34 35 42 43 44 45 10 17 26 30 42 46 56 60 10 19 23 32 39 45 52 54

36 37 40 41 46 47 48 49 11 16 27 31 43 47 57 61 20 22 33 38 46 51 55 60

38 39 50 51 56 57 58 59 12 15 28 32 44 48 58 62 21 34 37 47 50 56 59 61

52 53 54 55 60 61 62 63 13 14 29 33 45 49 59 63 35 36 48 49 57 58 62 63

Figure 7-4 -- (a) Alternate-Horizontal scan (b) Alternate-Vertical scan (c) Zigzag scan

7.4.3 Intra dc and ac prediction for intra macroblocks

This subclause specifies the prediction process for decoding of coefficients. This prediction process is only carried
out for intra-macroblocks (I-MBs) and when short_video_header is “0”. When short_video_header is “1” or the
macroblock is not an I-MB, this prediction process is not performed.

7.4.3.1 DC and AC Prediction Direction

This adaptive selection of the DC and AC prediction direction is based on comparison of the horizontal and vertical
DC gradients around the block to be decoded. Figure 7-5 shows the three blocks surrounding the block to be
decoded. Block ‘X’, ‘A’, ‘B’ and ‘C’ respectively refer to the current block, the left block, the above-left block, and the
block immediately above, as shown.

A

B C D

X MacroblockY

or or

Figure 7-5 -- Previous neighboring blocks used in DC prediction

The inverse quantized DC values of the previously decoded blocks, F[0][0], are used to determine the direction of
the DC and AC prediction as follows.

if (|FA[0][0] – FB[0][0]| < |FB[0][0] – FC[0][0]|)

predict from block C

else

predict from block A

If any of the blocks A, B or C are outside of the VOP boundary, or the video packet boundary, or they do not belong
to an intra coded macroblock, their F[0][0] values are assumed to take a value of 2(bits_per_pixel+2) and are used to
compute the prediction values.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

122

7.4.3.2 Adaptive DC Coefficient Prediction

The adaptive DC prediction method involves selection of either the F[0][0] value of immediately previous block or
that of the block immediately above it (in the previous row of blocks) depending on the prediction direction
determined above.

if (predict from block C)

QFX[0][0] = PQFX[0][0] + FC[0][0] // dc_scaler

else

QFX[0][0] = PQFX[0][0] + FA[0][0] // dc_scaler

dc_scalar is defined in Table 7-1. This process is independently repeated for every block of a macroblock using the
appropriate immediately horizontally adjacent block ‘A’ and immediately vertically adjacent block ‘C’.

DC predictions are performed similarly for the luminance and each of the two chrominance components.

7.4.3.3 Adaptive ac coefficient prediction

This process is used when ac_pred_flag = ‘1’, which indicates that AC prediction is performed when decoding the
coefficients.

Either coefficients from the first row or the first column of a previous coded block are used to predict the co-sited
coefficients of the current block. On a block basis, the best direction (from among horizontal and vertical directions)
for DC coefficient prediction is also used to select the direction for AC coefficients prediction; thus, within a
macroblock, for example, it becomes possible to predict each block independently from either the horizontally
adjacent previous block or the vertically adjacent previous block. The AC coefficients prediction is illustrated in
Figure 7-6.

A

B

X

DC

or

Macroblock

Y

or

Figure 7-6 -- Previous neighboring blocks and coefficients used in AC prediction

To compensate for differences in the quantization of previous horizontally adjacent or vertically adjacent blocks used
in AC prediction of the current block, scaling of prediction coefficients becomes necessary. Thus the prediction is
modified so that the predictor is scaled by the ratio of the current quantisation stepsize and the quantisation stepsize
of the predictor block. The definition is given in the equations below.

If block ‘A’ was selected as the predictor for the block for which coefficient prediction is to be performed, calculate
the first column of the quantized AC coefficients as follows.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

123

QFX[0][i] = PQFX[0][i] + (QFA[0][i] * QPA) // QPX i = 1 to 7

If block ‘C’ was selected as the predictor for the block for which coefficient prediction is to be performed, calculate
the first row of the quantized AC coefficients as follows.

QFX[j][0] = PQFX[j][0] + (QFC[j][0] * QPC) // QPX i = 1 to 7

If the prediction block (block 'A' or block 'C') is outside of the boundary of the VOP or video packet, then all the
prediction coefficients of that block are assumed to be zero.

7.4.3.4 Saturation of QF[v][u]

The quantized coefficients resulting from the DC and AC Prediction are saturated to lie in the range [�2048, 2047].
Thus:

QF [v][u]�

2047 QF [v][u] � 2047

QF [v][u] �2048 � QF [v][u]� 2047

�2048 QF [v][u] � �2048

	

�

�

�

7.4.4 Inverse quantisation

The two-dimensional array of coefficients, QF[v][u], is inverse quantised to produce the reconstructed DCT
coefficients. This process is essentially a multiplication by the quantiser step size. The quantiser step size is
modified by two mechanisms; a weighting matrix is used to modify the step size within a block and a scale factor is
used in order that the step size can be modified at the cost of only a few bits (as compared to encoding an entire
new weighting matrix).

Inverse
Quantisation
Arithmetic

Saturation

QF[v][u] F''[v][u] F'[v][u] F[v][u]

quant_scale_code

W[w][v][u]

Mismatch
Control

Figure 7-7 -- Inverse quantisation process

Figure 7-7 illustrates the overall inverse quantisation process. After the appropriate inverse quantisation arithmetic
the resulting coefficients, F''[v][u], are saturated to yield F'[v][u] and then a mismatch control operation is performed
to give the final reconstructed DCT coefficients, F[v][u].

NOTE Attention is drawn to the fact that the method of achieving mismatch control in this part of ISO/IEC 14496 is
identical to that employed by ISO/IEC 13818-2.

7.4.4.1 First inverse quantisation method

This subclause specifies the first of the two inverse quantisation methods. The method described here is used when
quant_type equals 1.

7.4.4.1.1 Intra dc coefficient

The DC coefficients of intra coded blocks shall be inverse quantised in a different manner to all other coefficients.

In intra blocks F’’[0][0] shall be obtained by multiplying QF[0][0] by a constant multiplier,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

124

The reconstructed DC values are computed as follows.

F’’[0][0] = dc_scaler* QF[0][0]

When short_video_header is 1, dc_scaler is 8, otherwise dc_scaler is defined in Table 7-1.

7.4.4.1.2 Other coefficients

All coefficients other than the DC coefficient of an intra block shall be inverse quantised as specified in this
subclause. Two weighting matrices are used. One shall be used for intra macroblocks and the other for non-intra
macroblocks. Each matrix has a default set of values which may be overwritten by down-loading a user defined
matrix.

Let the weighting matrices be denoted by W[w][v][u] where w takes the values 0 to 1 indicating which of the matrices
is being used. W[0][v][u] is for intra macroblocks, and W[1][v][u] is for non-intra macroblocks. The value of
quantiser_scale is determined by vop_quant, dquant, dbquant, and quant_scale for luminance and chrominance,
and additionally by vop_quant_alpha for grayscale alpha. For example, the value of quantiser scale for luminance
and chrominance shall be an integer from 1 to 31 when not_8_bit == ‘0’. The following equation specifies the
arithmetic to reconstruct F''[v][u] from QF[v][u] (for all coefficients except intra DC coefficients).

F ' ' [v][u]�
((2 �QF[v][u] � k) �W[w][v][u] �quantiser _ scale) / 16, if QF[v][u] � 0

where :

k �
0 intra blocks

Sign(QF[v][u]) non - intra blocks

	

�

0, if QF[v][u] = 0	

�

NOTE The above equation uses the “/” operator as defined in subclause 4.1.

7.4.4.2 Second inverse quantisation method

This subclause specifies the second of the two inverse quantisation methods. . The method described here is used
for all the coefficients other than the DC coefficient of an intra block when quant_type==0. In the second inverse
quantization method, the DC coefficient of an intra block is quantized using the same method as in the first inverse
quantization method (see subclause 7.4.4.1.1). The quantization parameter quantiser_scale may take integer
values from 1 to 2quant_precision-1. The quantization stepsize is equal to twice the quantiser_scale.

7.4.4.2.1 Dequantisation

�� �

�

� � � �

� � � � �

�

�
	

	

F v u

QF v u

QF v u quantiser scale QF v u quantiser scale

QF v u quantiser scale QF v u quantiser scale

[][]

, [][] ,

([][]) _ , [][] , _

([][]) _ , [][] , _ .

0 0

2 1 0

2 1 1 0

if

if is odd,

if is even

The sign of QF[v][u] is then incorporated to obtain F"[v][u]: F"[v][u]= Sign(QF[v][u])�|F"[v][u]|

7.4.4.3 Nonlinear inverse DC quantisation

NOTE This subclause is valid for both quantization methods.

Within an Intra macroblock for which short_video_header is 0, luminance blocks are called type 1 blocks, chroma
blocks are classified as type 2. When short_video_header is 1, the inverse quantization of DC intra coefficients is
equivalent to using a fixed value of dc_scaler = 8, as described above in subclause 7.4.1.1.

• DC coefficients of Type 1 blocks are quantized by Nonlinear Scaler for Type 1
• DC coefficients of Type 2 blocks are quantized by Nonlinear Scaler for Type 2

Table 7-1 specifies the nonlinear dc_scaler expressed in terms of piece-wise linear characteristics.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

125

Table 7-1 -- Non linear scaler for DC coefficients of DCT blocks, expressed in terms of relation with
quantizer_scale

Component:Type dc_scaler for quantiser_scale range

1 through 4 5 through 8 9 through 24 >= 25

Luminance: Type1 8 2x quantiser_scale quantiser_scale +8 2 x quantiser_scale -16

Chrominance: Type2 8 (quantiser_scale +13)/2 quantiser_scale -6

7.4.4.4 Saturation

The coefficients resulting from the Inverse Quantisation Arithmetic are saturated to lie in the range [�2bits_per_pixel
+ 3 , 2bits_per_pixel + 3 � 1]. Thus:

�
�

�
�

�

���

����

���

	
��

��

��

3ixelbits_per_p3ixelbits_per_p

3ixelbits_per_p3ixelbits_per_p

3ixelbits_per_p3ixelbits_per_p

2]][[''2

12]][[''2]][[''

12]][[''12

]][['

uvF

uvFuvF

uvF

uvF

7.4.4.5 Mismatch control

This mismatch control is only applicable to the first inverse quantization method. Mismatch control shall be
performed by any process equivalent to the following. Firstly all of the reconstructed, saturated coefficients, F'[v][u]
in the block shall be summed. This value is then tested to determine whether it is odd or even. If the sum is even
then a correction shall be made to just one coefficient; F[7][7]. Thus:

sum � F ' [v][u]
u�0

u�8

�
v�0

v �8

�

F[v][u] � F ' [v][u] for all u , v except u = v = 7

F[7][7] �

F ' [7][7] if sum is odd
F ' [7][7] �1 if F ' [7][7] is odd

F ' [7][7] �1 if F ' [7][7] is even

��
��
��

��
	�

�

if sum is even

��

��
��

����

NOTE 1 It may be useful to note that the above correction for F[7][7] may simply be implemented by toggling the
least significant bit of the twos complement representation of the coefficient. Also since only the “oddness” or
“evenness” of the sum is of interest an exclusive OR (of just the least significant bit) may be used to calculate “sum”.

NOTE 2 Warning. Small non-zero inputs to the IDCT may result in zero output for compliant IDCTs. If this occurs
in an encoder, mismatch may occur in some pictures in a decoder that uses a different compliant IDCT. An encoder
should avoid this problem and may do so by checking the output of its own IDCT. It should ensure that it never
inserts any non-zero coefficients into the bitstream when the block in question reconstructs to zero through its own
IDCT function. If this action is not taken by the encoder, situations can arise where large and very visible
mismatches between the state of the encoder and decoder occur.

7.4.4.6 Summary of quantiser process for method 1

In summary, the method 1 inverse quantisation process is any process numerically equivalent to:
IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:19
99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

126

for (v=0; v<8;v++) {
for (u=0; u<8;u++) {

if (QF[v][u] == 0)
F’’[v][u] = 0;

else if ((u==0) && (v==0) && (macroblock_intra)) {
F''[v][u] = dc_scaler * QF[v][u];

} else {
if (macroblock_intra) {

F''[v][u] = (QF[v][u] * W[0][v][u] * quantiser_scale * 2) / 32;
} else {

F''[v][u] = (((QF[v][u] * 2) + Sign(QF[v][u])) * W[1][v][u]
* quantiser_scale) / 32;

}
}

}
}

sum = 0;
for (v=0; v<8;v++) {

for (u=0; u<8;u++) {
if (F’'[v][u] > 2 bits_per_pixel + 3

� 1) {
F’[v][u] = 2 bits_per_pixel + 3

� 1;
} else {

if (F’'[v][u] < -2 bits_per_pixel + 3) {
F’[v][u] = -2 bits_per_pixel + 3 ;

} else {
F’[v][u] = F'‘[v][u];

}
}

sum = sum + F’[v][u];
F[v][u] = F’[v][u];
}

}

if ((sum & 1) == 0) {
if ((F[7][7] & 1) != 0) {

F[7][7] = F'[7][7] - 1;
} else {

F[7][7] = F'[7][7] + 1;
}

}

7.4.5 Inverse DCT

Once the DCT coefficients, F[u][v] are reconstructed, the inverse DCT transform defined in annex A shall be applied
to obtain the inverse transformed values, � �� �xyf .These values shall be saturated so that: -2N_bit

� f[y][x] � 2N_bit – 1 ,

for all x, y.

7.5 Shape decoding

Binary shape decoding is based on a block-based representation. The primary coding methods are block-based
context-based binary arithmetic decoding and block-based motion compensation. The primary data structure used is
denoted as the binary alpha block (bab). The bab is a square block of binary valued pixels representing the
opacity/transparency for the pixels in a specified block-shaped spatial region of size 16x16 pels. In fact, each bab is
co-located with each texture macroblock.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

127

7.5.1 Higher syntactic structures

7.5.1.1 VOL decoding

If video_object_layer_shape is equal to ‘00’ then no binary shape decoding is required. Otherwise, binary shape
decoding is carried out.

7.5.1.2 VOP decoding

If video_object_layer_shape is not equal to ‘00’ then, for each subsequent VOP, the dimensions of the bounding
rectangle of the reconstructed VOP are obtained from:

• vop_width
• vop_height

If these decoded dimensions are not multiples of 16, then the values of vop_width and vop_height are rounded up to
the nearest integer, which is a multiple of 16.

Additionally, in order to facilitate motion compensation, the horizontal and spatial position of the VOP are obtained
from:

• vop_horizontal_mc_spatial_ref
• vop_vertical_mc_spatial_ref

These spatial references may be different for each VOP but the same coordinate system must be used for all VOPs
within a vol. Additionally, the decoded spatial references must have an even value.

• vop_shape_coding_type

This flag is used in error resilient mode and enables the use of intra shape codes in P-VOPs. Finally, in the VOP
class, it is necessary to decode

• change_conv_ratio_disable

This specifies whether conv_ratio is encoded at the macroblock layer.

Once the above elements have been decoded, the binary shape decoder may be applied to decode the shape of
each macroblock within the bounding rectangle.

7.5.2 Macroblock decoding

The shape information for each macroblock residing within the bounding rectangle of the VOP is decoded into the
form of a 16x16 bab.

7.5.2.1 Mode decoding

Each bab belongs to one of seven types listed in Table 7-2. The type information is given by the bab_type field
which influences decoding of further shape information. For I-VOPs only three out of the seven modes are allowed
as shown in Table 7-2.

Table 7-2 -- List of bab types

bab_type Semantic Used in

0 MVDs==0 && No Update P- ,B-VOPs

1 MVDs!=0 && No Update P- ,B-VOPs

2 Transparent All VOP types

3 Opaque All VOP types

4 IntraCAE All VOP types

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

128

5 MVDs==0 && interCAE P- ,B-VOPs

6 MVDs!=0 && interCAE P- ,B-VOPs

7.5.2.1.1 I-VOPs

Suppose that f(x,y) is the bab_type of the bab located at (x,y), where x is the BAB column number and y is the
BAB row number. The code word for the bab_type at the position (i,j) is determined as follows. A context C is
computed from previously decoded bab_type’s.

C = 27*(f(i-1,j-1)-2) + 9*(f(i,j-1)-2) + 3*(f(i+1,j-1)-2) + (f(i-1,j)-2)

If f(x,y) references a bab outside the current VOP, bab_type is assumed to be transparent for that bab (i.e.
f(x,y)=2). The bab_type of babs outside the current video packet is also assumed to be transparent. The VLC
used to decode bab_type for the current bab is switched according to the value of the context C. This context-
switched VLC table is given in Table B-27.

7.5.2.1.2 P- and B-VOPs

The decoding of the current bab_type is dependent on the bab_type of the co-located bab in the reference VOP.
The reference VOP is either a forward reference VOP or a backward reference VOP. The forward reference VOP is
defined as the most recent non-empty (i.e. vop_coded != 0) I- or P-VOP in the past, while the backward VOP is
defined as the most recently decoded I- or P-VOP in the future. If the current VOP is a P-VOP, the forward
reference VOP is selected as the reference VOP. If the current VOP is a B-VOP the following decision rules are
applied:

1. If one of the reference VOPs is empty, the non-empty one (forward/backward) is selected as the reference VOP
for the current B-VOP.

2. If both reference VOPs are non-empty, the forward reference VOP is selected if its temporal distance to the
current B-VOP is not larger than that of the backward reference VOP, otherwise, the backward one is chosen.

In the special cases when closed_gov == 1 and the forward reference VOP belongs to the previous GOV, the
current B-VOP takes the backward VOP as reference.

If the sizes of the current and reference VOPs are different, some babs in the current VOP may not have a co-
located equivalent in the reference VOP. Therefore the bab_type matrix of the reference VOP is manipulated to
match the size of the current VOP. Two rules are defined for that purpose, namely a cut rule and a copy rule:

• cut rule. If the number of lines (respectively columns) is smaller in the current VOP than in the reference VOP,
the bottom lines (respectively rightmost columns) are eliminated from the reference VOP such that both VOP
sizes match.

• copy rule. If the number of lines (respectively columns) is larger in the current VOP than in the reference VOP,
the bottom line (respectively rightmost column) is replicated as many times as needed in the reference VOP
such that both VOP sizes match.

An example is shown in Figure 7-8 where both rules are applied.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

129

2 112 21 2
2 012 21 2
2 011 10 2
2 011 10 2
2 001 00 1
3 030 00 3
0 000 30 1

2 112 21
2 012 21
2 011 10
2 011 10
2 001 00
3 030 00
0 000 30

2 112 22
2 012 21
2 011 11
2 011 10
1 001 00
3 003 00
0 000 00
0 000 00

2 112 21
2 012 21
2 011 10
2 011 10
2 001 00
3 030 00
0 000 30
0 000 30

(a) (b) (c)

(d)

Previous
VOP

cut
copy

Current
VOP

Figure 7-8 -- Example of size fitting between current VOP and reference VOP. The numbers represent the
type of each bab

The VLC to decode the current bab_type is switched according to the value of bab_type of the co-located bab in the
reference VOP. This context-switched VLC tables for P and B VOPs are given in Table B-28. If the type of the bab is
transparent, then the current bab is filled with zero (transparent) values. A similar procedure is carried out if the type
is opaque, where the reconstructed bab is filled with values of 255 (opaque). For both transparent and opaque
types, no further decoding of shape-related data is required for the current bab. Otherwise further decoding steps
are necessary, as listed in Table 7-3. Decoding for motion compensation is described in subclause 7.5.2.2, and cae
decoding in subclause 7.5.2.5.

Table 7-3 -- Decoder components applied for each type of bab

bab_type Motion compensation CAE decoding

0 yes no

1 yes no

2 no no

3 no no

4 no yes

5 yes yes

6 yes yes

7.5.2.2 Binary alpha block motion compensation

Motion Vector of shape (MVs) is used for motion compensation (MC) of shape. The value of MVs is reconstructed
as described in subclause 7.5.2.3. Integer pixel motion compensation is carried out on a 16x16 block basis
according to subclause 7.5.2.4. Overlapped MC, half sample MC and 8x8 MC are not carried out.

If bab_type is MVDs==0 && No Update or MVDs!=0 && No Update then the motion compensated bab is taken to be
the decoded bab, and no further decoding of the bab is necessary. Otherwise, cae decoding is required.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

130

7.5.2.3 Motion vector decoding

If bab_type indicates that MVDs!=0, then mvds_x and mvds_y are VLC decoded. For decoding mvds_x, the VLC
given in Table B-29 is used. The same table is used for decoding mvds_y, unless the decoded value of mvds_x is
zero. If mvds_x == 0, the VLC given in Table B-30 is used for decoding mvds_y. If bab_type indicates that
MVDs==0, then both mvds_x and mvds_y are set to zero.

The integer valued shape motion vector MVs=(mvs_x,mvs_y) is determined as the sum of a predicted motion vector
MVPs and MVDs = (mvds_x,mvds_y), where MVPs is determined as follows.

MVPs is determined by analysing certain candidate motion vectors of shape (MVs) and motion vectors of selected
texture blocks (MV) around the MB corresponding to the current bab. They are located and denoted as shown in
Figure 7-9 where MV1, MV2 and MV3 are rounded up to integer values towards 0. If the selected texture block is a
field predicted macroblock, then MV1, MV2 or MV3 are generated by averaging the two field motion vectors and
rounding toward zero. Regarding the texture MV's, the convention is that a MB possessing only 1 MV is considered
the same as a MB possessing 4 MV's, where the 4 MV's are equal. By traversing MVs1, MVs2, MVs3, MV1, MV2
and MV3 in this order, MVPs is determined by taking the first encountered MV that is defined. If no candidate motion
vectors is defined, MVPs = (0,0).

Figure 7-9 -- Candidates for MVPs

In the case that video_object_layer_shape is “binary_only” or vop_coding_type indicates B-VOP, MVPs is
determined by considering the motion vectors of shape (MVs1, MVs2 and MVs3) only. The following subclauses
explain the definition of MVs1, MVs2, MVs3, MV1, MV2 and MV3 in more detail.

Defining candidate predictors from texture motion vectors:

One shape motion vector predictor MVi (i =1,2,3) is defined for each block located around the current bab
according to Figure 7-9 (2). The definition only depends on the transparency of the reference MB. MVi is set to the
corresponding block vector as long as it is in a non-transparent reference MB, otherwise, it is not defined. Note that
if a reference MB is outside the current VOP or video packet, it is treated as a transparent MB.

Defining candidate predictors from shape motion vectors:

The candidate motion vector predictors MVsi are defined by the shape motion vectors of neighbouring bab located
according to Figure 7-9 (1). The MVsi are defined according to Table 7-4.

Table 7-4 -- Definition of candidate shape motion vector predictors MVs1, MVs2, and MVs3 from shape
motion vectors for P and B-VOPs. Note that interlaced modes are not included

Shape mode of reference MB MVsi for each reference shape block-i (a shape block is 16x16)

MVDs == 0 or MVDs !=0
bab_type 0, 1, 5,6

The retrieved shape motion vector of the said reference MB is
defined as MVsi . Note that MVsi is defined, and hence valid, even
if the reconstructed shape block is transparent.

all_0, bab_type 2 MVsi is undefined

(1) MV for shape (2) MV for texture

Corresponding texture
macroblock (16x16)

Current shape
macroblock

MVs1

MVs2 MVs3

MV1

MV2 MV3
Block (8x8)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

131

all=255, bab_type 3 MVsi is undefined

Intra, bab_type 4 MVsi is undefined

If the reference MB is outside of the current video packet, MVi and MVsi are undefined.

7.5.2.4 Motion compensation

For inter mode babs (bab_type = 0,1,5 or 6), motion compensation is carried out by simple MV displacement
according to the MVs.

Specifically, when bab_type is equal to 0 or 1 i.e. for the no-update modes, a displaced block of 16x16 pixels is
copied from the binary alpha map of the previously decoded I or P VOP for which vop_coded is not equal to ‘0’.
When the bab_type is equal to 5 or 6 i.e. when interCAE decoding is required, then the pixels immediately bordering
the displaced block (to the left, right, top and bottom) are also copied from the most recent valid reference VOP’s (as
defined in subclause 6.3.5) binary alpha map into a temporary shape block of 18x18 pixels size (see Figure 7-12). If
the displaced position is outside the bounding rectangle, then these pixels are assumed to be “transparent”.

If the current VOP is a B-VOP the following decision rules are applied:

• If one of the reference VOPs is empty (i.e. VOP_coded is 0), the non-empty one (forward/backward) is selected
as the reference VOP for the current B-VOP.

• If both reference VOPs are non-empty, the forward reference VOP is selected if its temporal distance to the
current B-VOP is not larger than that of the backward reference VOP, otherwise, the backward one is chosen.

In the special cases when closed_gov == 1 and the forward reference VOP belongs to the previous GOV, the
current B-VOP takes the backward VOP as reference.

7.5.2.5 Context based arithmetic decoding

Before decoding the binary_arithmetic_code field, border formation (see subclause 7.5.2.5.2) needs to be carried
out. Then, if the scan_type field is equal to 0, the bordered to-be decoded bab and the eventual bordered motion
compensated bab need to be transposed (as for matrix transposition). If change_conv_rate_disable is equal to 0,
then conv_ratio is decoded to determine the size of the sub-sampled BAB, which is 16/conv_ratio by 16/conv_ratio
pixels large. If change_conv_rate_disable is equal to 1, then the decoder assumes that the bab is not subsampled
and thus the size is simply 16x16 pixels. Binary_arithmetic_code is then decoded by a context-based arithmetic
decoder as follows. The arithmetic decoder is firstly initialised (see subclause 7.5.3.3). The pixels of the sub-
sampled bab are decoded in raster order. At each pixel,

1. A context number is computed based on a template, as described in subclause 7.5.2.5.1.

2. The context number is used to access the probability table (Table B-32).

3. Using the accessed probability value, the next bits of binary_arithmetic_code are decoded by the arithmetic
decoder to give the decoded pixel value.

When all pixels in sub-sampled BAB have been decoded, the arithmetic decoder is terminated (see subclause
7.5.3.6).

If the scan_type field is equal to 0, the decoded bab is transposed. Then up-sampling is carried out if conv_ratio is
different from 1, as described in subclause 7.5.2.5.3. Then the decoded bab is copied into the decoded shape map.

7.5.2.5.1 Context computation

For INTRA coded BABs, a 10 bit context �
	
k

k
kcC 2 is built for each pixel as illustrated in Figure 7-10 (a), where

ck=0 for transparent pixels and ck=1 for opaque pixels.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

132

c6 c5

c7

?

c9 c8

c4

c1

c3 c2

c0

c3

?

c2 c1

c0 c7

c4

c6 c5

c8

Current BAB
Motion compensated

BAB

(a) (b)

Figure 7-10 -- (a) The INTRA template (b) The INTER template where c6 is aligned with the pixel to be
decoded. The pixel to be decoded is marked with ‘?’

For INTER coded BABs, temporal redundancy is exploited by using pixels from the bordered motion compensated
BAB (depicted in Figure 7-12) to make up part of the context. Specifically, a 9 bit context C � ck �2

k

k
� is built as

illustrated in Figure 7-10 (b).

There are some special cases to note.

• When building contexts, any pixels outside the bounding rectangle of the current VOP to the left and above are
assumed to be zero (transparent).

• When building contexts, any pixels outside the space of the current video packet to the left and above are
assumed to be zero (transparent).

• The template may cover pixels from BABs which are unknown at decoding time. Unknown pixels are defined as
area U in Figure 7-11.

• The values of these unknown pixels are defined by the following procedure:

• When constructing the INTRA context, the following steps are taken in the sequence

1. if (c7 is unknown) c7=c8,

2. if (c3 is unknown) c3=c4,

3. if (c2 is unknown) c2=c3.

• When constructing the INTER context, the following conditional assignment is performed.

if (c1 is unknown) c1=c2

7.5.2.5.2 Border formation

When decoding a BAB, pixels from neighbouring BABs shall be used to make up the context. For both the INTRA
and INTER cases, a 2 pixel wide border about the current BAB is used where pixels values are known, as depicted
in Figure 7-11.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

133

A

D

CB

Current BAB

E U

Figure 7-11 -- Bordered BAB. A: TOP_LEFT_BORDER. B: TOP_BORDER. C: TOP_RIGHT_BORDER. D:
LEFT_BORDER. E: BOTTOM_LEFT_BORDER. U: pixels which are unknown when decoding the current

BAB

If the value of conv_ratio is not equal to 1, a sub-sampling procedure is further applied to the BAB borders for both
the current BAB and the motion compensated BAB.

The border of the current BAB is partitioned into 5 regions:

• TOP_LEFT_BORDER, which contains pixels from the BAB located to the upper-left of the current BAB and
which consists of 2 lines of 2 pixels

• TOP_BORDER, which contains pixels from the BAB located above the current BAB and which consists of 2
lines of 16 pixels

• TOP_RIGHT_BORDER, which contains pixels from the BAB located to the upper-right of the current BAB and
which consists of 2 lines of 2 pixels

• LEFT_BORDER, which contains pixels from the BAB located to the left of the current BAB and which consists of
2 columns of 16 pixels

• BOTTOM_LEFT_BORDER, which contains pixels from the BAB located to the bottom-left of the current BAB
and which consists of 2 lines of 2 pixels

The TOP_LEFT_BORDER and TOP_RIGHT_BORDER are not sub-sampled, and kept as they are. The
TOP_BORDER and LEFT_BORDER are sub-sampled such as to obtain 2 lines of 16/conv_ratio pixels and 2
columns of 16/conv_ratio pixels, respectively.

The sub-sampling procedure is performed on a line-basis for TOP_BORDER, and a column-basis for
LEFT_BORDER. For each line (respectively column), the following algorithm is applied: the line (respectively
column) is split into groups of conv_ratio pixels. For each group of pixels, one pixel is associated in the sub-sampled
border. The value of the pixel in the sub-sampled border is OPAQUE if half or more pixels are OPAQUE in the
corresponding group. Otherwise the pixel is TRANSPARENT.

The 2x2 BOTTOM_LEFT_BORDER is filled by replicating downwards the 2 bottom border samples of the
LEFT_BORDER after the down-sampling (if any).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

134

A

D

CB Motion compensated
BAB

Figure 7-12 -- Bordered motion compensated BAB. A: TOP_BORDER. B: LEFT_BORDER. C:
RIGHT_BORDER. D: BOTTOM_BORDER

In the case of a motion compensated BAB, the border is also partitioned into 4, as shown Figure 7-12:

• TOP_BORDER, which consists of a line of 16 pixels
• LEFT_BORDER, which consists of a column of 16 pixels
• RIGHT_BORDER, which consists of a column of 16 pixels
• BOTTOM_BORDER, which consists of a line of 16 pixels

The very same sub-sampling process as described above is applied to each of these borders.

7.5.2.5.3 Upsampling

When conv_ratio is different from 1, up-sampling is carried out for the BAB. This is illustrated in Figure 7-13 where
“O” in this figure is the coded pixel and “X” is the interpolated pixel. To compute the value of the interpolated pixel, a
filter context from the neighboring pixels is first calculated. For the pixel value calculation, the value of “0” is used for
a transparent pixel, and “1” for an opaque pixel. The values of the interpolated pixels (Pi, i=1,2,3,4, as shown in
Figure 7-14) can then be determined by the following equation:

P1 : if(4*A + 2*(B+C+D) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

P2 : if(4*B + 2*(A+C+D) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

P3 : if(4*C + 2*(B+A+D) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

P4 : if(4*D + 2*(B+C+A) + (E+F+G+H+I+J+K+L) > Th[Cf]) then "1" else "0"

The 8-bit filter context, Cf, is calculated as follows:

C cf k
k

k

� �� 2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

135

Based on the calculated Cf, the threshold value (Th[Cf]) can be obtained from the look-up table as follows:

Th[256] = {
3, 6, 6, 7, 4, 7, 7, 8, 6, 7, 5, 8, 7, 8, 8, 9,
6, 5, 5, 8, 5, 6, 8, 9, 7, 6, 8, 9, 8, 7, 9, 10,
6, 7, 7, 8, 7, 8, 8, 9, 7, 10, 8, 9, 8, 9, 9, 10,
7, 8, 6, 9, 6, 9, 9, 10, 8, 9, 9, 10, 11, 10, 10, 11,
6, 9, 5, 8, 5, 6, 8, 9, 7, 10, 10, 9, 8, 7, 9, 10,
7, 6, 8, 9, 8, 7, 7, 10, 8, 9, 9, 10, 9, 8, 10, 9,
7, 8, 8, 9, 6, 9, 9, 10, 8, 9, 9, 10, 9, 10, 10, 9,
8, 9, 11, 10, 7, 10, 10, 11, 9, 12, 10, 11, 10, 11, 11, 12,
6, 7, 5, 8, 5, 6, 8, 9, 5, 6, 6, 9, 8, 9, 9, 10,
5, 8, 8, 9, 6, 7, 9, 10, 6, 7, 9, 10, 9, 10, 10, 11,
7, 8, 6, 9, 8, 9, 9, 10, 8, 7, 9, 10, 9, 10, 10, 11,
8, 9, 7, 10, 9, 10, 8, 11, 9, 10, 10, 11, 10, 11, 9, 12,
7, 8, 6, 9, 8, 9, 9, 10, 10, 9, 7, 10, 9, 10, 10, 11,
8, 7, 7, 10, 7, 8, 8, 9, 9, 10, 10, 11, 10, 11, 11, 12,
8, 9, 9, 10, 9, 10, 10, 9, 9, 10, 10, 11, 10, 11, 11, 12,
9, 10, 10, 11, 10, 11, 11, 12, 10, 11, 11, 12, 11, 12, 12, 13 };

TOP_LEFT_BORDER, TOP_RIGHT_BORDER, sub-sampled TOP_BORDER and sub-sampled LEFT_BORDER
described in the previous subclause are used. The other pixels outside the BAB are extended from the outermost
pixels inside the BAB as shown in Figure 7-13.

In the case that conv_ratio is 4, the interpolation is processed twice. The above mentioned borders of 4x4 BAB are
used for the interpolation from 4x4 to 8x8, and top-border (respectively left-border) for the interpolation from 8x8 to
16x16 are up-sampled from the 4x4 BAB top-border (respectively left-border) by simple repetition.

When the BAB is on the left (and/or top) border of VOP, the borders outside VOP are set to zero value. The
upsampling filter shall not use pixel values outside of the current video packet.

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

xx
xx

BAB

X

X

X

X

P1 P2

P4 P3

A

CD

B

Figure 7-13 -- Upsampling

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

136

E(C1) F(C0)

G(C7)

H(C6)

I(C5)J(C4)

K(C3)

L(C2)

E(C3) F(C2)

G(C1)

H(C0)

I(C7)J(C6)

K(C5)

L(C4)

E(C7) F(C6)

G(C5)

H(C4)

I(C3)J(C2)

K(C1)

L(C0)

E(C5) F(C4)

G(C3)

H(C2)

I(C1)J(C0)

K(C7)

L(C6)

(a) P1 (b) P2

(c) P3 (d) P4

Figure 7-14 -- Interpolation filter and interpolation construction

7.5.2.5.4 Down-sampling process in inter case

If bab_type is ‘5’ or ‘6’ (see Table 7-3), downsampling of the motion compensated bab is needed for calculating the
9 bit context in the case that conv_ratio is not 1. The motion compensated bab of size 16x16 pixels is down sampled
to bab of size 16/conv_ratio by 16/conv_ratio pixels by the following rules:

• conv_ratio==2

If the average of pixel values in 2 by 2 pixel block is equal to or greater than 127.5 the pixel value of the
downsampled bab is set to 255 otherwise it is set to 0.

• conv_ratio==4

If the average of pixel values in 4 by 4 pixel block is equal to or greater than 127.5 the pixel value of the
downsampled bab is set to 255 otherwise it is set to 0.

7.5.3 Arithmetic decoding

Arithmetic decoding consists of four main steps:

• Removal of stuffed bits
• Initialization which is performed prior to the decoding of the first symbol
• Decoding of the symbol themselves. The decoding of each symbol may be followed by a re-normalization step.
• Termination which is performed after the decoding of the last symbol

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

137

7.5.3.1 Registers, symbols and constants

Several registers, symbols and constants are defined to describe the arithmetic decoder.

• HALF: 32-bit fixed point constant equal to ½ (0x80000000)
• QUARTER: 32-bit fixed point constant equal to ¼ (0x40000000)
• L: 32-bit fixed point register. Contains the lower bound of the interval
• R: 32-bit fixed point register. Contains the range of the interval.
• V: 32-bit fixed point register. Contains the value of the arithmetic code. V is always larger than or equal to L and

smaller than L+R.
• p0: 16-bit fixed point register. Probability of the ‘0’ symbol.
• p1: 16-bit fixed point register. Probability of the ‘1’ symbol.
• LPS: boolean. Value of the least probable symbol (‘0’ or ‘1’).
• bit: boolean. Value of the decoded symbol.
• pLPS: 16-bit fixed point register. Probability of the LPS.
• rLPS: 32-bit fixed point register. Range corresponding to the LPS.

7.5.3.2 Bit stuffing

In order to avoid start code emulation, 1’s are stuffed into the bitstream whenever there are too many successive
0’s. If the first MAX_HEADING bits are 0’s, then a 1 is transmitted after the MAX_HEADING-th 0. If MAX_MIDDLE
or more 0’s are sent successively a 1 is inserted after the MAX_MIDDLE-th 0. If the number of trailing 0’s is larger
than MAX_TRAILING, then a 1 is appended to the stream. The decoder shall properly skip these inserted 1’s when
reading data into the V register (see subclauses 7.5.3.3 and 7.5.3.5).

MAX_HEADING equals 3, MAX_MIDDLE equals 10, and MAX_TRAILIING equals 2.

7.5.3.3 Initialization

The lower bound L is set to 0, the range R to HALF-0x1 (0x7fffffff) and the first 31 bits are read in register V.

7.5.3.4 Decoding a symbol

When decoding a symbol, the probability p0 of the ‘0’ symbol is provided according to the context computed in
subclause 7.5.2.5.1 and using Table B-32. p0 uses a 16-bit fixed-point number representation. Since the decoder is
binary, the probability of the ‘1’ symbol is defined to be 1 minus the probability of the ‘0’ symbol, i.e. p1 = 1-p0.

The least probable symbol LPS is defined as the symbol with the lowest probability. If both probabilities are equal to
½ (0x8000), the ‘0’ symbol is considered to be the least probable.

The range rLPS associated with the LPS may simply be computed as R*pLPS: The 16 most significant bits of
register R are multiplied by the 16 bits of pLPS to obtain the 32 bit rLPS number.

The interval [L,L+R) is split into two intervals [L,L+R-rLPS) and [L+R-rLPS,L+R). If V is in the latter interval then the
decoded symbol is equal to LPS. Otherwise the decoded symbol is the opposite of LPS. The interval [L,L+R) is then
reduced to the sub-interval in which V lies.

After the new interval has been computed, the new range R might be smaller than QUARTER. If so, re-
normalization is carried out, as described below.

7.5.3.5 Re-normalization

As long as R is smaller than QUARTER, re-normalization is performed.

• If the interval [L,L+R) is within [0,HALF), the interval is scaled to [2L,2L+2R). V is scaled to 2V.
• If the interval [L,L+R) is within [HALF,1) the interval is scaled to [2(L-HALF),2(L-HALF)+2R). V is scaled to 2(V-

HALF).
• Otherwise the interval is scaled to [2(L-QUARTER),2(L-QUARTER)+2R). V is scaled to 2(V-QUARTER).

After each scaling, a bit is read and copied into the least significant bit of register V.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

138

7.5.3.6 Termination

After the last symbol has been decoded, additional bits need to be “consumed”. They were introduced by the
encoder to guarantee decodability.

In general 3 further bits need to be read. However, in some cases, only two bits need to be read. These cases are
defined by:

• if the current interval covers entirely [QUARTER-0x1,HALF)
• if the current interval covers entirely [HALF-0x1, 3QUARTER)

After these additional bits have been read, 32 bits shall be “unread”, i.e. put the content of register V back into the
bit buffer.

7.5.3.7 Software

The example software for arithmetic decoding for binary shape decoding is included in annex B.

7.5.4 Grayscale Shape Decoding

Grayscale alpha plane decoding is achieved by the separate decoding of a support region and the values of the
alpha channel. The support region is transmitted by using the binary shape as described above. The alpha values
are transmitted as texture data with arbitrary shape, using almost the same coding method as is used for the
luminance texture channel.

Gray-Level
Alpha

Support Texture

Binary
Shape Coder

Texture Coder

Figure 7-15 -- Grayscale shape coding

All samples which are indicated to be transparent by the binary shape data, must be set to zero in the decoded
grayscale alpha plane. Within the VOP, alpha samples have the values produced by the grayscale alpha decoding
process. Decoding of binary shape information is not dependent on the decoding of grayscale alpha. The alpha
values are decoded into 16x16 macroblocks in the same way as the luminance channel (see subclauses 7.4 and
7.6). The 16x16 blocks of alpha values are referred to as alpha macroblocks hereafter. The data for each alpha
macroblock is present in the bitstream immediately following the texture data for the corresponding texture
macroblock. Any aspect of alpha decoding that is not covered in this document should be assumed to be the same
as for the decoding of luminance.

7.5.4.1 Grayscale Alpha COD Modes

When decoding grayscale alpha macroblocks, CODA is first encountered and indicates the coding status for alpha.
It is important to understand that the macroblock syntax elements for alpha are still present in the bitstream for P or
B macroblocks even if the texture syntax elements indicate “not-coded” (not_coded=’1’). In this respect, the
decoding of the alpha and texture data are independent. The only exception is for BVOPs when the colocated
PVOP texture macroblock is skipped. In this case, no syntax is transmitted for texture or grayscale alpha, as both
types of macroblock are skipped.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

139

For macroblocks which are completely transparent (indicated by the binary shape coding), no alpha syntax elements
are present and the grayscale alpha samples must all be set to zero (transparent). If CODA=”all opaque” (I, P or B
macroblocks) or CODA=”not coded” (P or B macroblocks) then no more alpha data is present. Otherwise, other
alpha syntax elements follow, including the coded block pattern (cbpa), followed by alpha texture data for those 8x8
blocks which are coded and non-transparent, as is the case for regular luminance macroblock texture data.

When CODA=”all opaque”, the corresponding decoded alpha macroblock is filled with a constant value of 255. This
value will be called AlphaOpaqueValue.

7.5.4.2 Alpha Plane Scale Factor

For both binary and grayscale shape, the VOP header syntax element “vop_constant_alpha” can be used to scale
the alpha plane. If this bit is equal to ‘1’, then each pixel in the decoded VOP is scaled before output, using
vop_constant_alpha_value. The scaling formula is:

scaled_pixel = (original_pixel * (vop_constant_alpha_value + 1)) / 256

Scaling is applied at the output of the decoder, such that the decoded original values, not the scaled values are used
as the source for motion compensation.

7.5.4.3 Gray Scale Quantiser

When no_gray_quant_update is equal to “1”, the grayscale alpha quantiser is fixed for all macroblocks to the value
indicated by vop_alpha_quant. Otherwise, the grayscale quantiser is reset at each new macroblock to a value that
depends on the current texture quantiser (after any update by dquant). The relation is:

current_alpha_quant = (current_texture_quant * vop_alpha_quant) / vop_quant

The resulting value of current_alpha_quant must then be clipped so that it never becomes less than 1.

7.5.4.4 Intra Macroblocks

When the texture mb_type indicates an intra macroblock in IVOPs or PVOPs, the grayscale alpha data is also
decoded using intra mode.

The intra dc value is decoded in the same way as for luminance, using the same non-linear transform to convert
from alpha_quant to DCScalarA. However, intra_dc_vlc_thr is not used for alpha, and therefore AC coeffiecient
VLCs are never used to code the differential intra dc coefficient.

DC prediction is used in the same way as for luminance. However, when coda_i indicates that a macroblock is all
opaque, a synthetic intra dc value is created for each block in the current macroblock so that adjacent macroblocks
can correctly obtain intra dc prediction values. The synthetic intra dc value is given as:

BlockIntraDC = (((AlphaOpaqueValue * 8) + (DcScalerA>>1)) / DcScalerA) * DcScalerA

AlphaOpaqueValue is described in subclause 7.5.4.1.

The intra cbpa VLC makes use of the inter cbpy VLC table, but the intra alpha block DCT coefficients are decoded
in the same manner as with luminance intra macroblocks.

7.5.4.5 Inter Macroblocks and Motion Compensation

Motion compensation is carried out for PVOPs and BVOPs, using the 8x8 or 16x16 luminance motion vectors, in the
same way as for luminance data, except that regular motion compensation is used instead of OBMC. Forward,
backward, bidirectional and direct mode motion compensation are used for BVOPs. Where the luminance motion
vectors are not present because the texture macroblock is skipped, the exact same style of non-coded motion
compensation used for luminance is applied to the alpha data (but without OBMC). Note that this does not imply that
the alpha macroblock is skipped, because an error signal to update the resulting motion compensated alpha
macroblock may still be present if indicated by coda_pb. When the colocated PVOP texture macroblock is skipped
for BVOPs, then the alpha macroblock is assumed to be skipped with no syntax transmitted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

140

cbpa and the alpha inter DCT coefficients are decoded in the same way as with luminance cbpy and inter DCT
cofficients

7.5.4.6 Method to be used when blending with greyscale alpha signal

The following explains the blending method to be applied to the video object in the compositor, which is controlled
by the composition_method flag and the linear_composition flag. The linear_composition flag is informative only,
and the decoder may ignore it and proceed as if it had the value 0. However, it is normative that the
composition_method flag be acted upon.

The descriptions below show the processing taking place in YUV space; note that the processing can of course be
implemented in RGB space to obtain equivalent results.

composition_method=0 (cross-fading)

If layer N, with an n-bit alpha signal, is overlaid over layer M to generate a new layer P, the composited Y, U, V and
alpha values are:

Pyuv = ((2n-1 - Nalpha) * Myuv + (Nalpha * Nyuv)) / (2n-1)

Palpha = (2n-1)

composition_method=1 (Additive mixing)

If layer N, with an n-bit alpha signal, is overlaid over layer M to generate a new layer P, the composited Y, U, V and
alpha values are:

{ Myuv Nalpha = 0

Pyuv = {

{ (Myuv - BLACK) - ((Myuv - BLACK) * Nalpha) / (2n-1)+ Nyuv Nalpha > 0

(this is equivalent to Pyuv = Myuv*(1-alpha) + Nyuv, taking account of black level and the fact that the video decoder
does not produce an output in areas where alpha=0)

Palpha = Nalpha + Malpha - (Nalpha*Malpha) / (2n-1)

where

BLACK is the common black value of foreground and background objects.

NOTE The compositor must convert foreground and background objects to the same black value and signal range
before composition. The black level of each video object is specified by the video_range bit in the video_signal_type
field, or by the default value if the field is not present. (The RGB values of synthetic objects are specified in a range
from 0 to 1, as described in ISO/IEC 14496-1).

• linear_composition = 0: The compositing process is carried out using the video signal in the format from which it
is produced by the video decoder, that is, without converting to linear signals. Note that because video signals
are usually non-linear (“gamma-corrected”), the composition will be approximate.

• linear_composition = 1: The compositing process is carried out using linear signals, so the output of the video
decoder is converted to linear if it was originally in a non-linear form, as specified by the video_signal_type field.
Note that the alpha signal is always linear, and therefore requires no conversion.

7.6 Motion compensation decoding

In order to perform motion compensated prediction on a per VOP basis, a special padding technique, i.e. the
macroblock-based repetitive padding, is applied for the reference VOP. The details of these techniques are
described in the following subclauses.

Since a VOP may have arbitrary shape, and this shape can change from one instance to another, conventions are
necessary to ensure the consistency of the motion compensation process.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

141

The absolute (frame) coordinate system is used for referencing every VOP. At every given instance, a bounding
rectangle that includes the shape of that VOP, as described in subclause 7.5, is defined. The left and top corner, in
the absolute coordinates, of the bounding rectangle is decoded from VOP spatial reference. Thus, the motion vector
for a particular feature inside a VOP, e.g. a macroblock, refers to the displacement of the feature in absolute
coordinates. No alignment of VOP bounding rectangles at different time instances is performed.

In addition to the above motion compensation processing, three additional processes are supported, namely,
unrestricted motion compensation, four MV motion compensation,and overlapped motion compensation. Note that
in all three modes, macroblock-based padding of the arbitrarily shaped reference VOP is performed for motion
compensation.

7.6.1 Padding process

The padding process defines the values of luminance and chrominance samples outside the VOP for prediction of
arbitrarily shaped objects. Figure 7-16 shows a simplified diagram of this process.

Vertical
Repetitive
Padding

Extended
Padding

Horizontal
Repetitive
Padding

Saturation

�

Predictions

Framestores

f [y][x]

d [y][x]

s [y][x]

s’ [y][x]

hor_pad [y][x] hv_pad [y][x]

d’ [y][x]

Figure 7-16 -- Simplified padding process

A decoded macroblock d[y][x] is padded by referring to the corresponding decoded shape block s[y][x]. The
luminance component is padded per 16 x 16 samples, while the chrominance components are padded per 8 x 8
samples. A macroblock that lies on the VOP boundary (hereafter referred to as a boundary macroblock) is padded
by replicating the boundary samples of the VOP towards the exterior. This process is divided into horizontal
repetitive padding and vertical repetitive padding. The remaining macroblocks that are completely outside the VOP
(hereafter referred to as exterior macroblocks) are filled by extended padding.

NOTE The padding process is applied to all macroblocks inside the bounding rectangle of a VOP. The bounding
rectangle of the luminance component is defined by vop_width and vop_height extended to multiple of 16, while that
of the chrominance components is defined by (vop_width>>1) and (vop_height>>1) extended to multiple of 8.

7.6.1.1 Horizontal repetitive padding

Each sample at the boundary of a VOP is replicated horizontally to the left and/or right direction in order to fill the
transparent region outside the VOP of a boundary macroblock. If there are two boundary sample values for filling a
sample outside of a VOP, the two boundary samples are averaged (//2).

hor_pad[y][x] is generated by any process equivalent to the following example. For every line with at least one
shape sample s[y][x] == 1(inside the VOP) :

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

142

for (x=0; x<N; x++) {
if (s[y][x] == 1) { hor_pad[y][x] = d[y][x]; s’[y][x] = 1; }
else {

if (s[y][x’] == 1 && s[y][x”] == 1) {
hor_pad[y][x] = (d[y][x’]+ d[y][x”])//2;
s’[y][x] = 1;

} else if (s[y][x’] == 1) {
hor_pad[y][x] = d[y][x’]; s’[y][x] = 1;

} else if (s[y][x”] == 1) {
hor_pad[y][x] = d[y][x”]; s’[y][x] = 1;

}
}

}

where x’ is the location of the nearest valid sample (s[y][x’] == 1) at the VOP boundary to the left of the current
location x, x” is the location of the nearest boundary sample to the right, and N is the number of samples of a line in
a macroblock. s’[y][x] is initialized to 0.

7.6.1.2 Vertical repetitive padding

The remaining unfilled transparent horizontal samples (where s’[y][x] == 0) from subclause 7.6.1.1 are padded by a
similar process as the horizontal repetitive padding but in the vertical direction. The samples already filled in
subclause 7.6.1.1 are treated as if they were inside the VOP for the purpose of this vertical pass.

hv_pad[y][x] is generated by any process equivalent to the following example. For every column of hor_pad[y][x] :

for (y=0; y<M; y++) {
if (s’[y][x] == 1)

hv_pad[y][x] =hor_pad[y][x];
else {

if (s’[y’][x] == 1 && s’[y”][x] == 1)
hv_pad[y][x] = (hor_pad[y’][x] + hor_pad[y”][x])//2;

else if (s’[y’][x] == 1)
hv_pad[y][x] = hor_pad[y’][x];

else if (s’[y”][x] == 1)
hv_pad[y][x] = hor_pad[y”][x];

}
}

where y’ is the location of the nearest valid sample (s’[y’][x] == 1) above the current location y at the boundary of
hv_pad, y” is the location of the nearest boundary sample below y, and M is the number of samples of a column in a
macroblock.

7.6.1.3 Extended padding

Exterior macroblocks immediately next to boundary macroblocks are filled by replicating the samples at the border
of the boundary macroblocks. Note that the boundary macroblocks have been completely padded in subclause
7.6.1.1 and subclause 7.6.1.2. If an exterior macroblock is next to more than one boundary macroblocks, one of the
macroblocks is chosen, according to the following convention, for reference.

The boundary macroblocks surrounding an exterior macroblock are numbered in priority according to Figure 7-17.
The exterior macroblock is then padded by replicating upwards, downwards, leftwards, or rightwards the row of
samples from the horizontal or vertical border of the boundary macroblock having the largest priority number.

The remaining exterior macroblocks (not located next to any boundary macroblocks) are filled with 2bits_per_pixel-1. For 8-
bit luminance component and associated chrominance this implies filling with 128.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

143

Exterior
macroblock

Boundary
macroblock 3

Boundary
macroblock 0

Boundary
macroblock 1

Boundary
macroblock 2

Figure 7-17 -- Priority of boundary macroblocks surrounding an exterior macroblock

7.6.1.4 Padding for chrominance components

Chrominance components are padded according to subclauses 7.6.1.1 through 7.6.1.3 for each 8 x 8 block. The
padding is performed by referring to a shape block generated by decimating the shape block of the corresponding
luminance component. This decimating of the shape block is performed by the subsampling process described in
subclause 6.1.3.6.

7.6.1.5 Padding of interlaced macroblocks

Macroblocks of interlaced VOP (interlaced = 1) are padded according to subclauses 7.6.1.1 through 7.6.1.3. The
vertical padding of the luminance component, however, is performed for each field independently. A sample outside
of a VOP is therefore filled with the value of the nearest boundary sample of the same field. Completely transparent
blocks are padded with 2bits_per_pixel-1. Chrominance components of interlaced VOP are padded according to subclause
7.6.1.4, however, based on fields to enhance subjective quality of display in 4:2:0 format. The padding method
described in this subclause is not used outside the bounding rectangle of the VOP.

7.6.1.6 Vector padding technique

The vector padding technique is applied to generate the vectors for the transparent blocks within a non-transparent
macroblock, for an INTRA-coded macroblock and for a skipped macroblock. It works in a similar way as the
horizontal followed by the vertical repetitive padding, and can be simply regarded as the repetitive padding
performed on a 2x2 block except that the padded values are two dimensional vectors. A macroblock has four 8x8
luminance blocks, let {MVx[i], MVy[i], i=0,1,2,3} and {Transp[i], i=0,1,2,3} be the vectors and the transparencies of
the four 8x8 blocks, respectively, the vector padding is any process numerically equivalent to:

if (the macroblock is INTRA-coded, skipped) {
MVx[0] = MVx[1] = MVx[2] = MVx[3] = 0
MVy[0] = MVy[1] = MVy[2] = MVy[3] = 0

} else {
if(Transp[0] == TRANSPARENT) {

MVx[0]=(Transp[1] != TRANSPARENT) ? MVx[1] :((Transp[2]!=TRANSPARENT) ?
MVx[2]:MVx[3]));
MVy[0]=(Transp[1] != TRANSPARENT) ? MVy[1]:((Transp[2]!=TRANSPARENT) ?
MVy[2]:MVy[3]));

}
if(Transp[1] == TRANSPARENT) {

MVx[1]=(Transp[0] != TRANSPARENT) ? MVx[0] :((Transp[3]!=TRANSPARENT) ? MVx[3]:MVx[2]));
MVy[1]=(Transp[0] != TRANSPARENT) ? MVy[0]:((Transp[3]!=TRANSPARENT) ? MVy[3]:MVy[2]));

}
if(Transp[2] == TRANSPARENT) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

144

MVx[2]=(Transp[3] != TRANSPARENT) ? MVx[3] :((Transp[0]!=TRANSPARENT) ? MVx[0]:MVx[1]));
MVy[2]=(Transp[3] != TRANSPARENT) ? MVy[3]:((Transp[0]!=TRANSPARENT) ? MVy[0]:MVy[1]));

}
if(Transp[3] == TRANSPARENT) {

MVx[3]=(Transp[2] != TRANSPARENT) ? MVx[2] :((Transp[1]!=TRANSPARENT) ? MVx[1]:MVx[0]));
MVy[3]=(Transp[2] !=TRANSPARENT) ? MVy[2]:((Transp[1]!=TRANSPARENT) ? MVy[1]:MVy[0]));
}

}

Vector padding is only used in I- and P-VOPs, it is applied on a macroblock directly after it is decoded. The block
vectors after padding are used in the P-VOP vector decoding and binary shape decoding, and in the B-VOP direct
mode decoding.

7.6.2 Half sample interpolation

Pixel value interpolation for block matching when rounding is used corresponds to bilinear interpolation as depicted
in Figure 7-18. The value of rounding_control is defined using the vop_rounding_type bit in the VOP header (see
subclause 6.3.5). Note that the samples outside the padded region cannot be used for interpolation.

+ +

+ +

+ Integer pixel position

Half pixel position

A B

C D

a b

c d

a = A,
b = (A + B + 1 - rounding_control) / 2
c = (A + C + 1 - rounding_control) / 2,
d = (A + B + C + D + 2 - rounding_control) / 4

Figure 7-18 -- Interpolation scheme for half sample search

7.6.3 General motion vector decoding process

To decode a motion vector (MVx, MVy), the differential motion vector (MVDx, MVDy) is extracted from the bitstream
by using the variable length decoding. Then it is added to a motion vector predictor (Px, Py) component wise to form
the final motion vector. The general motion vector decoding process is any process that is equivalent to the following
one. All calculations are carried out in halfpel units in the following. This process is generic in the sense that it is
valid for the motion vector decoding in interlaced/progressive P- and B-VOPs except that the generation of the
predictor (Px, Py) may be different.

r_size = vop_fcode - 1
f = 1 << r_size
high = (32 * f) - 1;
low = ((-32) * f);
range = (64 * f);

if ((f == 1) || (horizontal_mv_data == 0))
MVDx = horizontal_mv_data;

else {
MVDx = ((Abs(horizontal_mv_data) - 1) * f) + horizontal_mv_residual + 1;
if (horizontal_mv_data < 0)

MVDx = - MVDx;
}

if ((f == 1) || (vertical_mv_data == 0))
MVDy = vertical_mv_data;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

145

else {
MVDy = ((Abs(vertical_mv_data) - 1) * f) + vertical_mv_residual + 1;
if (vertical_mv_data < 0)

MVDy = - MVDy;
}

MVx = Px + MVDx;
if (MVx < low)

MVx = MVx + range;
if (MVx > high)

MVx = MVx - range;

MVy = Py + MVDy;
if (MVy < low)

MVy = MVy + range;
if (MVy > high)

MVy = MVy - range;

The parameters in the bitstream shall be such that the components of the reconstructed differential motion vector,
MVDx and MVDy, shall lie in the range [low:high]. In addition the components of the reconstructed motion vector,
MVx and MVy, shall also lie in the range [low : high]. The allowed range [low : high] for the motion vectors depends
on the parameter vop_fcode; it is shown in Table 7-5.

The variables r_size, f, MVDx, MVDy, high , low and range are temporary variables that are not used in the
remainder of this part of ISO/IEC 14496. The parameters horizontal_mv_data, vertical_mv_data,
horizontal_mv_residual and vertical_mv_residual are parameters recovered from the bitstream.

The variable vop_fcode refers either to the parameter vop_fcode_forward or to the parameter vop_fcode_backward
which have been recovered from the bitstream, depending on the respective prediction mode. In the case of P-VOP
prediction only forward prediciton applies. In the case of B-VOP prediction, forward as well as backward prediction
may apply.

Table 7-5 -- Range for motion vectors

vop_fcode_forward
or
vop_fcode_backward

motion vector range in
halfsample units
[low:high]

1 [-32,31]

2 [-64,63]

3 [-128,127]

4 [-256,255]

5 [-512,511]

6 [-1024,1023]

7 [-2048,2047]

If the current macroblock is a field motion compensated macroblock, then the same prediction motion vector (Px,
Py) is used for both field motion vectors. Because the vertical component of a field motion vector is integral, the
vertical differential motion vector encoded in the bitstream is

MVy = MVDyfield + PY / 2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

146

7.6.4 Unrestricted motion compensation

Motion vectors are allowed to point outside the decoded area of a reference VOP when (and only when) the short
video header format is not in use (i.e., when short_video_header is 0). For an arbitrary shape VOP, the decoded
area refers to the area within the bounding rectangle, padded as described in subclause 7.6.1. A bounding
rectangle is defined by vop_width and vop_height extended to multiple of 16. When a sample referenced by a
motion vector stays outside the decoded VOP area, an edge sample is used. This edge sample is retrieved by
limiting the motion vector to the last full pel position inside the decoded VOP area. Limitation of a motion vector is
performed on a sample basis and separately for each component of the motion vector, as depicted in Figure 7-19.

(vhmcsr,vvmcsr)
y

x

Reference VOP

Current VOP

(xcurr,ycurr)
(dx,dy)

(xref,yref)

ydim

xdim

Figure 7-19 -- Unrestricted motion compensation

The coordinates of a reference sample in the reference VOP, (yref, xref) is determined as follows :

xref = MIN (MAX (xcurr+dx, vhmcsr), xdim+vhmcsr-1)

yref = MIN (MAX (ycurr+dy, vvmcsr), ydim+vvmcsr-1)

where vhmcsr = vop_horizontal_mc_spatial_reference, vvmcsr = vop_vertical_mc_spatial_reference, (ycurr, xcurr)
are the coordinates of a sample in the current VOP, (yref, xref) are the coordinates of a sample in the reference
VOP, (dy, dx) is the motion vector, and (ydim, xdim) are the dimensions of the bounding rectangle of the reference
VOP. All coordinates are related to the absolute coordinate system shown in Figure 7-19. Note that for rectangular
VOP, a reference VOP is defined by video_object_layer_width and video_object_layer_height. For an arbitrary
shape VOP, a reference VOP of luminance is defined by vop_width and vop_height extended to multiple of 16,
while that of chrominance is defined by (vop_width>>1) and (vop_height>>1) extended to multiple of 8.

7.6.5 Vector decoding processing and motion-compensation in progressive P-VOP

An inter-coded macroblock comprises either one motion vector for the complete macroblock or K (1< K<=4)
motion vectors, one for each non-transparent 8x8 pel blocks forming the 16x16 pel macroblock, as is indicated by
the mcbpc code.

For decoding a motion vector, the horizontal and vertical motion vector components are decoded differentially by
using a prediction, which is formed by a median filtering of three vector candidate predictors (MV1, MV2, MV3) from
the spatial neighbourhood macroblocks or blocks already decoded. The spatial position of candidate predictors for
each block vector is depicted in Figure 7-20. In the case of only one motion vector present for the complete
macroblock, the top-left case in Figure 7-20 is applied. When the short video header format is in use (i.e., when
short_video_header is "1"), only one motion vector shall be present for a macroblock.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

147

.

Figure 7-20 -- Definition of the candidate predictors MV1, MV2 and MV3 for each of the luminance blocks in
a macroblock

The following four decision rules are applied to obtain the value of the three candidate predictors:

1. If a candidate predictor MVi is in a transparent spatial neighbourhood macroblock or in a transparent block of
the current macroblock it is not valid, otherwise, it is set to the corresponding block vector.

2. If one and only one candidate predictor is not valid, it is set to zero.
3. If two and only two candidate predictors are not valid, they are set to the third candidate predictor.
4. If all three candidate predictors are not valid, they are set to zero.

Note that any neighbourhood macroblock outside the current VOP or video packet or outside the current GOB
(when short_video_header is “1”) for which gob_header_empty is “0” is treated as transparent in the above sense.
The median value of the three candidates for the same component is computed as predictor, denoted by Px and Py:

Px Median MV x MV x MV x

Py Median MV y MV y MV y

�

�

(, ,)

(, ,)

1 2 3

1 2 3

For instance, if MV1=(-2,3), MV2=(1,5) and MV3=(-1,7), then Px = -1 and Py = 5. The final motion vector is then
obtained by using the general decoding process defined in the subclause 7.6.3.

If four vectors are used, each of the motion vectors is used for all pixels in one of the four luminance blocks in the
macroblock. The numbering of the motion vectors is equivalent to the numbering of the four luminance blocks as
given in Figure 6-5. Motion vector MVDCHR for both chrominance blocks is derived by calculating the sum of the K
luminance vectors, that corresponds to K 8x8 blocks that do not lie outside the VOP shape and dividing this sum by
2*K; the component values of the resulting sixteenth/twelfth/eighth/fourth sample resolution vectors are modified
towards the nearest half sample position as indicated below.

Table 7-6 -- Modification of sixteenth sample resolution chrominance vector components

sixteenth pixel position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 //16

resulting position 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 2 //2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

148

Table 7-7 -- Modification of twelfth sample resolution chrominance vector components

twelfth pixel position 0 1 2 3 4 5 6 7 8 9 10 11 //12

resulting position 0 0 0 1 1 1 1 1 1 1 2 2 //2

Table 7-8 -- Modification of eighth sample resolution chrominance vector components

eighth pixel position 0 1 2 3 4 5 6 7 //8

resulting position 0 0 1 1 1 1 1 2 //2

Table 7-9 -- Modification of fourth sample resolution chrominance vector components

fourth pixel position 0 1 2 3 //4

resulting position 0 1 1 1 //2

Half sample values are found using bilinear interpolation as described in subclause 7.6.2. The prediction for
luminance is obtained by overlapped motion compensation as described in subclause 7.6.6 if indicated by
obmc_disable==0. The prediction for chrominance is obtained by applying the motion vector MVDCHR to all pixels
in the two chrominance blocks.

7.6.6 Overlapped motion compensation

This subclause specifies the overlapped motion compensation process. This process is performed when the flag
obmc_disable=0.

Each pixel in an 8*8 luminance prediction block is a weighted sum of three prediction values, divided by 8 (with
rounding). In order to obtain the three prediction values, three motion vectors are used: the motion vector of the
current luminance block, and two out of four "remote" vectors:

• the motion vector of the block at the left or right side of the current luminance block;

• the motion vector of the block above or below the current luminance block.

For each pixel, the remote motion vectors of the blocks at the two nearest block borders are used. This means that
for the upper half of the block the motion vector corresponding to the block above the current block is used, while for
the lower half of the block the motion vector corresponding to the block below the current block is used. Similarly, for
the left half of the block the motion vector corresponding to the block at the left side of the current block is used,
while for the right half of the block the motion vector corresponding to the block at the right side of the current block
is used.

The creation of each pixel, p i j(,), in an 8*8 luminance prediction block is governed by the following equation:IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

149

p i j q i j H i j r i j H i j s i j H i j(,) ((,) (,) (,) (,) (,) (,)) / /8,� � � � � � �0 1 2 4

where q i j r i j(,), (,), and s i j(,) are the pixels from the referenced picture as defined by

q i j p i MV j MV

r i j p i MV j MV

s i j p i MV j MV

x y

x y

x y

(,) (,),

(,) (,),

(,) (,).

� � �

� � �

� � �

0 0

1 1

2 2

Here, (,)MV MVx y
0 0 denotes the motion vector for the current block, (,)MV MVx y

1 1 denotes the motion vector of

the block either above or below, and (,)MV MVx y
2 2 denotes the motion vector either to the left or right of the

current block as defined above.

The matrices H i j H i j0 1(,), (,) and H i j2 (,) are defined in Figure 7-21, Figure 7-22, and Figure 7-23, where (,)i j
denotes the column and row, respectively, of the matrix.

If one of the surrounding blocks was not coded, the corresponding remote motion vector is set to zero. If one of the
surrounding blocks was coded in intra mode, the corresponding remote motion vector is replaced by the motion
vector for the current block. If the current block is at the border of the VOP and therefore a surrounding block is not
present, the corresponding remote motion vector is replaced by the current motion vector. In addition, if the current
block is at the bottom of the macroblock, the remote motion vector corresponding with an 8*8 luminance block in the
macroblock below the current macroblock is replaced by the motion vector for the current block.

4 5 5 5 5 5 5 4

5 5 5 5 5 5 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 6 6 6 6 5 5

5 5 5 5 5 5 5 5

4 5 5 5 5 5 5 4

Figure 7-21 -- Weighting values, H0 , for prediction with motion vector of current luminance block

2 2 2 2 2 2 2 2

1 1 2 2 2 2 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 2 2 2 2 1 1

2 2 2 2 2 2 2 2

Figure 7-22 -- Weighting values, H1 , for prediction with motion vectors of the luminance blocks on top or
bottom of current luminance block

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

150

2 1 1 1 1 1 1 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2

2 1 1 1 1 1 1 2

Figure 7-23 -- Weighting values, H2 , for prediction with motion vectors of the luminance blocks to the left
or right of current luminance block

7.6.7 Temporal prediction structure

1. A forward reference VOP is defined as a most recently decoded I- orP-VOP in the past for which
"vop_coded==1". A backward reference VOP is defined as the most recently decoded I- or P-VOP in the
future, regardless of its value for "vop_coded".

2. A target P-VOP shall make reference to the forward reference VOP
3. A target B-VOP can make reference

• to the forward and/or the backward reference VOP, if for the backward reference VOP "vop_coded==1"
• only to the forward reference VOP, if for the backward reference VOP "vop_coded==0"

4. Note that for the reference VOP selection of binary shape coding the rules stated in subclause 7.5.2.4 shall
be applied

The temporal prediction structure is depicted in Figure 7-24.

Object disappears
(vop_coded = 0)I0 P1 P2 P3 B4 B6P5 P7

Figure 7-24 -- Temporal Prediction Structure

7.6.8 Vector decoding process of non-scalable progressive B-VOPs

In B-VOPs there are three kinds of vectors, namely, 16x16 forward vector, 16x16 backward vector and the delta
vector for the direct mode. The vectors are decoded with respect to the corresponding vector predictors. The basic
decoding process of a differential vector is the exactly same as defined in P-VOPs except that for the delta vector of
the direct mode the f_code is always one. The vector is then reconstructed by adding the decoded differential vector
to the corresponding vector predictor. The vector predictor for the delta vector is always set to zero, while the
forward and backward vectors have their own vector predictors, which are reset to zero only at the beginning of
each macroblock row. The vector predictors are updated in the following three cases:

• after decoding a macroblock of forward mode only the forward predictor is set to the decoded forward vector
• after decoding a macroblock of backward mode only the backward predictor is set to the decoded backward

vector.
• after decoding a macroblock of bi-directional mode both the forward and backward predictors are updated

separately with the decoded vectors of the same type (forward/backward).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

151

7.6.9 Motion compensation in non-scalable progressive B-VOPs

In B-VOPs the overlapped motion compensation (OBMC) is not employed. The motion-compensated prediction of
B-macroblock is generated by using the decoded vectors and taking reference to the padded forward/backward
reference VOPs as defined below. Arbitrarily shaped reference VOPs shall be padded accordingly.

7.6.9.1 Basic motion compensation procedure

All of the ISO/IEC 14496-2 motion compensation techniques are based on the formation of a prediction block,
pred[i][j] of dimension (width, height), from a reference image, ref[x][y]. The coordinates of the current block (or
macroblock) in the reference VOP is (x,y), the motion half-pel resolution motion vector is (dx_halfpel, dy_halfpel).
The pseudo-code for this procedure is given below.

The component_width() and component_height() function give the coded VOP dimensions for the current
component. For luminance, component_width() is video_object_layer_width for a rectangular VOP or vop_width
otherwise rounded up to the next multiple of 16. The luminance component_height() is defined similarly. The
chrominance dimensions are one half of the corresponding luminance dimension.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

152

clip_ref(ref, x, y)
{

return(ref[MIN(MAX(x, 0), component_width(ref) - 1)]
[MIN(MAX(y, 0), component_height(ref) - 1)]);

}

mc(pred, /* prediction block */
ref, /* reference component */
x, y, /* ref block coords for MV=(0, 0) */
width, height, /* reference block dimensions */
dx_halfpel, dy_halfpel, /* half-pel resolution motion vector */
rounding, /* rounding control (0 or 1) */
pred_y0, /* field offset in pred blk (0 or 1) */
ref_y0, /* field offset in ref blk (0 or 1) */
y_incr) /* vertical increment (1 or 2) */

{
dx = dx_halfpel >> 1;
dy = y_incr * (dy_halfpel >> y_incr);
if (dy_halfpel & y_incr) {

if (dx_halfpel & 1) {
for (iy = 0; iy < height; iy += y_incr) {

for (ix = 0; ix < width; ix++) {
x_ref = x + dx + ix;
y_ref = y + dy + iy + ref_y0;
pred[ix][iy + pred_y0] =

(clip_ref(ref, x_ref + 0, y_ref + 0) +
clip_ref(ref, x_ref + 1, y_ref + 0) +
clip_ref(ref, x_ref + 0, y_ref + y_incr) +
clip_ref(ref, x_ref + 1, y_ref + y_incr) +
2 - rounding) >> 2;

}
}

} else {
for (iy = 0; iy < height; iy += y_incr) {

for (ix = 0; ix < width; ix++) {
x_ref = x + dx + ix;
y_ref = y + dy + iy + ref_y0;
pred[ix][iy + pred_y0] =

(clip_ref(ref, x_ref, y_ref + 0) +
clip_ref(ref, x_ref, y_ref + y_incr) +
1 - rounding) >> 1;

}
}

}
} else {

if (dx_halfpel & 1) {
for (iy = 0; iy < height; iy += y_incr) {

for (ix = 0; ix < width; ix++) {
x_ref = x + dx + ix;
y_ref = y + dy + iy + ref_y0;
pred[ix][iy + pred_y0] =

(clip_ref(ref, x_ref + 0, y_ref) +
clip_ref(ref, x_ref + 1, y_ref) +
1 - rounding) >> 1;

}
}

} else {
for (iy = 0; iy < height; iy += y_incr) {

for (ix = 0; ix < width; ix++) {
x_ref = x + dx + ix;
y_ref = y + dy + iy + ref_y0;
pred[ix][iy + pred_y0] =

clip_ref(ref, x_ref, y_ref);
}

}
}

}
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

153

7.6.9.2 Forward mode

Only the forward vector (MVFx,MVFy) is applied in this mode. The prediction blocks Pf_Y, Pf_U, and Pf_V are
generated from the forward reference VOP, ref_Y_for for luminance component and ref_U_for and ref_V_for for
chrominance components, as follows:

mc(Pf_Y, ref_Y_for, x, y, 16, 16, MVFx, MVFy, 0, 0, 0, 1);

mc(Pf_U, ref_U_for, x/2, y/2, 8, 8, MVFx_chro, MVFy_chro, 0, 0, 0,1);

mc(Pf_V, ref_V_for, x/2, y/2, 8, 8, MVFx_chro, MVFy_chro, 0, 0, 0,1);

where (MVFx_chro, MVFy_chro) is motion vector derived from the luminance motion vector by dividing each
component by 2 then rounding on a basis of Table 7-9. Here (and hereafter) the function MC is defined in subclause
7.6.9.

7.6.9.3 Backward mode

Only the backward vector (MVBx,MVBy) is applied in this mode. The prediction blocks Pb_Y, Pb_U, and Pb_V are
generated from the backward reference VOP, ref_Y_back for luminance component and ref_U_back and
ref_V_back for chrominance components, as follows:

mc(Pb_Y, ref_Y_back, x, y, 16, 16, MVBx, MVBy, 0, 0, 0, 1);

mc(Pb_U, ref_U_back, x/2, y/2, 8, 8, MVBx_chro, MVBy_chro, 0, 0, 0,1);

mc(Pb_V, ref_V_back, x/2, y/2, 8, 8, MVBx_chro, MVBy_chro, 0, 0, 0,1);

where (MVBx_chro, MVBy_chro) is motion vector derived from the luminance motion vector by dividing each
component by 2 then rounding on a basis of Table 7-9.

7.6.9.4 Bi-directional mode

Both the forward vector (MVFx,MVFy) and the backward vector (MVBx,MVBy) are applied in this mode. The
prediction blocks Pi_Y, Pi_U, and Pi_V are generated from the forward and backward reference VOPs by doing the
forward prediction, the backward prediction and then averaging both predictions pixel by pixel as follows.

mc(Pf_Y, ref_Y_for, x, y, 16, 16, MVFx, MVFy, 0, 0, 0, 1);

mc(Pf_U, ref_U_for, x/2, y/2, 8, 8, MVFx_chro, MVFy_chro, 0, 0, 0,1);

mc(Pf_V, ref_V_for, x/2, y/2, 8, 8, MVFx_chro, MVFy_chro, 0, 0, 0,1);

mc(Pb_Y, ref_Y_back, x, y, 16, 16, MVBx, MVBy, 0, 0, 0, 1);

mc(Pb_U, ref_U_back, x/2, y/2, 8, 8, MVBx_chro, MVBy_chro, 0, 0, 0,1);

mc(Pb_V, ref_V_back, x/2, y/2, 8, 8, MVBx_chro, MVBy_chro, 0, 0, 0,1);

Pi_Y[i][j] = (Pf_Y[i][j] + Pb_Y[i][j] + 1)>>1; i,j=0,1,2…15;

Pi_U[i][j] = (Pf_U[i][j] + Pb_U[i][j] + 1)>>1; i,j=0,1,2…8;

Pi_V[i][j] = (Pf_V[i][j] + Pb_V[i][j] + 1)>>1; i,j=0,1,2…8;

where (MVFx_chro, MVFy_chro) and (MVBx_chro, MVBy_chro) are motion vectors derived from the forward and
backward luminance motion vectors by dividing each component by 2 then rounding on a basis of Table 7-9,
respectively.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

154

7.6.9.5 Direct mode

This mode uses direct bi-directional motion compensation derived by employing I- or P-VOP macroblock motion
vectors and scaling them to derive forward and backward motion vectors for macroblocks in B-VOP. This is the only
mode which makes it possible to use motion vectors on 8x8 blocks. Only one delta motion vector is allowed per
macroblock.

7.6.9.5.1 Formation of motion vectors for the direct mode

The direct mode utilises the motion vectors (MVs) of the co-located macroblock in the most recently decoded I- or P-
VOP. The co-located macroblock is defined as the macroblock which has the same horizontal and vertical index with
the current macroblock in the B-VOP. The MV vectors are the block vectors of the co-located macroblock after
applying the vector padding defined in subclause 7.6.1.6. If the co-located macroblock is transparent and thus the
MVs are not available, the direct mode is still enabled by setting MV vectors to zero vectors.

7.6.9.5.2 Calculation of vectors

MVF = MV/3 + MVD
MVB = -(2MV)/3 if MVD is zero

Note: MVD is the delta vector given by MVDB

MVB = MVF-MV if MVD is nonzero

0 1 2 3

MV

Figure 7-25 -- Direct Bi-directional Prediction

Figure 7-25 shows scaling of motion vectors. The calculation of forward and backward motion vectors involves
linear scaling of the collocated block in temporally next I- or P-VOP, followed by correction by a delta vector
(MVDx,MVDy). The forward and the backward motion vectors are {(MVFx[i],MVFy[i]), (MVBx[i],MVBy[i]), i = 0,1,2,3}
and are given in half sample units as follows.

MVFx[i] = (TRB x MVx[i]) / TRD + MVDx

MVBx[i] = (MVDx==0)? ((TRB - TRD) x MVx[i]) / TRD : MVFx[i] - MVx[i]

MVFy[i] = (TRB x MVy[i]) / TRD + MVDy

MVBy[i] = (MVDy==0)? ((TRB - TRD) x MVy[i]) / TRD : MVFy[i] - MVy[i]

i = 0,1,2,3.

where {(MVx[i],MVy[i]), i = 0,1,2,3} are the MV vectors of the co-located macroblock, TRD is the difference in
temporal reference of the B-VOP and the previous reference VOP. TRD is the difference in temporal reference of
the temporally next reference VOP with temporally previous reference VOP, assuming B-VOPs or skipped VOPs in
between.

7.6.9.5.3 Generation of prediction blocks

Motion compensation for luminance is performed individually on 8x8 blocks to generate a macroblock. The process
of generating a prediction block simply consists of using computed forward and backward motion vectors
{(MVFx[i],MVFy[i]), (MVBx[i],MVBy[i]), i = 0,1,2,3} to obtain appropriate blocks from reference VOPs and averaging
these blocks, same as the case of bi-directional mode except that motion compensation is performed on 8x8 blocks.

For the motion compensation of both chrominance blocks, the forward motion vector (MVFx_chro, MVFy_chro) is
calculated by the sum of K forward luminance motion vectors dividing by 2K and then rounding toward the nearest
half sample position as defined in Table 7-6 to Table 7-9. The backward motion vector (MVBx_chro, MVBy_chro) is

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

155

derived in the same way. The rest process is the same as the chrominance motion compensation of the bi-
directional mode described in subclause 7.6.9.4.

7.6.9.6 Motion compensation in skipped macroblocks

If the co-located macroblock in the most recently decoded I- or P-VOP is skipped, the current B-macroblock is
treated as the forward mode with the zero motion vector (MVFx,MVFy). If the modb equals to ‘1’ the current B-
macroblock is reconstructed by using the direct mode with zero delta vector.

7.7 Interlaced video decoding

This subclause specifies the additional decoding process that a decoder shall perform to recover VOP data from the
coded bitstream when the interlaced flag in the VOP header is set to “1”. Interlaced information (subclause 6.3.6.3)
specifies the method to decode bitstream of interlaced VOP.

7.7.1 Field DCT and DC and AC Prediction

When dct_type flag is set to ‘1’ (field DCT coding), DCT coefficients of luminance data are formed such that each
8x8 block consists of data from one field as being shown in Figure 6-7. DC and optional AC (see “ac_pred_flag”)
prediction will be performed for a intra-coded macroblock. For the intra macroblocks which have dct_type flag being
set to “1”, DC/AC prediction are performed to field blocks shown in Figure 7-26. After taking inverse DCT, all
luminance blocks will be inverse permuted back to (frame) macroblock. Chrominance (block) data are not effected
by dct_type flag.

B

X YA

DC

Field-Coded
Macroblock

Top field blocks

Bottom field
blocks

Figure 7-26 -- Previous neighboring blocks used in DC/AC prediction for interlaced intra blocks.

7.7.2 Motion compensation

For non-intra macroblocks in P- and B-VOPs, motion vectors are extracted syntactically following subclause 6.2.6
“Macroblock”. The motion vector decoding is performed separately on the horizontal and vertical components.

7.7.2.1 Motion vector decoding in P-VOP

For each component of motion vector in P-VOPs, the median value of the candidate predictor vectors for the same
component is computed and add to corresponding component of the motion vector difference obtained from the
bitstream. To decode the motion vectors in a P-VOP, the decoder shall first extract the differential motion vectors
((,)MVDx MVDyf f1 1 and (,)MVDx MVDyf f2 2 for top and bottom fields of a field predicted macroblock,

respectively) by a use of variable length decoding and then determine the predictor vector from three candidate
vectors. These candidate predictor vectors are generated from the three motion vectors of three spatial
neighborhood decoded macroblocks or blocks as follows.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

156

CASE 1 :

If the current macroblock is a field predicted macroblock and none of the coded spatial neighborhood macroblocks is
a field predicted macroblock, then candidate predictor vectors MV1, MV2, and MV3 are defined by Figure 7-27. If
the candidate block i is not in four MV motion (8x8) mode, MVi represents the motion vector for the macroblock. If
the candidate block i is in four MV motion (8x8) mode, the 8x8 block motion vector closest to the upper left block of
the current MB is used. The predictors for the horizontal and vertical components are then computed by

P Median MV x MV x MV x

P Median MV y MV y MV y
x

y

�

�

(, ,)

(, ,).

1 2 3

1 2 3

For differential motion vectors both fields use the same predictor and motion vectors are recovered by

MVx MVDx P

MVy MVDy P

MVx MVDx P

MVy MVDy P

f f x

f f y

f f x

f f y

1 1

1 1

2 2

2 2

2 2

2 2

� �

� �

� �

� �

* ((/))

* ((/))

where “/” is integer division with truncation toward 0. Note that all motion vectors described above are specified as
integers with one LSB representing a half-pel displacement. The vertical component of field motion vectors always
even (in half-pel frame coordinates). Vertical half-pel interpolation between adjacent lines of the same field is
denoted by MVy fi be an odd multiple of 2 (e.g. -2,2,6,..) No vertical interpolation is needed when MVy fi is an

multiple of 4 (it is a full pel value).

MVf1

MV1

MV2 MV3

8

8

16

16
or MVf 2

Figure 7-27 -- Example of motion vector prediction for field predicted macroblocks (Case1)

CASE 2 :

If the current macroblock or block is frame predicted macroblock or block and if at least one of the coded spatial
neighborhood macroblocks is a field predicted macroblock, then the candidate predictor vector for each field
predicted macroblock will be generated by averaging two field motion vectors such that all fractional pel offsets are
mapped into the half-pel displacement. Each component (Px or Py) of the final predictor vector is the median value

of the candidate predictor vectors for the same component. The motion vector is recovered by

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

157

MVx MVDx P

MVy MVDy P
x

y

� �

� � .
.

where

� �

� �

P Median MV x Div Round MVx MVx MV x

P Median MV y Div Round MVy MVy MV y

x f f

y f f

� �

� �

1 2 3

1 2 3

1 2

1 2

, (), ,

, (), ,

Div2Round(x) is defined as follows: Div2Round(x) = (x >> 1) | (x & 1).

MV1 MV

MV3

8

8

16

16

a field predicted
MB Div2Round(

MV2f1 +MV2f2)

Figure 7-28 -- Example of motion vector prediction for field predicted macroblocks (Case 2)

CASE 3 :

Assume that the current macroblock is a field predicted macroblock and at least one of the coded spatial
neighborhood macroblocks is a field predicted macroblock. If the candidate block i is field predicted, the candidate
predictor vector MVi will be generated by averaging two field motion vectors such that all fractional pel offsets are
mapped into the half-pel displacement as discribed in CASE 2. If the candidate block i is neither in four MV motion
(8x8) mode nor in field prediction mode, MVi represents the frame motion vector for the macroblock. If the
candidate block i is in four MV motion (8x8) mode, the 8x8 block motion vector closest to the upper left block of the
current MB is used. The predictors for the horizontal and vertical components are then computed by

P Median MV x MV x MV x

P Median MV y MV y MV y
x

y

�

�

(, ,)

(, ,)

1 2 3

1 2 3

where

MVi x Div Round MVx MVx

MVi y Div Round MVy MVy

f f

f f

� �

� �

2

2

1 2

1 2

(),

(),

for some i in {1,2,3}.

For differential motion vectors both fields use the same predictor and motion vectors are recovered by (see both
Figure 7-27 and Figure 7-28)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

158

MVx MVDx P

MVy MVDy P

MVx MVDx P

MVy MVDy P

f f x

f f y

f f x

f f y

1 1

1 1

2 2

2 2

2 2

2 2

� �

� �

� �

� �

* ((/))

* ((/))

The motion compensated prediction macroblock is calculated calling the “field_compensate_one_reference” using
the motion vectors calculated above. The top_field_ref, bottom_field_ref, and rounding type come directly from the
syntax as forward_top_field_reference, forward_bottom_field_reference and vop_rounding_type respectively. The
reference VOP is defined such the the even lines (0, 2, 4, ...) are the top field and the odd lines (1, 3, 5, ...) are the
bottom field.

field_motion_compensate_one_reference(
luma_pred, cb_pred, cr_pred, /* Prediction component pel array */
luma_ref, cb_ref, cr_ref, /* Reference VOP pel arrays */
mv_top_x, mv_top_y, /* top field motion vector */
mv_bot_x, mv_bot_y, /* bottom field motion vector */
top_field_ref, /* top field reference */
bottom_field_ref, /* bottom field reference */
x, y, /* current luma macroblock coords */
rounding_type) /* rounding type */

{
mc(luma_pred, luma_ref, x, y, 16, 16, mv_top_x, mv_top_y,

rounding_type, 0, top_field_ref, 2);
mc(luma_pred, luma_ref, x, y, 16, 16, mv_bot_x, mv_bot_y,

rounding_type, 1, bottom_field_ref, 2);
mc(cb_pred, cb_ref, x/2, y/2, 8, 8,

Div2Round(mv_top_x), Div2Round(mv_top_y),
rounding_type, 0, top_field_ref, 2);

mc(cr_pred, cr_ref, x/2, y/2, 8, 8,
Div2Round(mv_top_x), Div2Round(mv_top_y),
rounding_type, 0, top_field_ref, 2);

mc(cb_pred, cb_ref, x/2, y/2, 8, 8,
Div2Round(mv_bot_x), Div2Round(mv_bot_y),
rounding_type, 0, top_field_ref, 2);

mc(cr_pred, cr_ref, x/2, y/2, 8, 8,
Div2Round(mv_bot_x), Div2Round(mv_bot_y),
rounding_type, 0, top_field_ref, 2);

}

In the case that obmc_disable is “0”, the OBMC is not applied if the current MB is field-predicted. If the current MB
is frame-predicted (including 8x8 mode) and some adjacent MBs are field-predicted, the motion vectors of those
field-predicted MBs for OBMC are computed in the same manner as the candidate predictor vectors for field-
predicted MBs are.

7.7.2.2 Motion vector decoding in B-VOP

For interlaced B-VOPs, a macroblock can be coded using (1) direct coding, (2) 16x16 motion compensation
(includes forward, backward & bidirectional modes), or (3) field motion compensation (includes forward, backward &
bidirectional modes). Motion vector in half sample accuracy will be employed for a 16x16 macroblock being coded.
Chrominance vectors are derived by scaling of luminance vectors using the rounding tables described in Table 7-9
(i.e. by applying Div2Round to the luminance motion vectors). These coding modes except direct coding mode allow
switching of quantizer from the one previously in use. Specification of dquant, a differential quantizer involves a 2-bit
overhead as discussed earlier. In direct coding mode, the quantizer value for previous coded macroblock is used.

For interlaced B-VOP motion vector predictors, four prediction motion vectors (PMVs) are used:

Table 7-10 -- Prediction motion vector allocation for interlaced P-VOPs

Function PMV

Top field forward 0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

159

Bottom field forward 1

Top field backward 2

Bottom field backward 3

These PMVs are used as follows for the different macroblock prediction modes:

Table 7-11 -- Prediction motion vectors for interlaced B-VOP decoding

Macroblock mode PMVs used PMVs updated

Direct none none

Frame forward 0 0,1

Frame backward 2 2,3

Frame bidirectional 0,2 0,1,2,3

Field forward 0,1 0,1

Field backward 2,3 2,3

Field bidirectional 0,1,2,3 0,1,2,3

The PMVs used by a macroblock are set to the value of current macroblock motion vectors after being used.

When a frame macroblock is decoded, the two field PMVs (top and bottom field) for each prediction direction are set
to the same frame value. The PMVs are reset to zero at the beginning of each row of macroblocks. The predictors
are not zeroed by skipped macroblocks or direct mode macroblocks.

The frame based motion compensation modes are described in subclause 7.6. The field motion compensation
modes are calculated using the “field_motion_compensate_one_reference()” pseudo code function described
above. The field forward mode is denoted by mb_type == “0001” and field_prediction == “1”. The PMV update and
calculation of the motion compensated prediction is shown below. The luma_fwd_ref_VOP[][], cb_fwd_ref_VOP[][],
cr_fwd_ref_VOP[][] denote the entire forward (past) anchor VOP pixel arrays. The coordinates of the upper left
corner of the luminance macroblock is given by (x, y) and MVD[].x and MVD[].y denote an array of the motion vector
differences in the order they occur in the bitstream for the current macroblock.

PMV[0].x = PMV[0].x + MVD[0].x;
PMV[0].y = 2 * (PMV[0].y / 2 + MVD[0].y);
PMV[1].x = PMV[1].x + MVD[1].x;
PMV[1].y = 2 * (PMV[1].y / 2 + MVD[1].y);
field_motion_compensate_one_reference(

luma_pred, cb_pred, cr_pred,
luma_fwd_ref_VOP, cb_fwd_ref_VOP, cr_fwd_ref_VOP,
PMV[0].x, PMV[0].y, PMV[1].x, PMV[1].y,
forward_top_field_reference,
forward_bottom_field_reference,
x, y, 0);

The field backward mode is denoted by mb_type == “001” and field_prediction == “1”. The PMV update and
prediction calculation is outlined the following pseudo code. The luma_bak_ref_VOP[][], cb_bak_ref_VOP[][],
cr_bak_ref_VOP[][] denote the entire backward (future) anchor VOP pixel arrays.

PMV[2].x = PMV[2].x + MVD[0].x;
PMV[2].y = 2 * (PMV[2].y / 2 + MVD[0].y);
PMV[3].x = PMV[1].x + MVD[1].x;
PMV[3].y = 2 * (PMV[3].y / 2 + MVD[1].y);
field_motion_compensate_one_reference(

luma_pred, cb_pred, cr_pred,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

160

luma_bak_ref_VOP, cb_bak_ref_VOP, cr_bak_ref_VOP,
PMV[2].x, PMV[2].y, PMV[3].x, PMV[3].y,
backward_top_field_reference,
backward_bottom_field_reference,
x, y, 0);

The bidirectional field prediction is used when mb_type == “01” and field_prediction == “1”. The prediction
macroblock (in luma_pred[][], cb_pred[][], and cr_pred[][]) is calculated by:

for (mv = 0; mv < 4; mv++) {
PMV[mv].x = PMV[mv].x + MVD[mv].x;
PMV[mv].y = 2 * (PMV[mv].y / 2 + MVD[mv].y);

}
field_motion_compensate_one_reference(

luma_pred_fwd, cb_pred_fwd, cr_pred_fwd,
luma_fwd_ref_VOP, cb_fwd_ref_VOP, cr_fwd_ref_VOP,
PMV[0].x, PMV[0].y, PMV[1].x, PMV[1].y,
forward_top_field_reference,
forward_bottom_field_reference,
x, y, 0);

field_motion_compensate_one_reference(
luma_pred_bak, cb_pred_bak, cr_pred_bak,
luma_bak_ref_VOP, cb_bak_ref_VOP, cr_bak_ref_VOP,
PMV[2].x, PMV[2].y, PMV[3].x, PMV[3].y,
backward_top_field_reference,
backward_bottom_field_reference,
x, y, 0);

for (iy = 0; iy < 16; iy++) {
for (ix = 0; ix < 16; ix++) {

luma_pred[ix][iy] = (luma_pred_fwd[ix][iy] +
luma_pred_bak[ix][iy] + 1) >> 1;

}
}
for (iy = 0; iy < 8; iy++) {

for (ix = 0; ix < 8; ix++) {
cb_pred[ix][iy] = (cb_pred_fwd[ix][iy] +

cb_pred_bak[ix][iy] + 1) >> 1;
cr_pred[ix][iy] = (cr_pred_fwd[ix][iy] +

cr_pred_bak[ix][iy] + 1) >> 1;
}

}

The direct mode prediction can be either progressive (see subclause 7.6.9.5) or interlaced as described below.
Interlaced direct mode is used when ever the co-located macroblock (macroblock with the same coordinates) of the
future anchor VOP has field_predition flag is “1”. Note that if the future macroblock is skipped, or intra, the direct
mode prediction is progressive. Otherwise, interlaced direct mode prediction is used.

Interlaced direct coding mode is an extension of progressive direct coding mode. Four derived field motion vectors
are calculated from the forward field motion vectors of the co-located future anchor VOP, a single differential motion
vector and the temporal position of the B-VOP fields with respect to the fields of the past and future anchor VOPs.
The four derived field motion vectors are denoted mvf[0] (top field forward) mvf[1], (bottom field forward), mvb[0]
(top field backward), and mvb[1] (bottom field backward). MV[i] is the future anchor picture motion vector for the top
(i == 0) and bottom (i == 1) fields. Only one delta motion vector (used for both field), MVD[0], occurs in the
bitstream for the field direct mode predicted macroblock. MVD[0] is decoded assuming f_code == 1 regardless of
the number in VOP header. The interlaced direct mode prediction (in luma_pred[][], cb_pred[][] and cr_pred[][]) is
calculated as shown below.

for (i = 0; i < 2; i++) {
mvf[i].x = (TRB[i] * MV[i].x) / TRD[i] + MVD[0].x;
mvf[i].y = (TRB[i] * MV[i].y) / TRD[i] + MVD[0].y;
mvb[i].x = (MVD[i].x == 0) ?

(((TRB[i] - TRD[i]) * MV[i].x) / TRD[i]) :

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

161

mvf[i].x - MV[i].x);
mvb[i].y = (MVD[i].y == 0) ?

(((TRB[i] - TRD[i]) * MV[i].y) / TRD[i]) :
mvf[i].y - MV[i].y);

field_motion_compensate_one_reference(
luma_pred_fwd, cb_pred_fwd, cr_pred_fwd,
luma_fwd_ref_VOP, cb_fwd_ref_VOP, cr_fwd_ref_VOP,
mvf[0].x, mvf[0].y, mvf[1].x, mvf[1].y,
colocated_future_mb_top_field_reference,
colocated_future_mb_bottom_field_reference,
x, y, 0);

field_motion_compensate_one_reference(
luma_pred_bak, cb_pred_bak, cr_pred_bak,
luma_bak_ref_VOP, cb_bak_ref_VOP, cr_bak_ref_VOP,
mvb[1].x, mvb[1].y, mvb[1].x, mvb[1].y,
0, 1, x, y, 0);

for (iy = 0; iy < 16; iy++) {
for (ix = 0; ix < 16; ix++) {

luma_pred[ix][iy] = (luma_pred_fwd[ix][iy] +
luma_pred_bak[ix][iy] + 1) >> 1;

}
}
for (iy = 0; iy < 8; iy++) {

for (ix = 0; ix < 8; ix++) {
cb_pred[ix][iy] = (cb_pred_fwd[ix][iy] +

cb_pred_bak[ix][iy] + 1) >> 1;
cr_pred[ix][iy] = (cr_pred_fwd[ix][iy] +

cr_pred_bak[ix][iy] + 1) >> 1;
}

}

The temporal references (TRB[i] and TRD[i]) are distances in time expressed in field periods. Figure 7-29 shows
how they are defined for the case where i is 0 (top field of the B-VOP). The bottom field is analogously.

Figure 7-29 -- Interlaced direct mode

The calculation of TRD[i] and TRB[i] depends not only on the current field, reference field, and frame temporal
references, but also on whether the current video is top field first or bottom field first.

TRD[i] = 2*(T(future)//Tframe - T(past)//Tframe) + �[i]

TRD[i]
TRB[i]

MV[i]

mvf[i] mvb[i]

Past
Anchor

Current
VOP

Future
Anchor

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

162

TRB[i] = 2*(T(current)//Tframe - T(past)//Tframe) + �[i]

where T(future), T(current) and T(past) are the cumulative VOP times calculated from modulo_time_base and
vop_time_increment of the future, current and past VOPs in display order. Tframe is the frame period determined
by

Tframe = T(first_B_VOP) - T(past_anchor_of_first B_VOP)

where first_B_VOP denotes the first B-VOP following the Video Object Layer syntax. The important thing about
Tframe is that the period of time between consecutive fields which constitute an interlaced frame is assuemed to be
0.5 * Tframe for purposes of scaling the motion vectors.

The value of � is determined from Table 7-12; it is a function of the current field parity (top or bottom), the reference
field of the co-located macroblock (macroblock at the same coordinates in the furture anchor VOP), and the value of
top_field_first in the B-VOP’s video object plane syntax.

Table 7-12 -- Selection of the parameter �

future anchor VOP reference
fields of the co-located

macroblock

top_field_first == 0 top_field_first == 1

Top field
reference

Bottom field
reference

Top field,
����[0]

Bottom field,
����[1]

Top
field, ����[0]

Bottom field,
����[1]

0 0 0 -1 0 1

0 1 0 0 0 0

1 0 1 -1 -1 1

1 1 1 0 -1 0

The top field prediction is based on the top field motion vector of the P-VOP macroblock of the future anchor picture.
The past reference field is the reference field selected by the co-located macroblock of the future anchor picture for
the top field. Analogously, the bottom field predictor is the average of pixels obtained from the future anchor’s
bottom field and the past anchor field referenced by the bottom field motion vector of the corresponding macroblock
of the future anchor picture. When interlaced direct mode is used, vop_time_increment_resolution must be the
smallest integer greater than or equal to the number of frames per second. In each VOP, vop_time_increment
counts individual frames within a second.

7.8 Sprite decoding

The subclause specifies the additional decoding process for a sprite video object. The sprite decoding can operate
in two modes: basic sprite decoding and low-latency sprite decoding. Figure 7-30 is a diagram of the sprite
decoding process. It is simplified for clarity.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

163

Shape/Texture
Decoding

Shape/Texture
Decoding

Warping Vector
Decoding

Warping

Sprite BufferI-VOP
Bitstream

S-VOP
Bitstream

Reconstructed
Samples

Figure 7-30 -- The sprite decoding process

7.8.1 Higher syntactic structures

The various parameters in the VOL and VOP bitstreams shall be interpreted as described in clause 6. When
sprite_enable == ‘1’, vop_coding_type shall be “I” only for the initial VOP in a VOL for basic sprites (i.e.
low_latency_sprite_enable == ‘0’), and all the other VOPs shall be S-VOPs (i.e. vop_coding_type == “S”). The
reconstructed I-VOP in a VOL for basic sprites is not displayed but stored in a sprite memory, and will be used by
all the remaining S-VOPs in the same VOL. An S-VOP is reconstructed by applying warping to the VOP stored in
the sprite memory, using the warping parameters (i.e. a set of motion vectors) embedded in the VOP bitstream.
Alternatively, in a VOL for low-latency sprites (i.e. low_latency_sprite_enable == ‘1’), these S-VOPs can update the
information stored in the sprite memory before applying warping.

7.8.2 Sprite Reconstruction

The luminance, chrominance and grayscale alpha data of a sprite are stored in two-dimensional arrays. The width
and height of the luminance array are specified by sprite_width and sprite_height respectively. The samples in the
sprite luminance, chrominance and grayscale alpha arrays are addressed by two-dimensional integer pairs (i’, j’) and
(ic’, jc’) as defined in the following:

• Top left luminance and grayscale alpha sample
(i’, j’) = (sprite_left_coordinate, sprite_top_coordinate)

• Bottom right luminance and grayscale alpha sample
(i’, j’) = (sprite_left_coordinate + sprite_width � 1,

sprite_top_coordinate + sprite_height � 1)
• Top left chrominance sample

(ic’, jc’) = (sprite_left_coordinate / 2, sprite_top_coordinate / 2)
• Bottom right chrominance sample

(ic’, jc’) = (sprite_left_coordinate / 2 + sprite_width// 2 � 1,
sprite_top_coordinate / 2 + sprite_height// 2 � 1).

Likewise, the addresses of the luminance, chrominance and grayscale alpha samples of the VOP currently being
decoded are defined in the following:

• Top left sample of luminance and grayscale alpha
(i, j) = (0, 0) for rectangular VOPs, and
(i, j) = (vop_horizontal_mc_spatial_ref, vop_vertical_mc_spatial_ref) for non-rectangular VOPs

• Bottom right sample of luminance and grayscale alpha
(i, j) = (video_object_layer_width - 1, video_object_layer_height - 1) for rectangular VOPs, and
(i, j) = (vop_horizontal_mc_spatial_ref + vop_width - 1,

vop_vertical_mc_spatial_ref + vop_height - 1) for non-rectangular VOPs
• Top left sample of chrominance

(ic, jc) = (0, 0) for rectangular VOPs, and
(ic, jc) = (vop_horizontal_mc_spatial_ref / 2, vop_vertical_mc_spatial_ref / 2) for non-rectangular VOPs

• Bottom right sample of chrominance
(ic, jc) = (video_object_layer_width / 2 - 1, video_object_layer_height / 2 - 1) for rectangular VOPs, and
(ic, jc) = (vop_horizontal_mc_spatial_ref / 2 + vop_width// 2 - 1,

vop_vertical_mc_spatial_ref / 2 + vop_height// 2 - 1) for non-rectangular VOPs

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

164

7.8.3 Low-latency sprite reconstruction

This subclause allows a large static sprite to be reconstructed at the decoder by properly incorporating its
corresponding pieces. There are two types of pieces recognized by the decoder—object and update. The decoded
sprite object-piece (i.e., embedded in a S-VOP with low_latence_sprite_enable==1 and
sprite_transmit_mode=="piece") is a highly quantized version of the original sprite piece while the sprite update-
piece (i.e., sprite_transmit_mode=="update") is a residual designed to improve upon the quality of decoded object-
piece. Sprite pieces are rectangular pieces of texture (and shape for the object-piece) and can contain “holes,”
corresponding to macroblocks, that do not need to be decoded. Five parameters are required by the decoder to
properly incorporate the pieces: piece_quant, piece_width, piece_height, piece_xoffset, and piece_yoffset.

Macroblocks raster scanning is employed to decode each piece. However, whenever the scan encounters a
macroblock which has been part of some previously sent sprite piece, then the macroblock is not decoded and its
corresponding macroblock layer is empty. In that case, the decoder treats the macroblock as a hole in the current
sprite piece. Since a macroblock can be refined as long as there is some available bandwidth, more than one
update may be decoded per macroblock and the holes for a given refinement step have no relationship to the holes
of later refinement steps. Therefore, the decoding process of a hole for an update piece is different than that for the
object-piece. For the object-piece, no information is decoded at all and the decoder must “manage” where “holes”
lie. (see subclause 7.8.3.1). For the update-piece, the not_coded bit is decoded to indicate whether or not one more
refinement should be decoded for this given macroblock. (see subclause 7.8.3.2). Note that a hole could be non-
transparent and have had shape information decoded previously. Multiple intermingled object-pieces and update-
pieces may be decoded at the same current VOP. Part of a sequence could consist for example of rapidly showing
a zooming out effect, a panning to the right, a zooming in, and finally a panning to the left. In this case, the first
decoded object-piece covers regions on all four sides of the previous VOP transmitted piece, which is now treated
as a hole and not decoded again. The second decoded object-piece relates to the right panning, and the third
object-piece is a smaller left-panning piece due to the zooming-in effect. Finally, the last piece is different; instead
of an object, it contains the update for some previous object-piece of zooming-in (thus, the need to update to refine
for higher quality). All four pieces will be decoded within the same VOP. When sprite_transmit_mode = =”pause,”
the decoder recognizes that all sprite object-pieces and update-pieces for the current VOP session have been sent.
However, when sprite_transmit_mode = “stop,” the decoder understands that all object and update-pieces have
been sent for the entire video object layer, not just for the current VOP. session. In addition, once all object-pieces
or update-pieces have been decoded during a VOP session (i.e., signaled by sprite_transmit_mode == “pause” or
sprite_transmit_mode == “stop”), the static sprite is padded (as defined in subclause 7.6.1), then the portion to be
displayed is warped, to complete the current VOP session.

For the S-VOPs (i.e., vop_coding_type == “S”), the macroblock layer syntax of object-pieces is the same as those
of I-VOP. Therefore, shape and texture are decoded using the macroblock layer structure in I-VOPs with the
quantization of intra macroblocks. The syntax of the update-pieces is similar to the P-VOP inter-macroblock
syntax with the quantization of non-intra macroblocks); however, the differences are indicated in Table B-1,
specifically that there are no motion vectors and shape information included in this decoder syntax structure. In
summary, this decoding process supports the construction of any large sprite image progressively, both spatially
and in terms of quality.

7.8.3.1 Decoding of holes in sprite object-piece

Implementation of macroblock scanning must account for the possibility that a macroblock uses prediction based on
some macroblock sent in a previous piece. When an object-piece with holes is decoded, the decoder in the process
of reconstruction acts as if the whole original piece were decoded, but actually only the bitstream corresponding to
the “new macroblock” is received. Whenever macroblocks raster scanning encounters a hole, the decoder needs to
manage the retrieval of relevant information (e.g. DCT quantization parameters, AC and DC prediction parameters,
and BAB bordering values) from the corresponding macroblock decoded earlier.

7.8.3.2 Decoding of holes in sprite update-pieces

In contrast to the send_mb() used by the object-pieces, the update-pieces use the not_coded bit. When not_coded =
1 in the P-VOP syntax, the decoder recognizes that the corresponding macroblock is not refined by the current
sprite update-piece. When not_coded = 0 in the P-VOP syntax, the decoder recognizes that this macroblock is
refined. The prediction for the update piece is obtained by extracting the "area" of the static sprite defined by
(piece_width, piece_height, piece_xoffset, piece_yoffset). This area is then padded and serves as prediction for the
update pieces. Since there is no shape information included in an update-piece, the result of its transparent_mb() is
retrieved from the corresponding macroblock in the object-piece decoded earlier. In addition, an update macroblock

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

165

cannot be transmitted before its corresponding object macroblock. As a result, the very first sprite piece transmitted
in the low-latency mode shall be an object-piece.

7.8.4 Sprite reference point decoding

The syntatic elements in sprite_trajectory () and below shall be interpreted as specified in clause 6. du[i] and dv[i] (0
=< i < no_sprite_point) specifies the mapping between indexes of some reference points in the VOP and the
corresponding reference points in the sprite. These points are referred to as VOP reference points and sprite
reference points respectively in the rest of the specification.

The index values for the VOP reference points are defined as:
(i0, j0) = (0, 0) when video_object_layer_shape == ‘rectangle’, and

(vop_horizontal_mc_spatial_ref, vop_vetical_mc_spatial_ref) otherwise,
(i1, j1) = (i0+W, j0),
(i2, j2) = (i0, j0 + H),
(i3, j3) = (i0+W, j0+H)

where W = video_object_layer_width and H = video_object_layer_height when video_object_layer_shape ==
‘rectangle’ or W = vop_width and H = vop_height otherwise. Only the index values with subscripts less than
no_sprite_point shall be used for the rest of the decoding process.

The index values for the sprite reference points shall be calculated as follows:

(i0’, j0’) = (s / 2) (2 i0 + du[0], 2 j0 + dv[0])
(i1’, j1’) = (s / 2) (2 i1 + du[1] + du[0], 2 j1 + dv[1] + dv[0])
(i2’, j2’) = (s / 2) (2 i2 + du[2] + du[0], 2 j2 + dv[2] + dv[0])
(i3’, j3’) = (s / 2) (2 i3 + du[3] + du[2] + du[1] + du[0], 2 j3 + dv[3] + dv[2] + dv[1] + dv[0])

where i0’, j0’, etc are integers in
1

s
pel accuracy, where s is specified by sprite_warping_accuracy. Only the index

values with substcripts less than no_sprite_point need to be calculated.

When no_of_sprite_warping_points == 2 or 3, the index values for the virtual sprite points are additionally calculated
as follows:

(i1’’, j1’’) = (16 (i0 + W’) + ((W � W’) (r i0’ � 16 i0) + W’ (r i1’ � 16 i1)) // W,
16 j0 + ((W � W’) (r j0’ � 16 j0) + W’ (r j1’ � 16 j1)) // W)

(i2’’, j2’’) = (16 i0 + ((H � H’) (r i0’ � 16 i0) + H’ (r i2’ � 16 i2)) // H,
16 (j0 + H’) + ((H � H’) (r j0’ � 16 j0) + H’ (r j2’ � 16 j2)) // H)

where i1’’, j1’’, i2’’, and j2’’ are integers in
1

16
pel accuracy, and r = 16/s. W’ and H’ are defined as the smallest

integers that satisfy the following condition:

W’ = 2�, H’ = 2�, W’ � W, H’ � H, � > 0, � > 0, both � and � are integers.

The calculation of i2’’, and j2’’ is not necessary when no_of_sprite_warping_points == 2.

7.8.5 Warping

For any pixel (i, j) inside the VOP boundary, (F(i, j), G(i, j)) and (Fc(ic, jc), Gc(ic, jc)) are computed as described in the
following. These quantities are then used for sample reconstruction as specified in subclause 7.8.6. The following
notations are used to simplify the description:

I = i - i0,
J = j - j0,

Ic = 4 ic - 2 i0 + 1,
Jc = 4 jc - 2 j0 + 1,

When no_of_sprite_warping_point == 0,

(F(i, j), G(i, j)) = (s i, s j),
(Fc(ic, jc), Gc(ic, jc)) = (s ic, s jc).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

166

When no_of_sprite_warping_point == 1,

(F(i, j), G(i, j)) = (i0’ + sI, j0’ + s J),
(Fc(ic, jc), Gc(ic, jc)) = i0’ /// 2 + s (ic � i0 / 2), j0’ /// 2 + s (jc � j0 / 2)).

When no_of_sprite_warping_points == 2,

(F(i, j), G(i, j)) = (i0’ + ((�r i0’ + i1’’) I + (r j0’ � j1’’) J) /// (W’ r) ,
j0’ + ((�r j0’ + j1’’) I + (�r i0’ + i1’’) J) /// (W’ r)),

(Fc(ic, jc), Gc(ic, jc)) = (((�r i0’ + i1 ’’) Ic + (r j0’ � j1’’) Jc + 2 W’ r i0’ � 16W’) /// (4 W’ r),
((�r j0’ + j1’’) Ic + (�r i0’ + i1’’) Jc + 2 W’ r j0’ � 16W’) /// (4 W’ r)).

According to the definition of W’ and H’ (i.e. W’ = 2� and H’ = 2�), the divisions by “///” in these functions can be
replaced by binary shift operations. By this replacement, the above equations can be rewritten as:

(F(i, j), G(i, j)) = (i0’ + (((�r i0’ + i1’’) I + (r j0’ � j1’’) J + 2�+�-1) >> (�+�)) ,
j0’ + (((�r j0’ + j1’’) I + (�r i0’ + i1’’) J + 2�+�-1) >> (�+�)),

(Fc(ic, jc), Gc(ic, jc)) = (((�r i0’ + i1 ’’) Ic + (r j0’ � j1’’) Jc + 2 W’ r i0’ � 16W’ + 2�+�+1) >> (�+�+2),
((�r j0’ + j1’’) Ic + (�r i0’ + i1’’) Jc + 2 W’ r j0’ � 16W’ + 2�+�+1) >> (�+�+2)),

where 2�=r.

When no_of_sprite_warping_points == 3,

(F(i, j), G(i, j)) = (i0’ + ((�r i0’ + i1’’) H’ I + (�r i0’+ i2’’)W’ J) /// (W’H’r),
j0’ + ((�r j0’ + j1’’) H’ I + (�r j0’+ j2’’)W’ J) /// (W’H’r)),

(Fc(ic, jc), Gc(ic, jc)) = (((�r i0’ + i1’’) H’ Ic + (�r i0’+ i2’’)W’ Jc + 2 W’H’r i0’ � 16W’H’) /// (4W’H’r),
((�r j0’ + j1’’) H’ Ic + (�r j0’+ j2’’)W’ Jc + 2 W’H’r j0’ � 16W’H’) /// (4W’H’r)).

According to the definition of W’ and H’, the computation of these functions can be simplified by dividing the
denominator and numerator of division beforehand by W’ (when W’ < H’) or H’ (when W’ � H’). As in the case of
no_of_sprite_warping_points == 2, the divisions by “///” in these functions can be replaced by binary shift operations.
For example, when W’ � H’ (i.e. � � �) the above equations can be rewritten as:

(F(i, j), G(i, j)) = (i0’ +(((�r i0’ + i1’’) I + (�r i0’+ i2’’) 2�-� J + 2�+�-1) >> (�+�)),
j0’ + (((�r j0’ + j1’’) I + (�r j0’+ j2’’) 2�-� J + 2�+�-1) >> (�+�))),

(Fc(ic, jc), Gc(ic, jc)) = (((�r i0’ + i1’’) Ic + (�r i0’+ i2’’) 2�-� Jc + 2W’r i0’ � 16W’ + 2�+�+1) >> (�+�+2),
((�r j0’ + j1’’) Ic + (�r j0’+ j2’’) 2�-� Jc + 2W’r j0’ � 16W’ + 2�+�+1) >> (�+�+2)).

When no_of_sprite_warping_point == 4,

(F(i, j), G(i, j)) = ((a i + b j + c) /// (g i + h j + D W H),
(d i + e j + f) /// (g i + h j + D W H)),

(Fc(ic, jc), Gc(ic, jc)) = ((2 a Ic + 2 b Jc + 4 c � (g Ic + h Jc + 2 D W H) s) /// (4gIc +4 hJc +8D W H),
(2 d Ic + 2 e Jc + 4 f � (g Ic + h Jc + 2 D W H) s) /// (4 g Ic +4 hJc +8D W H))

where

g = ((i0’ � i1’ � i2’ + i3’) (j2’ � j3’) � (i2’ � i3’) (j0’ � j1’ � j2’ + j3’)) H ,
h = ((i1’ � i3’) (j0’ � j1’ � j2’ + j3’) � (i0’ � i1’ � i2’ + i3’) (j1’ � j3’)) W ,
D = (i1’ � i3’) (j2’ � j3’) � (i2’ � i3’) (j1’ � j3’),
a = D (i1’ � i0’) H + g i1’ ,
b = D (i2’ � i0’) W + h I2’,
c = D i0’ W H,
d = D (j1’ � j0’) H + g j1’,
e = D (j2’ � j0’) W + h j2’,
f = D j0’ W H.

A set of parameters that causes the denominator of any of the the above equations to be zero for any pixel in a
opaque or boundary macroblock is disallowed. The implementor should be aware that a 32bit register may not be

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

167

sufficient for representing the denominator or the numerator in the above transform functions for affine and
perspective transform. The usage of a 64 bit floating point representation should be sufficient in such case.

7.8.6 Sample reconstruction

The reconstructed value Y of the luminance sample (i, j) in the currently decoded VOP shall be defined as

Y = ((s - rj)((s –ri) Y00 + ri Y01) + rj ((s - ri) Y10 + ri Y11)) // s2,

where Y00, Y01, Y10, Y11 represent the sprite luminance sample at (F(i, j)////s, G(i, j)////s), (F(i, j)////s + 1,G(i, j)////s), (F(i,
j)////s, G(i, j)////s + 1), and (F(i, j)////s + 1,G(i, j)////s + 1) respectively, and ri =F(i, j) –(F(i, j)////s)s and rj =G(i, j) – (G(i,
j)////s)s. Figure 7-31 illustrates this process.

In case any of Y00, Y01, Y10 and Y11 lies outside the sprite luminance binary mask, it shall be obtained by the padding
process as defined in subclause 7.6.1.

When brightness_change_in_sprite == 1, the final reconstructed luminance sample (i, j) is further computed as Y =
Y * (brightness_change_factor * 0.01 + 1), clipped to the range of [0, 255].

Similarly, the reconstructed value C of the chrominance sample (ic, jc) in the currently decoded VOP shall be define
as

C = ((s - rj)((s –ri) C00 + ri C01) + rj ((s - ri) C10 + ri C11)) // s2,

where C00, C01, C10, C11 represent the sprite chrominance sample at (Fc(ic, jc)////s, Gc(ic, jc)////s), (Fc(ic, jc)////s + 1, Gc(ic,
jc)////s), (Fc(ic, jc)////s, Gc(ic, jc)////s + 1), and (Fc(ic, jc)////s + 1, Gc(ic, jc)////s + 1) respectively, and ri = Fc(ic, jc) – (Fc(ic,
jc))////s)s and rj = Gc(ic, jc) – (Gc(ic, jc)////s)s. In case any of C00, C01, C10 and C11 lies outside the sprite chrominance
binary mask, it shall be obtained by the padding process as defined in subclause 7.6.1.

The same method is used for the reconstruction of grayscale alpha and luminance samples. The reconstructed
value A of the grayscale alpha sample (i, j) in the currently decoded VOP shall be defined as

A = ((s - rj)((s - ri) A00 + ri A01) + rj ((s - ri) A10 + ri A11)) // s2,

where A00, A01, A10, A11 represent the sprite grayscale alpha sample at (F(i, j)////s, G(i, j)////s), (F(i, j)////s + 1,G(i,
j)////s), (F(i, j)////s, G(i, j)////s + 1), and (F(i, j)////s + 1,G(i, j)////s + 1) respectively, and ri =F(i, j) –(F(i, j)////s)s and rj =G(i,
j) – (G(i, j)////s)s. In case any of A00, A01, A10 and A11 lies outside the sprite luminance binary mask, it shall be obtained
by the padding process as defined in subclause 7.6.1.

The reconstructed value of luminance binary mask sample BY(i,j) shall be computed following the identical process
for the luminance sample. However, corresponding binary mask sample values shall be used in place of luminance
samples Y00, Y01, Y10, Y11. Assume the binary mask sample opaque is equal to 255 and the binary mask sample
transparent is equal to 0. If the computed value is bigger or equal to 128, BY(i, j) is defined as opaque. Otherwise,
BY (i, j) is defined as transparent. The chrominance binary mask samples shall be reconstructed by decimating of
the corresponding 2 x 2 adjacent luminance binary mask samples as specified in subclause 7.6.1.4.

Y00

Y11Y10

Y01

�

�

�

�

�

r

s
i

Y

1

r

s
j

1

Figure 7-31 -- Pixel value interpolation (it is assumed that sprite samples are located on an integer grid)

7.9 Generalized scalable decoding

This subclause specifies the additional decoding process required for decoding scalable coded video.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

168

The scalability framework is referred to as generalized scalability which includes the spatial and the temporal
scalabilities. The temporal scalability offers scalability of the temporal resolution, and the spatial scalability offers
scalability of the spatial resolution. Each type of scalability involves more than one layer. In the case of two layers,
consisting of a lower layer and a higher layer; the lower layer is referred to as the base layer and the higher layer is
called the enhancement layer.

In the case of temporal scalability, both rectangular VOPs as well as arbitrary shaped VOPs are supported. In the
case of spatial scalability, only rectangular VOPs are supported. Figure 7-32 shows a high level decoder structure
for generalized scalability.

Scalability
Post Processor1

Mid Processor1

Enhancement
Layer1 Decoder

Base Layer
Decoder

bit_1

bit_0

outp_1

outp_0

out_1

out_0

Figure 7-32 -- High level decoder structure for generalized scalability

The base layer and enhancement layer bitstreams are input for decoding by the corresponding base layer decoder
and enhancement layer decoder.

When spatial scalability is to be performed, mid processor 1 performs spatial up or down sampling of input. The
scalability post processor performs any necessary operations such as spatial up or down sampling of the decoded
base layer for display resulting at outp_0 while the enhancement layer without resolution conversion may be output
as outp_1.

When temporal scalability is to be performed, the decoding of base and enhancement layer bitstreams occurs in the
corresponding base and enhancement layer decoders as shown. In this case, mid processor 1 does not perform any
spatial resolution conversion. The post processor simply outputs the base layer VOPs without any conversion, but
temporally multiplexes the base and enhancement layer VOPs to produce higher temporal resolution enhancement
layer.

The reference VOPs for prediction are selected by ref_select_code as specified in Table 7-13 and Table 7-14. In
coding of P-VOPs belonging to an enhancement layer, the forward reference is one of the following four: the most
recently decoded VOP of enhancement layer, the most recent VOP of the reference layer in display order, the next
VOP of the reference layer in display order, or the temporally coincident VOP in the reference layer.

In B-VOPs, the forward reference is one of the following two: the most recently decoded enhancement VOP or the
most recent reference layer VOP in display order. The backward reference is one of the following three: the
temporally coincident VOP in the reference layer, the most recent reference layer VOP in display order, or the next
reference layer VOP in display order.

Table 7-13 -- Prediction reference choices in enhancement layer P-VOPs for scalability

ref_select_code forward prediction reference

00 Most recently decoded enhancement VOP belonging to the same layer.

01 Most recently VOP in display order belonging to the reference layer.

10 Next VOP in display order belonging to the reference layer.

11 Temporally coincident VOP in the reference layer (no motion vectors)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

169

Table 7-14 -- Prediction reference choices in enhancement layer B-VOPs for scalability

ref_select_code forward temporal reference backward temporal reference

00 Most recently decoded enhancement
VOP of the same layer

Temporally coincident VOP in the
reference layer (no motion vectors)

01 Most recently decoded enhancement
VOP of the same layer.

Most recent VOP in display order
belonging to the reference layer.

10 Most recently decoded enhancement
VOP of the same layer.

Next VOP in display order belonging
to the reference layer.

11 Most recently VOP in display order
belonging to the reference layer.

Next VOP in display order belonging
to the reference layer.

7.9.1 Temporal scalability

Temporal scalability involves two layers, a lower layer and an enhancement layer. Both the lower and the
enhancement layers process the same spatial resolution. The enhancement layer enhances the temporal resolution
of the lower layer and if temporally remultiplexed with the lower layer provides full temporal rate.

7.9.1.1 Base layer and enhancement layer

In the case of temporal scalability, the decoded VOPs of the enhancement layer are used to increase the frame rate
of the base layer. Figure 7-33 shows a simplified diagram of the motion compensation process for the enhancement
layer using temporal scalability.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

170

Figure 7-33 -- Simplified motion compensation process for temporal scalability

Predicted samples p[y][x] are formed either from frame stores of base layer or from frame stores of enhancement
layer. The difference data samples f[y][x] are added to p[y][x] to form the decoded samples d[y][x].

There are two types of enhancement structures indicated by the “enhancement_type” flag. When the value of
enhancement_type is “1”, the enhancement layer increases the temporal resolution of a partial region of the base
layer. When the value of enhancement_type is “0”, the enhancement layer increases the temporal resolution of an
entire region of the base layer.

7.9.1.2 Base layer

The decoding process of the base layer is the same as non-scalable decoding process.

7.9.1.3 Enhancement layer

The VOP of the enhancement layer is decoded as either I-VOP, P-VOP or B-VOP. The shape of the VOP is either
rectangular (video_object_layer_id is “00”) or arbitrary (video_object_layer_id is “01”).

7.9.1.3.1 Decoding of I-VOPs

The decoding process of I-VOPs in enhancement layer is the same as non-scalable decoding process.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

171

7.9.1.3.2 Decoding of P-VOPs

The reference layer is indicated by ref_layer_id in Video Object Layer class. Other decoding process is the same as
non-scalable P-VOPs except the process specified in subclauses 7.9.1.3.4 and 7.9.1.3.5.

For P-VOPs, the ref_select_code is either “00”, “01” or “10”.

When the value of ref_select_code is “00”, the prediction reference is set by the most recently decoded VOP
belonging to the same layer.

When the value of ref_select_code is “01”, the prediction reference is set by the previous VOP in display order
belonging to the reference layer.

When the value of ref_select_code is “10”, the prediction reference is set by the next VOP in display order belonging
to the reference layer.

7.9.1.3.3 Decoding of B-VOPs

The reference layer is indicated by ref_layer_id in Video Object Layer class. Other decoding process is the same as
non-scalable B-VOPs except the process specified in subclauses 7.9.1.3.4 and 7.9.1.3.5.

For B-VOPs, the ref_select_code is either “01”, “10” or “11”.

When the value of ref_select_code is “01”, the forward prediction reference is set by the most recently decoded
VOP belonging to the same layer and the backward prediction reference is set by the previous VOP in display order
belonging to the reference layer.

When the value of ref_select_code is “10”, the forward prediction reference is set by the most recently decoded
VOP belonging to the same layer, and the backward prediction reference is set by the next VOP in display order
belonging to the reference layer.

When the value of ref_select_code is “11”, the forward prediction reference is set by the previous VOP in display
order belonging to the reference layer and the backward prediction reference is set by the next VOP in display order
belonging to the reference layer. The picture type of the reference VOP shall be either I or P (vop_coding_type =
“00” or “01”).

When the value of ref_select_code is “01” or “10”, direct mode is not allowed. modb shall always exist in each
macroblock, i.e. the macroblock is not skipped even if the co-located macroblock is skipped.

7.9.1.3.4 Decoding of arbitrary shaped VOPs

Prediction for arbitrary shape in P-VOPs or in B-VOPs is same as the one in the base layer (see subclause
7.5.2.1.2).

For arbitrary shaped VOPs with the value of enhancement_type being “1”, the shape of the reference VOP is
defined as an all opaque rectangle whose size is the same as the reference layer when the shape of reference layer
is rectangular (video_object_layer_shape = “00”).

When the value of ref_select_code is “11” and the value of enhancement_type is “1”, modb shall always exist in
each macroblock, i.e. the macroblock is not skipped even if the co-located macroblock is skipped.

7.9.1.3.5 Decoding of backward and forward shape

Backward shape and forward shape are used in the background composition process specified in subclause 8.1.
The backward shape is the shape of the enhanced object at the next VOP in display order belonging to the
reference layer. The forward shape is the shape of the enhanced object at the previous VOP in display order
belonging to the reference layer.

For the VOPs with the value of enhancement_type being “1”, backward shape is decoded when the
load_backward_shape is “1” and forward shape is decoded when load_forward_shape is “1”.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

172

When the value of load_backward_shape is “1” and the value of load_forward_shape is “0”, the backward shape of
the previous VOP is copied to the forward shape for the current VOP. When the value of load_backward_shape is
“0”, the backward shape of the previous VOP is copied to the backward shape for the current VOP and the forward
shape of the previous VOP is copied to the forward shape for the current VOP.

The decoding process of backward and forward shape is the same as the decoding process for the shape of I-VOP
with binary only mode (video_object_layer_shape = “10”).

7.9.2 Spatial scalability

7.9.2.1 Base Layer and Enhancement Layer

In the case of spatial scalability, the enhancement bitstream is used to increase the resolution of the image. When
the output with lower resolution is required, only the base layer is decoded. When the output with higher resolution
is required, both the base layer and the enhancement layer are decoded.

Figure 7-34 is a diagram of the video decoding process with spatial scalability.

Framestore
Addressing

Vector
Decoding

�

Framestores

Half-pel
Prediction
Filtering

Sa
tu

ra
tio

n

Vector
Predictors

From
Bitstream

Decoded
samples

f[y][x] d[y][x]

p[y][x]

vector[r][s][t]

Half-Pel
Info.

Combine
Predictions

Scaling
for Colour

Components

vector'[r][s][t]

Upsampler

Lower Layer Decoder

Lower Layer
Bitstream

pel_pred_temp[y][x]

lowerd [y][x]

pel_pred_spat[y][x]

Figure 7-34 -- Simplified motion compensation process for spatial scalability

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

173

7.9.2.2 Decoding of Base Layer

The decoding process of the base layer is the same as nonscalable decoding process.

7.9.2.3 Prediction in the enhancement layer

A motion compensated temporal prediction is made from reference VOPs in the enhancement layer. In addition, a
spatial prediction is formed from the lower layer decoded frame (dlower[y][x]). These predictions are selected
individually or combined to form the actual prediction.

In the enhancement layer, the forward prediction in P-VOP and the backward prediction in B-VOP are used as the
spatial prediction. The reference VOP is set to the temporally coincident VOP in the base layer. The forward
prediction in B-VOP is used as the temporal prediction from the enhancement layer VOP. The reference VOP is set
to the most recently decoded VOP of the enhancement layer. The interpolate prediction in B-VOP is the combination
of these predictions.

In the case that a macroblock is not coded, either because the entire macroblock is skipped or the specific
macroblock is not coded there is no coefficient data. In this case f[y][x] is zero, and the decoded samples are simply
the prediction, p[y][x].

7.9.2.4 Formation of spatial prediction

Forming the spatial prediction requires definition of the spatial resampling process. The formation is performed at
the mid-processor. The resampling process is defined for a whole VOP, however, for decoding of a macroblock,
only the 16x16 region in the upsampled VOP, which corresponds to the position of this macroblock, is needed.

The spatial prediction is made by resampling the lower layer reconstructed VOP to the same sampling grid as the
enhancement layer. In the first step, the lower layer VOP is subject to vertical resampling. Then, the vertically
resampled image is subject to horizontal resampling.

7.9.2.5 Vertical resampling

The image subject to vertical resampling, d y xlower [][] , is resampled to the enhancement layer vertical sampling

grid using linear interpolation between the sample sites according to the following formula, where vert_pic is the
resulting image:

vert_pic[yh][x] = (16 - phase) * dlower [y1][x] + phase * dlower [y2][x]

where
yh = output sample coordinate in vert_pic

y1 = (yh * vertical_sampling_factor_m) / vertical_sampling_factor_n

y2 = y1 + 1 if y1 < video_object_layer_height - 1
y1 otherwise

phase = (16 * ((yh * vertical_sampling_factor_m) %

vertical_sampling_factor_n)) // vertical_sampling_factor_n

where video_object_layer_height is the height of the reference VOL.

Samples which lie outside the vertically upsampled reconstructed frame which are required for upsampling are
obtained by border extension of the vertically upsampled reconstructed frame.

NOTE The calculation of phase assumes that the sample position in the enhancement layer at yh = 0 is spatially coincident
with the first sample position of the lower layer. It is recognised that this is an approximation for the chrominance component if
the chroma_format == 4:2:0.

7.9.2.6 Horizontal resampling

The image subject to horizontal resampling, vert pict y x_ [][] , is resampled to the enhancement layer horizontal

sampling grid using linear interpolation between the sample sites according to the following formula, where hor_pic
is the resulting image:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

174

hor_pic[y][xh] = ((16 - phase) * vert_pic[y][x1] + phase * vert_pic[y][x2]) // 256
where

xh = output sample coordinate in hor_pic
x1 = (xh * horizontal_sampling_factor_m) / horizontal_sampling_factor_n
x2 = x1 + 1 if x1 < video_object_layer_width - 1

x1 otherwise
phase = (16 * ((xh * horizontal_sampling_factor_m) %

horizontal_sampling_factor_n)) // horizontal_sampling_factor_n

where video_object_layer_width is the width of the reference VOL.

Samples which lie outside the lower layer reconstructed frame which are required for upsampling are obtained by
border extension of the lower layer reconstructed frame.

7.9.2.7 Selection and combination of spatial and temporal predictions

The spatial and temporal predictions can be selected or combined to form the actual prediction in B-VOP. The
spatial prediction is referred to as “backward prediction”, while the temporal prediction is referred to as “forward
prediction”. The combination of these predictions can be used as “interpolate prediction”. In the case of P-VOP, only
the spatial prediction (prediction from the reference layer) can be used as the forward prediction. The prediction in
the enhancement layer is defined in the following formulae.

pel_pred[y][x] = pel_pred_temp[y][x] (forward in B-VOP)
pel_pred[y][x] = pel_pred_spat[y][x] = hor_pict[y][x] (forward in P-VOP and backward in B-VOP)
pel_pred[y][x] = (pel_pred_temp[y][x] + pel_pred_spat[y][x])//2 (Interpolate in B-VOP)

pel_pred_temp[y][x] is used to denote the temporal prediction (formed within the enhancement layer).
pel_pred_spat[y][x] is used to denote the prediction formed from the lower layer. pel_pred[y][x] is denoted the
resulting prediction.

7.9.2.8 Decoding process of enhancement layer

The VOP in the enhancement layer is decoded as either I-VOP, P-VOP or B-VOP.

7.9.2.9 Decoding of I-VOPs

The decoding process of the I-VOP in the enhancement layer is the same as the non_scalable decoding process.

7.9.2.10 Decoding of P-VOPs

In P-VOP, the ref_select_code shall be “11”, i.e., the prediction reference is set to the temporally coincident VOP in
the base layer. The reference layer is indicated by ref_layer_id in VideoObjectLayer class. In the case of spatial
prediction, the motion vector shall be set to 0 at the decoding process and is not encoded in the bitstream.

A variable length codeword giving information about the macroblock type and the coded block pattern for
chrominance is mcbpc. The codewords for mcbpc in the enhancement layer are the same as the base layer and
shown in Table B-7. mcbpc shall be included in coded macroblocks.

The macroblock type gives information about the macroblock and which data elements are present. Macroblock
types and included elements in the enhancement layer bitstream are listed in subclause B.1.1.

In the case of the enhancement layer of spatial scalability, INTER4V shall not be used. The macroblock of INTER or
INTER+Q is encoded using the spatial prediction.

7.9.2.11 Decoding of B-VOPs

In B-VOP, the ref_select_code shall be “00”, i.e., the backward prediction reference is set to the temporally
coincident VOP in the base layer, and the forward prediction reference is set to the most recently decoded VOP in
the enhancement layer. In the case of spatial prediction, the motion vector shall be set to 0 at the decoding process
and is not encoded in the bitstream.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

175

modb shall be present in coded macroblocks belonging to B-VOPs. The codeword is the same as the base layer
and is shown in Table B-3. In case mb_type does not exist the default shall be set to "Forward MC" (prediction from
the last decoded VOP in the same reference layer). modb shall be encoded in all macroblocks. If its value is equal to
‘1’, further information is not transmitted for this macroblock. The decoder treats the prediction of this macroblock as
forward MC with motion vector equal to zero.

mb_type is present only in coded macroblocks belonging to B-VOPs. The mb_type gives information about the
macroblock and which data elements are present. mb_type and included elements in the enhancement layer
bitstream are listed in Table B-5.

In the case of the enhancement layer of spatial scalability, direct mode shall not be used. The decoding process of
the forward motion vectors are the same as the base layer.

7.10 Still texture object decoding

The block diagram of the decoder is shown in Figure 7-35.

ZeroTree
Decoding

Inverse
Quantization

Inverse
Quantization

Arithmetic
Decoding

AC subbands

Coded Data

Inverse
Prediction

DC subband

Output
Inverse
DWT

Figure 7-35 -- Block diagram of the decoder

The basic modules of a zero-tree wavelet based decoding scheme are as follows:

1. Arithmetic decoding of the DC subband using a predictive scheme.
2. Arithmetic decoding of the bitstream into quantized wavelet coefficients and the significance map for AC

subbands.
3. Zero-tree decoding of the higher subband wavelet coefficients.
4. Inverse quantization of the wavelet coefficients.
5. Composition of the texture using inverse discrete wavelet transform (IDWT).

7.10.1 Decoding of the DC subband

The wavelet coefficients of DC band are decoded independently from the other bands. First the quantization step
size decoded, then the magnitude of the minimum value of the differential quantization indices “band_offset” and
the maximum value of the differential quantization indices “band_max_value” are decoded from bitstream. The
parameter “band_offset” is negative or zero integer and the parameter “band_max” is a positive integer, so only the
magnitude of these parameters are read from the bitstream.

The arithmetic model is initialized with a uniform distribution of band_max_value-band_offset+1. Then, the
differential quantization indices are decoded using the arithmetic decoder in a raster scan order, starting from the
upper left index and ending with the lowest right one. The model is updated with the decoding of each bits of the
predicted wavelet quantization index to adopt the probability model to the statistics of DC band.

The “band_offset” is added to all the decoded quantization indices, and an inverse predictive scheme is applied.
Each of the current indices wX is predicted from three quantization indices in its neighborhood, i.e. wA, wB, and wC

(see Figure 7-36), and the predicted value is added to the current decoded coefficient. That is,

if (|wA-wB|) < | wB-wC|)
�w wx C�

else
�w wx A�

wx = wx + �wx

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

176

If any of nodes A, B or C is not in the image, its value is set to zero for the purpose of the inverse prediction. Finally,
the inverse quantization scheme is applied to all decoded values to obtain the wavelet coefficients of DC band.

B C

A X

Figure 7-36 -- DPCM decoding of DC band coefficients

7.10.2 ZeroTree Decoding of the Higher Bands

The zero-tree algorithm is based on the strong correlation between the amplitudes of the wavelet coefficients across
scales, and on the idea of partial ordering of the coefficients. The coefficient at the coarse scale is called the parent,
and all coefficients at the same spatial location, and of similar orientation, at the next finer scale are that parent’s
children. Figure 7-37 shows a wavelet tree where the parents and the children are indicated by squares and
connected by lines. Since the DC subband (shown at the upper left in Figure 7-37) is coded separately using a
DPCM scheme, the wavelet trees start from the adjacent higher bands.

Figure 7-37 -- Parent-child relationship of wavelet coefficients

In transform-based coding, it is typically true that a large percentage of the transform coefficients are quantized to
zero. A substantial number of bits must be spent either encoding these zero-valued quantized coefficients, or else
encoding the location of the non-zero-valued quantized coefficients. ZeroTree Coding uses a data structure called a
zerotree, built on the parent-child relationships described above, and used for encoding the location of non-zero
quantized wavelet coefficients. The zerotree structure takes advantage of the principle that if a wavelet coefficient at
a coarse scale is “insignificant” (quantized to zero), then all wavelet coefficients of the same orientation at the same
spatial location at finer wavelet scales are also likely to be “insignificant”. Zerotrees exist at any tree node where the
coefficient is zero and all its descendents are also zero.

The wavelet trees are efficiently represented and coded by scanning each tree from the root in the 3 lowest AC
bands through the children, and assigning one of four symbols to each node encountered: zerotree root (ZTR),
value zerotree root (VZTR), isolated zero (IZ) or value (VAL). A ZTR denotes a coefficient that is the root of a
zerotree. Zerotrees do not need to be scanned further because it is known that all coefficients in such a tree have
amplitude zero. A VZTR is a node where the coefficient has a nonzero amplitude, and all four children are zerotree
roots. The scan of this tree can stop at this symbol. An IZ identifies a coefficient with amplitude zero, but also with
some nonzero descendant. A VAL symbol identifies a coefficient with amplitude nonzero, and with some nonzero

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

177

descendant. The symbols and quantized coefficients are losslessly encoded using an adaptive arithmetic coder.
Table 7-15 shows the mapping of indices of the arithmetic decoding model into the zerotree symbols:

Table 7-15 -- The indexing of zerotree symbols

index Symbol

0 IZ

1 VAL

2 ZTR

3 VZTR

In order to achieve a wide range of scalability levels efficiently as needed by different applications, three different
zerotree scanning and associated inverse quantization methods are employed. The encoding mode is speficied in
bitstream with quantization_type field as one of 1) single_quant, 2) multi_quant or 3) bilevel_quant:

Table 7-16 -- The quantization types

code quantization_type

01 single_quant

10 multi _quant

11 bilevel_quant

In single_quant mode, the bitstream contains only one zero-tree map for the wavelet coefficients. After arithmetic
decoding, the inverse quantization is applied to obtain the reconstructed wavelet coefficients and at the end, the
inverse wavelet transform is applied to those coefficients.

In multi_quant mode, a multiscale zerotree decoding scheme is employed. Figure 7-38 shows the concept of this
technique.

Buffer

+Inverse
Quantization

Zerotree
Decoding

Figure 7-38 -- Multiscale zerotree decoding

The wavelet coefficients of the first spatial (and/or SNR) layer are read from the bitstream and decoded using the
arithmetic decoder. Zerotree scanning is used for decoding the significant maps and quantized coefficients and
locating them in their corresponding positions in trees.. These values are saved in the buffer to be used for
quantization refinement at the next scalability layer. Then, an inverse quantization is applied to these indices to
obtain the quantized wavelet coefficients. An inverse wavelet transform can also be applied to these coefficients to
obtain the first decoded image. The above procedure is applied for the next spatial/SNR layers.

The bilevel_quant mode enables fine granular SNR scalability by encoding the wavelet coefficients in a bitplane by
bitplane fashion. This mode uses the same zerotree symbols as the multi_quant mode. In this mode, a zero-tree
map is decoded for each bitplane, indicating which wavelet coefficients are nonzero relative to that bitplane. The
inverse quantization is also performed bitplane by bitplane. After the zero-tree map, additional bits are decoded to
refine the accuracy of the previously decoded coefficients.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

178

7.10.2.1 Zerotree Scanning

In all the three quantization modes, the wavelet coefficients are scanned either in the tree-depth fashion or in the
band-by-band fashion. In the tree-depth scanning order all coefficients of each tree are decoded before starting
decoding of the next tree. In the band-by-band scanning order, all coefficients are decoded from the lowest to the
highest frequency subbands.

Figure 7-39 shows the scanning order for a 16x16 image, with 3 levels of decomposition. In this figure, the indices
0,1,2,3 represent the DC band coefficients which are decoded separately. The remaining coefficients are decoded
in the order shown in this figure. As an example, indices 4,5,..., 24 represent one tree. At first, coefficients in this tree
are decoded starting from index 4 and ending at index 24. Then, the coefficients in the second tree are decoded
starting from index 25 and ending at 45. The third tree is decoded starting from index 46 and ending at index 66 and
so on.

0 1 4 67 5 6 68 69 9 10 13 14 72 73 76 77

2 3 130 193 7 8 70 71 11 12 15 16 74 75 78 79

25 88 46 109 131 132 194 195 17 18 21 22 80 81 84 85

151 214 172 235 133 134 196 197 19 20 23 24 82 83 86 87

26 27 89 90 47 48 110 111 135 136 139 140 198 199 202 203

28 29 91 92 49 50 112 113 137 138 141 142 200 201 204 205

152 153 215 216 173 174 236 237 143 144 147 148 206 207 210 211

154 155 217 218 175 176 238 239 145 146 149 150 208 209 212 213

30 31 34 35 93 94 97 98 51 52 55 56 114 115 118 119

32 33 36 37 95 96 99 100 53 54 57 58 116 117 120 121

38 39 42 43 101 102 105 106 59 60 63 64 122 123 126 127

40 41 44 45 103 104 107 108 61 62 65 66 124 125 128 129

156 157 160 161 219 220 223 224 177 178 181 182 240 241 244 245

158 159 162 163 221 222 225 226 179 180 183 184 242 243 246 247

164 165 168 169 227 228 231 232 185 186 189 190 248 249 252 253

166 167 170 171 229 230 233 234 187 188 191 192 250 251 254 255

Figure 7-39 -- Tree depth scanning order of a wavelet block in the all three modes

Figure 7-40 shows that the wavelet coefficients are scanned in the subband by subband fashion, from the lowest to
the highest frequency subbands. This figure shows an example of decoding order for a 16x16 image with 3 levels of
decomposition for the subband by subband scanning. The DC band is located at upper left corner (with indices 0, 1,
2, 3) and is decoded separately as described in DC band decoding. The remaining coefficients are decoded in the
order which is shown in the figure, starting from index 4 and ending at index 255. In multi_quant mode, at first
scalability layer, the zerotree symbols and the corresponding values are decoded for the wavelet coefficients of that
scalability layer. For the next scalability layers, the zerotree map is updated along with the corresponding value
refinements. In each scalability layer, a new zerotree symbol is decoded for a coefficient only if it was decoded as
ZTR or IZ in previous scalability layer or it is currently in SKIP mode. A node is said to be in SKIP mode when the
number of quantization refinement levels for the current scalability layer is one. The detailed description of the
refinement of quantization level is found in subclause 7.10.3. If the coefficient was decoded as VAL in previous layer
and it is not currently in SKIP mode, a VAL symbol is also assigned to it at the current layer and only its refinement
value is decoded from bitstream.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

179

0 1 4 7 16 17 28 29 64 65 68 69 112 113 116 117

2 3 10 13 18 19 30 31 66 67 70 71 114 115 118 119

5 8 6 9 40 41 52 53 72 73 76 77 120 121 124 125

11 14 12 15 42 43 54 55 74 75 78 79 122 123 126 127

20 21 32 33 24 25 36 37 160 161 164 165 208 209 212 213

22 23 34 35 26 27 38 39 162 163 166 167 210 211 214 215

44 45 56 57 48 49 60 61 168 169 172 173 216 217 220 221

46 47 58 59 50 51 62 63 170 171 174 175 218 219 222 223

80 81 84 85 128 129 132 133 96 97 100 101 144 145 148 149

82 83 86 87 130 131 134 135 98 99 102 103 146 147 150 151

88 89 92 93 136 137 140 141 104 105 108 109 152 153 156 157

90 91 94 95 138 139 142 143 106 107 110 111 154 155 158 159

176 177 180 181 224 225 228 229 192 193 196 197 240 241 244 245

178 179 182 183 226 227 230 231 194 195 198 199 242 243 246 247

184 185 188 189 232 233 236 237 200 201 204 205 248 249 252 253

186 187 190 191 234 235 238 239 202 203 206 207 250 251 254 255

Figure 7-40 -- The band-by-band scanning order for all three modes

In bilevel_quant mode, the band by band scanning is also employed, similar to the multi_quant mode. When bi-level
quantization is applied, the coefficients that are already found significant are replaced with zero symbols for the
purpose of zero-tree forming in later scans.

7.10.2.2 Entropy Decoding

The zero-tree (or type) symbols, quantized coefficient values (magnitude and sign), and residual values (for the
multi quant mode) are all decoded using an adaptive arithmetic decoder with a given symbol alphabet. The
arithmetic decoder adaptively tracks the statistics of the zerotree symbols and decoded values. For both the single
quant and multi quant modes the arithmetic decoder is initialized at the beginning of each color loop for band-by-
band scanning and at the beginning of the tree-block loop for tree-depth scanning. In order to avoid start code
emulation, the arithmetic encoder always starts with stuffing one bit ‘1’ at the beginning of the entropy encoding. It
also stuffs one bit ‘1’ immediately after it encodes every 22 successive ‘0’s. It stuffs one bit ‘1’ to the end of bitstream
in the case in which the last output bit of arithmetic encoder is ‘0’. Thus, the arithmetic decoder reads and discards
one bit before starts entropy decoding. During the decoding, it also reads and discards one bit after receiving every
22 successive ‘0’s. The arithmetic decoder reads one bit and discards it if the last input bit to the arithmetic decoder
is ‘0’.

The context models used for SQ and MQ are identical to the ones used in BQ mode.
For both scanning orders in the single quant and multi_quant modes separate probability models are kept for each
color and wavelet decomposition layer for the type and sign symbols while separate probability models are kept for
each color, wavelet decomposition layer, and bitplane for the magnitude and residual symbols. All the models are
initialized with a uniform probability distribution.

The models and symbol sets for the non-zerotree type quantities to be decoded are as follows:

Model Possible Values
Sign POSITIVE (0), NEGATIVE (1)
Magnitude 0, 1
Residual 0, 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

180

The possible values of the magnitudes and residuals are only 0 or 1 because each bitplane is being decoded
separately. The non-residual values are decoded in two steps. First, the absolute value is decoded in a bitplane
fashion using the magnitude probability models, then its sign is decoded.

For the decoding of the type symbols different probability models are kept for the leaf and non-leaf coefficients. For
the multi quant mode, context modeling, based on the zerotree type of the coefficient in the previous scalability
layer, is used. The different zerotree type models and their possible values are as follows:

Context and Leaf/Non-Leaf Possible Values
INIT ZTR (2), IZ (0), VZTR (3), VAL (1)
ZTR ZTR (2), IZ (0), VZTR (3), VAL (1)
ZTR DESCENDENT ZTR (2), IZ (0), VZTR (3), VAL (1)
IZ IZ (0), VAL (1)
LEAF INIT ZTR (0), VZTR (1)
LEAF ZTR ZTR (0), VZTR (1)
LEAF ZTR DESCENDENT ZTR (0), VZTR (1)

For the single quant mode only the INIT and LEAF INIT models are used. For the multi quant mode for the first
scalability layer only the INIT and LEAF INIT models are used. Subsequent scalability layers in the multi quant mode
use the context associated with the type. If a new spatial layer is added then the contexts of all previous leaf band
coefficients are switched to the corresponding non-leaf contexts. The coefficients in the newly added bands use the
LEAF INIT context. The residual models are used to decode the coefficient refinements if in the previous layer, a
VZTR or VAL symbol was assigned. If a node is currently not in SKIP mode (meaning that no refinement is being
done for the coefficient – see subclause 7.10.3 on inverse quantization for details) only the magnitude of the
refinements are decoded as these values are always zero or positive integers.
If a node is in SKIP mode, then its new zerotree symbol is decoded from bitstream, but no value is decoded for the
node and its value in the current scalability layer is assumed to be zero.

States in Previous Bitplane Possibilities in current bitplane

ZTR ZTR, VZTR, IZ, VAL

VZTR SKIP

IZ IZ, VAL

VAL SKIP

DZTR ZTR, VTRZ, IZ, VAL

For the bi-level quantization mode, the zero-tree map is decoded for each bitplane, indicating which wavelet
coefficients are zeros relative to the current quantization step size. Different probability models for the arithmetic
decoder are used and updated according to the local contexts. For decoding the zerotree symbols, five context
models are used, which are dependent on the status of the current wavelet coefficients in the zerotree formed in the
previous bitplane decoding. Specifically, the five models correspond to the following contexts of the current wavelet
coefficient:

· IZ: the previous zerotree symbol is Isolated Zero.
· VAL: the previous zerotree symbol is Value.
· ZTR: the previous zerotree symbol is Zerotree Root.
· VZTR: the previous zerotree symbol is valued zerotree root.
. DZTR: in previous bitplane, the current coefficient is a descendant of a zerotree root

The additional symbol DZTR is used for switching the models only, where DZTR refers to the descendant of a ZTR
symbol. The context symbols DZTR can be inferred from the decoding process and are not included in the
bitstream. They are used for switching the models only. At the beginning of the decoding the first bitplane, the
contexts of the coefficients are initialized to be DZ. For the highest subband, only IZ and VAL are possible (no ZTR
and VZTR are possible). Therefore, we initialize the arithmetic model for the last band differently (with zero
probablility for ZTR and VZTR symbols).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

181

For decoding the sign information, another context model (the sign model) is used and updated. For decoding the
refinement bits, another statistical model (the refinement model) is used.

Each decomposition levels have their own separate arithmetic models. Therefore, the above decoding process
applies to each decomposition levels. All models are initialized at the beginning of coding each bitplane.

After the zero-tree map, additional bits are received to refine the accuracy of the coefficients that are already
marked significant by previously received information at the decoder. For each significant coefficient, the 1-bit bi-
level quantized refinement values are entropy coded using the arithmetic coder.

7.10.3 Inverse Quantization

Different quantization step sizes (one for each color component) are specified for each level of scalability. The
quantizer of the DC band is a uniform mid-step quantizer with a dead zone equal to the quantization step size. The
quantization index is a signed integer number and the quantization reconstructed value is obtained using the
following equation:

V= id * Qdc,

where V is the reconstructed value, id is the decoded index and Qdc is the quantization step size.

All the quantizers of the higher bands (in all quantization modes) are uniform mid-step quantizer with a dead zone 2
times the quantization step size. For the single quantization mode, the quantization index is an signed integer. The
reconstructed value is obtained using the following algorithm:

if (id == 0)
V =0;

else if (id > 0)
V = id*Q+Q/2;

else
V = id*Q-Q/2;

where V is the reconstructed value, id is the decoded index and Q is the quantization step size.

In the multi-quantization mode each SNR layer within each spatial layer has an associated quantization step-size
value (Q value). These different Q Values are used for SNR scalability. A lower Q Value will result in a more
accurate reconstruction.

If a coefficient is in a given spatial layer it is also in all higher numbered spatial layers. SNR scalability may be
continued on these coefficients in the higher numbered spatial layers in the same way as is done in the spatial layer
the coefficient first arises in. Thus, we can think of all the coefficients which first arise in a particular spatial layer as
having a corresponding sequence of Q Values (call it a Q Sequence). The Q Sequence is made up of the
quantization values for all SNR layers in the spatial layer the coefficient first arises in plus the quantization values in
all SNR layers in all higher spatial layers. The order is from lower to higher numbered spatial layers and from lower
to higher numbered SNR layers within each spatial layer.

EXAMPLE

Let the quantization value of the i-th spatial layer and the j-th SNR layer be denoted by Q(i,j). Assume we have the
following scenario:

Spatial SNR Layer
Layer 0 1 2 .

0 Q(0,0) Q(0,1) Q(0,2)
1 Q(1,0) Q(1,1) Q(1,2)
2 Q(2,0) Q(2,1) Q(2,2)

The Q Sequence which will be used to quantize all coefficients which first arise in spatial layer 0 is:

<Q(0,0) Q(0,1) Q(0,2) Q(1,0) Q(1,1) Q(1,2) Q(2,0) Q(2,1) Q(2,2)>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

182

while the sequence for all coefficients first arising in spatial layer 1 is:

<Q(1,0) Q(1,1) Q(1,2) Q(2,0) Q(2,1) Q(2,2)>

and the sequence for all coefficients first arising in spatial layer 2:

<Q(2,0) Q(2,1) Q(2,2)>.

As in the single-quantization case we would like to have a uniform quantizer for all layers. Due to the manner in
which the Q Values are used to achieve scalability (described below), in order to have a (approximately) uniform
quantizer at each layer, we may have to revise the Q Values extracted from the bitstream before reconstruction.
This revision is necessary if the Q Values within each Q Sequence are not integer multiples of one another or if Q
Value is greater than a Q Value occurring earlier in the Q Sequence.

EXAMPLES

Q Sequences needing no revision: <24 8 2> and <81 81 27>.

Q Sequences needing revision: <31 9 2> (non-integer multiples) and <81 162 4> (increasing Q Value).

If a coefficient's quantization indices have been zero for all previous scalability layers (spatial and SNR) or if it is the
first scalability layer, then the reconstruction is the similar to the single-quantization mode described above. The
difference is in that the refined Q Values may be used instead of the ones extracted from the bitstream. The
refinement process is described below in steps 1 and 2. If there has been a non-zero quantization index in a
previous scalability layer then the quantization index specifies a refinement of the previous quantization. The indices
are then called residuals. For every coefficient and scalability layer we know (1) the quantization interval where the
coefficient occurred in the last scalability layer (both size and location), (2) the spatial layer the coefficient first arose
in (and thus, which Q Sequence to use), (3) the current Q Value and the previous Q Value in the Q Sequence, and
(4) the refinment (if any) of the previous Q Value.

The reconstruction of the residual is calculated in the following five steps.

Step 1: Calculation of the Number of Refinement Intervals

The quantization interval which was indexed in the previous layer is to be partitioned into disjoint intervals. The
number of these "refinement" intervals is calculated based solely on the current Q Value (call it curQ) and the
previous Q Value (call it prevQ). Note that prevQ may have been revised as mentioned above. Letting m be the
number of refinement intervals we calculate

m = ROUND(prevQ�curQ)
where ROUND(x) = MAX(nearest integer of x, 1)).

If m = 1, no refinement is needed and no value will have been sent. If, at a certain scalability layer, a node has m=1
then it is said to be in SKIP mode. Thus, steps 2, 3, and 4 need not be performed for the coefficient.

Step 2: Calculation of the Maximum Refinement Interval Size

Using the number of refinement intervals, the current Q Value, curQ, is revised (if necessary).

curQ = CEIL(prevQ � m)
where CEIL rounds up to the nearest integer.

curQ represents the maximum size of the intervals in the partition. Since prevQ is the previous layer's curQ (see
step 5), we see that prevQ represents the maximum size of the intervals in the partition used in the previous
scalability layer.

Step 3: Construction of Refinement Partition

Using the values m and curQ calculated above and the size of quantization interval where the coefficient occurred in
the last scalability layer, we form the refinement partition.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

183

The previous layer's quantization interval is partitioned into m intervals which are of size curQ or curQ-1. The
residual will be one of the values {0, 1, ..., m-1} which represent an index into this partition. A lower number index
corresponds to an interval in the partition covering lower magnitude values. If the partition is made up of different
size intervals (curQ and curQ-1) then the curQ size intervals correspond to the lower indices. Some combination of
m curQ and curQ-1 interval sizes are sufficient to cover the previous quantization interval. From step 2 we know that
the previous quantization interval is of size prevQ or prevQ-1.

Step 4: Calculation of Reconstructed Value

The interval in the partition indexed by the residual is mapped to the reconstruction value. The reconstruction is just
the middle point of the interval in the partition that the residual indexes. That is, if PartStart is the start of the interval
in the partition which is indexed by the residual, PartStartSize is the size of the interval, sign is the corresponding
sign (known from prior scalability layers), and // is integer division then the reconstructed value is:

PartStart + sign*(PartStartSize-1)//2

Step 5: Assignment of Maximum Size

If there is another scalability layer then prevQ is assigned the value of curQ.

Note that since steps 1, 2, and 5 depend entirely on the Q Values found in the Q Sequences they only need to be
done once in each scalability layer for each Q Sequence being used in the current spatial layer.

FOUR EXAMPLES

In the examples:

1. 1. let the Q Values be Q1 , Q2 , and Q3,
2. 2. let two sample coefficients to be quantized be C1 and C2,
3. 3. let Cq1 and Cq2 denote the corresponding quantized coefficients or residuals, and
4. 4. let iC1 and iC2 denote the corresponding reconstructed coefficient values.

1. Q Values not in need of revision

Q1 = 24 , Q2 = 8, Q3 = 2,
C1 = 16, and C2 = 28.

At first scalability layer we have

Cq1 = C1/Q1 = 0
iCq1 = 0
Cq2 = C2/Q1 = 1
iCq2 = 35

At second scalability layer we have

prevQ = Q1 = 24
curQ = Q2 = 8
m = ROUND(prevQ�curQ) = ROUND(24�8) = 3
curQ = CEIL(prevQ�m) = CEIL(24�3) = 8
partition sizes = {8, 8, 8}
Cq1 = C1/curQ = 2
iCq1 = 19
Cq2 = 0 (residual)
iCq2 = 27

At third scalability layer we have

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

184

prevQ = curQ = 8
curQ = Q3 = 2
m = ROUND(prevQ�curQ) = ROUND(8�2) = 4
curQ = CEIL(prevQ�m) = CEIL(8�2) = 4
partition sizes = {2, 2, 2, 2}
Cq1 = 0 (residual)
iCq1 = 16
Cq2 = 2 (residual)
iCq2 = 28

2. Q Values not in need of revision

Q1 = 81, Q2 = 81, Q3 = 27,
C1 = 115 , and C2 = 28.

At first scalability layer we have

Cq1 = C1/Q1 = 1
iCq1 = 121
Cq2 = C2/Q1 = 0
iCq2 = 0

At second scalability layer we have

prevQ = Q1 = 81
curQ = Q2 = 81
m = ROUND(prevQ�curQ) =ROUND(81�81) = 1
curQ = CEIL(prevQ�m) = CEIL(81�1) = 81
partition sizes = {81} (no refinement needed)
Cq1 = 0 (residual)
iCq1 = 121
Cq2 = C2/curQ = 0
iCq2 = 0

At third scalability layer we have

prevQ = curQ = 81
curQ = Q3 = 27
m = ROUND(prevQ�curQ) = ROUND(81�27) = 3
curQ = CEIL(prevQ�m) = CEIL(81�3) = 27
partition sizes = {27, 27, 27}
Cq1 = 1 (residual)
iCq1 = 121
Cq2 = C2/curQ = 1
iCq2 = 40

3. Q Values in need of revision

Q1 = 31 , Q2 = 9, Q3 = 2,
C1 = 115 , and C2 = 5.

At first scalability layer we have

Cq1 = C1/Q1 = 3
iCq1 = 108
Cq2 = C2/Q1 = 0
iCq2 = 0

At second scalability layer we have

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

185

prevQ = Q1 = 31
curQ = Q2 = 9
m = ROUND(prevQ�curQ) = ROUND(31�9) = 3
curQ = CEIL(prevQ�m) = CEIL(31�3) = 11
partition sizes = {11, 10, 10}
Cq1 = 2 (residual)
iCq1 = 118
Cq2 = C2/curQ = 0
iCq2 = 0

At third scalability layer we have

prevQ = curQ = 11
curQ = Q3 = 2
m = ROUND(prevQ�curQ) = ROUND(11�2) = 6
curQ = CEIL(prevQ�m) = CEIL(11�6) = 2
partition sizes = {2, 2, 2, 2, 2,1} if value occurs in level with size 11
partition sizes = {2, 2, 2, 2, 1, 1} if value occurs in level with size 10
Cq1 = 0 (residual)
iCq1 = 114
Cq2 = C2/curQ = 2
iCq2 = 4

4. Q Values in need of revision

Q1 = 81, Q2 = 162, Q3 = 4,
C1 = 115 , and C2 = 5.

At first scalability layer we have

Cq1 = C1/Q1 = 1
iCq1 = 121
Cq2 = C2/Q1 = 0
iCq2 = 0

At second scalability layer we have

prevQ = Q1 = 81
curQ = Q2 = 162
m = ROUND(prevQ�curQ) = ROUND(81�162) = 1
curQ = CEIL(prevQ�m) = CEIL(81�1) = 81
partition sizes = {81} (no refinement needed)
Cq1 = 0 (not used)
iCq1 = 121
Cq2 = C2/curQ = 0 (not used)
iCq2 = 0

At third scalability layer we have

prevQ = curQ = 81
curQ = Q3 = 4
m = ROUND(prevQ�curQ) = ROUND(81�4) = 20
curQ = CEIL(prevQ�m) = CEIL(81�20) = 5
partition sizes = {5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}
Cq1 = 8 (residual)
iCq1 = 121
Cq2 = C2/curQ = 1
iCq2 = 6

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

186

It is important to note that coefficients which first arose in different spatial layers may use different prevQ and curQ
values. They are basically being quantized from different lists. That is, they have different corresponding Q
Sequences.

7.10.3.1 Shape adaptive zerotree decoding

When the texture_object_layer_shape is not rectangular or texture_object_layer_width!=
integer*2wavelet_decomposition_level or texture_object_layer_height!= integer*2wavelet_decomposition_level, the inverse shape adaptve
wavelet transform is chosen to reconstructed the arbitrary-shaped image object or rectangular texture object.
Decoding shape adaptive wavelet coefficients is the same as decoding regular wavelet coefficients except keep
track of the locations of where to put the decoded wavelet coefficients according to the shape information. or a
generated mask. The mask is generated with texture_object_layer_width*texture_object_layer_height pixels of
value 255 at the upper-left corner of a frame of size w*2wavelet_decomposition_level * h*2wavelet_decomposition_level and the rest of the pixels
being value 0, where w is the smallest integer that makes w*2wavelet_decomposition_level > texture_object_layer_width and h
is the smallest integer that makes h*2wavelet_decomposition_level > texture_object_layer_height. Similar to decoding of regular
wavelet coefficients, the decoded zerotree symbols at a lower subband are used to determine whether decoding is
needed at higher subbands. The difference is now that some zerotree nodes correspond to the pixel locations
outside the shape boundary and no bits are to be decoded for these out_nodes. Root layer is defined as the lowest
three AC subbands, leaf layer is defined as the highest three AC subbands. For decomposition level of one, the
overlapped root layer and leaf laver shall be treated as leaf layer.

7.10.3.1.1 DC layer

The DC coefficient decoding is the same as that for rectangular image except the following,

1. Only those DC coefficients inside the shape boundary in the DC layer shall be traversed and decoded and DC
coefficients outside the shape boundary may be set to zeros.

2. For the inverse DC prediction in the DC layer, if a reference coefficient (A, B, C in Fig. (DC prediction figure)) in
the prediction context is outside the shape boundary, zero shall be used to form the prediction syntax.

7.10.3.1.2 Root layer

At the root layer (the lowest 3 AC bands), the shape information is examined for every node to determine whether a
node is an out_node.

If it is an out_node,

• no bits are decoded for this node;
• the four children nodes of this node are marked “to_be_decoded” (TBD);

otherwise,

• a zerotree symbol is decoded for this node using an adaptive arithmetic decoder.
If the decoded symbol for the node is either isolated_zero (IZ) or value (VAL),
• the four children nodes of this node are marked TBD;
otherwise,
• the symbol is either zerotree_root (ZTR) or valued_zerotree_root (VZTR) and the four children nodes of this

node are marked “no_code” (NC).

If the symbol is VAL or VZTR,

• a non-zero wavelet coefficient is decoded for this node by root model;
otherwise,
• the symbol is either IZ or ZTR and the wavelet coefficient is set to zero for this node.

7.10.3.1.3 Between root and leaf layer

At any layer between the root layer and the leaf layer, the shape information is examined for every node to
determine whether a node is an out_node.

If it is an out_node,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

187

• no bits are decoded for this node;
• the four children nodes of this node are marked as either TBD or NC depending on whether this node itself is

marked TBD or NC respectively;

otherwise, if it is marked NC,

• no bits are decoded for this node;
• the wavelet coefficient is set to zero for this node;
• the four children nodes are marked NC;

otherwise,

• a zerotree symbol is decoded for this node using an adaptive arithmetic decoder.
If the decoded symbol for the node is either isolated_zero (IZ) or value (VAL),
• the four children nodes of this node are marked TBD;

otherwise,

• the symbol is either zerotree_root (ZTR) or valued_zerotree_root (VZTR) and the four nodes of this node are
marked “no_code” (NC).

If the symbol is VAL or VZTR,

• a non-zero wavelet coefficient is decoded for this node by valnz model;

otherwise,

• the symbol is either IZ or ZTR and the wavelet coefficient is set to zero for this node.

7.10.3.1.4 Leaf layer

At the leaf layer, the shape information is examined for every node to determine whether a node is an out_node.

If it is an out_node,

• no bits are decoded for this node;

otherwise, if it is marked NC,

• no bits are decoded for this node;
• the wavelet coefficient is set to zero for this node;

otherwise,

• * a wavelet coefficient is decoded for this node by valz adaptive arithmetic model;

7.10.3.2 Shape decomposition

The shape information for both shape adaptive zerotree decoding and the inverse shape adaptive wavelet transform
is obtained by decomposing the reconstructed shape from the shape decoder. Assuming binary shape with 0 or 1
indicating a pixel being outside or inside the arbitrarily shaped object, the shape decomposition procedure can be
described as follows:

1. For each horizontal line, collect all even-indexed shape pixels together as the shape information for the
horizontal low-pass band and collect all odd-indexed shape pixels together as the shape information for the
horizontal high-pass band, except for the special case where the number of consecutive 1’s is one.

2. For an isolated 1 in a horizontal line, whether at an even-indexed location or at an odd-indexed location, it is
always put together with the shape pixels for the low-pass band and a 0 is put at the corresponding position
together with the shape pixels for the high-pass band.

3. Perform the above operations for each vertical line after finishing all horizontal lines.
4. Use the above operations to decompose the shape pixels for the horizontal and vertical low-pass band further

until the number of decomposition levels is reached.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

188

7.11 Mesh object decoding

An overview of the decoding process is show in Figure 7-41.

Mesh
Geometry
Decoding

Mesh
Motion

Decoding

Mesh
Data

Memory

Variable
Length

Decoding

Coded
Data

Decoded
Mesh

dxn
dyn

exn
eyn

xn
yn
tm

Figure 7-41 -- Simplified 2D Mesh Object Decoding Process

Variable length decoding takes the coded data and decodes either node point location data or node point motion
data. Node point location data is denoted by dxn, dyn and node point motion data is denoted by exn, eyn, where n is
the node point index (n = 0, ..., N-1). Next, either mesh geometry decoding or mesh motion decoding is applied.
Mesh geometry decoding computes the node point locations from the location data and reconstructs a triangular
mesh from the node point locations. Mesh motion decoding computes the node point motion vectors from the motion
data and applies these motion vectors to the node points of the previous mesh to reconstruct the current mesh.

The reconstructed mesh is stored in the mesh data memory, so that it may be used by the motion decoding process
for the next mesh. Mesh data consists of node point locations (xn, yn) and triangles tm, where m is the triangle index
(m = 0, ..., M-1) and each triangle tm contains a triplet <i, j, k> which stores the indices of the node points that form
the three vertices of that triangle.

A mesh object consists of a sequence of mesh object planes. The is_intra flag of the mesh object plane class
determines whether the data that follows specifies the initial geometry of a new dynamic mesh, or that it specifies
the motion of the previous mesh to the current mesh, in a sequence of meshes. Firstly, the decoding of mesh
geometry is described; then, the decoding of mesh motion is described. In this part of ISO/IEC 14496, a pixel-based
coordinate system is assumed, where the x-axis points to the right from the origin, and the y-axis points down from
the origin.

7.11.1 Mesh geometry decoding

Since the initial 2D triangular mesh is either a uniform mesh or a Delaunay mesh, the mesh triangular structure (i.e.
the connections between node points) is not coded explicitly. Only a few parameters are coded for the uniform
mesh; only the 2D node point coordinates

�

p x yn n n� (,) are coded for the Delaunay mesh. In each case, the

coded information defines the triangular structure of the mesh implicitly, such that it can be computed uniquely by
the decoder. The mesh_type_code specifies whether the initial mesh is uniform or Delaunay.

7.11.1.1 Uniform mesh

A 2D uniform mesh subdivides a rectangular object plane area into a set of rectangles, where each rectangle in turn
is subdivided into two triangles. Adjacent triangles share node points. The node points are spaced equidistant
horizontally as well as vertically. An example of a uniform mesh is given in Figure 7-42.

Five parameters are used to specify a uniform mesh. The first two parameters, nr_mesh_nodes_hor and
nr_mesh_nodes_vert, specify the number of node points of the mesh in the horizontal, resp. vertical direction. In the
example of Figure 7-42, nr_mesh_nodes_hor is equal to 5 and nr_mesh_nodes_vert is equal to 4. The next two
parameters, mesh_rect_size_hor and mesh_rect_size_vert, specify the horizontal, resp. vertical size of each
rectangle in half pixel units. The meaning of these parameters is indicated in Figure 7-42. The last parameter,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

189

triangle_split_code, specifies how each rectangle is split to form two triangles. The four methods of splitting that are
allowed are indicated in Figure 7-43. The top-left node point of a uniform mesh coincides with the origin of a local
coordinate system.

mesh_rect_size_hor

mesh_rect_size_vert

Figure 7-42 -- Specification of a uniform 2D mesh

triangle_split_code == ‘00’ triangle_split_code == ‘01’

triangle_split_code == ‘10’ triangle_split_code == ‘11’

Figure 7-43 -- Illustration of the types of uniform meshes defined

7.11.1.2 Delaunay mesh

First, the total number of node points in the mesh N is decoded; then, the number of node points that are on the
boundary of the mesh Nb is decoded. Note that N is the sum of the number of nodes in the interior of the mesh, Ni

and the number of nodes on the boundary, Nb,

N � Ni � Nb .

Now, the locations of boundary and interior node points are decoded, where we assume the origin of the local
coordinate system is at the top left of the bounding rectangle surrounding the initial mesh. The x-, resp. y-coordinate
of the first node point,

��

��

p0 � (x0, y0) , is decoded directly, where x0 and y0 are specified w.r.t. to the origin of the

local coordinate system. All the other node point coordinates are computed by adding a dxn , resp. dyn value to,

resp. the x- and y-coordinate of the previously decoded node point. Thus, the coordinates of the initial node point

��

��

p0 � (x0, y0) is decoded as is, whereas the coordinates of all other node points ,
�

��

pn � (xn, yn) , n = 1, ..., N - 1, are

obtained by adding a decoded value to the previously decoded node point coordinates:

x x dxn n n� �
�1 and y y dyn n n� �

�1 .

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

190

The ordering in the sequence of decoded locations is such that the first Nb locations correspond to boundary nodes.
Thus, after receiving the first Nb locations, the decoder is able to reconstruct the boundary of the mesh by
connecting each pair of successive boundary nodes, as well as the first and the last, by straight-line edge segments.
The next N - Nb values in the sequence of decoded locations correspond to interior node points. Thus, after
receiving N nodes, the locations of both the boundary and interior nodes can be reconstructed, in addition to the
polygonal shape of the boundary. This is illustrated with an example in Figure 7-44.

p6
p8

p14

p1 p3

p7

p0

p11

p5

p2

p4

p9

p10

p12p13

Figure 7-44 -- Decoded node points and mesh boundary edge

The mesh is finally obtained by applying constrained Delaunay triangulation to the set of decoded node points,
where the polygonal mesh boundary is used as a constraint. A constrained triangulation of a set of node points

�

��

pn

contains the line segments between successive node points on the boundary as edges and contains triangles only
in the interior of the region defined by the boundary. Each triangle

�

tk �
��

pl ,
��

pm ,
��

pn of a constrained Delaunay

triangulation furthermore satisfies the property that the circumcircle of tk does not contain in its interior any node

point
��

��

pr visible from all three vertices of tk . A node point is visible from another node point if a straight line drawn

between them falls entirely inside or exactly on the constraining polygonal boundary. The Delaunay triangulation
process is defined as any algorithm that is equivalent to the following.

a. Determine any triangulation of the given node points such that all triangles are contained in the interior of the
polygonal boundary. The triangulation shall contain 2 Ni + Nb – 2 triangles.

b. Inspect each interior edge, shared by two opposite triangles, of the triangulation and test if the edge is locally
Delaunay. If there is an interior edge that is not locally Delaunay, the two opposite triangles <pa, pb, pc> and
<pa, pc, pd> sharing this edge are replaced by triangles <pa, pb, pd> and <pb, pc, pd>. Continue until all interior
edges of the triangulation are locally Delaunay.

An interior edge, shared by two opposite triangles <pa, pb, pc> and <pa, pc, pd>, is locally Delaunay if point pd is
outside the circumcircle of triangle <pa, pb, pc>. If point pd is inside the circumcircle of triangle <pa, pb, pc>, then the
edge is not locally Delaunay. If point pd is exactly on the circumcircle of triangle <pa, pb, pc>, then the edge between
points pa and pc is deemed locally Delaunay only if point pb or point pd is the point (among these four points) with the
maximum x-coordinate, or, in case there is more than one point with the same maximum x-coordinate, the point with
the maximum y-coordinate among these points.An example of a mesh obtained by constrained triangulation of the
node points of Figure 7-44 is shown in Figure 7-45.IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 14

49
6-2

:19
99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

191

p6
p8

p14

p1 p3

p7

p0

p11

p5

p2

p4

p9

p10

p12p13

Figure 7-45 -- Decoded triangular mesh obtained by constrained Delaunay triangulation

7.11.2 Decoding of mesh motion vectors

Each node point
��

��

pn of a 2D Mesh Object Plane numbered k in the sequence of Mesh Object Planes has a 2D

motion vector
��

��

vn � vxn,vyn� �, defined from Mesh Object Plane k to k+1. By decoding these motion vectors, one is

able to reconstruct the locations of node points in Mesh Object Plane numbered k+1. The triangular topology of the
mesh remains the same throughout the sequence. Node point motion vectors are decoded according to a predictive
method, i.e., the components of each motion vector are predicted using the components of already decoded motion
vectors of other node points.

7.11.2.1 Motion vector prediction

To decode the motion vector of a node point
��

��

pn that is part of a triangle
�

tk �
��

pl ,
��

pm ,
��

pn , where the two motion

vectors vectors
��

��

vl and
��

��

vm of the nodes
��

��

pl and
�

��

pm have already been decoded, one can use the values of
�

��

vl and

��

��

vm to predict
��

��

vn and add the prediction vector to a decoded prediction error vector. Starting from an initial triangle

tk of which all three node motion vectors have been decoded, there must be at least one other, neighboring, triangle

tw that has two nodes in common with tk . Since the motion vectors of the two nodes that tk and tw have in

common have already been decoded, one can use these two motion vectors to predict the motion vector of the third
node in tw . The actual prediction vector

��

��

wn is computed by averaging of the two prediction motion vectors and the

components of the prediction vector are rounded to half-pixel accuracy, as follows:

��

��

wn � 0.5� floor vxm � vxl � 0.5� �, floor vym � vyl � 0.5� �� � ,

��

��

vn �

��

wn �
��

en

Here,
��

��

en � exn ,eyn� � denotes the prediction error vector, the components of which are decoded from variable

length codes. This procedure is repeated while traversing the triangles and nodes of the mesh, as explained below.
While visiting all triangles of the mesh, the motion vector data of each node is decoded from the bitstream one by
one. Note that no prediction is used to decode the first motion vector,

��

��

vn0
�

��

en0 ,

and that only the first decoded motion vector is used as a predictor to code the second motion vector,

��

��

vn1
�

��

vn0
�

��

en1 .

Note further that the prediction error vector is specified only for node points with a nonzero motion vector. For all
other node points, the motion vector is simply

��

��

vn � 0,0� �.

Finally, the horizontal and vertical components of mesh node motion vectors are processed to lie within a certain
range, equivalent to the processing of video block motion vectors described in subclause 7.6.3.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

192

7.11.2.2 Mesh traversal

We use a breadth-first traversal to order all the triangles and nodes in the mesh numbered k, and to decode the
motion vectors defined from mesh k to k+1. The breadth-first traversal is determined uniquely by the topology and
geometry of an intra-coded mesh. That is, the ordering of the triangles and nodes shall be computed on an intra-
coded Mesh Object Plane and remains constant for the following predictive-coded Mesh Object Planes. The
breadth-first traversal of the mesh triangles is defined as follows (see Figure 7-46 for an illustration).

First, define the initial triangle as follows. Define the top left mesh node as the node n with minimum xn � yn ,

assuming the origin of the local coordinate system is at the top left. If there is more than one node with the same
value of xn � yn , then choose the node point among these with minimum y. The initial triangle is the triangle that

contains the edge between the top-left node of the mesh and the next clockwise node on the boundary. Label the
initial triangle with the number 0.

Next, all other triangles are iteratively labeled with numbers 1, 2, ..., M - 1, where M is the number of triangles in the
mesh, as follows.

Among all labeled triangles that have adjacent triangles which are not yet labeled, find the triangle with the
lowest number label. This triangle is referred to in the following as the current triangle. Define the base edge
of this triangle as the edge that connects this triangle to the already labeled neighboring triangle with the
lowest number. In the case of the initial triangle, the base edge is defined as the edge between the top-left
node and the next clockwise node on the boundary. Define the right edge of the current triangle as the next
counterclockwise edge of the current triangle with respect to the base edge; and define the left edge as the
next clockwise edge of the current triangle with respect to the base edge. That is, for a triangle

��

tk �
��

pl ,
��

pm ,
��

pn , where the vertices are in clockwise order, if
�

��

pl

��

pm is the base edge, then
��

��

pl

��

pn is the

right edge and
��

��

pm

��

pn is the left edge.

Now, check if there is an unlabeled triangle adjacent to the current triangle, sharing the right edge. If there is
such a triangle, label it with the next available number. Then check if there is an unlabeled triangle adjacent
to the current triangle, sharing the left edge. If there is such a triangle, label it with the next available
number.

This process is continued iteratively until all triangles have been labeled with a unique number m.

The ordering of the triangles according to their assigned label numbers implicitly defines the order in which the
motion vector data of each node point is decoded, as described in the following. Initially, motion vector data for the
top-left node of the mesh is retrieved from the bitstream. No prediction is used for the motion vector of this node,
hence this data specifies the motion vector itself. Then, motion vector data for the second node, which is the next
clockwise node on the boundary w.r.t. the top-left node, is retrieved from the bitstream. This data contains the
prediction error for the motion vector of this node, where the motion vector of the top-left node is used as a
prediction. Mark these first two nodes (that form the base edge of the initial triangle) with the label ‘done’.

Next, process each triangle as determined by the label numbers. For each triangle, the base edge is determined as
defined above. The motion vectors of the two nodes of the base edge of a triangle are used to form a prediction for
the motion vector of the third node of that triangle. If that third node is not yet labeled ‘done’, motion vector data is
retrieved and used as prediction error values, i.e. the decoded values are added to the prediction to obtain the
actual motion vector. Then, that third node is labeled ‘done’. If the third note is already labeled ‘done’, then it is
simply ignored and no data is retrieved. Note that due to the ordering of the triangles as defined above, the two
nodes on the base edge of a triangle are guaranteed to be labeled ‘done’ when that triangle is processed, signifying
that their motion vectors have already been decoded and may be used as predictors.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

193

0

2

1

3

4

r

b l

81

2

3 5

4

0 6

9

7

Figure 7-46 -- Breadth-first traversal of a 2D triangular example mesh

In Figure 7-46 an example is shown of breadth-first traversal. On the left, the traversal is halfway through the mesh -
five triangles have been labeled (with numbers) and the motion vectors of six node points have been decoded
(marked with a box symbol). The triangle which has been labeled ‘3’ is the ‘current triangle’; the base edge is ‘b’; the
right and left edge are ‘r’ and ‘l’. The triangles that will be labeled next are the triangles sharing the right, resp. left
edge with the current triangle. After those triangles are labeled, the triangle which has been labeled ‘4’ will be the
next ‘current triangle’ and another motion vector will be decoded. On the right, the traversed 2D triangular mesh is
shown, illustrating the transitions between triangles and final order of node points according to which respective
motion vectors are decoded.

7.12 Face object decoding

7.12.1 Frame based face object decoding

This subclause specifies the additional decoding process required for face object decoding.

The coded data is decoded by an arithmetic decoding process. The arithmetic decoding process is described in
detail in annex B. Following the arithmetic decoding, the data is de-quantized by an inverse quantization process.
The FAPs are obtained by a predictive decoding scheme as shown in Figure 7-47.

The base quantization step size QP for each FAP is listed in Table C-1. The quantization parameter fap_quant is
applied uniformly to all FAPs. The magnitude of the quantization scaling factor ranges from 1 to 8. The value of
fap_quant == 0 has a special meaning, it is used to indicate lossless coding mode, so no dequantization is applied.
The quantization stepsize is obtained as follows:

if (fap_quant)
qstep = QP * fap_quant

else
qstep = 1

The dequantized FAP’(t) is obtained from the decoded coefficient FAP’’(t) as follows:

FAP’(t) = qstep * FAP’’(t)

FAP(t)
Coded
Data +

Decoding
Arithmetic Inverse

Quantization

Frame
delay

Figure 7-47 -- FAP decoding

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

194

7.12.1.1 Decoding of faps

For a given frame FAPs in the decoder assume one of three of the following states:

1. set by a value transmitted by the encoder
2. retain a value previously sent by the encoder
3. interpolated by the decoder

FAP values which have been initialized in an intra coded FAP set are assumed to retain those values if
subsequently masked out unless a special mask mode is used to indicate interpolation by the decoder. FAP values
which have never been initialized must be estimated by the decoder. For example, if only FAP group 2 (inner lip) is
used and FAP group 8 (outer lip) is never used, the outer lip points must be estimated by the decoder. In a second
example the FAP decoder is also expected to enforce symmetry when only the left or right portion of a symmetric
FAP set is received (e.g. if the left eye is moved and the right eye is subject to interpolation, it is to be moved in the
same way as the left eye).

7.12.2 DCT based face object decoding

The bitstream is decoded into segments of FAPs, where each segment is composed of a temporal sequence of 16
FAP object planes. The block diagram of the decoder is shown in Figure 7-48.

Huffman
Decoding

Inverse
Quantization

Inverse
DCT

Memory
Buffer

DC

Huffman
Decoding

Run-Length
Decoding

Inverse
Quantization

AC

FAPs

Figure 7-48 -- Block diagram of the DCT-based decoding process

The DCT-based decoding process consists of the following three basic steps:

1. Differential decoding the DC coefficient of a segment.
2. Decoding the AC coefficients of the segment
3. Determining the 16 FAP values of the segment using inverse discrete cosine transform (IDCT).
A uniform quantization step size is used for all AC coefficients. The quantization step size for AC coefficients is
obtained as follows:

qstep[i] = fap_scale[fap_quant_inex] * DCTQP[i]

where DCTQP[i] is the base quantization step size and its value is defined in subclause 6.3.10.10. The quantization
step size of the DC coefficient is one-third of the AC coefficients. Different quantization step sizes are used for
different FAPs.

The DCT-based decoding process is applied to all FAP segments except the viseme (FAP #1) and expression (FAP
#2) parameters. The latter two parameters are differential decoded without transform. The decoding of viseme and
expression segments are described at the end of this subclause.

For FAP #3 to FAP #68, the DC coefficient of an intra coded segment is stored as a 16-bit signed integer if its
value is within the 16-bit range. Otherwise, it is stored as a 31-bit signed integer. For an inter coded segment, the
DC coefficient of the previous segment is used as a prediction of the current DC coefficient. The prediction error is
decoded using a Huffman table of 512 symbols. . An "ESC" symbol, if obtained, indicates that the prediction error is

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

195

out of the range [-255, 255]. In this case, the next 16 bits extracted from the bitstream are represented as a signed
16-bit integer for the prediction error. If the value of the integer is equal to -256*128, it means that the value of the
prediction error is over the 16-bit range. Then the following 32 bits from the bitstream are extracted as a signed 32-
bit integer, in twos complement format and the most significant bit first

The AC coefficients, for both inter and intra coded segments, are decoded using Huffman tables. The run-length
code indicates the number of leading zeros before each non-zero AC coefficient. The run-length ranges from 0 to
14 and proceeds the code for the AC coefficient. The symbol 15 in the run length table indicates the end of non-zero
symbols in a segment. Therefore, the Huffman table of the run-length codes contains 16 symbols. The values of
non-zero AC coefficients are decoded in a way similar to the decoding of DC prediction errors but with a different
Huffman table.

The bitstreams corresponding to viseme and expression segments are basically differential decoded without IDCT.
For an intra coded segment, the quantized values of the first viseme_select1, viseme_select2, viseme_blend,
expression_select1, expression_select2, expression_intensity1, and expression_intensity2 within the segment are
decoded using fixed length code. These first values are used as the prediction for the second viseme_select1,
viseme_select2, … etc of the segment and the prediction error are differential decoded using Huffman tables. For
an inter coded segment, the last viseme_select1, for example, of the previous decoded segment is used to predict
the first viseme_select1 of the current segment. In general, the decoded values (before inverse quantization) of
differential coded viseme and expression parameter fields are obtained

byviseme_segment_select1q[k] = viseme_segment_select1q[k-1] +
viseme_segment_select1q_diff[k] - 14

viseme_segment_select2q[k] = viseme_segment_select2q[k-1] +
viseme_segment_select2q_diff[k] - 14

viseme_segment_blendq[k] = viseme_segment_blendq[k-1] +
viseme_segment_blendq_diff[k] - 63

expression_segment_select1q[k] = expression_segment_select1q[k-1] +
expression_segment_select1q_diff[k] - 6

expression_segment_select2q[k] = expression_segment_select2q[k-1] +
expression_segment_select2q_diff[k] - 6

expression_segment_intensity1q[k] = expression_segment_intensity1q[k-1] +
expression_segment_intensity1q_diff[k] - 63

expression_segment_intensity2q[k] = expression_segment_intensity2q[k-1] +
expression_segment_intensity2q_diff[k] - 63

7.12.3 Decoding of the viseme parameter fap 1

Fourteen visemes have been defined for selection by the Viseme Parameter FAP 1, the definition is given in annex
C. The viseme parameter allows two visemes from a standard set to be blended together. The viseme parameter is
composed of a set of values as follows.

Table 7-17 -- Viseme parameter range

viseme () { Range

viseme_select1 0-14

viseme_select2 0-14

viseme_blend 0-63

viseme_def 0-1

}

Viseme_blend is quantized (step size = 1) and defines the blending of viseme1 and viseme2 in the decoder by the
following symbolic expression where viseme1 and 2 are graphical interpretations of the given visemes as
suggested in the non-normative annex.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

196

final viseme = (viseme 1) * (viseme_blend / 63) + (viseme 2) * (1 - viseme_blend / 63)

The viseme can only have impact on FAPs that are currently allowed to be interpolated.

If the viseme_def bit is set, the current mouth FAPs can be used by the decoder to define the selected viseme in
terms of a table of FAPs. This FAP table can be used when the same viseme is invoked again later for FAPs which
must be interpolated.

7.12.4 Decoding of the viseme parameter fap 2

The expression parameter allows two expressions from a standard set to be blended together.The expression
parameter is composed of a set of values as follows.

Table 7-18 -- Expression parameter range

expression () { Range

expression_select1 0-6

expression_intensity1 0-63

expression_select2 0-6

expression_intensity2 0-63

init_face 0-1

expression_def 0-1

}

Expression_intensity1 and expression_intensity2 are quantized (step size = 1) and define excitation of expressions 1
and 2 in the decoder by the following equations where expressions 1 and 2 are graphical interpretations of the
given expression as suggested by the non-normative reference:

final expression = expression1 * (expression_intensity1 / 63)+ expression2 * (expression_intensity2 / 63)

The decoder displays the expressions according to the above fomula as a superposition of the 2 expressions.

The expression can only have impact on FAPs that are currently allowed to be interpolated. If the init_face bit is set,
the neutral face may be modified within the neutral face constraints of mouth closure, eye opening, gaze direction,
and head orientation before FAPs 3-68 are applied. If the expression_def bit is set, the current FAPs can be used to
define the selected expression in terms of a table of FAPs. This FAP table can then be used when the same
expression is invoked again later.

7.12.5 Fap masking

The face is animated by sending a stream of facial animation parameters. FAP masking, as indicated in the
bitstream, is used to select FAPs. FAPs are selected by using a two level mask hierarchy. The first level contains
two bit code for each group indicating the following options:

1. no FAPs are sent in the group.
2. a mask is sent indicating which FAPs in the group are sent. FAPs not selected by the group mask retain their

previous value if any previously set value (not interpolated by decoder if previously set)
3. a mask is sent indicating which FAPs in the group are sent. FAPs not selected by the group mask retain must

be interpolated by the decoder.
4. all FAPs in the group are sent.

7.13 Output of the decoding process

This subclause describes the output of the theoretical model of the decoding process that decodes bitstreams
conforming to this part of ISO/IEC 14496.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

197

The visual decoding process input is one or more coded visual bitstreams (one for each of the layers). The visual
layers are generally multiplexed by the means of a system stream that also contains timing information.

7.13.1 Video data

The output of the video decoding process is a series of VOPs that are normally the input of a display process. The
order in which fields or VOPs are output by the decoding process is called the display order, and may be different
from the coded order (when B-VOPs are used).

7.13.2 2D Mesh data

The output of the decoding process is a series of one or more mesh object planes. The mesh object planes are
normally input to a compositor that maps the texture of a related video object or still texture object onto each mesh.
The coded order and the composited order of the mesh object planes are identical.

7.13.3 Face animation parameter data

The output of the decoding process is a sequence of facial animation parameters. They are input to a display
process that uses the parameters to animate a face object.

8 Visual-Systems Composition Issues

8.1 Temporal Scalability Composition

Background composition is used in forming the background region for objects at the enhancement layer of temporal
scalability when the value of both enhancement_type and background_composition is one. This process is useful
when the enhancement VOP corresponds to the partial region of the VOP belonging to the reference layer. In this
process, the background of a current enhancement VOP is composed using the previous and the next VOPs in
display order belonging to the reference layer.

Figure 8-1 shows the background composition for the current frame at the enhancement layer. The dotted line
represents the shape of the selected object at the previous VOP in the reference layer (called “forward shape”). As
the object moves, its shape at the next VOP in the reference layer is represented by a broken line (called “backward
shape”).

For the region outside these shapes, the pixel value from the nearest VOP at the reference layer is used for the
composed background. For the region occupied only by the forward shape, the pixel value from the next VOP at the
reference layer is used for the composed frame. This area is shown as lightly shaded in Figure 8-1. On the other
hand, for the region occupied only by the backward shape, pixel values from the previous VOP in the reference
layer are used. This is the area shaded dark in Figure 8-1. For the region where the areas enclosed by these
shapes overlap, the pixel value is given by padding from the surrounding area. The pixel value which is outside of
the overlapped area should be filled before the padding operation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

198

selected object at the
previous VOP : “forward
shape” selected object at

the next VOP :
“backward shape”

pixel value from
the next VOP

pixel value is given by
padding from the
surrounding area after the
other area is filled.

pixel value from the
previous VOP

pixel value from the
previous VOP

Figure 8-1 -- Background composition

The following process is a mathematical description of the background composition method.

If s(x,y,ta)=0 and s(x,y,td)=0
fc(x,y,t) = f(x,y,td) (|t-ta|>|t-td|)
fc(x,y,t) = f(x,y,ta) (otherwise),

if s(x,y,ta)=1 and s(x,y,td)=0
fc(x,y,t) = f(x,y,td)

if s(x,y,ta)=0 and s(x,y,td)=1
fc(x,y,t) = f(x,y,ta)

if s(x,y,ta)=1 and s(x,y,td)=1
The pixel value of fc(x,y,t) is given by repetitive padding from the surrounding area.

where

fc composed background
f decoded VOP at the reference layer
s shape information (alpha plane) , 0: transparent, 1: opaque
(x,y) the spatial coordinate
t time of the current VOP
ta time of the previous VOP
td time of the next VOP

Two types of shape information, s(x, y, ta) and s(x, y, td), are necessary for the background composition. s(x, y, ta)
is called a “forward shape” and s(x, y, td) is called a “backward shape”. If f(x, y, td) is the last VOP in the bitstream of
the reference layer, it should be made by copying f(x, y, ta). In this case, two shapes s(x, y, ta) and s(x, y, td) should
be identical to the previous backward shape.

8.2 Sprite Composition

The static sprite technology enables to encode very efficiently video objects which content is expected not to vary in
time along a video sequence. For example, it is particularly well suited to represent backgrounds of scenes (decor,
landscapes) or logos.

A static sprite (sometimes referred as mosaic in the literature) is a frame containing spatial information for a single
object, obtained by gathering information for this object throughout the sequence in which it appears. A static sprite
can be a very large frame: it can correspond for instance to a wide angle view of a panorama.

The ISO/IEC 14496-2 syntax defines a dedicated coding mode to obtain VOPs from static sprites: the so-called “S-
VOPs”. S-VOPs are extracted from a static sprite using a warping operation consisting in a global spatial
transformation driven by few motion parameters (0,2,4, 6 or 8).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

199

For composition with other VOPs, there are no special rules for S-VOPs. However, it is classical to use S-VOPs as
background objects over which “classical” objects are superimposed.

8.3 Mesh Object Composition

A Mesh Object represents the geometry of a sequence of 2D triangular meshes. This data can be used along with
separately coded image texture data to render texture-mapped images, e.g., by the composition process as defined
in ISO/IEC 14496-1. A Mesh Object stream may be contained in part of a BIFS animation stream, as defined in
ISO/IEC 14496-1. In terminals implementing mesh animation functionality using both ISO/IEC 14496-1 and this part
of ISO/IEC 14496, the decoded mesh data is used to update the appropriate fields of a BIFS IndexedFaceSet2D
node, defined in ISO/IEC 14496-1, for composition purposes. In this case, the appropriate fields of the
IndexedFaceSet2D BIFS node are updated as described in the following.

a) The coordinates of the mesh points (vertices) are obtained from the output of the Mesh Object decoder. The
Mesh Object uses a pixel-based local coordinate system with x-axis pointing to the right and y-axis pointing down.
However, ISO/IEC 14496-1 specifies a coordinate system with y-axis pointing up. Therefore, a simple coordinate
transform shall be applied to the y-coordinates of mesh points to ensure the proper orientation of the object after
composition. The y-coordinate yn of a decoded mesh node point n shall be transformed as follows:

Yn = - yn ,

where Yn is the y-coordinate of this mesh node point in the coordinate system as specified in ISO/IEC 14496-1. The
origin of this object is at the top-left point. The same transform shall be applied to the coordinates of node points of
each Mesh Object Plane (MOP).

b) The coordinate indices are the indices of the mesh points forming faces (triangles) obtained from the output of the
Mesh Object decoder. All decoded faces are triangles. The topology of a Mesh Object is constant starting from an
intra-coded MOP, throughout a sequence of predictive-coded MOPs (until the next intra-coded MOP); therefore, the
coordinate indices shall be updated only for intra-coded MOPs.

c) Texture coordinates for mapping textures onto the mesh geometry are computed from the decoded node point
locations of an intra-coded Mesh Object Plane and its bounding rectangle. Let xmin, ymin and xmax, ymax define the
bounding rectangle of all node points of an intra-coded MOP. Then the width w and height h of the texture map shall
be:

w = ceil(xmax) – floor(xmin) ,

h = ceil(ymax) – floor(ymin) .

A texture coordinate pair (sn, tn) is computed for each node point pn = (xn,yn) as follows:

sn = (xn - floor(xmin))/w ,

tn = 1.0 - (yn - floor(ymin))/h .

The topology of a Mesh Object is constant starting from an intra-coded MOP, throughout a sequence of predictive-
coded MOPs (until the next intra-coded MOP); therefore, the texture coordinates shall be updated only for intra-
coded MOPs.

d) The texture coordinate indices are identical to the coordinate indices.

9 Profiles and Levels

NOTE In this part of ISO/IEC 14496 the word “profile” is used as defined below. It should not be confused with
other definitions of “profile” and in particular it does not have the meaning that is defined by ISO/IEC JTC1/SGFS.

Profiles and levels provide a means of defining subsets of the syntax and semantics of this part of ISO/IEC 14496
and thereby the decoder capabilities required to decode a particular bitstream. A profile is a defined sub-set of the
entire bitstream syntax that is defined by this part of ISO/IEC 14496. A level is a defined set of constraints imposed
on parameters in the bitstream. Conformance tests will be carried out against defined profiles at defined levels.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

200

The purpose of defining conformance points in the form of profiles and levels is to facilitate bitstream interchange
among different applications. Implementers of this part of ISO/IEC 14496 are encouraged to produce decoders and
bitstreams which correspond to those defined conformance regions. The discretely defined profiles and levels are
the means of bitstream interchange between applications of this part of ISO/IEC 14496.

In this clause the constrained parts of the defined profiles and levels are described. All syntactic elements and
parameter values which are not explicitly constrained may take any of the possible values that are allowed by this
part of ISO/IEC 14496. In general, a decoder shall be deemed to be conformant to a given profile at a given level if
it is able to properly decode all allowed values of all syntactic elements as specified by that profile at that level.

9.1 Visual Object Types

The following table lists the tools included in each of the Object Types. Bitstreams that represent a particular object
corresponding to an Object Type shall not use any of the tools for which the table does not have an ‘X’.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

201

Table 9-1 -- Tools and Visual Object Types

Visual Object Types

Visual Tools

Simple Core Main Simple
Scalable

N-bit Animated
2D Mesh

Basic
Animated
Texture

Still
Scalable
Texture

Simple
Face

Basic

• I-VOP, P-VOP

• AC/DC Prediction

• 4-MV, Unrestricted
MV

X X X X X X

Error resilience

• Slice
Resynchronization

• Data Partitioning

• Reversible VLC

X X X X X X

Short Header X X X X X

B-VOP X X X X X

P-VOP with OBMC
(Texture)

Method 1/Method 2
Quantization

X X X X

P-VOP based temporal
scalability

• Rectangular

• Arbitrary Shape

X X X X

Binary Shape X X X X X

Grey Shape X

Interlace X

Sprite X

Temporal Scalability
(Rectangular)

X

Spatial Scalability
(Rectangular)

X

N-Bit X

Scalable Still Texture X X X

2D Dynamic Mesh with
uniform topology

X X

2D Dynamic Mesh with
Delaunay topology

X

Facial Animation
Parameters

X

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

202

NOTE 1 Binary Shape Coding” includes constant alpha.

NOTE 2 The parameters are restricted as follows for the tool “P-VOP based temporal scalability Arbitrary Shape”:

• ref_select_code shall be either ‘00’ or ‘01’.

• reference layer shall be either I-VOP or P-VOP.

• load_backward_shape shall be ‘0’ and background composition is not performed.

9.2 Visual Profiles

Decoders that conform to a Profile shall be able to decode all objects that comply to the Object Types for which the
table lists an ‘X’.

Table 9-2 -- Visual Profiles

Object Types

Profiles

Simple Core Main Simple
Scalable

N-Bit Animated
2D Mesh

Basic
Animated
Texture

Scalable
Texture

Simple
Face

1. Simple X

2. Simple Scaleable X X

3. Core X X

4. Main X X X X

5. N-Bit X X X

6. Hybrid X X X X X X

7. Basic Animated
Texture

X X X

8. Scaleable Texture X

9. Simple FA X

Note that the Profiles can be grouped into three categories: Natural Visual (Profile numbers 1-5), Synthetic Visual
(Profile numbers 8 and 9), and Synthetic/Natural Hybrid Visual (Profile numbers 6 and 7).

9.3 Visual Profiles@Levels

9.3.1 Natural Visual

The table that describes the natural visual profiles is given in annex N.

9.3.2 Synthetic Visual

9.3.2.1 Scalable Texture Profile

Table 9-3 -- Scalable texture profile levels

Profile Levels Default
Wavelet
Filter

Download
Filter,
length

Maximum
number of
Decomposi
tion Levels

Typical
Visual
Session
Size1

Maximum
Qp value

Maximum
number
of pixels/
Session

Scalable
Texture

L3 Float,
Integer

ON, 24 10 8192x8192 12 bits 67108864

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

203

Scalable
Texture

L2 Integer ON, 18 8 2048x2048 10 bits 4194304

Scalable
Texture

L1 Integer OFF 5 704x576 8 bits 405504

(1) This column is for informative use only. It provides an example configuration of the Maximum number of
pixels/Session.

9.3.2.2 Simple Face Animation Profile

All ISO/IEC 14496-2 facial animation decoders (for all object types) are required to generate at their output a facial
model including all the feature points defined in this part of ISO/IEC 14496, even if some of the features points will
not be affected by any information received from the encoder.

The Simple Face object is not required to implement the viseme_def/expression_def functionality.

Level 1:

• number of objects: 1,
• The total FAP decode frame-rate in the bitstream shall not exceed 72 Hz ,
• The decoder shall be capable of a face model rendering update of at least 15 Hz, and
• Maximum bitrate 16 kbit/s.

Level 2:

• maximum number of objects: 4,
• The FAP decode frame-rate in the bitstream shall not exceed 72 Hz (this means that the FAP decode

framerate is to be shared among the objects),
• The decoder shall be capable of rendering the face models with the update rate of at least 60Hz, sharable

between faces, with the constraint that the update rate for each individual face is not required to exceed
30Hz, and

• Maximum bitrate 32 kbit/s.

9.3.3 Synthetic/Natural Hybrid Visual

The Levels of the Profiles which support both Natural Visual Object Types and Synthetic Visual Object Types are
specified by giving bounds for the natural objects and for the synthetic objects. Parameters like bitrate can be
combined across natural and synthetic objects.

9.3.3.1 Basic Animated Texture Profile

Level 1 = Simple Facial Animation Profile @ Level 1 + Scalable Texture @ Level 1 + the following restrictions on
Basic Animated Texture object types:

• Maximum number of Mesh objects (with uniform topology): 4,
• Maximum total number of nodes (vertices) in Mesh objects: 480,

(= 4 x nr. of nodes of a uniform mesh covering a QCIF image with 16x16 pixel elements),
• Maximum frame-rate of a Mesh object: 30 Hz, and
• Maximum bitrate of Mesh objects: 128 kbit/sec.

Level 2 = Simple Facial Animation Profile @ Level 2 + Scalable Texture @ Level 2 + the following restrictions on
Basic Animated Texture object types:

• Maximum number of Mesh objects (with uniform topology): 8,
• Maximum total number of nodes (vertices) in Mesh objects: 1748,

(= 4 x nr. of nodes of a uniform mesh covering a CIF image with 16x16 pixel elements),
• Maximum frame-rate of a Mesh object: 60 Hz, and
• Maximum bitrate of Mesh objects: 128 kbit/sec.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

204

9.3.3.2 Hybrid Profile

Level 1 = Core Visual Profile @ Level 1 + Basic Animated Texture Profile @ Level 1 + the following restrictions on
Animated 2D Mesh object types:

• Maximum number of Mesh objects (with uniform or Delaunay topology): 4
(= maximum number of objects in visual session)

• Maximum total number of nodes (vertices) in Mesh objects: 480
(= 4 x nr. of nodes of a uniform mesh covering a QCIF image with 16x16 pixel elements)

• Maximum frame-rate of a Mesh object: 30 Hz
(= maximum frame-rate of video object)

• Maximum bitrate of Mesh objects: 64 kbit/sec.

Level 2 = Core Visual Profile @ Level 2 + Basic Animated Texture Profile @ Level 2 + the following restrictions on
Animated 2D Mesh object types:

• Maximum number of Mesh objects(with uniform or Delaunay topology): 8
(= maximum number of objects in visual session)

• Maximum total number of nodes (vertices) in Mesh objects: 1748
(= 4 x nr. of nodes of a uniform mesh covering a CIF image with 16x16 pixel elements)

• Maximum frame-rate of a Mesh object: 60 Hz
(= 2 x the maximum frame-rate of video object)

• Maximum bitrate of Mesh objects: 128 kbit/sec.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

205

Annex A

(normative)

Coding transforms

A.1 Discrete cosine transform for video texture

The NxN two dimensional DCT is defined as:

F(u, v) �
2

N
C(u)C(v)

x� 0

N �1

� f (x,y)cos
(2x �1)u�

2Ny�0

N�1

� cos
(2y �1)v�

2N

with u, v, x, y = 0, 1, 2, � N-1

where x, y are spatial coordinates in the sample domain

u, v are coordinates in the transform domain

C(u), C(v) �
1

2
for u,v � 0

1 otherwise

��
��
��

The inverse DCT (IDCT) is defined as:

f (x, y) �
2

N u �0

N �1

� C(u)C(v)F(u,v)cos
(2x �1)u�

2Nv� 0

N �1

� cos
(2y �1)v�

2N

If each pixel is represented by n bits per pixel, the input to the forward transform and output from the inverse
transform is represented with (n+1) bits. The coefficients are represented in (n+4) bits. The dynamic range of the
DCT coefficients is [-2n+3:+2n+3-1].

The N by N inverse discrete transform shall conform to IEEE Standard Specification for the Implementations of 8 by
8 Inverse Discrete Cosine Transform, Std 1180-1990, December 6, 1990.

NOTE 1 Subclause 2.3 Std 1180-1990 “Considerations of Specifying IDCT Mismatch Errors” requires the
specification of periodic intra-picture coding in order to control the accumulation of mismatch errors. Every
macroblock is required to be refreshed before it is coded 132 times as predictive macroblocks. Macroblocks in B-
pictures (and skipped macroblocks in P-pictures) are excluded from the counting because they do not lead to the
accumulation of mismatch errors. This requirement is the same as indicated in 1180-1990 for visual telephony
according to ITU-T Recommendation H.261.

NOTE 2 Whilst the IEEE IDCT standard mentioned above is a necessary condition for the satisfactory
implementation of the IDCT function it should be understood that this is not sufficient. In particular attention is drawn
to the following sentence from subclause 5.4: “Where arithmetic precision is not specified, such as the calculation of
the IDCT, the precision shall be sufficient so that significant errors do not occur in the final integer values.”

A.2 Discrete wavelet transform for still texture

A.2.1 Adding the mean

Before applying the inverse wavelet transform, the mean of each color component (“mean_y”, “mean_u”, and
“mean_v”) is added to the all wavelet coefficients of dc band.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

206

A.2.2 Wavelet filter

A 2-D separable inverse wavelet transfrom is used to synthesize the still texture. The default wavelet composition is
performed using Daubechies (9,3) tap biorthogonal filter bank. The inverse DWT is performed either in floating or
integer operations depending on the field “wavelet_filter_type”, defined in the syntax.

The floating filter coefficients are:

Lowpass g[] =
[0.35355339059327 0.70710678118655 0.35355339059327]

Highpas h[] =
[0.03314563036812 0.06629126073624 -0.17677669529665
-0.41984465132952 0.99436891104360 -0.41984465132952
-0.17677669529665 0.06629126073624 0.03314563036812]

The integer filter coefficients are:

Lowpass g[] =
32 64 32

Highpass h[] =
3 6 -16
-38 90 -38
-16 6 3

The synthesis filtering operation is defined as follows:

1 4

y[n] = � L[n+i]*g[i+1] + � H[n+i]*h[i+4]
i=-1 i=-4

where

• n = 0, 1, ... N-1, and N is the number of output points;
• L[2*i] = xl[i] and L[2*i+1] = 0 for i=0,1,...,N/2-1, and {xl[i]} are the N/2 input wavelet coefficients in the low-pass

band;
• H[2*i+1] = xh[i] and H[2*i] = 0 for i=0,1,...,N/2-1, and {xh[i]} are the N/2 input wavelet coefficients in the high-pass

band.

NOTE 1 the index range for h[] is from 0 to 8;

NOTE 2 the index range for g[] is from 0 to 2;

NOTE 3 the index range for L[] is from -1 to N;

NOTE 4 the index range for H[] is from -4 to N+3; and

NOTE 5 the values of L[] and H[] for indexes less than 0 or greater than N-1 are obtained by symmetric extension
described in the following subclause.

In the case of integer wavelet, the outputs at each composition level are scaled down with dividing by 8096 with
rounding to the nearest integer.

A.2.3 Symmetric extension

A symmetric extension of the input wavelet coefficients is performed and the up-sampled and extended wavelet
coefficients are generated. Note that the extension process shown below is an example when the extension is
performed before up-sampling and that only the generated coefficients are specified. Two types of symmetric
extensions are needed, both mirror the boundary pixels. Type A replicates the edge pixel and Type B does not
replicate the edge pixel. This is illustrated in Figure A-1 and Figure A-2, where the edge pixel is indicated by z. The
types of extension for the input data to the wavelet filters are shown in Table A-1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

207

Type A …v w x y z | z y x w v…
Type B …...v w x y | z y x w v…

Figure A-1 -- Symmetrical extensions at leading boundary

Type A …v w x y z | z y x w v…
Type B .…v w x y z | y x w v….

Figure A-2 -- Symmetrical extensions at the trailing boundary

Table A-1 -- Extension method for the input data to the synthesis filters

boundary Extension

lowpass input xl[] leading TypeB

to 3-tap filter g[] trailing TypeA

highpass input xh[] leading TypeA

to 9-tap filter h[] trailing TypeB

The generated up-sampled and extended wavelet coefficients L[] and H[] are eventually specified as follows:

low-pass band: … 0 L[2] 0 | L[0] 0 L[2] 0 … L[N-4] 0 L[N-2] 0 | L[N-2] 0 L[N-4] 0 …
high-pass band: … H[3] 0 H[1] | 0 H[1] 0 H[3] … 0 H[N-3] 0 H[N-1] | 0 H[N-1] 0 H[N-3]…

A.2.4 Decomposition level

The number of decomposition levels of the luminance component is defined in the input bitstream. The number of
decompostion levels for the chrominance components is one level less than that of the luminance components. If
texture_object_layer width or texture_object_layer height cannot be divisible by (2 ^ decomposition_levels), then
shape adaptive wavelet is applied.

A.2.5 Shape adaptive wavelet filtering and symmetric extension

A.2.5.1 Shape adaptive wavelet

The 2-D inverse shape adaptive wavelet transform uses the same wavelet filter as specified in Table A-1. According
to the shape information, segments of consecutive output points are reconstructed and put into the correct locations.
The filtering operation of shape adaptive wavelet is a generalization of that for the regular wavelet. The
generalization allows the number of output points to be an odd number as well as an even number. Relative to the
bounding rectangle, the starting point of the output is also allowed to be an odd number as well as an even number
according to the shape information. Within the generalized wavelet filtering, the regular wavelet filtering is a special
case where the number of output points is an even number and the starting point is an even number (0) too. Another
special case is for reconstruction of rectangular textures with an arbitrary size where the number of output points
may be even or odd and the starting point is always even (0).

The same synthesis filtering is applied for shape-adaptive wavelet composition, i.e:

1 4

y[n] = � L[n+i]*g[i+1] + � H[n+i]*h[i+4]
i=-1 i=-4

where

• n = 0, 1, ... N-1, and N is the number of output points;
• L[2*i+s] = xl[i] and L[2*i+1-s] = 0 for i=0,1,...,(N+1-s)/2-1, and {xl[i]} are the (N+1-s)/2 input wavelet coefficients in

the low-pass band;
• H[2*i+1-s] = xh[i] and H[2*i+s] = 0 for i=0,1,...,(N+s)/2-1, and {xh[i]} are the (N+s)/2 input wavelet coefficients in

the high-pass band.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

208

The only difference from the regular synthesis filtering is to introduce a binary parameter s in up-sampling, where s =
0 if the starting point of the output is an even number and s = 1 if the starting point of the output is an odd number.

The symmetric extension for the generalized synthesis filtering is specified in Table A-2 if N is an even number and
in Table A-3 if N is an odd number.

Table A-2 -- Extension method for the data to the synthesis wavelet filters if N is even

Boundary extension (s=0) extension(s=1)

lowpass input xl[] Leading TypeB TypeA

to 3-tap filter g[] Trailing TypeA TypeB

highpass input xh[] Leading TypeA TypeB

to 9-tap filter h[] Trailing TypeB TypeA

Table A-3 -- Extension method for the data to the synthesis wavelet filters if N is odd

Boundary extension(s=0) extension(s=1)

lowpass input xl[] Leading TypeB TypeA

to 3-tap filter g[] Trailing TypeB TypeA

highpass input xh[] Leading TypeA TypeB

to 9-tap filter h[] Trailing TypeA TypeB

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

209

Annex B

(normative)

Variable length codes and arithmetic decoding

B.1 Variable length codes

B.1.1 Macroblock type

Table B-1 -- Macroblock types and included data elements for I- and P-VOPs in combined motion-shape-
texture coding

VOP type mb type Name not_coded mcbpc cbpy dquant mvd mvd2-4

P not coded - 1

P 0 inter 1 1 1 1

P 1 inter+q 1 1 1 1 1

P 2 inter4v 1 1 1 1 1

P 3 intra 1 1 1

P 4 intra+q 1 1 1 1

P stuffing - 1 1

I 3 intra 1 1

I 4 intra+q 1 1 1

I stuffing - 1

S (update) not_coded - 1

S (update) 0 inter 1 1 1

S (update) 1 inter+q 1 1 1 1

S (update) 3 intra 1 1 1

S (update) 4 intra+q 1 1 1 1

S (update) stuffing - 1 1

S (piece) 3 intra 1 1

S (piece) 4 intra+q 1 1 1

S (piece) stuffing - 1

NOTE “1” means that the item is present in the macroblock
S (piece) indicates S-VOPs with low_latency_sprite_enable == 1 and sprite_transmit_mode == “piece”
S (update) indicates S-VOPs with low_latency_sprite_enable == 1 and sprite_transmit_mode == “update”

Table B-2 -- Macroblock types and included data elements for a P-VOP (scalability && ref_select_code ==
‘11’)

VOP Type mb_type Name not_coded mcbpc cbpy dquant MVD MVD2-4

P not coded - 1

P 0 INTER 1 1 1

P 1 INTER+Q 1 1 1 1

P 3 INTRA 1 1 1

P 4 INTRA+Q 1 1 1 1

P stuffing - 1 1

NOTE “1” means that the item is present in the macroblock

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

210

Table B-3 -- VLC table for modb in combined motion-shape-texture coding

Code cbpb mb_type

1

01 1

00 1 1

Table B-4 -- mb_type and included data elements in coded macroblocks in B-VOPs (ref_select_code !=
‘00’||scalability==’0’) for combined motion-shape-texture coding

Code dquant mvdf mvdb mvdb mb_type

1 1 direct

01 1 1 1 interpolate mc+q

001 1 1 backward mc+q

0001 1 1 forward mc+q

Table B-5 -- mb_type and included data elements in coded macroblocks in B-VOPs (ref_select_code ==
‘00’&&scalability!=’0’) for combined motion-shape-texture coding

Code dquant mvdf mvdb mb_type

01 1 1 interpolate mc+q

001 1 backward mc+q

1 1 1 forward mc+q

B.1.2 Macroblock pattern

Table B-6 -- VLC table for mcbpc for I-VOPs in combined-motion-shape-texture coding and S-VOPs with
low_latence_sprite_enable==1 and sprite_transmit_mode==”piece”

Code mbtype cbpc
(56)

1 3 00

001 3 01

010 3 10

011 3 11

0001 4 00

0000 01 4 01

0000 10 4 10

0000 11 4 11

0000 0000 1 Stuffing --

Table B-7 -- VLC table for mcbpc for P-VOPs in combined-motion-shape-texture and S-VOPs with
low_latence_sprite_enable==1 and sprite_transmit_mode==”update”

Code MB type cbpc
(56)

1 0 00

0011 0 01

0010 0 10

0001 01 0 11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

211

011 1 00

0000 111 1 01

0000 110 1 10

0000 0010 1 1 11

010 2 00

0000 101 2 01

0000 100 2 10

0000 0101 2 11

0001 1 3 00

0000 0100 3 01

0000 0011 3 10

0000 011 3 11

0001 00 4 00

0000 0010 0 4 01

0000 0001 1 4 10

0000 0001 0 4 11

0000 0000 1 Stuffing --

Table B-8 -- VLC table for cbpy in the case of four non-transparent macroblocks

Code cbpy(intra-MB)
(12
34)

cbpy(inter-MB),
(12
34)

0011 00
00

11
11

0010 1 00
01

11
10

0010 0 00
10

11
01

1001 00
11

11
00

0001 1 01
00

10
11

0111 01
01

10
10

0000 10 01
10

10
01

1011 01
11

10
00

0001 0 10
00

01
11

0000 11 10
01

01
10

0101 10
10

01
01

1010 10
11

01
00

0100 11
00

00
11

1000 11 00

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

212

01 10

0110 11
10

00
01

11 11
11

00
00

Table B-9 -- VLC table for cbpy in the case of three non transparent blocks

Code cbpy
(intra-MB)

cbpy
(inter-MB)

011 000 111

000001 001 110

00001 010 101

010 011 100

00010 100 011

00011 101 010

001 110 001

1 111 000

Table B-10 -- VLC table for cbpy in the case of two non transparent blocks

Code cbpy
(intra-MB)

cbpy
(inter-MB)

0001 00 11

001 01 10

01 10 01

1 11 00

Table B-11 -- VLC table for cbpy in the case of one non transparent block

Code cbpy
(intra-MB)

cbpy
(inter-MB)

01 0 1

1 1 0

B.1.3 Motion vector

Table B-12 -- VLC table for MVD

Codes Vector differences

0000 0000 0010 1 -16

0000 0000 0011 1 -15.5

0000 0000 0101 -15

0000 0000 0111 -14.5

0000 0000 1001 -14

0000 0000 1011 -13.5

0000 0000 1101 -13

0000 0000 1111 -12.5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

213

0000 0001 001 -12

0000 0001 011 -11.5

0000 0001 101 -11

0000 0001 111 -10.5

0000 0010 001 -10

0000 0010 011 -9.5

0000 0010 101 -9

0000 0010 111 -8.5

0000 0011 001 -8

0000 0011 011 -7.5

0000 0011 101 -7

0000 0011 111 -6.5

0000 0100 001 -6

0000 0100 011 -5.5

0000 0100 11 -5

0000 0101 01 -4.5

0000 0101 11 -4

0000 0111 -3.5

0000 1001 -3

0000 1011 -2.5

0000 111 -2

0001 1 -1.5

0011 -1

011 -0.5

1 0

010 0.5

0010 1

0001 0 1.5

0000 110 2

0000 1010 2.5

0000 1000 3

0000 0110 3.5

0000 0101 10 4

0000 0101 00 4.5

0000 0100 10 5

0000 0100 010 5.5

0000 0100 000 6

0000 0011 110 6.5

0000 0011 100 7

0000 0011 010 7.5

0000 0011 000 8

0000 0010 110 8.5

0000 0010 100 9

0000 0010 010 9.5

0000 0010 000 10

0000 0001 110 10.5

0000 0001 100 11

0000 0001 010 11.5

0000 0001 000 12

0000 0000 1110 12.5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

214

0000 0000 1100 13

0000 0000 1010 13.5

0000 0000 1000 14

0000 0000 0110 14.5

0000 0000 0100 15

0000 0000 0011 0 15.5

0000 0000 0010 0 16

B.1.4 DCT coefficients

Table B-13 -- Variable length codes for dct_dc_size_luminance

Variable length code dct_dc_size_luminance

011 0

11 1

10 2

010 3

001 4

0001 5

0000 1 6

0000 01 7

0000 001 8

0000 0001 9

0000 0000 1 10

0000 0000 01 11

0000 0000 001 12

Table B-14 -- Variable length codes for dct_dc_size_chrominance

Variable length code dct_dc_size_chrominance

11 0

10 1

01 2

001 3

0001 4

0000 1 5

0000 01 6

0000 001 7

0000 0001 8

0000 0000 1 9

0000 0000 01 10

0000 0000 001 11

0000 0000 0001 12

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

215

Table B-15 -- Differential DC additional codes

Additional code Differential DC Size

000000000000 to 011111111111 * -2048 to -4095 12

00000000000 to 01111111111 * -1024 to -2047 11

0000000000 to 0111111111 * -512 to -1023 10

000000000 to 011111111 * -256 to -511 9

00000000 to 01111111 -255 to -128 8

0000000 to 0111111 -127 to -64 7

000000 to 011111 -63 to -32 6

00000 to 01111 -31 to -16 5

0000 to 0111 -15 to -8 4

000 to 011 -7 to -4 3

00 to 01 -3 to -2 2

0 -1 1

0 0

1 1 1

10 to 11 2 to 3 2

100 to 111 4 to 7 3

1000 to 1111 8 to 15 4

10000 to 11111 16 to 31 5

100000 to 111111 32 to 63 6

1000000 to 1111111 64 to 127 7

10000000 to 11111111 128 to 255 8

100000000 to 111111111 * 256 to 511 9

1000000000 to 1111111111 * 512 to 1023 10

10000000000 to 11111111111 * 1024 to 2047 11

100000000000 to 111111111111 * 2048 to 4095 12

In cases where dct_dc_size is greater than 8, marked ‘*’ in Table B-15, a marker bit is inserted after the
dct_dc_additional_code to prevent start code emulations.

Table B-16 -- VLC Table for Intra Luminance and Chrominance TCOEF

VLC CODE LAST RUN LEVEL VLC CODE LAST RUN LEVEL

10s 0 0 1 0111 s 1 0 1

1111 s 0 0 3 0000 1100 1s 0 11 1

0101 01s 0 0 6 0000 0000 101s 1 0 6

0010 111s 0 0 9 0011 11s 1 1 1

0001 1111 s 0 0 10 0000 0000 100s 1 0 7

0001 0010 1s 0 0 13 0011 10s 1 2 1

0001 0010 0s 0 0 14 0011 01s 0 5 1

0000 1000 01s 0 0 17 0011 00s 1 0 2

0000 1000 00s 0 0 18 0010 011s 1 5 1

0000 0000 111s 0 0 21 0010 010s 0 6 1

0000 0000 110s 0 0 22 0010 001s 1 3 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

216

0000 0100 000s 0 0 23 0010 000s 1 4 1

110s 0 0 2 0001 1010 s 1 9 1

0101 00s 0 1 2 0001 1001 s 0 8 1

0001 1110 s 0 0 11 0001 1000 s 0 9 1

0000 0011 11s 0 0 19 0001 0111 s 0 10 1

0000 0100 001s 0 0 24 0001 0110 s 1 0 3

0000 0101 0000s 0 0 25 0001 0101 s 1 6 1

1110 s 0 1 1 0001 0100 s 1 7 1

0001 1101 s 0 0 12 0001 0011 s 1 8 1

0000 0011 10s 0 0 20 0000 1100 0s 0 12 1

0000 0101 0001s 0 0 26 0000 1011 1s 1 0 4

0110 1s 0 0 4 0000 1011 0s 1 1 2

0001 0001 1s 0 0 15 0000 1010 1s 1 10 1

0000 0011 01s 0 1 7 0000 1010 0s 1 11 1

0110 0s 0 0 5 0000 1001 1s 1 12 1

0001 0001 0s 0 4 2 0000 1001 0s 1 13 1

0000 0101 0010s 0 0 27 0000 1000 1s 1 14 1

0101 1s 0 2 1 0000 0001 11s 0 13 1

0000 0011 00s 0 2 4 0000 0001 10s 1 0 5

0000 0101 0011s 0 1 9 0000 0001 01s 1 1 3

0100 11s 0 0 7 0000 0001 00s 1 2 2

0000 0010 11s 0 3 4 0000 0100 100s 1 3 2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

217

VLC CODE LAST RUN LEVEL VLC CODE LAST RUN LEVEL

0000 0101 0100s 0 6 3 0000 0100 101s 1 4 2

0100 10s 0 0 8 0000 0100 110s 1 15 1

0000 0010 10s 0 4 3 0000 0100 111s 1 16 1

0100 01s 0 3 1 0000 0101 1000s 0 14 1

0000 0010 01s 0 8 2 0000 0101 1001s 1 0 8

0100 00s 0 4 1 0000 0101 1010s 1 5 2

0000 0010 00s 0 5 3 0000 0101 1011s 1 6 2

0010 110s 0 1 3 0000 0101 1100s 1 17 1

0000 0101 0101s 0 1 10 0000 0101 1101s 1 18 1

0010 101s 0 2 2 0000 0101 1110s 1 19 1

0010 100s 0 7 1 0000 0101 1111s 1 20 1

0001 1100 s 0 1 4 0000 011 escape

0001 1011 s 0 3 2

0001 0000 1s 0 0 16

0001 0000 0s 0 1 5

0000 1111 1s 0 1 6

0000 1111 0s 0 2 3

0000 1110 1s 0 3 3

0000 1110 0s 0 5 2

0000 1101 1s 0 6 2

0000 1101 0s 0 7 2

0000 0100 010s 0 1 8

0000 0100 011s 0 9 2

0000 0101 0110s 0 2 5

0000 0101 0111s 0 7 3

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

218

Table B-17 -- VLC table for Inter Lumimance and Chrominance TCOEF

VLC CODE LAST RUN LEVEL VLC CODE LAST RUN LEVEL

10s 0 0 1 0111 s 1 0 1

1111 s 0 0 2 0000 1100 1s 1 0 2

0101 01s 0 0 3 0000 0000 101s 1 0 3

0010 111s 0 0 4 0011 11s 1 1 1

0001 1111 s 0 0 5 0000 0000 100s 1 1 2

0001 0010 1s 0 0 6 0011 10s 1 2 1

0001 0010 0s 0 0 7 0011 01s 1 3 1

0000 1000 01s 0 0 8 0011 00s 1 4 1

0000 1000 00s 0 0 9 0010 011s 1 5 1

0000 0000 111s 0 0 10 0010 010s 1 6 1

0000 0000 110s 0 0 11 0010 001s 1 7 1

0000 0100 000s 0 0 12 0010 000s 1 8 1

110s 0 1 1 0001 1010 s 1 9 1

0101 00s 0 1 2 0001 1001 s 1 10 1

0001 1110 s 0 1 3 0001 1000 s 1 11 1

0000 0011 11s 0 1 4 0001 0111 s 1 12 1

0000 0100 001s 0 1 5 0001 0110 s 1 13 1

0000 0101 0000s 0 1 6 0001 0101 s 1 14 1

1110 s 0 2 1 0001 0100 s 1 15 1

0001 1101 s 0 2 2 0001 0011 s 1 16 1

0000 0011 10s 0 2 3 0000 1100 0s 1 17 1

0000 0101 0001s 0 2 4 0000 1011 1s 1 18 1

0110 1s 0 3 1 0000 1011 0s 1 19 1

0001 0001 1s 0 3 2 0000 1010 1s 1 20 1

0000 0011 01s 0 3 3 0000 1010 0s 1 21 1

0110 0s 0 4 1 0000 1001 1s 1 22 1

0001 0001 0s 0 4 2 0000 1001 0s 1 23 1

0000 0101 0010s 0 4 3 0000 1000 1s 1 24 1

0101 1s 0 5 1 0000 0001 11s 1 25 1

0000 0011 00s 0 5 2 0000 0001 10s 1 26 1

0000 0101 0011s 0 5 3 0000 0001 01s 1 27 1

0100 11s 0 6 1 0000 0001 00s 1 28 1

0000 0010 11s 0 6 2 0000 0100 100s 1 29 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

219

0000 0101 0100s 0 6 3 0000 0100 101s 1 30 1

0100 10s 0 7 1 0000 0100 110s 1 31 1

0000 0010 10s 0 7 2 0000 0100 111s 1 32 1

0100 01s 0 8 1 0000 0101 1000s 1 33 1

0000 0010 01s 0 8 2 0000 0101 1001s 1 34 1

0100 00s 0 9 1 0000 0101 1010s 1 35 1

0000 0010 00s 0 9 2 0000 0101 1011s 1 36 1

0010 110s 0 10 1 0000 0101 1100s 1 37 1

0000 0101 0101s 0 10 2 0000 0101 1101s 1 38 1

0010 101s 0 11 1 0000 0101 1110s 1 39 1

0010 100s 0 12 1 0000 0101 1111s 1 40 1

0001 1100 s 0 13 1 0000 011 escape

0001 1011 s 0 14 1

0001 0000 1s 0 15 1

0001 0000 0s 0 16 1

0000 1111 1s 0 17 1

0000 1111 0s 0 18 1

0000 1110 1s 0 19 1

0000 1110 0s 0 20 1

0000 1101 1s 0 21 1

0000 1101 0s 0 22 1

0000 0100 010s 0 23 1

0000 0100 011s 0 24 1

0000 0101 0110s 0 25 1

0000 0101 0111s 0 26 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

220

Table B-18 -- FLC table for RUNS and LEVELS

Code Run Code Level

000 000 0 forbidden -2048

000 001 1 1000 0000 0001 -2047

000 010 2 . .

. . 1111 1111 1110 -2

. . 1111 1111 1111 -1

111 111 63 forbidden 0

0000 0000 0001 1

0000 0000 0010 2

. .

0111 1111 1111 2047

Table B-19 -- ESCL(a), LMAX values of intra macroblocks

LAST RUN LMAX LAST RUN LMAX

0 0 27 1 0 8

0 1 10 1 1 3

0 2 5 1 2-6 2

0 3 4 1 7-20 1

0 4-7 3 1 others N/A

0 8-9 2

0 10-14 1

0 others N/A

Table B-20 -- ESCL(b), LMAX values of inter macroblocks

LAST RUN LMAX LAST RUN LMAX

0 0 12 1 0 3

0 1 6 1 1 2

0 2 4 1 2-40 1

0 3-6 3 1 others N/A

0 7-10 2

0 11-26 1

0 others N/A

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

221

Table B-21 -- ESCR(a), RMAX values of intra macroblocks

LAST LEVEL RMAX LAST LEVEL RMAX

0 1 14 1 1 20

0 2 9 1 2 6

0 3 7 1 3 1

0 4 3 1 4-8 0

0 5 2 1 others N/A

0 6-10 1

0 11-27 0

0 others N/A

Table B-22 -- ESCR(b), RMAX values of inter macroblocks

LAST LEVEL RMAX LAST LEVEL RMAX

0 1 26 1 1 40

0 2 10 1 2 1

0 3 6 1 3 0

0 4 2 1 others N/A

0 5-6 1

0 7-12 0

0 others N/A

Table B-23 -- RVLC table for TCOEF

ESCAPE code is added at the beginning and the end of these fixed-length codes for realizing two-way decode as
shown below. A marker bit is inserted before and after the 11-bit-LEVEL in order to avoid the resync_marker
emulation.

ESCAPE LAST RUN LEVEL ESCAPE

00001 0000sx xxxxxx xxxxxxxxxxx

marker bit

1

marker bit

1

NOTE There are two types for ESCAPE added at the end of these fixed-length codes, and codewords are “0000s”.
Also, S=0 : LEVEL is positive and S=1 : LEVEL is negative.

intra inter

INDEX LAST RUN LEVEL LAST RUN LEVEL BITS VLC_CODE

0 0 0 1 0 0 1 4 110s

1 0 0 2 0 1 1 4 111s

2 0 1 1 0 0 2 5 0001s

3 0 0 3 0 2 1 5 1010s

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

222

4 1 0 1 1 0 1 5 1011s

5 0 2 1 0 0 3 6 00100s

6 0 3 1 0 3 1 6 00101s

7 0 1 2 0 4 1 6 01000s

8 0 0 4 0 5 1 6 01001s

9 1 1 1 1 1 1 6 10010s

10 1 2 1 1 2 1 6 10011s

11 0 4 1 0 1 2 7 001100s

12 0 5 1 0 6 1 7 001101s

13 0 0 5 0 7 1 7 010100s

14 0 0 6 0 8 1 7 010101s

15 1 3 1 1 3 1 7 011000s

16 1 4 1 1 4 1 7 011001s

17 1 5 1 1 5 1 7 100010s

18 1 6 1 1 6 1 7 100011s

19 0 6 1 0 0 4 8 0011100s

20 0 7 1 0 2 2 8 0011101s

21 0 2 2 0 9 1 8 0101100s

22 0 1 3 0 10 1 8 0101101s

23 0 0 7 0 11 1 8 0110100s

24 1 7 1 1 7 1 8 0110101s

25 1 8 1 1 8 1 8 0111000s

26 1 9 1 1 9 1 8 0111001s

27 1 10 1 1 10 1 8 1000010s

28 1 11 1 1 11 1 8 1000011s

29 0 8 1 0 0 5 9 00111100s

30 0 9 1 0 0 6 9 00111101s

31 0 3 2 0 1 3 9 01011100s

32 0 4 2 0 3 2 9 01011101s

33 0 1 4 0 4 2 9 01101100s

34 0 1 5 0 12 1 9 01101101s

35 0 0 8 0 13 1 9 01110100s

36 0 0 9 0 14 1 9 01110101s

37 1 0 2 1 0 2 9 01111000s

38 1 12 1 1 12 1 9 01111001s

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

223

39 1 13 1 1 13 1 9 10000010s

40 1 14 1 1 14 1 9 10000011s

41 0 10 1 0 0 7 10 001111100s

42 0 5 2 0 1 4 10 001111101s

43 0 2 3 0 2 3 10 010111100s

44 0 3 3 0 5 2 10 010111101s

45 0 1 6 0 15 1 10 011011100s

46 0 0 10 0 16 1 10 011011101s

47 0 0 11 0 17 1 10 011101100s

48 1 1 2 1 1 2 10 011101101s

49 1 15 1 1 15 1 10 011110100s

50 1 16 1 1 16 1 10 011110101s

51 1 17 1 1 17 1 10 011111000s

52 1 18 1 1 18 1 10 011111001s

53 1 19 1 1 19 1 10 100000010s

54 1 20 1 1 20 1 10 100000011s

55 0 11 1 0 0 8 11 0011111100s

56 0 12 1 0 0 9 11 0011111101s

57 0 6 2 0 1 5 11 0101111100s

58 0 7 2 0 3 3 11 0101111101s

59 0 8 2 0 6 2 11 0110111100s

60 0 4 3 0 7 2 11 0110111101s

61 0 2 4 0 8 2 11 0111011100s

62 0 1 7 0 9 2 11 0111011101s

63 0 0 12 0 18 1 11 0111101100s

64 0 0 13 0 19 1 11 0111101101s

65 0 0 14 0 20 1 11 0111110100s

66 1 21 1 1 21 1 11 0111110101s

67 1 22 1 1 22 1 11 0111111000s

68 1 23 1 1 23 1 11 0111111001s

69 1 24 1 1 24 1 11 1000000010s

70 1 25 1 1 25 1 11 1000000011s

71 0 13 1 0 0 10 12 00111111100s

72 0 9 2 0 0 11 12 00111111101s

73 0 5 3 0 1 6 12 01011111100s

74 0 6 3 0 2 4 12 01011111101s

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

224

75 0 7 3 0 4 3 12 01101111100s

76 0 3 4 0 5 3 12 01101111101s

77 0 2 5 0 10 2 12 01110111100s

78 0 2 6 0 21 1 12 01110111101s

79 0 1 8 0 22 1 12 01111011100s

80 0 1 9 0 23 1 12 01111011101s

81 0 0 15 0 24 1 12 01111101100s

82 0 0 16 0 25 1 12 01111101101s

83 0 0 17 0 26 1 12 01111110100s

84 1 0 3 1 0 3 12 01111110101s

85 1 2 2 1 2 2 12 01111111000s

86 1 26 1 1 26 1 12 01111111001s

87 1 27 1 1 27 1 12 10000000010s

88 1 28 1 1 28 1 12 10000000011s

89 0 10 2 0 0 12 13 001111111100s

90 0 4 4 0 1 7 13 001111111101s

91 0 5 4 0 2 5 13 010111111100s

92 0 6 4 0 3 4 13 010111111101s

93 0 3 5 0 6 3 13 011011111100s

94 0 4 5 0 7 3 13 011011111101s

95 0 1 10 0 11 2 13 011101111100s

96 0 0 18 0 27 1 13 011101111101s

97 0 0 19 0 28 1 13 011110111100s

98 0 0 22 0 29 1 13 011110111101s

99 1 1 3 1 1 3 13 011111011100s

100 1 3 2 1 3 2 13 011111011101s

101 1 4 2 1 4 2 13 011111101100s

102 1 29 1 1 29 1 13 011111101101s

103 1 30 1 1 30 1 13 011111110100s

104 1 31 1 1 31 1 13 011111110101s

105 1 32 1 1 32 1 13 011111111000s

106 1 33 1 1 33 1 13 011111111001s

107 1 34 1 1 34 1 13 100000000010s

108 1 35 1 1 35 1 13 100000000011s

109 0 14 1 0 0 13 14 0011111111100s

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

225

110 0 15 1 0 0 14 14 0011111111101s

111 0 11 2 0 0 15 14 0101111111100s

112 0 8 3 0 0 16 14 0101111111101s

113 0 9 3 0 1 8 14 0110111111100s

114 0 7 4 0 3 5 14 0110111111101s

115 0 3 6 0 4 4 14 0111011111100s

116 0 2 7 0 5 4 14 0111011111101s

117 0 2 8 0 8 3 14 0111101111100s

118 0 2 9 0 12 2 14 0111101111101s

119 0 1 11 0 30 1 14 0111110111100s

120 0 0 20 0 31 1 14 0111110111101s

121 0 0 21 0 32 1 14 0111111011100s

122 0 0 23 0 33 1 14 0111111011101s

123 1 0 4 1 0 4 14 0111111101100s

124 1 5 2 1 5 2 14 0111111101101s

125 1 6 2 1 6 2 14 0111111110100s

126 1 7 2 1 7 2 14 0111111110101s

127 1 8 2 1 8 2 14 0111111111000s

128 1 9 2 1 9 2 14 0111111111001s

129 1 36 1 1 36 1 14 1000000000010s

130 1 37 1 1 37 1 14 1000000000011s

131 0 16 1 0 0 17 15 00111111111100s

132 0 17 1 0 0 18 15 00111111111101s

133 0 18 1 0 1 9 15 01011111111100s

134 0 8 4 0 1 10 15 01011111111101s

135 0 5 5 0 2 6 15 01101111111100s

136 0 4 6 0 2 7 15 01101111111101s

137 0 5 6 0 3 6 15 01110111111100s

138 0 3 7 0 6 4 15 01110111111101s

139 0 3 8 0 9 3 15 01111011111100s

140 0 2 10 0 13 2 15 01111011111101s

141 0 2 11 0 14 2 15 01111101111100s

142 0 1 12 0 15 2 15 01111101111101s

143 0 1 13 0 16 2 15 01111110111100s

144 0 0 24 0 34 1 15 01111110111101s

145 0 0 25 0 35 1 15 01111111011100s

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

226

146 0 0 26 0 36 1 15 01111111011101s

147 1 0 5 1 0 5 15 01111111101100s

148 1 1 4 1 1 4 15 01111111101101s

149 1 10 2 1 10 2 15 01111111110100s

150 1 11 2 1 11 2 15 01111111110101s

151 1 12 2 1 12 2 15 01111111111000s

152 1 38 1 1 38 1 15 01111111111001s

153 1 39 1 1 39 1 15 10000000000010s

154 1 40 1 1 40 1 15 10000000000011s

155 0 0 27 0 0 19 16 001111111111100s

156 0 3 9 0 3 7 16 001111111111101s

157 0 6 5 0 4 5 16 010111111111100s

158 0 7 5 0 7 4 16 010111111111101s

159 0 9 4 0 17 2 16 011011111111100s

160 0 12 2 0 37 1 16 011011111111101s

161 0 19 1 0 38 1 16 011101111111100s

162 1 1 5 1 1 5 16 011101111111101s

163 1 2 3 1 2 3 16 011110111111100s

164 1 13 2 1 13 2 16 011110111111101s

165 1 41 1 1 41 1 16 011111011111100s

166 1 42 1 1 42 1 16 011111011111101s

167 1 43 1 1 43 1 16 011111101111100s

168 1 44 1 1 44 1 16 011111101111101s

169 ESCAPE 5 0000s

Table B-24 -- FLC table for RUN

RUN CODE

0 000000

1 000001

2 000010

: :

63 111111

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

227

Table B-25 -- FLC table for LEVEL

LEVEL CODE

0 FORBIDDEN

1 00000000001

2 00000000010

: :

2047 11111111111

B.1.5 Shape Coding

Table B-26 -- Meaning of shape mode

Index Shape mode

0 = “MVDs==0 && No Update”

1 = “MVDs!=0 && No Update”

2 transparent

3 opaque

4 “intraCAE”

5 “interCAE && MVDs==0”

6 “interCAE && MVDs!=0”

Table B-27 -- bab_type for I-VOP

Index (2) (3) (4) Index (2) (3) (4)

0 1 001 01 41 001 01 1

1 001 01 1 42 1 01 001

2 01 001 1 43 001 1 01

3 1 001 01 44 001 01 1

4 1 01 001 45 1 01 001

5 1 01 001 46 001 01 1

6 1 001 01 47 01 001 1

7 1 01 001 48 1 01 001

8 01 001 1 49 001 01 1

9 001 01 1 50 01 001 1

10 1 01 001 51 1 001 01

11 1 01 001 52 001 1 01

12 001 01 1 53 01 001 1

13 1 01 001 54 1 001 01

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

228

14 01 1 001 55 01 001 1

15 001 01 1 56 01 001 1

16 1 01 001 57 1 01 001

17 1 01 001 58 1 01 001

18 01 001 1 59 1 01 001

19 1 01 001 60 1 01 001

20 001 01 1 61 1 01 001

21 01 001 1 62 01 001 1

22 1 01 001 63 1 01 001

23 001 01 1 64 001 01 1

24 01 001 1 65 001 01 1

25 001 01 1 66 01 001 1

26 001 01 1 67 001 1 01

27 1 01 001 68 001 1 01

28 1 01 001 69 01 001 1

29 1 01 001 70 001 1 01

30 1 01 001 71 001 01 1

31 1 01 001 72 1 001 01

32 1 01 001 73 001 01 1

33 1 01 001 74 01 001 1

34 1 01 001 75 01 001 1

35 001 01 1 76 001 1 01

36 1 01 001 77 001 01 1

37 001 01 1 78 1 001 01

38 001 01 1 79 001 1 01

39 1 01 001 80 001 01 1

40 001 1 01

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

229

Table B-28 -- bab_type for P-VOP and B-VOP

bab_type in current VOP (n)

0 1 2 3 4 5 6

0 1 01 00001 000001 0001 0010 0011

bab_type 1 01 1 00001 000001 001 0000001 0001

in previous 2 0001 001 1 000001 01 0000001 00001

VOP(n-1) 3 1 0001 000001 001 01 0000001 00001

4 011 001 0001 00001 1 000001 010

5 01 0001 00001 000001 001 11 10

6 001 0001 00001 000001 01 10 11

Table B-29 -- VLC table for MVDs

MVDs Codes

0 0

�1 10s

�2 110s

�3 1110s

�4 11110s

�5 111110s

�6 1111110s

�7 11111110s

�8 111111110s

�9 1111111110s

�10 11111111110s

�11 111111111110s

�12 1111111111110s

�13 11111111111110s

�14 111111111111110s

�15 1111111111111110s

�16 11111111111111110s

Table B-30 -- VLC table for MVDs (Horizontal element is 0)

MVDs Codes

�1 0s

�2 10s

�3 110s

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

230

�4 1110s

�5 11110s

�6 111110s

�7 1111110s

�8 11111110s

�9 111111110s

�10 1111111110s

�11 11111111110s

�12 111111111110s

�13 1111111111110s

�14 11111111111110s

�15 111111111111110s

�16 1111111111111110s

s: sign bit (if MVDs is positive s=”1”, otherwise s=”0”).

Table B-31 -- VLC for conv_ratio

conv_ratio Code

1 0

2 10

4 11

These tables contain the probabilities for a binary alpha pixel being equal to 0 for intra and inter shape coding using
CAE. All probabilities are normalised to the range [1,65535].

As an example, given an INTRA context number C, the probability that the pixel is zero is given by intra_prob[C].

Table B-32 -- Probabilities for arithmetic decoding of shape

USInt intra_prob[1024] = {

65267,16468,65003,17912,64573,8556,64252,5653,40174,3932,29789,277,45152,1140,32768,2043,

4499,80,6554,1144,21065,465,32768,799,5482,183,7282,264,5336,99,6554,563,

54784,30201,58254,9879,54613,3069,32768,58495,32768,32768,32768,2849,58982,54613,32768,12892,

31006,1332,49152,3287,60075,350,32768,712,39322,760,32768,354,52659,432,61854,150,

64999,28362,65323,42521,63572,32768,63677,18319,4910,32768,64238,434,53248,32768,61865,13590,

16384,32768,13107,333,32768,32768,32768,32768,32768,32768,1074,780,25058,5461,6697,233,

62949,30247,63702,24638,59578,32768,32768,42257,32768,32768,49152,546,62557,32768,54613,19258,

62405,32569,64600,865,60495,10923,32768,898,34193,24576,64111,341,47492,5231,55474,591,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

231

65114,60075,64080,5334,65448,61882,64543,13209,54906,16384,35289,4933,48645,9614,55351,7318,

49807,54613,32768,32768,50972,32768,32768,32768,15159,1928,2048,171,3093,8,6096,74,

32768,60855,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,55454,32768,57672,

32768,16384,32768,21845,32768,32768,32768,32768,32768,32768,32768,5041,28440,91,32768,45,

65124,10923,64874,5041,65429,57344,63435,48060,61440,32768,63488,24887,59688,3277,63918,14021,

32768,32768,32768,32768,32768,32768,32768,32768,690,32768,32768,1456,32768,32768,8192,728,

32768,32768,58982,17944,65237,54613,32768,2242,32768,32768,32768,42130,49152,57344,58254,16740,

32768,10923,54613,182,32768,32768,32768,7282,49152,32768,32768,5041,63295,1394,55188,77,

63672,6554,54613,49152,64558,32768,32768,5461,64142,32768,32768,32768,62415,32768,32768,16384,

1481,438,19661,840,33654,3121,64425,6554,4178,2048,32768,2260,5226,1680,32768,565,

60075,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,32768,

16384,261,32768,412,16384,636,32768,4369,23406,4328,32768,524,15604,560,32768,676,

49152,32768,49152,32768,32768,32768,64572,32768,32768,32768,54613,32768,32768,32768,32768,32768,

4681,32768,5617,851,32768,32768,59578,32768,32768,32768,3121,3121,49152,32768,6554,10923,

32768,32768,54613,14043,32768,32768,32768,3449,32768,32768,32768,32768,32768,32768,32768,32768,

57344,32768,57344,3449,32768,32768,32768,3855,58982,10923,32768,239,62259,32768,49152,85,

58778,23831,62888,20922,64311,8192,60075,575,59714,32768,57344,40960,62107,4096,61943,3921,

39862,15338,32768,1524,45123,5958,32768,58982,6669,930,1170,1043,7385,44,8813,5011,

59578,29789,54613,32768,32768,32768,32768,32768,32768,32768,32768,32768,58254,56174,32768,32768,

64080,25891,49152,22528,32768,2731,32768,10923,10923,3283,32768,1748,17827,77,32768,108,

62805,32768,62013,42612,32768,32768,61681,16384,58982,60075,62313,58982,65279,58982,62694,62174,

32768,32768,10923,950,32768,32768,32768,32768,5958,32768,38551,1092,11012,39322,13705,2072,

54613,32768,32768,11398,32768,32768,32768,145,32768,32768,32768,29789,60855,32768,61681,54792,

32768,32768,32768,17348,32768,32768,32768,8192,57344,16384,32768,3582,52581,580,24030,303,

62673,37266,65374,6197,62017,32768,49152,299,54613,32768,32768,32768,35234,119,32768,3855,

31949,32768,32768,49152,16384,32768,32768,32768,24576,32768,49152,32768,17476,32768,32768,57445,

51200,50864,54613,27949,60075,20480,32768,57344,32768,32768,32768,32768,32768,45875,32768,32768,

11498,3244,24576,482,16384,1150,32768,16384,7992,215,32768,1150,23593,927,32768,993,

65353,32768,65465,46741,41870,32768,64596,59578,62087,32768,12619,23406,11833,32768,47720,17476,

32768,32768,2621,6554,32768,32768,32768,32768,32768,32768,5041,32768,16384,32768,4096,2731,

63212,43526,65442,47124,65410,35747,60304,55858,60855,58982,60075,19859,35747,63015,64470,25432,

58689,1118,64717,1339,24576,32768,32768,1257,53297,1928,32768,33,52067,3511,62861,453,

64613,32768,32768,32768,64558,32768,32768,2731,49152,32768,32768,32768,61534,32768,32768,35747,

32768,32768,32768,32768,13107,32768,32768,32768,32768,32768,32768,32768,20480,32768,32768,32768,

32768,32768,32768,54613,40960,5041,32768,32768,32768,32768,32768,3277,64263,57592,32768,3121,

32768,32768,32768,32768,32768,10923,32768,32768,32768,8192,32768,32768,5461,6899,32768,1725,

63351,3855,63608,29127,62415,7282,64626,60855,32768,32768,60075,5958,44961,32768,61866,53718,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

232

32768,32768,32768,32768,32768,32768,6554,32768,32768,32768,32768,32768,2521,978,32768,1489,

58254,32768,58982,61745,21845,32768,54613,58655,60075,32768,49152,16274,50412,64344,61643,43987,

32768,32768,32768,1638,32768,32768,32768,24966,54613,32768,32768,2427,46951,32768,17970,654,

65385,27307,60075,26472,64479,32768,32768,4681,61895,32768,32768,16384,58254,32768,32768,6554,

37630,3277,54613,6554,4965,5958,4681,32768,42765,16384,32768,21845,22827,16384,32768,6554,

65297,64769,60855,12743,63195,16384,32768,37942,32768,32768,32768,32768,60075,32768,62087,54613,

41764,2161,21845,1836,17284,5424,10923,1680,11019,555,32768,431,39819,907,32768,171,

65480,32768,64435,33803,2595,32768,57041,32768,61167,32768,32768,32768,32768,32768,32768,1796,

60855,32768,17246,978,32768,32768,8192,32768,32768,32768,14043,2849,32768,2979,6554,6554,

65507,62415,65384,61891,65273,58982,65461,55097,32768,32768,32768,55606,32768,2979,3745,16913,

61885,13827,60893,12196,60855,53248,51493,11243,56656,783,55563,143,63432,7106,52429,445,

65485,1031,65020,1380,65180,57344,65162,36536,61154,6554,26569,2341,63593,3449,65102,533,

47827,2913,57344,3449,35688,1337,32768,22938,25012,910,7944,1008,29319,607,64466,4202,

64549,57301,49152,20025,63351,61167,32768,45542,58982,14564,32768,9362,61895,44840,32768,26385,

59664,17135,60855,13291,40050,12252,32768,7816,25798,1850,60495,2662,18707,122,52538,231,

65332,32768,65210,21693,65113,6554,65141,39667,62259,32768,22258,1337,63636,32768,64255,52429,

60362,32768,6780,819,16384,32768,16384,4681,49152,32768,8985,2521,24410,683,21535,16585,

65416,46091,65292,58328,64626,32768,65016,39897,62687,47332,62805,28948,64284,53620,52870,49567,

65032,31174,63022,28312,64299,46811,48009,31453,61207,7077,50299,1514,60047,2634,46488,235

};

USInt inter_prob[512] = {

65532,62970,65148,54613,62470,8192,62577,8937,65480,64335,65195,53248,65322,62518,62891,38312,

65075,53405,63980,58982,32768,32768,54613,32768,65238,60009,60075,32768,59294,19661,61203,13107,

63000,9830,62566,58982,11565,32768,25215,3277,53620,50972,63109,43691,54613,32768,39671,17129,

59788,6068,43336,27913,6554,32768,12178,1771,56174,49152,60075,43691,58254,16384,49152,9930,

23130,7282,40960,32768,10923,32768,32768,32768,27307,32768,32768,32768,32768,32768,32768,32768,

36285,12511,10923,32768,45875,16384,32768,32768,16384,23831,4369,32768,8192,10923,32768,32768,

10175,2979,18978,10923,54613,32768,6242,6554,1820,10923,32768,32768,32768,32768,32768,5461,

28459,593,11886,2030,3121,4681,1292,112,42130,23831,49152,29127,32768,6554,5461,2048,

65331,64600,63811,63314,42130,19661,49152,32768,65417,64609,62415,64617,64276,44256,61068,36713,

64887,57525,53620,61375,32768,8192,57344,6554,63608,49809,49152,62623,32768,15851,58982,34162,

55454,51739,64406,64047,32768,32768,7282,32768,49152,58756,62805,64990,32768,14895,16384,19418,

57929,24966,58689,31832,32768,16384,10923,6554,54613,42882,57344,64238,58982,10082,20165,20339,

62687,15061,32768,10923,32768,10923,32768,16384,59578,34427,32768,16384,32768,7825,32768,7282,

58052,23400,32768,5041,32768,2849,32768,32768,47663,15073,57344,4096,32768,1176,32768,1320,

24858,410,24576,923,32768,16384,16384,5461,16384,1365,32768,5461,32768,5699,8192,13107,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

233

46884,2361,23559,424,19661,712,655,182,58637,2094,49152,9362,8192,85,32768,1228,

65486,49152,65186,49152,61320,32768,57088,25206,65352,63047,62623,49152,64641,62165,58986,18304,

64171,16384,60855,54613,42130,32768,61335,32768,58254,58982,49152,32768,60985,35289,64520,31554,

51067,32768,64074,32768,40330,32768,34526,4096,60855,32768,63109,58254,57672,16384,31009,2567,

23406,32768,44620,10923,32768,32768,32099,10923,49152,49152,54613,60075,63422,54613,46388,39719,

58982,32768,54613,32768,14247,32768,22938,5041,32768,49152,32768,32768,25321,6144,29127,10999,

41263,32768,46811,32768,267,4096,426,16384,32768,19275,49152,32768,1008,1437,5767,11275,

5595,5461,37493,6554,4681,32768,6147,1560,38229,10923,32768,40960,35747,2521,5999,312,

17052,2521,18808,3641,213,2427,574,32,51493,42130,42130,53053,11155,312,2069,106,

64406,45197,58982,32768,32768,16384,40960,36864,65336,64244,60075,61681,65269,50748,60340,20515,

58982,23406,57344,32768,6554,16384,19661,61564,60855,47480,32768,54613,46811,21701,54909,37826,

32768,58982,60855,60855,32768,32768,39322,49152,57344,45875,60855,55706,32768,24576,62313,25038,

54613,8192,49152,10923,32768,32768,32768,32768,32768,19661,16384,51493,32768,14043,40050,44651,

59578,5174,32768,6554,32768,5461,23593,5461,63608,51825,32768,23831,58887,24032,57170,3298,

39322,12971,16384,49152,1872,618,13107,2114,58982,25705,32768,60075,28913,949,18312,1815,

48188,114,51493,1542,5461,3855,11360,1163,58982,7215,54613,21487,49152,4590,48430,1421,

28944,1319,6868,324,1456,232,820,7,61681,1864,60855,9922,4369,315,6589,14

};

B.1.6 Sprite Coding

Table B-33 -- Code table for the first trajectory point

dmv value SSS VLC dmv_code

-16383 … -8192, 8192 … 16383 14 111111111110 00000000000000...01111111111111,
10000000000000...11111111111111

-8191 … -4096, 4096 … 8191 13 11111111110 0000000000000...0111111111111,
1000000000000...1111111111111

-4095 … -2048, 2048 … 4095 12 1111111110 000000000000...011111111111,
100000000000...111111111111

-2047...-1024, 1024...2047 11 111111110 00000000000...01111111111,
10000000000...11111111111

-1023...-512, 512...1023 10 11111110 0000000000...0111111111,
1000000000...1111111111

-511...-256, 256...511 9 1111110 000000000...011111111,
100000000...111111111

-255...-128, 128...255 8 111110 00000000...01111111, 10000000...11111111

-127...-64, 64...127 7 11110 0000000...0111111, 1000000...1111111

-63...-32, 32...63 6 1110 000000...011111, 100000...111111

-31...-16, 16...31 5 110 00000...01111, 10000...1111

-15...-8, 8...15 4 101 0000...0111, 1000...1111

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

234

-7...-4, 4...7 3 100 000...011, 100...111

-3...-2, 2...3 2 011 00...01, 10...11

-1, 1 1 010 0, 1

0 0 00 -

Table B-34 -- Code table for scaled brightness change factor

brightness_change_
factor value

brightness_
change_factor_
length value

brightness_
change_factor_
length VLC

brightness_change_factor

-16...-1, 1...16 1 0 00000...01111, 10000...11111

-48...-17, 17...48 2 10 000000...011111, 100000...111111

112...-49, 49...112 3 110 0000000...0111111,
1000000...1111111

113…624 4 1110 000000000...111111111

625...1648 4 1111 0000000000…1111111111

B.1.7 DCT based facial object decoding

Table B-35 -- Viseme_select_table, 29 symbols

symbol bits code symbol bits code symbol bits code

0 6 001000 10 6 010001 20 6 010000

1 6 001001 11 6 011001 21 6 010010

2 6 001011 12 5 00001 22 6 011010

3 6 001101 13 6 011101 23 5 00010

4 6 001111 14 1 1 24 6 011110

5 6 010111 15 6 010101 25 6 010110

6 6 011111 16 6 010100 26 6 001110

7 5 00011 17 6 011100 27 6 001100

8 6 011011 18 5 00000 28 6 001010

9 6 010011 19 6 011000

Table B-36 --Expression_select_table, 13 symbols

symbol bits code symbol bits code symbol bits code

0 5 01000 5 4 0011 10 5 01110

1 5 01001 6 1 1 11 5 01100

2 5 01011 7 4 0001 12 5 01010

3 5 01101 8 4 0000

4 5 01111 9 4 0010

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

235

Table B-37 -- Viseme and Expression intensity_table, 127 symbols

symbol bits code symbol bits code symbol bits code

0 17 10010001101010010 43 16 1001000110100111 86 16 1001000110100110

1 17 10010001101010011 44 8 10011100 87 16 1001000110100100

2 17 10010001101010101 45 11 10010001111 88 16 1001000110100010

3 17 10010001101010111 46 9 100100010 89 16 1001000110100000

4 17 10010001101011001 47 10 1110001011 90 16 1001000110011110

5 17 10010001101011011 48 9 100011011 91 16 1001000110011100

6 17 10010001101011101 49 10 1110001001 92 16 1001000110011010

7 17 10010001101011111 50 9 100011010 93 16 1001000110011000

8 17 10010001101100001 51 9 100111010 94 16 1001000110010110

9 17 10010001101100011 52 10 1110001000 95 16 1001000110010100

10 17 10010001101100101 53 7 1000111 96 16 1001000110010010

11 17 10010001101100111 54 7 1000010 97 16 1001000110010000

12 17 10010001101101001 55 8 10010000 98 16 1001000110001110

13 17 10010001101101011 56 7 1001111 99 16 1001000110001100

14 17 10010001101101101 57 7 1110000 100 16 1001000110001010

15 17 10010001101101111 58 6 100000 101 16 1001000110001000

16 17 10010001101110001 59 6 100101 102 16 1001000110000110

17 17 10010001101110011 60 6 111010 103 16 1001000110000100

18 17 10010001101110111 61 5 11111 104 16 1001000110000010

19 17 10010001101111001 62 3 101 105 16 1001000110000000

20 17 10010001101111011 63 1 0 106 17 10010001101111110

21 17 10010001101111101 64 3 110 107 17 10010001101111100

22 17 10010001101111111 65 5 11110 108 17 10010001101111010

23 16 1001000110000001 66 6 111001 109 17 10010001101111000

24 16 1001000110000011 67 6 111011 110 17 10010001101110110

25 16 1001000110000101 68 6 100010 111 17 10010001101110010

26 16 1001000110000111 69 7 1001100 112 17 10010001101110000

27 16 1001000110001001 70 7 1001001 113 17 10010001101101110

28 16 1001000110001011 71 7 1001101 114 17 10010001101101100

29 16 1001000110001101 72 8 10001100 115 17 10010001101101010

30 16 1001000110001111 73 8 10000111 116 17 10010001101101000

31 16 1001000110010001 74 8 10000110 117 17 10010001101100110

32 16 1001000110010011 75 17 10010001101110100 118 17 10010001101100100

33 16 1001000110010101 76 9 111000110 119 17 10010001101100010

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

236

34 16 1001000110010111 77 11 11100010100 120 17 10010001101100000

35 16 1001000110011001 78 11 10011101111 121 17 10010001101011110

36 16 1001000110011011 79 17 10010001101110101 122 17 10010001101011100

37 16 1001000110011101 80 10 1001110110 123 17 10010001101011010

38 16 1001000110011111 81 16 1001000110101000 124 17 10010001101011000

39 16 1001000110100001 82 11 10010001110 125 17 10010001101010110

40 16 1001000110100011 83 10 1110001111 126 17 10010001101010100

41 11 11100010101 84 11 10011101110

42 16 1001000110100101 85 10 1110001110

Table B-38 -- Runlength_table, 16 symbols

symbol bits code symbol bits code symbol bits code

0 1 1 6 9 000001011 12 8 00000000

1 2 01 7 9 000001101 13 8 00000010

2 3 001 8 9 000001111 14 9 000001110

3 4 0001 9 8 00000011 15 9 000001100

4 5 00001 10 8 00000001

5 9 000001010 11 8 00000100

Table B-39 -- DC_table, 512 symbols

symbol bits code symbol bits code symbol bits code

0 17 11010111001101010 171 17 11010111001111001 342 17 11010111001111000

1 17 11010111001101011 172 17 11010111010000001 343 17 11010111001110000

2 17 11010111001101101 173 17 11010111010001001 344 17 11010111001110010

3 17 11010111001101111 174 17 11010111010010001 345 17 11010111001111010

4 17 11010111001110101 175 17 11010111010011001 346 17 11010111010000010

5 17 11010111001110111 176 17 11010111010101001 347 17 11010111010001010

6 17 11010111001111101 177 17 11010111010110001 348 17 11010111010010010

7 17 11010111001111111 178 17 11010111010111001 349 17 11010111010011010

8 17 11010111010000101 179 17 11010111011000001 350 17 11010111010101010

9 17 11010111010000111 180 17 11010111011001001 351 17 11010111010110010

10 17 11010111010001101 181 17 11010111011011001 352 17 11010111010111010

11 17 11010111010001111 182 17 11010111011111001 353 17 11010111011000010

12 17 11010111010010101 183 17 11010111100000001 354 17 11010111011001010

13 17 11010111010010111 184 17 11010111100001001 355 17 11010111011011010

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

237

14 17 11010111010011101 185 17 11010111100011001 356 17 11010111011111010

15 17 11010111010011111 186 17 11010111100100001 357 17 11010111100000010

16 17 11010111010101101 187 17 11010111100101001 358 17 11010111100001010

17 17 11010111010101111 188 17 11010111100111001 359 17 11010111100011010

18 17 11010111010110111 189 17 11010111101000001 360 17 11010111100100010

19 17 11010111010111101 190 17 11010111101001001 361 17 11010111100101010

20 17 11010111010111111 191 17 11010111101011001 362 17 11010111100111010

21 17 11010111011000111 192 17 11010111101111001 363 17 11010111101000010

22 17 11010111011001101 193 17 11010111110000001 364 17 11010111101001010

23 17 11010111011001111 194 17 11010111110001001 365 17 11010111101011010

24 17 11010111011011101 195 17 11010111110011001 366 17 11010111101111010

25 17 11010111011011111 196 17 11010111110111001 367 17 11010111110000010

26 17 11010111011111101 197 17 11010111111100001 368 17 11010111110001010

27 17 11010111011111111 198 17 11010111111101001 369 17 11010111110011010

28 17 11010111100000111 199 17 11010111111111001 370 17 11010111110111010

29 17 11010111100001101 200 16 1101011100000001 371 17 11010111111100010

30 17 11010111100001111 201 16 1101011100001001 372 17 11010111111101010

31 17 11010111100011101 202 16 1101011100011001 373 17 11010111111111010

32 17 11010111100011111 203 17 11010111111001001 374 16 1101011100000010

33 17 11010111100100101 204 17 11010111111010001 375 16 1101011100001010

34 17 11010111100100111 205 17 11010111111011001 376 16 1101011100011010

35 17 11010111100101101 206 16 1101011100101001 377 17 11010111111001010

36 17 11010111100101111 207 17 11010111110100001 378 17 11010111111010010

37 17 11010111100111101 208 17 11010111110101001 379 17 11010111111011010

38 17 11010111100111111 209 17 11010111101101001 380 16 1101011100101010

39 17 11010111101000101 210 17 11010111011100001 381 17 11010111110100010

40 17 11010111101000111 211 16 1101011100100000 382 17 11010111110101010

41 17 11010111101001101 212 16 1101011100100001 383 17 11010111101101010

42 17 11010111101001111 213 17 11010111111000001 384 17 11010111011100010

43 17 11010111101011101 214 16 1101011100010001 385 17 11010111011101010

44 17 11010111101011111 215 17 11010111111110001 386 17 11010111011101000

45 17 11010111101111101 216 17 11010111110110001 387 16 1101011100100010

46 17 11010111101111111 217 17 11010111110010001 388 17 11010111111000010

47 17 11010111110000101 218 11 11101100101 389 16 1101011100010010

48 17 11010111110000111 219 11 11011111011 390 17 11010111111110010

49 17 11010111110001101 220 11 11011110001 391 17 11010111110110010

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

238

50 17 11010111110001111 221 10 1101110011 392 17 11010111110010010

51 17 11010111110011101 222 17 11010111101110001 393 17 11010111101110010

52 17 11010111110011111 223 17 11010111010100000 394 17 11010111101010010

53 17 11010111110111101 224 17 11010111010100001 395 17 11010111101010000

54 17 11010111110111111 225 17 11010111011110100 396 17 11010111100010010

55 17 11010111111100101 226 17 11010111011110101 397 17 11010111100010000

56 17 11010111111100111 227 17 11010111011110001 398 17 11010111011010010

57 17 11010111111101101 228 17 11010111100010101 399 17 11010111011010000

58 17 11010111111101111 229 17 11010111100110000 400 16 1101011100110010

59 17 11010111111111101 230 17 11010111100110001 401 16 1101011100110000

60 17 11010111111111111 231 17 11010111101010101 402 17 11010111010100110

61 16 1101011100000101 232 11 11101100111 403 17 11010111010100100

62 16 1101011100000111 233 17 11010111101110101 404 17 11010111010100010

63 16 1101011100001101 234 11 11101100110 405 17 11010111011010110

64 16 1101011100001111 235 17 11010111110110101 406 17 11010111011010100

65 16 1101011100011101 236 17 11010111111000100 407 17 11010111011110110

66 16 1101011100011111 237 8 11010110 408 17 11010111011110010

67 17 11010111111001101 238 11 11011110010 409 17 11010111100010110

68 17 11010111111001111 239 9 110010100 410 17 11010111100110110

69 17 11010111111010101 240 10 1101110001 411 17 11010111100110100

70 17 11010111111010111 241 9 110001111 412 17 11010111100110010

71 17 11010111111011101 242 10 1101111100 413 17 11010111101010110

72 17 11010111111011111 243 9 110010101 414 17 11010111101110110

73 16 1101011100101101 244 9 110111111 415 17 11010111110010110

74 16 1101011100101111 245 10 1101110100 416 17 11010111110010100

75 17 11010111110100101 246 7 1100100 417 17 11010111110110110

76 17 11010111110100111 247 8 11101101 418 17 11010111111110110

77 17 11010111110101101 248 8 11001011 419 17 11010111111110100

78 17 11010111110101111 249 7 1101100 420 16 1101011100010110

79 17 11010111101101101 250 7 1101101 421 16 1101011100010100

80 17 11010111101101111 251 7 1110111 422 17 11010111111000110

81 17 11010111011100101 252 6 110100 423 16 1101011100100110

82 17 11010111011100111 253 6 111001 424 16 1101011100100100

83 17 11010111011101101 254 5 11111 425 17 11010111101100110

84 17 11010111011101111 255 3 100 426 17 11010111101100100

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

239

85 17 11010111101100001 256 1 0 427 17 11010111101100010

86 17 11010111101100011 257 3 101 428 17 11010111101100000

87 17 11010111101100101 258 5 11110 429 17 11010111011101110

88 17 11010111101100111 259 6 111000 430 17 11010111011101100

89 16 1101011100100101 260 6 111010 431 17 11010111011100110

90 16 1101011100100111 261 6 110000 432 17 11010111011100100

91 17 11010111111000111 262 7 1100111 433 17 11010111101101110

92 16 1101011100010101 263 7 1100110 434 17 11010111101101100

93 16 1101011100010111 264 7 1101010 435 17 11010111110101110

94 17 11010111111110101 265 8 11000101 436 17 11010111110101100

95 17 11010111111110111 266 8 11000110 437 17 11010111110100110

96 17 11010111110110111 267 8 11000100 438 17 11010111110100100

97 17 11010111110010101 268 17 11010111111000101 439 16 1101011100101110

98 17 11010111110010111 269 9 111011000 440 16 1101011100101100

99 17 11010111101110111 270 11 11011111010 441 17 11010111111011110

100 17 11010111101010111 271 11 11011110101 442 17 11010111111011100

101 17 11010111100110011 272 17 11010111100000101 443 17 11010111111010110

102 17 11010111100110101 273 10 1101111011 444 17 11010111111010100

103 17 11010111100110111 274 17 11010111011000101 445 17 11010111111001110

104 17 11010111100010111 275 11 11011110011 446 17 11010111111001100

105 17 11010111011110011 276 9 110001110 447 16 1101011100011110

106 17 11010111011110111 277 11 11011110000 448 16 1101011100011100

107 17 11010111011010101 278 10 1101110111 449 16 1101011100001110

108 17 11010111011010111 279 17 11010111010110101 450 16 1101011100001100

109 17 11010111010100011 280 16 1101011100110100 451 16 1101011100000110

110 17 11010111010100101 281 10 1101110010 452 16 1101011100000100

111 17 11010111010100111 282 10 1101110000 453 17 11010111111111110

112 16 1101011100110001 283 11 11011101010 454 17 11010111111111100

113 16 1101011100110011 284 17 11010111010110100 455 17 11010111111101110

114 17 11010111011010001 285 17 11010111011000100 456 17 11010111111101100

115 17 11010111011010011 286 17 11010111100000100 457 17 11010111111100110

116 17 11010111100010001 287 11 11011101100 458 17 11010111111100100

117 17 11010111100010011 288 17 11010111110110100 459 17 11010111110111110

118 17 11010111101010001 289 17 11010111101110100 460 17 11010111110111100

119 17 11010111101010011 290 17 11010111101010100 461 17 11010111110011110

120 17 11010111101110011 291 11 11101100100 462 17 11010111110011100

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

240

121 17 11010111110010011 292 17 11010111100010100 463 17 11010111110001110

122 17 11010111110110011 293 17 11010111011110000 464 17 11010111110001100

123 17 11010111111110011 294 11 11011110100 465 17 11010111110000110

124 16 1101011100010011 295 11 11011101011 466 17 11010111110000100

125 17 11010111111000011 296 17 11010111101110000 467 17 11010111101111110

126 16 1101011100100011 297 17 11010111110010000 468 17 11010111101111100

127 17 11010111011101001 298 17 11010111110110000 469 17 11010111101011110

128 17 11010111011101011 299 17 11010111111110000 470 17 11010111101011100

129 17 11010111011100011 300 16 1101011100010000 471 17 11010111101001110

130 17 11010111101101011 301 17 11010111111000000 472 17 11010111101001100

131 17 11010111110101011 302 11 11011101101 473 17 11010111101000110

132 17 11010111110100011 303 17 11010111011100000 474 17 11010111101000100

133 16 1101011100101011 304 17 11010111101101000 475 17 11010111100111110

134 17 11010111111011011 305 17 11010111110101000 476 17 11010111100111100

135 17 11010111111010011 306 17 11010111110100000 477 17 11010111100101110

136 17 11010111111001011 307 16 1101011100101000 478 17 11010111100101100

137 16 1101011100011011 308 17 11010111111011000 479 17 11010111100100110

138 16 1101011100001011 309 17 11010111111010000 480 17 11010111100100100

139 16 1101011100000011 310 17 11010111111001000 481 17 11010111100011110

140 17 11010111111111011 311 16 1101011100011000 482 17 11010111100011100

141 17 11010111111101011 312 16 1101011100001000 483 17 11010111100001110

142 17 11010111111100011 313 16 1101011100000000 484 17 11010111100001100

143 17 11010111110111011 314 17 11010111111111000 485 17 11010111100000110

144 17 11010111110011011 315 17 11010111111101000 486 17 11010111011111110

145 17 11010111110001011 316 17 11010111111100000 487 17 11010111011111100

146 17 11010111110000011 317 17 11010111110111000 488 17 11010111011011110

147 17 11010111101111011 318 17 11010111110011000 489 17 11010111011011100

148 17 11010111101011011 319 17 11010111110001000 490 17 11010111011001110

149 17 11010111101001011 320 17 11010111110000000 491 17 11010111011001100

150 17 11010111101000011 321 17 11010111101111000 492 17 11010111011000110

151 17 11010111100111011 322 17 11010111101011000 493 17 11010111010111110

152 17 11010111100101011 323 17 11010111101001000 494 17 11010111010111100

153 17 11010111100100011 324 17 11010111101000000 495 17 11010111010110110

154 17 11010111100011011 325 17 11010111100111000 496 17 11010111010101110

155 17 11010111100001011 326 17 11010111100101000 497 17 11010111010101100

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

241

156 17 11010111100000011 327 17 11010111100100000 498 17 11010111010011110

157 17 11010111011111011 328 17 11010111100011000 499 17 11010111010011100

158 17 11010111011011011 329 17 11010111100001000 500 17 11010111010010110

159 17 11010111011001011 330 17 11010111100000000 501 17 11010111010010100

160 17 11010111011000011 331 17 11010111011111000 502 17 11010111010001110

161 17 11010111010111011 332 17 11010111011011000 503 17 11010111010001100

162 17 11010111010110011 333 17 11010111011001000 504 17 11010111010000110

163 17 11010111010101011 334 17 11010111011000000 505 17 11010111010000100

164 17 11010111010011011 335 17 11010111010111000 506 17 11010111001111110

165 17 11010111010010011 336 17 11010111010110000 507 17 11010111001111100

166 17 11010111010001011 337 17 11010111010101000 508 17 11010111001110110

167 17 11010111010000011 338 17 11010111010011000 509 17 11010111001110100

168 17 11010111001111011 339 17 11010111010010000 510 17 11010111001101110

169 17 11010111001110011 340 17 11010111010001000 511 17 11010111001101100

170 17 11010111001110001 341 17 11010111010000000

Table B-40 -- AC_table, 512 symbols

symbo
l

no_
of_
bits

code symbo
l

no_
of_
bits

code symbo
l

no_
of_
bits

code

0 16 1000011100011000 171 16 1000011101100001 342 16 1000011101100000

1 16 1000011100011001 172 16 1000011110100001 343 15 100001110000000

2 16 1000011100011011 173 16 1000011111000001 344 16 1000011101101000

3 16 1000011100011101 174 16 1000011111100001 345 16 1000011110101000

4 16 1000011100011111 175 15 100001000100001 346 16 1000011111001000

5 16 1000011100100101 176 15 100001001100001 347 16 1000011111101000

6 16 1000011100100111 177 15 100001011000001 348 15 100001000101000

7 16 1000011100101101 178 15 100001011100001 349 15 100001001101000

8 16 1000011100101111 179 15 100001010100001 350 15 100001011001000

9 16 1000011100111101 180 15 100001010000001 351 15 100001011101000

10 16 1000011100111111 181 15 100001001000001 352 15 100001010101000

11 16 1000011101111101 182 15 100001000000001 353 15 100001010001000

12 16 1000011101111111 183 16 1000011110000001 354 15 100001001001000

13 16 1000011110111111 184 16 1000011101000001 355 15 100001000001000

14 16 1000011111011101 185 16 1000011101010001 356 16 1000011110001000

15 16 1000011111011111 186 16 1000011110010001 357 16 1000011101001000

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

242

16 16 1000011111111101 187 15 100001000010001 358 16 1000011101011000

17 16 1000011111111111 188 15 100001001010001 359 16 1000011110011000

18 15 100001000111101 189 15 100001010010001 360 15 100001000011000

19 15 100001000111111 190 15 100001010110001 361 15 100001001011000

20 15 100001001111101 191 15 100001011110001 362 15 100001010011000

21 15 100001001111111 192 15 100001011010001 363 15 100001010111000

22 15 100001011011101 193 15 100001001110001 364 15 100001011111000

23 15 100001011011111 194 15 100001000110001 365 15 100001011011000

24 15 100001011111101 195 16 1000011111110001 366 15 100001001111000

25 15 100001011111111 196 16 1000011111010001 367 15 100001000111000

26 15 100001010111111 197 16 1000011110110001 368 16 1000011111111000

27 15 100001010011101 198 16 1000011101110001 369 16 1000011111011000

28 15 100001010011111 199 16 1000011100110001 370 16 1000011110111000

29 15 100001001011111 200 15 100001110001001 371 16 1000011101111000

30 15 100001000011111 201 16 1000011100110101 372 16 1000011100111000

31 16 1000011110011111 202 16 1000011101110101 373 16 1000011100101000

32 16 1000011101011111 203 16 1000011110110101 374 16 1000011100100000

33 16 1000011101001111 204 16 1000011111010101 375 16 1000011100100010

34 16 1000011110001111 205 16 1000011111110101 376 16 1000011100101010

35 15 100001000001111 206 15 100001000110101 377 16 1000011100111010

36 15 100001001001111 207 15 100001001110101 378 16 1000011101111010

37 15 100001010001111 208 15 100001011010101 379 16 1000011110111010

38 15 100001010101111 209 15 100001011110101 380 16 1000011111011010

39 15 100001011101111 210 15 100001010110101 381 16 1000011111111010

40 15 100001011001111 211 15 100001010010101 382 15 100001000111010

41 15 100001001101111 212 15 100001001010101 383 15 100001001111010

42 15 100001000101111 213 15 100001000010101 384 15 100001011011010

43 16 1000011111101111 214 16 1000011110010101 385 15 100001011111010

44 16 1000011111001111 215 16 1000011101010101 386 15 100001010111010

45 16 1000011110101111 216 16 1000011101000101 387 15 100001010011010

46 16 1000011101101111 217 16 1000011110000101 388 15 100001001011010

47 15 100001110000111 218 15 100001000000101 389 15 100001000011010

48 16 1000011101100111 219 15 100001001000101 390 16 1000011110011010

49 16 1000011110100111 220 15 100001010000101 391 16 1000011101011010

50 16 1000011111000111 221 15 100001010100101 392 16 1000011101001010

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

243

51 16 1000011111100111 222 15 100001011100101 393 16 1000011110001010

52 15 100001000100111 223 15 100001011000101 394 15 100001000001010

53 15 100001001100111 224 15 100001001100101 395 15 100001001001010

54 15 100001011000111 225 15 100001000100101 396 15 100001010001010

55 15 100001011100111 226 16 1000011111100101 397 15 100001010101010

56 15 100001010100111 227 16 1000011111000101 398 15 100001011101010

57 15 100001010000111 228 16 1000011110100101 399 15 100001011001010

58 15 100001001000111 229 16 1000011101100101 400 15 100001001101010

59 15 100001000000111 230 15 100001110000101 401 15 100001000101010

60 16 1000011110000111 231 16 1000011101101101 402 16 1000011111101010

61 16 1000011101000111 232 16 1000011110101101 403 16 1000011111001010

62 16 1000011101010111 233 16 1000011111001101 404 16 1000011110101010

63 16 1000011110010111 234 16 1000011111101101 405 16 1000011101101010

64 15 100001000010111 235 15 100001000101101 406 15 100001110000010

65 15 100001001010111 236 15 100001001101101 407 16 1000011101100010

66 15 100001010010111 237 15 100001011001101 408 16 1000011110100010

67 15 100001010110111 238 15 100001011101101 409 16 1000011111000010

68 15 100001011110111 239 15 100001010101101 410 16 1000011111100010

69 15 100001011010111 240 15 100001010001101 411 15 100001000100010

70 15 100001001110111 241 15 100001001001101 412 15 100001001100010

71 15 100001000110111 242 15 100001000001101 413 15 100001011000010

72 16 1000011111110111 243 16 1000011110001101 414 15 100001011100010

73 16 1000011111010111 244 16 1000011101001101 415 15 100001010100010

74 16 1000011110110111 245 16 1000011101011101 416 15 100001010000010

75 16 1000011101110111 246 16 1000011110011101 417 15 100001001000010

76 16 1000011100110111 247 15 100001000011101 418 15 100001000000010

77 15 100001110001011 248 6 100000 419 16 1000011110000010

78 16 1000011100110011 249 15 100001001011101 420 16 1000011101000010

79 16 1000011101110011 250 15 100001010111101 421 16 1000011101010010

80 16 1000011110110011 251 7 1001110 422 16 1000011110010010

81 16 1000011111010011 252 6 100110 423 15 100001000010010

82 16 1000011111110011 253 5 10010 424 15 100001001010010

83 15 100001000110011 254 4 1010 425 15 100001010010010

84 15 100001001110011 255 2 11 426 15 100001010110010

85 15 100001011010011 256 16 1000011110111100 427 15 100001011110010

86 15 100001011110011 257 1 0 428 15 100001011010010

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

244

87 15 100001010110011 258 4 1011 429 15 100001001110010

88 15 100001010010011 259 6 100011 430 15 100001000110010

89 15 100001001010011 260 6 100010 431 16 1000011111110010

90 15 100001000010011 261 7 1001111 432 16 1000011111010010

91 16 1000011110010011 262 16 1000011110111101 433 16 1000011110110010

92 16 1000011101010011 263 8 10000110 434 16 1000011101110010

93 16 1000011101000011 264 15 100001010111100 435 16 1000011100110010

94 16 1000011110000011 265 15 100001001011100 436 15 100001110001010

95 15 100001000000011 266 15 100001000011100 437 16 1000011100110110

96 15 100001001000011 267 16 1000011110011100 438 16 1000011101110110

97 15 100001010000011 268 16 1000011101011100 439 16 1000011110110110

98 15 100001010100011 269 16 1000011101001100 440 16 1000011111010110

99 15 100001011100011 270 16 1000011110001100 441 16 1000011111110110

100 15 100001011000011 271 15 100001000001100 442 15 100001000110110

101 15 100001001100011 272 15 100001001001100 443 15 100001001110110

102 15 100001000100011 273 15 100001010001100 444 15 100001011010110

103 16 1000011111100011 274 15 100001010101100 445 15 100001011110110

104 16 1000011111000011 275 15 100001011101100 446 15 100001010110110

105 16 1000011110100011 276 15 100001011001100 447 15 100001010010110

106 16 1000011101100011 277 15 100001001101100 448 15 100001001010110

107 15 100001110000011 278 15 100001000101100 449 15 100001000010110

108 16 1000011101101011 279 16 1000011111101100 450 16 1000011110010110

109 16 1000011110101011 280 16 1000011111001100 451 16 1000011101010110

110 16 1000011111001011 281 16 1000011110101100 452 16 1000011101000110

111 16 1000011111101011 282 16 1000011101101100 453 16 1000011110000110

112 15 100001000101011 283 15 100001110000100 454 15 100001000000110

113 15 100001001101011 284 16 1000011101100100 455 15 100001001000110

114 15 100001011001011 285 16 1000011110100100 456 15 100001010000110

115 15 100001011101011 286 16 1000011111000100 457 15 100001010100110

116 15 100001010101011 287 16 1000011111100100 458 15 100001011100110

117 15 100001010001011 288 15 100001000100100 459 15 100001011000110

118 15 100001001001011 289 15 100001001100100 460 15 100001001100110

119 15 100001000001011 290 15 100001011000100 461 15 100001000100110

120 16 1000011110001011 291 15 100001011100100 462 16 1000011111100110

121 16 1000011101001011 292 15 100001010100100 463 16 1000011111000110

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

245

122 16 1000011101011011 293 15 100001010000100 464 16 1000011110100110

123 16 1000011110011011 294 15 100001001000100 465 16 1000011101100110

124 15 100001000011011 295 15 100001000000100 466 15 100001110000110

125 15 100001001011011 296 16 1000011110000100 467 16 1000011101101110

126 15 100001010011011 297 16 1000011101000100 468 16 1000011110101110

127 15 100001010111011 298 16 1000011101010100 469 16 1000011111001110

128 15 100001011111011 299 16 1000011110010100 470 16 1000011111101110

129 15 100001011011011 300 15 100001000010100 471 15 100001000101110

130 15 100001001111011 301 15 100001001010100 472 15 100001001101110

131 15 100001000111011 302 15 100001010010100 473 15 100001011001110

132 16 1000011111111011 303 15 100001010110100 474 15 100001011101110

133 16 1000011111011011 304 15 100001011110100 475 15 100001010101110

134 16 1000011110111011 305 15 100001011010100 476 15 100001010001110

135 16 1000011101111011 306 15 100001001110100 477 15 100001001001110

136 16 1000011100111011 307 15 100001000110100 478 15 100001000001110

137 16 1000011100101011 308 16 1000011111110100 479 16 1000011110001110

138 16 1000011100100011 309 16 1000011111010100 480 16 1000011101001110

139 16 1000011100100001 310 16 1000011110110100 481 16 1000011101011110

140 16 1000011100101001 311 16 1000011101110100 482 16 1000011110011110

141 16 1000011100111001 312 16 1000011100110100 483 15 100001000011110

142 16 1000011101111001 313 15 100001110001000 484 15 100001001011110

143 16 1000011110111001 314 16 1000011100110000 485 15 100001010011110

144 16 1000011111011001 315 16 1000011101110000 486 15 100001010011100

145 16 1000011111111001 316 16 1000011110110000 487 15 100001010111110

146 15 100001000111001 317 16 1000011111010000 488 15 100001011111110

147 15 100001001111001 318 16 1000011111110000 489 15 100001011111100

148 15 100001011011001 319 15 100001000110000 490 15 100001011011110

149 15 100001011111001 320 15 100001001110000 491 15 100001011011100

150 15 100001010111001 321 15 100001011010000 492 15 100001001111110

151 15 100001010011001 322 15 100001011110000 493 15 100001001111100

152 15 100001001011001 323 15 100001010110000 494 15 100001000111110

153 15 100001000011001 324 15 100001010010000 495 15 100001000111100

154 16 1000011110011001 325 15 100001001010000 496 16 1000011111111110

155 16 1000011101011001 326 15 100001000010000 497 16 1000011111111100

156 16 1000011101001001 327 16 1000011110010000 498 16 1000011111011110

157 16 1000011110001001 328 16 1000011101010000 499 16 1000011111011100

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

246

158 15 100001000001001 329 16 1000011101000000 500 16 1000011110111110

159 15 100001001001001 330 16 1000011110000000 501 16 1000011101111110

160 15 100001010001001 331 15 100001000000000 502 16 1000011101111100

161 15 100001010101001 332 15 100001001000000 503 16 1000011100111110

162 15 100001011101001 333 15 100001010000000 504 16 1000011100111100

163 15 100001011001001 334 15 100001010100000 505 16 1000011100101110

164 15 100001001101001 335 15 100001011100000 506 16 1000011100101100

165 15 100001000101001 336 15 100001011000000 507 16 1000011100100110

166 16 1000011111101001 337 15 100001001100000 508 16 1000011100100100

167 16 1000011111001001 338 15 100001000100000 509 16 1000011100011110

168 16 1000011110101001 339 16 1000011111100000 510 16 1000011100011100

169 16 1000011101101001 340 16 1000011111000000 511 16 1000011100011010

170 15 100001110000001 341 16 1000011110100000

B.2 Arithmetic Decoding

B.2.1 Aritmetic decoding for still texture object

To fully initialize the decoder, the function ac_decoder_init is called followed by ac_model_init respectively:

void ac_decoder_init (ac_decoder *acd) {

int i, t;

acd->bits_to_go = 0;

acd->total_bits = 0;

acd->value = 0;

for (i=1; i<=Code_value_bits; i++) {

acd->value = 2*acd->value + input_bit(acd);

}

acd->low = 0;

acd->high = Top_value;

return;

}

void ac_model_init (ac_model *acm, int nsym) {

int i;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

247

acm->nsym = nsym;

acm->freq = (unsigned short *) malloc (nsym*sizeof (unsigned short));

check (!acm->freq, "arithmetic coder model allocation failure");

acm->cfreq = (unsigned short *) calloc (nsym+1, sizeof (unsigned short));

check (!acm->cfreq, "arithmetic coder model allocation failure");

for (i=0; i<acm->nsym; i++) {

acm->freq[i] = 1;

acm->cfreq[i] = acm->nsym - i;

}

acm->cfreq[acm->nsym] = 0;

return;

}

The acd is structures which contains the decoding variables and whose addresses act as handles for the decoded
symbol/bitstreams. The fields bits_to_go, buffer, bitstream, and bitstream_len are used to manage the bits in
memory. The low, high, and fbits fields describe the scaled range corresponding to the symbols which have been
decoded. The value field contains the currently seen code value inside the range. The total_bits field contains the
total number of bits encoded or used for decoding so far. The values Code_value_bits and Top_value describe the
maximum number of bits and the maximum size of a coded value respectively. The ac_model structure contains the
variables used for that particular probability model and it's address acts as a handle. The nsym field contains the
number of symbols in the symbol set, the freq field contains the table of frequency counts for each of the nsym
symbols, and the cfreq field contains the cumulative frequency count derived from freq.

The bits are read from the bitstream using the function:

static int input_bit (ac_decoder *acd) {

int t;

unsigned int tmp;

if (acd->bits_to_go==0) {

acd->buffer = ace->bitstream[ace->bitstream_len++];

acd->bits_to_go = 8;

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

248

t = acd->buffer & 0x080;

acd->buffer <<= 1;

acd->buffer &= 0x0ff;

acd->total_bits += 1;

acd->bits_to_go -= 1;

t = t >> 7;

return t;

}

The decoding process has four main steps. The first step is to decode the symbol based on the current state of the
probability model (frequency counts) and the current code value (value) which is used to represent (and is a
member of) the current range. The second step is to get the new range. The third step is to rescale the range and
simultaneously load in new code value bits. The fourth step is to update the model. To decode symbols, the
following function is called:

int ac_decode_symbol (ac_decoder *acd, ac_model *acm) {

long range;

int cum;

int sym;

range = (long)(acd->high-acd->low)+1;

/*--- decode symbol ---*/

cum = (((long)(acd->value-acd->low)+1)*(int)(acm->cfreq[0])-1)/range;

for (sym = 0; (int)acm->cfreq[sym+1]>cum; sym++)

/* do nothing */ ;

check (sym<0||sym>=acm->nsym, "symbol out of range");

/*--- Get new range ---*/

acd->high = acd->low + (range*(int)(acm->cfreq[sym]))/(int)(acm->cfreq[0])-1;

acd->low = acd->low + (range*(int)(acm->cfreq[sym+1]))/(int)(acm->cfreq[0]);

/*--- rescale and load new code value bits ---*/

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

249

for (;;) {

if (acd->high<Half) {

/* do nothing */

} else if (acd->low>=Half) {

acd->value -= Half;

acd->low -= Half;

acd->high -= Half;

} else if (acd->low>=First_qtr && acd->high<Third_qtr) {

acd->value -= First_qtr;

acd->low -= First_qtr;

acd->high -= First_qtr;

} else

break;

acd->low = 2*acd->low;

acd->high = 2*acd->high+1;

acd->value = 2*acd->value + input_bit(acd);

}

/*--- Update probability model ---*/

update_model (acm, sym);

return sym;

}

The bits_plus_follow function mentioned above calls another function, output_bit. They are:

static void output_bit (ac_encoder *ace, int bit) {

ace->buffer <<= 1;

if (bit)

ace->buffer |= 0x01;

ace->bits_to_go -= 1;

ace->total_bits += 1;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

250

if (ace->bits_to_go==0) {

if (ace->bitstream) {

if (ace->bitstream_len >= MAX_BUFFER)

if ((ace->bitstream = (uChar *)realloc(ace->bitstream, sizeof(uChar)*

(ace->bitstream_len/MAX_BUFFER+1)*MAX_BUFFER))==NULL) {

fprintf(stderr, "Couldn't reallocate memory for ace->bitstream in
output_bit.\n");

exit(-1);

}

ace->bitstream[ace->bitstream_len++] = ace->buffer;

}

ace->bits_to_go = 8;

}

return;

}

static void bit_plus_follow (ac_encoder *ace, int bit) {

output_bit (ace, bit);

while (ace->fbits > 0) {

output_bit (ace, !bit);

ace->fbits -= 1;

}

return;

}

The update of the probability model used in the decoding of the symbols is shown in the following function:

static void update_model (ac_model *acm, int sym)

{

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

251

int i;

if (acm->cfreq[0]==Max_frequency) {

int cum = 0;

acm->cfreq[acm->nsym] = 0;

for (i = acm->nsym-1; i>=0; i--) {

acm->freq[i] = ((int)acm->freq[i] + 1) / 2;

cum += acm->freq[i];

acm->cfreq[i] = cum;

}

}

acm->freq[sym] += 1;

for (i=sym; i>=0; i--)

acm->cfreq[i] += 1;

return;

}

This function simply updates the frequency counts based on the symbol just decoded. It also makes sure that the
maximum frequency allowed is not exceeded. This is done by rescaling all frequency counts by 2.

B.2.2 Arithmetic decoding for shape decoding

B.2.2.1 Structures and Typedefs

typedef void Void;
typedef int Int;
typedef unsigned short int USInt;
#define CODE_BIT 32
#define HALF ((unsigned) 1 << (CODE_BITS-1))
#define QUARTER (1 << (CODE_BITS-2))
struct arcodec {

UInt L; /* lower bound */
UInt R; /* code range */
UInt V; /* current code value */
UInt arpipe;
Int bits_to_follow; /* follow bit count */
Int first_bit;
Int nzeros;
Int nonzero;
Int nzerosf;
Int extrabits;

};
typedef struct arcodec ArCoder;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

252

typedef struct arcodec ArDecoder;
#define MAXHEADING 3
#define MAXMIDDLE 10
#define MAXTRAILING 2

B.2.2.2 Decoder Source

Void StartArDecoder(ArDecoder *decoder, Bitstream *bitstream) {
Int i,j;
decoder->V = 0;
decoder->nzerosf = MAXHEADING;
decoder->extrabits = 0;
for (i = 1; i<CODE_BITS; i++) {

j=BitstreamLookBit(bitstream,i+decoder->extrabits);
decoder->V += decoder->V + j;
if (j == 0) {

decoder->nzerosf--;
if (decoder->nzerosf == 0) {

decoder->extrabits++;
decoder->nzerosf = MAXMIDDLE;

}
}
else

decoder->nzerosf = MAXMIDDLE;
}
decoder->L = 0;
decoder->R = HALF - 1;
decoder->bits_to_follow = 0;
decoder->arpipe = decoder->V;
decoder->nzeros = MAXHEADING;
decoder->nonzero = 0;

}
Void StopArDecoder(ArDecoder *decoder, Bitstream *bitstream) {

Int a = decoder->L >> (CODE_BITS-3);
Int b = (decoder->R + decoder->L) >> (CODE_BITS-3);
Int nbits,i;
if (b == 0)

b = 8;
if (b-a >= 4 || (b-a == 3 && a&1))

nbits = 2;
else

nbits = 3;
for (i = 1; i <= nbits-1; i++)

AddNextInputBit(bitstream, decoder);
if (decoder->nzeros < MAXMIDDLE-MAXTRAILING || decoder->nonzero == 0)

BitstreamFlushBits(bitstream,1);
}
Void AddNextInputBit(Bitstream *bitstream, ArDecoder *decoder) {

Int i;
if (((decoder->arpipe >> (CODE_BITS-2))&1) == 0) {

decoder->nzeros--;
if (decoder->nzeros == 0) {

BitstreamFlushBits(bitstream,1);
decoder->extrabits--;
decoder->nzeros = MAXMIDDLE;
decoder->nonzero = 1;

}
}
else {

decoder->nzeros = MAXMIDDLE;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

253

decoder->nonzero = 1;
}
BitstreamFlushBits(bitstream,1);
i = (Int)BitstreamLookBit(bitstream, CODE_BITS-1+decoder->extrabits);
decoder->V += decoder->V + i;
decoder->arpipe += decoder->arpipe + i;
if (i == 0) {

decoder->nzerosf--;
if (decoder->nzerosf == 0) {

decoder->nzerosf = MAXMIDDLE;
decoder->extrabits++;

}
}
else

decoder->nzerosf = MAXMIDDLE;
}
Int ArDecodeSymbol(USInt c0, ArDecoder *decoder, Bitstream *bitstream) {

Int bit;
Int c1 = (1<<16) - c0;
Int LPS = c0 > c1;
Int cLPS = LPS ? c1 : c0;
unsigned long rLPS;
rLPS = ((decoder->R) >> 16) * cLPS;
if ((decoder->V - decoder->L) >= (decoder->R - rLPS)) {

bit = LPS;
decoder->L += decoder->R - rLPS;
decoder->R = rLPS;

}
else {

bit = (1-LPS);
decoder->R -= rLPS;

}
DECODE_RENORMALISE(decoder,bitstream);
return(bit);

}
Void DECODE_RENORMALISE(ArDecoder *decoder, Bitstream *bitstream) {

while (decoder->R < QUARTER) {
if (decoder->L >= HALF) {

decoder->V -= HALF;
decoder->L -= HALF;
decoder->bits_to_follow = 0;

}
else

if (decoder->L + decoder->R <= HALF)
decoder->bits_to_follow = 0;

else{
decoder->V -= QUARTER;
decoder->L -= QUARTER;
(decoder->bits_to_follow)++;

}
decoder->L += decoder->L;
decoder->R += decoder->R;
AddNextInputBit(bitstream, decoder);

}
}

• BitstreamLookBit(bitstream,nbits) : Looks nbits ahead in the bitstream beginning from the current position
in the bitstream and returns the bit.

• BitstreamFlushBits(bitstream,nbits) : Moves the current bitstream position forward by nbits.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

254

The parameter c0 (used in ArDecodeSymbol()) is taken directly from the probability tables of USint inter_prob or
Usint intra_prob in Table B-32. That is, for the pixel to be coded/decoded, c0 is the probability than this pixel is
equal to zero. The value of c0 depends on the context number of the given pixel to be decoded.

B.2.3 Face Object Decoding

In FAP decoder, a symbol is decoded by using a specific model based on the syntax and by calling the following
procedure which is specified in C.

static long low, high, code_value, bit, length, sacindex, cum, zerorun=0;

int aa_decode(int cumul_freq[])
{

length = high - low + 1;
cum = (-1 + (code_value - low + 1) * cumul_freq[0]) / length;
for (sacindex = 1; cumul_freq[sacindex] > cum; sacindex++);
high = low - 1 + (length * cumul_freq[sacindex-1]) / cumul_freq[0];
low += (length * cumul_freq[sacindex]) / cumul_freq[0];

for (; ;) {
if (high < q2) ;
else if (low >= q2) {

code_value -= q2;
low -= q2;
high -= q2;

}
else if (low >= q1 && high < q3) {

code_value -= q1;
low -= q1;
high -= q1;

}
else {

break;
}
low *= 2;
high = 2*high + 1;
bit_out_psc_layer();
code_value = 2*code_value + bit;
used_bits++;

}
return (sacindex-1);

}

void bit_out_psc_layer()
{

bit = getbits(1);
}

Again the model is specified through cumul_freq[]. The decoded symbol is returned through its index in the
model. The decoder is initialized to start decoding an arithmetic coded bitstream by calling the following
procedure.

void decoder_reset()
{

int i;
zerorun = 0; /* clear consecutive zero's counter */
code_value = 0;
low = 0;
high = top;
for (i = 1; i <= 16; i++) {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

255

bit_out_psc_layer();
code_value = 2 * code_value + bit;

}
used_bits = 0;

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

256

Annex C

(normative)

Face object decoding tables and definitions

FAPs names may contain letters with the following meaning: l = left, r = right, t = top, b = bottom, i = inner, o =
outer, m = middle. The sum of two corresponding top and bottom eyelid FAPs must equal 1024 when the eyelids
are closed. Inner lips are closed when the sum of two corresponding top and bottom lip FAPs equals zero. For
example: (lower_t_midlip + raise_b_midlip) = 0 when the lips are closed. All directions are defined with respect to
the face and not the image of the face.

Table C-1 -- FAP definitions, group assignments and step sizes

FAP name FAP description units Uni-
orBi
dir

Pos

motion

G
r
p

FDP
subg
rp
num

Qua
nt
step
size

Min/Max
I-Frame
quantize
d values

Min/Max
P-Frame
quantiz
ed
values

1 viseme Set of values
determining the
mixture of two
visemes for this
frame (e.g. pbm, fv,
th)

na na na 1 na 1 viseme_b
lend: +63

viseme_
blend: +-
63

2 expression A set of values
determining the
mixture of two facial
expression

na na na 1 na 1 expressio
n_intensit
y1,
expressio
n_intensit
y2: +63

expressi
on_inten
sity1,
expressi
on_inten
sity2: +-
63

3 open_jaw Vertical jaw
displacement (does
not affect mouth
opening)

MNS U down 2 1 4 +1080 +360

4 lower_t_midlip Vertical top middle
inner lip
displacement

MNS B down 2 2 2 +-600 +-180

5 raise_b_midlip Vertical bottom
middle inner lip
displacement

MNS B up 2 3 2 +-1860 +-600

6 stretch_l_cornerlip Horizontal
displacement of left
inner lip corner

MW B left 2 4 2 +-600 +-180

7 stretch_r_cornerlip Horizontal
displacement of
right inner lip corner

MW B right 2 5 2 +-600 +-180

8 lower_t_lip_lm Vertical MNS B down 2 6 2 +-600 +-180

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

257

displacement of
midpoint between
left corner and
middle of top inner
lip

9 lower_t_lip_rm Vertical
displacement of
midpoint between
right corner and
middle of top inner
lip

MNS B down 2 7 2 +-600 +-180

10 raise_b_lip_lm Vertical
displacement of
midpoint between
left corner and
middle of bottom
inner lip

MNS B up 2 8 2 +-1860 +-600

11 raise_b_lip_rm Vertical
displacement of
midpoint between
right corner and
middle of bottom
inner lip

MNS B up 2 9 2 +-1860 +-600

12 raise_l_cornerlip Vertical
displacement of left
inner lip corner

MNS B up 2 4 2 +-600 +-180

13 raise_r_cornerlip Vertical
displacement of
right inner lip corner

MNS B up 2 5 2 +-600 +-180

14 thrust_jaw Depth displacement
of jaw

MNS U forward 2 1 1 +600 +180

15 shift_jaw Side to side
displacement of jaw

MW B right 2 1 1 +-1080 +-360

16 push_b_lip Depth displacement
of bottom middle lip

MNS B forward 2 3 1 +-1080 +-360

17 push_t_lip Depth displacement
of top middle lip

MNS B forward 2 2 1 +-1080 +-360

18 depress_chin Upward and
compressing
movement of the
chin

(like in sadness)

MNS B up 2 10 1 +-420 +-180

19 close_t_l_eyelid Vertical
displacement of top
left eyelid

IRISD B down 3 1 1 +-1080 +-600

20 close_t_r_eyelid Vertical
displacement of top
right eyelid

IRISD B down 3 2 1 +-1080 +-600

21 close_b_l_eyelid Vertical
displacement of
bottom left eyelid

IRISD B up 3 3 1 +-600 +-240

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

258

22 close_b_r_eyelid Vertical
displacement of
bottom right eyelid

IRISD B up 3 4 1 +-600 +-240

23 yaw_l_eyeball Horizontal
orientation of left
eyeball

AU B left 3 na 128 +-1200 +-420

24 yaw_r_eyeball Horizontal
orientation of right
eyeball

AU B left 3 na 128 +-1200 +-420

25 pitch_l_eyeball Vertical orientation
of left eyeball

AU B down 3 na 128 +-900 +-300

26 pitch_r_eyeball Vertical orientation
of right eyeball

AU B down 3 na 128 +-900 +-300

27 thrust_l_eyeball Depth displacement
of left eyeball

ES B forward 3 na 1 +-600 +-180

28 thrust_r_eyeball Depth displacement
of right eyeball

ES B forward 3 na 1 +-600 +-180

29 dilate_l_pupil Dilation of left pupil IRISD B growing 3 5 1 +-420 +-120

30 dilate_r_pupil Dilation of right
pupil

IRISD B growing 3 6 1 +-420 +-120

31 raise_l_i_eyebrow Vertical
displacement of left
inner eyebrow

ENS B up 4 1 2 +-900 +-360

32 raise_r_i_eyebrow Vertical
displacement of
right inner eyebrow

ENS B up 4 2 2 +-900 +-360

33 raise_l_m_eyebrow Vertical
displacement of left
middle eyebrow

ENS B up 4 3 2 +-900 +-360

34 raise_r_m_eyebrow Vertical
displacement of
right middle
eyebrow

ENS B up 4 4 2 +-900 +-360

35 raise_l_o_eyebrow Vertical
displacement of left
outer eyebrow

ENS B up 4 5 2 +-900 +-360

36 raise_r_o_eyebrow Vertical
displacement of
right outer eyebrow

ENS B up 4 6 2 +-900 +-360

37 squeeze_l_eyebrow Horizontal
displacement of left
eyebrow

ES B right 4 1 1 +-900 +-300

38 squeeze_r_eyebrow Horizontal
displacement of
right eyebrow

ES B left 4 2 1 +-900 +-300

39 puff_l_cheek Horizontal
displacement of
left cheeck

ES B left 5 1 2 +-900 +-300

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

259

40 puff_r_cheek Horizontal
displacement of
right cheeck

ES B right 5 2 2 +-900 +-300

41 lift_l_cheek Vertical
displacement of left
cheek

ENS U up 5 3 2 +-600 +-180

42 lift_r_cheek Vertical
displacement of
right cheek

ENS U up 5 4 2 +-600 +-180

43 shift_tongue_tip Horizontal
displacement of
tongue tip

MW B right 6 1 1 +-1080 +-420

44 raise_tongue_tip Vertical
displacement of
tongue tip

MNS B up 6 1 1 +-1080 +-420

45 thrust_tongue_tip Depth displacement
of tongue tip

MW B forward 6 1 1 +-1080 +-420

46 raise_tongue Vertical
displacement of
tongue

MNS B up 6 2 1 +-1080 +-420

47 tongue_roll Rolling of the
tongue into U
shape

AU U concave
upward

6 3, 4 512 +300 +60

48 head_pitch Head pitch angle
from top of spine

AU B down 7 na 170 +-1860 +-600

49 head_yaw Head yaw angle
from top of spine

AU B left 7 na 170 +-1860 +-600

50 head_roll Head roll angle
from top of spine

AU B right 7 na 170 +-1860 +-600

51 lower_t_midlip _o Vertical top middle
outer lip
displacement

MNS B down 8 1 2 +-600 +-180

52 raise_b_midlip_o Vertical bottom
middle outer lip
displacement

MNS B up 8 2 2 +-1860 +-600

53 stretch_l_cornerlip_o Horizontal
displacement of left
outer lip corner

MW B left 8 3 2 +-600 +-180

54 stretch_r_cornerlip_o Horizontal
displacement of
right outer lip
corner

MW B right 8 4 2 +-600 +-180

55 lower_t_lip_lm _o Vertical
displacement of
midpoint between
left corner and
middle of top outer
lip

MNS B down 8 5 2 +-600 +-180

56 lower_t_lip_rm _o Vertical MNS B down 8 6 2 +-600 +-180

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

260

displacement of
midpoint between
right corner and
middle of top outer
lip

57 raise_b_lip_lm_o Vertical
displacement of
midpoint between
left corner and
middle of bottom
outer lip

MNS B up 8 7 2 +-1860 +-600

58 raise_b_lip_rm_o Vertical
displacement of
midpoint between
right corner and
middle of bottom
outer lip

MNS B up 8 8 2 +-1860 +-600

59 raise_l_cornerlip_o Vertical
displacement of left
outer lip corner

MNS B up 8 3 2 +-600 +-180

60 raise_r_cornerlip _o Vertical
displacement of
right outer lip
corner

MNS B up 8 4 2 +-600 +-180

61 stretch_l_nose Horizontal
displacement of left
side of nose

ENS B left 9 1 1 +-540 +-120

62 stretch_r_nose Horizontal
displacement of
right side of nose

ENS B right 9 2 1 +-540 +-120

63 raise_nose Vertical
displacement of
nose tip

ENS B up 9 3 1 +-680 +-180

64 bend_nose Horizontal
displacement of
nose tip

ENS B right 9 3 1 +-900 +-180

65 raise_l_ear Vertical
displacement of left
ear

ENS B up 10 1 1 +-900 +-240

66 raise_r_ear Vertical
displacement of
right ear

ENS B up 10 2 1 +-900 +-240

67 pull_l_ear Horizontal
displacement of left
ear

ENS B left 10 3 1 +-900 +-300

68 pull_r_ear Horizontal
displacement of
right ear

ENS B right 10 4 1 +-900 +-300

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

© ISO/IEC ISO/IEC 14496-2:1999(E)

261

Table C-2 -- FAP grouping

Group Number of FAPs

1: visemes and expressions 2

2: jaw, chin, inner lowerlip, cornerlips, midlip 16

3: eyeballs, pupils, eyelids 12

4: eyebrow 8

5: cheeks 4

6: tongue 5

7: head rotation 3

8: outer lip positions 10

9: nose 4

10: ears 4

In the following, each facial expression is defined by a textual description and a pictorial example. (reference [10],
page 114.) This reference was also used for the characteristics of the described expressions.

Table C-3 -- Values for expression_select

expression_select expression
name

textual description

0 na na

1 joy The eyebrows are relaxed. The mouth is open and the mouth
corners pulled back toward the ears.

2 sadness The inner eyebrows are bent upward. The eyes are slightly
closed. The mouth is relaxed.

3 anger The inner eyebrows are pulled downward and together. The
eyes are wide open. The lips are pressed against each other
or opened to expose the teeth.

4 fear The eyebrows are raised and pulled together. The inner
eyebrows are bent upward. The eyes are tense and alert.

5 disgust The eyebrows and eyelids are relaxed. The upper lip is raised
and curled, often asymmetrically.

6 surprise The eyebrows are raised. The upper eyelids are wide open,
the lower relaxed. The jaw is opened.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

ISO/IEC 14496-2:1999(E) © ISO/IEC

262

x
y

z

11.5

11.4

11.2

10.2

10.4

10.10

10.8
10.6

2.14

7.1

11.6 4.6

4.4

4.2

5.2

5.4

2.10

2.12
2.1

11.1

Tongue

6.26.4 6.3

6.1
Mouth

8.1
8.9 8.10 8.5

8.3

8.7

8.2

8.8

8.4
8.6

2.2

2.3

2.6

2.82.9

2.72.5 2.4

2.1
2.12 2.11

2.14
2.10

2.13

10.6
10.8

10.4

10.2

10.10
5.4

5.2

5.3

5.1

10.1

10.9
10.3

10.5
10.7

4.1 4.3
4.54.6

4.4 4.2

11.111.2 11.3

11.4

11.5

x

y

z

Nose

9.6 9.7

9.14 9.13

9.12

9.2

9.4 9.15 9.5

9.3

9.1

Teeth

9.10
9.11

9.8

9.9

Feature points affected by FAPs

Other feature points

Right eye Left eye

3.13

3.7

3.9

3.5

3.1

3.3

3.11

3.14

3.10

3.12 3.6

3.4

3.2
3.8

Figure C-1 -- FDP feature point set

In the following, the notation 2.1.x indicates the x coordinate of feature point 2.1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-2
:19

99

https://iecnorm.com/api/?name=42e96055e0a857137b291f45b0f3a2a3

