
Information technology — Cloud Data 
Management Interface (CDMI)
Technologies de l’information — Interface de management des 
données du nuage informatique (CDMI)

INTERNATIONAL 
STANDARD

ISO/IEC
17826

Reference number
ISO/IEC 17826:2016(E)

Second edition
2016-07-15

© ISO/IEC 2016

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


﻿

ii� © ISO/IEC 2016 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

©  ISO/IEC 2016, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form 
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior 
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of 
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC 17826:2016(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


ISO/IEC 17826:2016(E) 

Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are 
members of ISO or IEC participate in the development of International Standards through technical 
committees established by the respective organization to deal with particular fields of technical activity. 
ISO and IEC technical committees collaborate in fields of mutual interest. Other international 
organizations, governmental and non‐governmental, in liaison with ISO and IEC, also take part in the 
work. In the field of information technology, ISO and IEC have established a joint technical committee, 
ISO/IEC JTC 1. 

The procedures used to develop this document and those intended for its further maintenance are 
described in the ISO/IEC Directives, Part 1.  In particular the different approval criteria needed for the 
different types of document should be noted.  This document was drafted in accordance with the 
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).   

Attention is drawn to the possibility that some of the elements of this document may be the subject of 
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent 
rights.  Details of any patent rights identified during the development of the document will be in the 
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).  

Any trade name used in this document is information given for the convenience of users and does not 
constitute an endorsement. 

For an explanation on the meaning of ISO specific terms and expressions related to conformity 
assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) 
principles in the Technical Barriers to Trade (TBT) see the following 
URL: www.iso.org/iso/foreword.html. 

ISO/IEC 17826 was prepared by SNIA and was adopted, under the PAS procedure, by Joint Technical 
Committee ISO/IEC JTC 1, Information technology, in parallel with its approval by national bodies of ISO 
and IEC. 

This second edition cancels and replaces the first edition (ISO/IEC 17826:2012), which has been 
technically revised. 

© ISO/IEC 2016 – All rights reserved  iii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


Cloud Data Management Interface 
(CDMI™)

Version 1.1.1

ABSTRACT: This CDMI International Standard is intended for application developers who are 
implementing or using cloud storage. It documents how to access cloud storage and to manage the 
data stored there.

This document has been released and approved by the SNIA. The SNIA believes that the ideas, 
methodologies, and technologies described in this document accurately represent the SNIA goals and 
are appropriate for widespread distribution. Suggestion for revision should be directed to 
http://www.snia.org/feedback/.

SNIA Technical Position

March 19, 2015

ISO/IEC 17826:2016(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

234

5
6

7
8
9

101112

131415

16

1718192021

22

2324

ISO/IEC 17826:2016(E)

© ISO/I
USAGE

The SNIA hereby grants permission for individuals to use this document for personal use only, and for 
corporations and other business entities to use this document for internal use only (including internal 
copying, distribution, and display) provided that:

1 Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no 
alteration, and,

2 Any document, printed or electronic, in which material from this document (or any portion hereof) is 
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for 
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document, sell any 
excerpt or this entire document, or distribute this document to third parties. All rights not explicitly granted 
are expressly reserved to SNIA.

Permission to use this document for purposes other than those enumerated above may be requested by 
emailing tcmd@snia.org. Please include the identity of the requesting individual or company and a brief 
description of the purpose, nature, and scope of the requested use.

All code fragments, scripts, data tables, and sample code in this SNIA document are made available under 
the following license:

BSD 3-Clause Software License

Copyright (c) 2014, The Storage Networking Industry Association.

Redistribution and use in source and binary forms, with or without modification, are permitted provided 
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and 
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and 
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of The Storage Networking Industry Association (SNIA) nor the names of its 
contributors may be used to endorse or promote products derived from this software without 
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE.IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 17

82
6:2

01
6

ii SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
DISCLAIMER

The information contained in this publication is subject to change without notice. The SNIA makes no 
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of 
merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained 
herein or for incidental or consequential damages in connection with the furnishing, performance, or use of 
this specification.

Suggestions for revisions should be directed to http://www.snia.org/feedback/.

Copyright © 2015 SNIA. All rights reserved. All other trademarks or registered trademarks are the property 
of their respective owners.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position iii
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
Revision History

Version Date Originator Comments

1.1.1 March 19, 2015 CDMI TWG Released as a SNIA Technical Position.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

iv SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
Contents

SECTION 1 - CDMI Preamble ................................................................... 1
Introduction ..........................................................................................................................................2

1 Scope ..................................................................................................................................................4

2 Normative references ........................................................................................................................4

3 Terms, acronyms, and definitions ...................................................................................................6

4 Conventions .....................................................................................................................................10

4.1 Interface format .........................................................................................................................10
4.2 Typographical conventions ........................................................................................................10
4.3 Request and response body requirements ...............................................................................11
4.4 Key word requirements .............................................................................................................11

5 Overview of cloud storage ..............................................................................................................13

5.1 Introduction ................................................................................................................................13
5.2 What is cloud storage? ..............................................................................................................13
5.3 Data storage as a Service .........................................................................................................13
5.4 Data management for cloud storage .........................................................................................15
5.5 Data and container management ..............................................................................................16
5.6 Reference model for cloud storage interfaces ...........................................................................16
5.7 Cloud Data Management Interface ...........................................................................................17
5.8 Object model for CDMI ..............................................................................................................18
5.9 CDMI metadata .........................................................................................................................19
5.10 Object ID ...................................................................................................................................20
5.11 CDMI object ID format ...............................................................................................................20
5.12 Security .....................................................................................................................................21

5.12.1 Security objectives .......................................................................................................21
5.12.2 HTTP security ...............................................................................................................22
5.12.3 Client authentication .....................................................................................................22
5.12.4 Use of TLS and HTTP ..................................................................................................23
5.12.5 Further information .......................................................................................................23

5.13 Required HTTP support ............................................................................................................23
5.13.1 RFC 2616 support requirements ..................................................................................23
5.13.2 Content-type negotiation ..............................................................................................23
5.13.3 Range support ..............................................................................................................23
5.13.4 URI escaping ................................................................................................................24
5.13.5 Use of URIs ..................................................................................................................24
5.13.6 Reserved characters ....................................................................................................25

5.14 Time representations .................................................................................................................25
5.15 Backwards compatibility ............................................................................................................25

5.15.1 Value transfer encoding ...............................................................................................25
5.15.2 Container export capabilities ........................................................................................26

5.16 Object references ......................................................................................................................26

SECTION 2 - Basic Cloud Storage ......................................................... 28

6 Data object resource operations using HTTP ...............................................................................29

6.1 Overview ...................................................................................................................................29
6.2 Create a data object using HTTP ..............................................................................................29

6.2.1 Synopsis .......................................................................................................................29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position v
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
6.2.2 Capabilities ...................................................................................................................29
6.2.3 Request headers ..........................................................................................................30
6.2.4 Request message body ................................................................................................30
6.2.5 Response headers .......................................................................................................30
6.2.6 Response message body .............................................................................................30
6.2.7 Response status ...........................................................................................................30
6.2.8 Example .......................................................................................................................31

6.3 Read a data object using HTTP ................................................................................................31
6.3.1 Synopsis .......................................................................................................................31
6.3.2 Capabilities ...................................................................................................................31
6.3.3 Request header ............................................................................................................31
6.3.4 Request message body ................................................................................................31
6.3.5 Response headers .......................................................................................................32
6.3.6 Response message body .............................................................................................32
6.3.7 Response status ...........................................................................................................32
6.3.8 Examples ......................................................................................................................32

6.4 Update a data object using HTTP .............................................................................................33
6.4.1 Synopsis .......................................................................................................................33
6.4.2 Capabilities ...................................................................................................................33
6.4.3 Request headers ..........................................................................................................33
6.4.4 Request message body ................................................................................................34
6.4.5 Response header .........................................................................................................34
6.4.6 Response message body .............................................................................................34
6.4.7 Response status ...........................................................................................................34
6.4.8 Examples ......................................................................................................................34

6.5 Delete a data object using HTTP ..............................................................................................35
6.5.1 Synopsis .......................................................................................................................35
6.5.2 Capability ......................................................................................................................35
6.5.3 Request headers ..........................................................................................................35
6.5.4 Request message body ................................................................................................35
6.5.5 Response headers .......................................................................................................35
6.5.6 Response message body .............................................................................................35
6.5.7 Response status ...........................................................................................................36
6.5.8 Example .......................................................................................................................36

7 Container object resource operations using HTTP ......................................................................37

7.1 Overview ...................................................................................................................................37
7.2 Create a container object using HTTP ......................................................................................37

7.2.1 Synopsis .......................................................................................................................37
7.2.2 Capability ......................................................................................................................37
7.2.3 Request headers ..........................................................................................................38
7.2.4 Request message body ................................................................................................38
7.2.5 Response headers .......................................................................................................38
7.2.6 Response message body .............................................................................................38
7.2.7 Response status ...........................................................................................................38
7.2.8 Example .......................................................................................................................38

7.3 Read a container object using HTTP ........................................................................................38
7.4 Update a container object using HTTP .....................................................................................38
7.5 Delete a container object using HTTP .......................................................................................39

7.5.1 Synopsis .......................................................................................................................39
7.5.2 Capability ......................................................................................................................39
7.5.3 Request headers ..........................................................................................................39
7.5.4 Request message body ................................................................................................39
7.5.5 Response headers .......................................................................................................39
7.5.6 Response message body .............................................................................................39
7.5.7 Response status ...........................................................................................................40
7.5.8 Example .......................................................................................................................40

7.6 Create (POST) a new data object using HTTP .........................................................................40

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

vi SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
7.6.1 Synopsis .......................................................................................................................40
7.6.2 Capabilities ...................................................................................................................41
7.6.3 Request headers ..........................................................................................................41
7.6.4 Request message body ................................................................................................41
7.6.5 Response header .........................................................................................................41
7.6.6 Response message body .............................................................................................42
7.6.7 Response status ...........................................................................................................42
7.6.8 Examples ......................................................................................................................42

SECTION 3 - CDMI Core ......................................................................... 43

8 Data object resource operations using CDMI ...............................................................................44

8.1 Overview ...................................................................................................................................44
8.1.1 Data object metadata ...................................................................................................45
8.1.2 Data object consistency ...............................................................................................45
8.1.3 Data object representations .........................................................................................46

8.2 Create a data object using CDMI ..............................................................................................46
8.2.1 Synopsis .......................................................................................................................46
8.2.2 Delayed completion of create .......................................................................................46
8.2.3 Capabilities ...................................................................................................................47
8.2.4 Request headers ..........................................................................................................47
8.2.5 Request message body ................................................................................................48
8.2.6 Response headers .......................................................................................................51
8.2.7 Response message body .............................................................................................51
8.2.8 Response status ...........................................................................................................52
8.2.9 Examples ......................................................................................................................52

8.3 Read a data object using CDMI ................................................................................................55
8.3.1 Synopsis .......................................................................................................................55
8.3.2 Capabilities ...................................................................................................................55
8.3.3 Request headers ..........................................................................................................56
8.3.4 Request message body ................................................................................................56
8.3.5 Response headers .......................................................................................................56
8.3.6 Response message body .............................................................................................57
8.3.7 Response status ...........................................................................................................59
8.3.8 Examples ......................................................................................................................59

8.4 Update a data object using CDMI .............................................................................................62
8.4.1 Synopsis .......................................................................................................................62
8.4.2 Capabilities ...................................................................................................................63
8.4.3 Request headers ..........................................................................................................63
8.4.4 Request message body ................................................................................................64
8.4.5 Response header .........................................................................................................67
8.4.6 Response message body .............................................................................................67
8.4.7 Response status ...........................................................................................................67
8.4.8 Examples ......................................................................................................................67

8.5 Delete a data object using CDMI ...............................................................................................71
8.5.1 Synopsis .......................................................................................................................71
8.5.2 Capability ......................................................................................................................71
8.5.3 Request header ............................................................................................................71
8.5.4 Request message body ................................................................................................71
8.5.5 Response headers .......................................................................................................71
8.5.6 Response message body .............................................................................................71
8.5.7 Response status ...........................................................................................................72
8.5.8 Example .......................................................................................................................72

9 Container object resource operations using CDMI ......................................................................73

9.1 Overview ...................................................................................................................................73

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position vii
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
9.1.1 Container metadata ......................................................................................................74
9.1.2 Reserved container names ..........................................................................................74
9.1.3 Container object addressing .........................................................................................74
9.1.4 Container object representations .................................................................................75

9.2 Create a container object using CDMI ......................................................................................75
9.2.1 Synopsis .......................................................................................................................75
9.2.2 Delayed completion of create .......................................................................................75
9.2.3 Capabilities ...................................................................................................................76
9.2.4 Request headers ..........................................................................................................76
9.2.5 Request message body ................................................................................................77
9.2.6 Response headers .......................................................................................................79
9.2.7 Response message body .............................................................................................79
9.2.8 Response status ...........................................................................................................81
9.2.9 Examples ......................................................................................................................81

9.3 Read a container object using CDMI .........................................................................................83
9.3.1 Synopsis .......................................................................................................................83
9.3.2 Capabilities ...................................................................................................................83
9.3.3 Request headers ..........................................................................................................84
9.3.4 Request message body ................................................................................................84
9.3.5 Response headers .......................................................................................................84
9.3.6 Response message body .............................................................................................84
9.3.7 Response status ...........................................................................................................86
9.3.8 Examples ......................................................................................................................86

9.4 Update a container object using CDMI ......................................................................................88
9.4.1 Synopsis .......................................................................................................................88
9.4.2 Delayed completion of snapshot ..................................................................................88
9.4.3 Capabilities ...................................................................................................................89
9.4.4 Request headers ..........................................................................................................89
9.4.5 Request message body ................................................................................................90
9.4.6 Response header .........................................................................................................92
9.4.7 Response message body .............................................................................................92
9.4.8 Response status ...........................................................................................................92
9.4.9 Examples ......................................................................................................................92

9.5 Delete a container object using CDMI .......................................................................................93
9.5.1 Synopsis .......................................................................................................................93
9.5.2 Capability ......................................................................................................................93
9.5.3 Request header ............................................................................................................94
9.5.4 Request message body ................................................................................................94
9.5.5 Response headers .......................................................................................................94
9.5.6 Response message body .............................................................................................94
9.5.7 Response status ...........................................................................................................94
9.5.8 Example .......................................................................................................................94

9.6 Create (POST) a new data object using CDMI .........................................................................95
9.6.1 Synopsis .......................................................................................................................95
9.6.2 Delayed completion of create .......................................................................................95
9.6.3 Capabilities ...................................................................................................................96
9.6.4 Request headers ..........................................................................................................97
9.6.5 Request message body ................................................................................................98
9.6.6 Response headers .....................................................................................................101
9.6.7 Response message body ...........................................................................................101
9.6.8 Response status .........................................................................................................102
9.6.9 Examples ....................................................................................................................103

9.7 Create (POST) a new queue object using CDMI ....................................................................105
9.7.1 Synopsis .....................................................................................................................105
9.7.2 Delayed completion of create .....................................................................................105
9.7.3 Capabilities .................................................................................................................106
9.7.4 Request headers ........................................................................................................107
9.7.5 Request message body ..............................................................................................107

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

viii SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
9.7.6 Response headers .....................................................................................................108
9.7.7 Response message body ...........................................................................................108
9.7.8 Response status .........................................................................................................110
9.7.9 Example .....................................................................................................................110

SECTION 4 - CDMI Advanced .............................................................. 112

10 Domain object resource operations using CDMI ........................................................................113

10.1 Overview .................................................................................................................................113
10.1.1 Domain object metadata ............................................................................................114
10.1.2 Domain object summaries ..........................................................................................114
10.1.3 Domain object membership ........................................................................................117
10.1.4 Domain usage in access control ................................................................................119
10.1.5 Domain object representations ...................................................................................120

10.2 Create a domain object using CDMI .......................................................................................120
10.2.1 Synopsis .....................................................................................................................120
10.2.2 Capabilities .................................................................................................................120
10.2.3 Request headers ........................................................................................................120
10.2.4 Request message body ..............................................................................................121
10.2.5 Response headers .....................................................................................................122
10.2.6 Response message body ...........................................................................................122
10.2.7 Response status .........................................................................................................123
10.2.8 Example .....................................................................................................................123

10.3 Read a domain object using CDMI ..........................................................................................124
10.3.1 Synopsis .....................................................................................................................124
10.3.2 Capabilities .................................................................................................................124
10.3.3 Request headers ........................................................................................................124
10.3.4 Request message body ..............................................................................................124
10.3.5 Response headers .....................................................................................................125
10.3.6 Response message body ...........................................................................................125
10.3.7 Response status .........................................................................................................126
10.3.8 Examples ....................................................................................................................126

10.4 Update a domain object using CDMI .......................................................................................127
10.4.1 Synopsis .....................................................................................................................127
10.4.2 Capability ....................................................................................................................128
10.4.3 Request headers ........................................................................................................128
10.4.4 Request message body ..............................................................................................128
10.4.5 Response header .......................................................................................................129
10.4.6 Response message body ...........................................................................................129
10.4.7 Response status .........................................................................................................130
10.4.8 Example .....................................................................................................................130

10.5 Delete a domain object using CDMI ........................................................................................130
10.5.1 Synopsis .....................................................................................................................130
10.5.2 Capability ....................................................................................................................131
10.5.3 Request header ..........................................................................................................131
10.5.4 Request message body ..............................................................................................131
10.5.5 Response headers .....................................................................................................131
10.5.6 Response message body ...........................................................................................131
10.5.7 Response status .........................................................................................................131
10.5.8 Example .....................................................................................................................132

11 Queue object resource operations using CDMI ..........................................................................133

11.1 Overview .................................................................................................................................133
11.1.1 Queue object metadata ..............................................................................................134
11.1.2 Queue object addressing ...........................................................................................134
11.1.3 Queue object representations ....................................................................................134

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position ix
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
11.2 Create a queue object using CDMI .........................................................................................134
11.2.1 Synopsis .....................................................................................................................134
11.2.2 Delayed completion of create .....................................................................................135
11.2.3 Capabilities .................................................................................................................135
11.2.4 Request headers ........................................................................................................136
11.2.5 Request message body ..............................................................................................136
11.2.6 Response headers .....................................................................................................138
11.2.7 Response message body ...........................................................................................138
11.2.8 Response status .........................................................................................................139
11.2.9 Examples ....................................................................................................................140

11.3 Read a queue object using CDMI ...........................................................................................141
11.3.1 Synopsis .....................................................................................................................141
11.3.2 Capabilities .................................................................................................................141
11.3.3 Request headers ........................................................................................................142
11.3.4 Request message body ..............................................................................................142
11.3.5 Response headers .....................................................................................................142
11.3.6 Response message body ...........................................................................................142
11.3.7 Response status .........................................................................................................145
11.3.8 Examples ....................................................................................................................145

11.4 Update a queue object using CDMI ........................................................................................148
11.4.1 Synopsis .....................................................................................................................148
11.4.2 Capability ....................................................................................................................148
11.4.3 Request headers ........................................................................................................148
11.4.4 Request message body ..............................................................................................149
11.4.5 Response header .......................................................................................................150
11.4.6 Response message body ...........................................................................................150
11.4.7 Response status .........................................................................................................150
11.4.8 Examples ....................................................................................................................150

11.5 Delete a queue object using CDMI ..........................................................................................151
11.5.1 Synopsis .....................................................................................................................151
11.5.2 Capability ....................................................................................................................151
11.5.3 Request header ..........................................................................................................151
11.5.4 Request message body ..............................................................................................152
11.5.5 Response headers .....................................................................................................152
11.5.6 Response message body ...........................................................................................152
11.5.7 Response status .........................................................................................................152
11.5.8 Example .....................................................................................................................152

11.6 Enqueue a new queue value using CDMI ...............................................................................152
11.6.1 Synopsis .....................................................................................................................152
11.6.2 Capabilities .................................................................................................................153
11.6.3 Request headers ........................................................................................................153
11.6.4 Request message body ..............................................................................................153
11.6.5 Response headers .....................................................................................................155
11.6.6 Response message body ...........................................................................................155
11.6.7 Response status .........................................................................................................156
11.6.8 Examples ....................................................................................................................156

11.7 Delete a queue object value using CDMI ................................................................................159
11.7.1 Synopsis .....................................................................................................................159
11.7.2 Capability ....................................................................................................................159
11.7.3 Request header ..........................................................................................................159
11.7.4 Request message body ..............................................................................................159
11.7.5 Response headers .....................................................................................................160
11.7.6 Response message body ...........................................................................................160
11.7.7 Response status .........................................................................................................160
11.7.8 Examples ....................................................................................................................160

12 Capability object resource operations using CDMI ....................................................................161

12.1 Overview .................................................................................................................................161

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

x SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
12.1.1 Cloud storage system-wide capabilities .....................................................................162
12.1.2 Storage system metadata capabilities ........................................................................165
12.1.3 Data system metadata capabilities .............................................................................165
12.1.4 Data object capabilities ..............................................................................................168
12.1.5 Container capabilities .................................................................................................169
12.1.6 Domain object capabilities ..........................................................................................171
12.1.7 Queue object capabilities ...........................................................................................172
12.1.8 Capability object representations ...............................................................................172

12.2 Read a capabilities object using CDMI ....................................................................................173
12.2.1 Synopsis .....................................................................................................................173
12.2.2 Capability ....................................................................................................................173
12.2.3 Request headers ........................................................................................................173
12.2.4 Request message body ..............................................................................................173
12.2.5 Response headers .....................................................................................................174
12.2.6 Response message body ...........................................................................................174
12.2.7 Response status .........................................................................................................175
12.2.8 Examples ....................................................................................................................175

13 Exported protocols ........................................................................................................................177

13.1 Overview .................................................................................................................................177
13.2 Exported protocol structure .....................................................................................................178

13.2.1 Mapping names from CDMI to another protocol ........................................................179
13.2.1.1 Capabilities .................................................................................................179
13.2.1.2 Domains .....................................................................................................179
13.2.1.3 Caching ......................................................................................................179
13.2.1.4 Groups .......................................................................................................180
13.2.1.5 Synopsis .....................................................................................................180

13.2.2 Administrative users ...................................................................................................181
13.2.3 User and groupname mapping syntax and evaluation rules ......................................182

13.3 Discovering and mounting containers via foreign protocols ....................................................183
13.4 NFS exported protocol ............................................................................................................184
13.5 CIFS exported protocol ...........................................................................................................186
13.6 OCCI exported protocol ...........................................................................................................187
13.7 iSCSI export modifications ......................................................................................................187

13.7.1 Read container ...........................................................................................................187
13.7.2 Create and update containers ....................................................................................188
13.7.3 Modify an export .........................................................................................................188

13.8  WebDAV exported protocol ....................................................................................................188

14 CDMI snapshots .............................................................................................................................190

15 Serialization/deserialization ..........................................................................................................191

15.1 Overview .................................................................................................................................191
15.2 Exporting serialized data .........................................................................................................191
15.3 Importing serialized data .........................................................................................................191

15.3.1 Canonical format ........................................................................................................192
15.3.2 Example JSON canonical serialized format ...............................................................192

16 Metadata .........................................................................................................................................194

16.1 Access control .........................................................................................................................194
16.1.1 ACL and ACE structure ..............................................................................................194
16.1.2 ACE types ..................................................................................................................194
16.1.3 ACE who ....................................................................................................................194
16.1.4 ACE flags ...................................................................................................................195
16.1.5 ACE bit masks ............................................................................................................196
16.1.6 ACL evaluation ...........................................................................................................198
16.1.7 Example ACE mask expressions ...............................................................................200
16.1.8 Canonical format for ACE hexadecimal quantities .....................................................201

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position xi
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
16.1.9 JSON format for ACLs ................................................................................................201
16.2 Support for user metadata .......................................................................................................202
16.3 Support for storage system metadata .....................................................................................202
16.4 Support for data system metadata ..........................................................................................204
16.5 Support for provided data system metadata ...........................................................................210
16.6 Metadata update operations ....................................................................................................211

17 Retention and hold management .................................................................................................212

17.1 Introduction ..............................................................................................................................212
17.2 Retention management disciplines .........................................................................................212
17.3 CDMI retention ........................................................................................................................212

17.3.1 Overview ....................................................................................................................212
17.3.2 Examples ....................................................................................................................213

17.4 CDMI hold ...............................................................................................................................214
17.4.1 Overview ....................................................................................................................214
17.4.2 Examples ....................................................................................................................216

17.5 CDMI auto-deletion .................................................................................................................217
17.6 Retention security considerations ...........................................................................................217

18 Scope specification .......................................................................................................................219

18.1 Introduction ..............................................................................................................................219
18.2 Examples .................................................................................................................................219
18.3 Query matching expressions ...................................................................................................221

19 Results specification .....................................................................................................................226

19.1 Introduction ..............................................................................................................................226
19.2 Examples .................................................................................................................................226

20 Logging ...........................................................................................................................................228

20.1 Overview .................................................................................................................................228
20.2 Object logging .........................................................................................................................228
20.3 Security logging .......................................................................................................................228
20.4 Data management logging ......................................................................................................229
20.5 Logging queues .......................................................................................................................229
20.6 Logging security considerations ..............................................................................................231

21 Notification queues .......................................................................................................................232

21.1 Overview .................................................................................................................................232
21.2 Required metadata ..................................................................................................................232
21.3 System-created metadata .......................................................................................................235

22 Query queues .................................................................................................................................236

22.1 Overview .................................................................................................................................236
22.2 Required metadata ..................................................................................................................236
22.3 System-created metadata .......................................................................................................237
22.4 Extending CDMI query ............................................................................................................238

SECTION 5 - CDMI Annexes ................................................................. 239

Annex A
(informative)
Extensions ....................................................................................................................... 240

A.1 Overview .................................................................................................................................240
A.2 Summary metadata for bandwidth ..........................................................................................240

A.2.1 Overview ........................................................................................................................240

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

xii SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
A.2.2 Changes to CDMI 1.1 ....................................................................................................240
A.3 Expiring Access Control Entries (ACEs) .................................................................................242

A.3.1 Overview ........................................................................................................................242
A.3.2 Changes to CDMI 1.1 ....................................................................................................242

A.4 Group storage system metadata .............................................................................................243
A.4.1 Overview ........................................................................................................................243
A.4.2 Changes to CDMI 1.1 ....................................................................................................243

A.5 Versioning ...............................................................................................................................244
A.5.1 Overview ........................................................................................................................244
A.5.2 Changes to  CDMI 1.1 ...................................................................................................244

Bibliography .....................................................................................................................................259

Bibliography ........................................................................................................................... 264

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position xiii
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

xiv SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

Figures

Figure 1 – Existing data storage interface standards ................................................................................14
Figure 2 – Storage interfaces for object storage client data ......................................................................15
Figure 3 – Cloud storage reference model ................................................................................................16
Figure 4 – CDMI object model ...................................................................................................................18
Figure 5 – Object transitions between named and ID-only ........................................................................19
Figure 6 – Object ID format .......................................................................................................................20
Figure 7 – Hierarchy of capabilities .........................................................................................................161
Figure 8 – CDMI and OCCI in an integrated cloud computing environment ...........................................177
Figure 9 – Snapshot container structure .................................................................................................190
Figure 10 – Object retention ....................................................................................................................213
Figure 11 – Object hold ...........................................................................................................................215
Figure 12 – Object hold on object with retention .....................................................................................215
Figure 13 – Object with multiple holds .....................................................................................................215
Figure 14 – Updates to a non-version-enabled data object .....................................................................249
Figure 15 – Updates to a version-enabled data object ............................................................................250
Figure 16 – Linkages between a version-enabled data object and data object versions ........................251
Figure 17 – Overlapping concurrent updates ..........................................................................................252
Figure 18 – Linkages for overlapping updates ........................................................................................252
Figure 19 – Nested concurrent updates ..................................................................................................253
Figure 20 – Linkages for nested updates ................................................................................................253
Figure 21 – Version to capabilityURI relationships ..................................................................................254

ISO/IEC 17826:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
Tables

Table 1 – Interface format .........................................................................................................................10
Table 2 – Key word requirements ..............................................................................................................11
Table 3 – Types of resources in the model ...............................................................................................18
Table 4 – Creation/consumption of storage system metadata ..................................................................19
Table 5 – Relative URIs resolved against root URIs .................................................................................24
Table 6 – Request headers - Create a data object using HTTP ................................................................30
Table 7 – HTTP status codes - Create a data object using HTTP ............................................................30
Table 8 – Request header - Read a data object using HTTP ....................................................................31
Table 9 – Response headers - Read a data object using HTTP  ..............................................................32
Table 10 – HTTP status codes - Read a data object using HTTP .............................................................32
Table 11 – Request headers - Update a data object using HTTP .............................................................33
Table 12 – Response header - Update a data object using HTTP  ...........................................................34
Table 13 – HTTP status codes - Update a data object using HTTP ..........................................................34
Table 14 – HTTP status codes - Delete a data object using HTTP ...........................................................36
Table 15 – HTTP status codes - Create a container object using HTTP ...................................................38
Table 16 – HTTP status codes - Delete a container object using HTTP ...................................................40
Table 17 – Request headers - Create a new data object using HTTP ......................................................41
Table 18 – Response header - Create a new data object using HTTP .....................................................41
Table 19 – HTTP status codes - Create a new data object using HTTP ...................................................42
Table 20 – Request headers for creating a data object using CDMI .........................................................47
Table 21 – Request message body - Create a data object using CDMI ...................................................48
Table 22 – Response headers - Create a data object using CDMI ...........................................................51
Table 23 – Response message body - Create a data object using CDMI .................................................51
Table 24 – HTTP status codes - Create a data object using CDMI ...........................................................52
Table 25 – Request headers - Read a data object using CDMI ................................................................56
Table 26 – Response headers - Read a data object using CDMI  ............................................................56
Table 27 – Response message body - Read a data object using CDMI ...................................................57
Table 28 – HTTP status codes - Read a data object using CDMI .............................................................59
Table 29 – Request headers - Update a data object using CDMI .............................................................63
Table 30 – Request message body - Update a data object using CDMI ...................................................64
Table 31 – Response header - Update a data object using CDMI ............................................................67
Table 32 – HTTP status codes - Update a data object using CDMI ..........................................................67
Table 33 – Request header - Delete a data object using CDMI ................................................................71
Table 34 – HTTP status codes - Delete a data object using CDMI ...........................................................72
Table 35 – Container metadata .................................................................................................................74
Table 36 – Request headers - Create a container object using CDMI ......................................................76
Table 37 – Request message body - Create a container object using CDMI ............................................77
Table 38 – Response headers - Create a container object using CDMI ...................................................79
Table 39 – Response message body - Create a container object using CDMI .........................................79
Table 40 – HTTP status codes - Create a container object using CDMI ...................................................81
Table 41 – Request headers - Read a container object using CDMI ........................................................84
Table 42 – Response headers - Read a container object using CDMI .....................................................84
Table 43 – Response message body - Read a container object using CDMI ...........................................84
Table 44 – HTTP status codes - Read a container object using CDMI .....................................................86
Table 45 – Request headers - Update a container object using CDMI .....................................................89
Table 46 – Request message body - Update a container object using CDMI ...........................................90
Table 47 – Response header - Update a container object using CDMI ....................................................92
Table 48 – HTTP status codes - Update a container object using CDMI ..................................................92
Table 49 – Request header - Delete a container object using CDMI ........................................................94
Table 50 – HTTP status codes - Delete a container object using CDMI ...................................................94
Table 51 – Request headers - Create a new data object using CDMI ......................................................97
Table 52 – Request message body - Create a new data object using CDMI ............................................98
Table 53 – Response headers - Create a new data object using CDMI  ................................................101
Table 54 – Response message body - Create a new data object using CDMI .......................................101
Table 55 – HTTP status codes - Create a new data object using CDMI .................................................102
Table 56 – Request headers - Create a new queue object using CDMI .................................................107

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position xv
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
Table 57 – Request message body - Create a new queue object using CDMI .......................................107
Table 58 – Response headers - Create a new queue object using CDMI ..............................................108
Table 59 – Response message body - Create a new queue object using CDMI ....................................108
Table 60 – HTTP status codes - Create a new queue object using CDMI ..............................................110
Table 61 – Required metadata for a domain object ................................................................................114
Table 62 – Contents of domain summary objects ...................................................................................115
Table 63 – Required settings for domain member user objects ..............................................................118
Table 64 – Required settings for domain member delegation objects ....................................................119
Table 65 – Request headers - Create a domain object using CDMI .......................................................120
Table 66 – Request message body - Create a domain object using CDMI .............................................121
Table 67 – Response headers - Create a domain object using CDMI ....................................................122
Table 68 – Response message body - Create a domain object using CDMI ..........................................122
Table 69 – HTTP status codes - Create a domain object using CDMI ....................................................123
Table 70 – Request headers - Read a domain object using CDMI .........................................................124
Table 71 – Response headers - Read a domain object using CDMI ......................................................125
Table 72 – Response message body - Read a domain object using CDMI ............................................125
Table 73 – HTTP status codes - Read a domain object using CDMI ......................................................126
Table 74 – Request headers - Update a domain object using CDMI ......................................................128
Table 75 – Request message body - Update a domain object using CDMI ............................................128
Table 76 – Response header - Update a domain object using CDMI .....................................................129
Table 77 – HTTP status codes - Update a domain object using CDMI ...................................................130
Table 78 – Request header - Delete a domain object using CDMI .........................................................131
Table 79 – HTTP status codes - Delete a domain object using CDMI ....................................................131
Table 80 – Request headers - Create a queue object using CDMI .........................................................136
Table 81 – Request message body - Create a queue object using CDMI ..............................................136
Table 82 – Response headers - Create a queue object using CDMI ......................................................138
Table 83 – Response message body - Create a queue object using CDMI ............................................138
Table 84 – HTTP status codes - Create a queue object using CDMI ......................................................139
Table 85 – Request headers - Read a queue object using CDMI ...........................................................142
Table 86 – Response headers - Read a queue object using CDMI ........................................................142
Table 87 – Response message body - Read a queue object using CDMI ..............................................142
Table 88 – HTTP status codes - Read a queue object using CDMI ........................................................145
Table 89 – Request headers - Update a queue object using CDMI ........................................................148
Table 90 – Request message body - Update a queue object using CDMI ..............................................149
Table 91 – Response header - Update a queue object using CDMI .......................................................150
Table 92 – HTTP status codes - Update a queue object using CDMI .....................................................150
Table 93 – Request header - Delete a queue object using CDMI ...........................................................151
Table 94 – HTTP status codes - Delete a queue object using CDMI ......................................................152
Table 95 – Request headers - Enqueue a new queue object value using CDMI ....................................153
Table 96 – Request message body - Enqueue a new queue object value using CDMI ..........................153
Table 97 – HTTP status codes - Enqueue a new queue object value using CDMI .................................156
Table 98 – Request header - Delete a queue object value using CDMI .................................................159
Table 99 – HTTP status codes - Delete a queue object value using CDMI ............................................160
Table 100 – System-wide capabilities .....................................................................................................162
Table 101 – Capabilities for storage system metadata ...........................................................................165
Table 102 – Capabilities for data system metadata ................................................................................166
Table 103 – Capabilities for data objects ................................................................................................168
Table 104 – Capabilities for containers ...................................................................................................169
Table 105 – Capabilities for domain objects ............................................................................................171
Table 106 – Capabilities for queue objects .............................................................................................172
Table 107 – Request headers - Read a capabilities object using CDMI .................................................173
Table 108 – Response headers - Read a capabilities object using CDMI ..............................................174
Table 109 – Response message body - Read a capabilities object using CDMI ....................................174
Table 110 – HTTP status codes - Read a capabilities object using CDMI ..............................................175
Table 111 – Required members of the NFS protocol structure ...............................................................184
Table 112 – Optional NFS export parameters .........................................................................................184
Table 113 – Required members of the CIFS protocol structure ..............................................................186
Table 114 – ACE types ............................................................................................................................194

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

xvi SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
Table 115 – Who identifiers .....................................................................................................................195
Table 116 – ACE flags .............................................................................................................................195
Table 117 – ACE bit masks .....................................................................................................................196
Table 118 – Storage system metadata ....................................................................................................202
Table 119 – Data system metadata .........................................................................................................204
Table 120 – Provided values of data systems metadata items ...............................................................210
Table 121 – Query matching expressions ...............................................................................................221
Table 122 – Required metadata for a logging queue ..............................................................................230
Table 123 – Logging status metadata .....................................................................................................231
Table 124 – Required metadata for a notification queue .........................................................................232
Table 125 – Notification status metadata ................................................................................................235
Table 126 – Required metadata for a query queue .................................................................................236
Table 127 – Query status metadata ........................................................................................................237

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position xvii
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


ISO/IEC 17826:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


Section I

CDMI Preamble

ISO/IEC 17826:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2
3
4

5

ISO/IEC 17826:2016(E)

© ISO/I
Introduction

This Cloud Data Management Interface (CDMI™) International Standard is intended for application 
developers who are implementing or using cloud storage. It documents how to access cloud storage and 
to manage the data stored there.

This document is organized as follows:

1 - Scope Defines the scope of this document

2 - References Lists the normative references for this document

3 - Terms Provides terminology used in this document

4 - Conventions Describes the conventions used in presenting the 
interfaces and the typographical conventions used in 
this document

5 - Overview of Cloud Storage Provides a brief overview of cloud storage and details 
the philosophy behind this International Standard as a 
model for the operations

6 - Data Object Resource Operations using HTTP Provides the normative standard of data object 
resource operations using HTTP

7 - Container Object Resource Operations using HTTP Provides the normative standard of container object 
resource operations using HTTP

8 - Data Object Resource Operations  using CDMI Provides the normative standard of data object 
resource operations using CDMI

9 - Container Object Resource Operations using CDMI Provides the normative standard of container object 
resource operations using CDMI

10 - Domain Object Resource Operations using CDMI Provides the normative standard of domain object 
resource operations using CDMI

11 - Queue Object Resource Operations using CDMI Provides the normative standard of queue object 
resource operations using CDMI

12 - Capability Object Resource Operations using CDMI Provides the normative standard of capability object 
resource operations using CDMI

13 - Exported Protocols Discusses how virtual machines in the cloud computing 
environment can use the exported protocols from 
CDMI containers

14 - Snapshots Discusses how snapshots are accessed under CDMI 
containers

15 - Serialization/Deserialization Discusses serialization and deserialization, including 
import and export of serialized data under CDMI

16 - Metadata Provides the normative standard of the metadata used 
in the interface

17 - Retention and Hold Management Describes the optional retention management 
disciplines to be implemented into the system 
management functions

18 - Scope Specification Describes the structure of the scope specification for 
JSON objects

19 - Results Specification Provides a standardized mechanism to define subsets 
of CDMI object contents

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 2
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
20 - Logging Describes CDMI functional logging for object functions, 
security events, data management events, and queues

21 - Notification Queues Describes how CDMI clients may efficiently discover 
what changes have occurred to the system

22 - Query Queues Describes how CDMI clients may efficiently discover 
what content matches a given set of metadata query 
criteria or full-content search criteria

Annex A - (informative) Extensions Provides informative vendor extensions. Each 
extension is added to the standard when at least two 
vendors implement the extension.

Bibliography Provides informative references that may contain 
additional useful information

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

3 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2
3
4

5

6
7
8

9
10
11
12

13

14

15
16

17
18

19

20

21
22

23
24

25

26
27

28
29

30
31

32

33
34

35

36
37

38
39

40
41

ISO/IEC 17826:2016(E)

© ISO/I
1    Scope

This CDMI™ International Standard specifies the interface to access cloud storage and to manage the 
data stored therein. This International Standard applies to developers who are implementing or using cloud 
storage. 

2    Normative references

The following documents, in whole or in part, are normatively referenced in this document and are 
indispensable for its application. For dated references, only the edition cited applies. For undated 
references, the latest edition of the referenced document (including any amendments) applies. 

The provisions of the referenced specifications other than ISO/IEC, IEC, ISO, and ITU documents, as 
identified in this clause, are valid within the context of this International Standard. The reference to such a 
specification within this International Standard does not give it any further status within ISO/IEC. In 
particular, it does not give the referenced specifications the status of an International Standard. 

ISO 3166, Codes for the representation of names of countries and their subdivisions (Parts 1, 2 and 3)

ISO 4217:2008, Codes for the representation of currencies and funds

ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation of 
dates and times

ISO/IEC 9594-8:2008, Information technology — Open Systems Interconnection — The Directory: Public-
key and attribute certificate frameworks

ISO/IEC 14776-414, SCSI Architecture Model — 4 (SAM-4)

ISO/IEC 17788:2014, Information technology — Cloud computing — Overview and vocabulary

ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards, 6th edition, 
2011

IEEE Std 1003.1, 2004, POSIX ERE, The Open Group, Base Specifications Issue 6, available at <http://
www.unix.org/version3/ieee_std.html>

RFC 1867, Form-based File Upload in HTML, available at <http://www.ietf.org/rfc/rfc1867.txt>

RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies, 
available at <http://www.ietf.org/rfc/rfc2045.txt>

RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, available at <http://
www.ietf.org/rfc/rfc2046.txt>

RFC 2578, Structure of Management Information Version 2 (SMIv2), available at <http://www.ietf.org/rfc/
rfc2578.txt>

RFC 2616, Hypertext Transfer Protocol — HTTP/1.1, available at <http://www.ietf.org/rfc/rfc2616.txt>

RFC 2617, HTTP Authentication: Basic and Digest Access Authentication, available at <http://
datatracker.ietf.org/doc/rfc2617/>

RFC 3530, Network File System (NFS) Version 4 Protocol, available at <http://www.ietf.org/rfc/rfc3530.txt>

RFC 3720, Internet Small Computer Systems Interface (iSCSI), available at <http://www.ietf.org/rfc/
rfc3720.txt>

RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, available at <http://www.ietf.org/rfc/
rfc3986.txt>

RFC 4627, The Application/JSON Media Type for JavaScript Object Notation (JSON), available at <http://
www.ietf.org/rfc/rfc4627.txt>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 4
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

42
43

44
45

46
47

48
49

50
51

ISO/IEC 17826:2016(E)

© ISO/I
RFC 4648, The Base16, Base32, and Base64 Data Encodings, available at <http://www.ietf.org/rfc/
rfc4648.txt>

RFC 4918, HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV), available at 
<http://www.ietf.org/rfc/rfc4918.txt>

RFC 6208, Cloud Data Management Interface (CDMI) Media Types, available at <http://www.ietf.org/rfc/
rfc6208.txt>

RFC 6839, Additional Media Type Structured Syntax Suffixes, available at <http://www.ietf.org/rfc/
rfc6839.txt>

SNIA TLS, TLS Specification for Storage Systems, version 1.0, available at <https://snia.org/
tech_activities/standards/curr_standards/tls>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

5 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2
3

4
5
6
7

8
9

10
11

12

13
14

15
16

17

18
19

20

21
22
23

24

25
26

27
28

29

30
31

ISO/IEC 17826:2016(E)

© ISO/I
3    Terms, acronyms, and definitions

For the purposes of this document, the terms and definitions given in Rec. ITU-T Y.3500 | ISO/IEC 
17788:2014 and the following apply.

3.1
Access Control List
ACL
persistent list, commonly composed of Access Control Entries (ACEs), that enumerates the rights of 
principals (users and groups) to access resources

3.2
API
Application Programming Interface

3.3
CDMI™
Cloud Data Management Interface

3.4
CDMI capability

object that describes what operations are supported for a given cloud or cloud objectNote 1 to entry: The 
mimetype for this object is application/cdmi-capability.

3.5
CDMI container
object that stores zero or more children objects and associated metadata

Note 1 to entry: The mimetype for this object is application/cdmi-container. 

3.6
CDMI data object
object that stores an array of bytes (value) and associated metadata

Note 1 to entry: The mimetype for this object is application/cdmi-object.

3.7
CDMI domain
object that stores zero or more children domains and associated metadata describing object administrative 
ownership

Note 1 to entry: The mimetype for this object is application/cdmi-domain.

3.8
CDMI object
one of CDMI capabilities, CDMI container, CDMI data object, CDMI domain, or CDMI queue

3.9
CDMI queue
object that stores a first-in, first-out set of values and associated metadata

Note 1 to entry: The mimetype for this object is application/cdmi-queue.

3.10
CIFS
Common Internet File System

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 6
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

32
33

34
35

36
37

38
39
40
41

42
43
44

45
46

47
48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
63

ISO/IEC 17826:2016(E)

© ISO/I
3.11
cloud storage
see 3.4 Data Storage as a Service

3.12
CRC
cyclic redundancy check

3.13
CRUD
create, retrieve, update, delete

3.14
Data Storage as a Service
DSaaS
delivery of appropriately configured virtual storage and related data services over a network, based on a 
request for a given service level

3.15
domain
shared user authorization database that contains users, groups, and their security policies and associated 
accounting information

Note 1 to entry: Each CDMI object belongs to a single domain, and each domain provides user mapping 
and accounting information.

3.16
eventual consistency
behavior of transactional systems that does not provide immediate consistency guarantees to provide 
enhanced system availability and tolerance to network partitioning 

3.17
FC
Fibre Channel

3.18
FCoE
Fibre Channel over Ethernet

3.19
HTTP
HyperText Transfer Protocol

3.20
iSCSI
Internet Small Computer Systems Interface

3.21
JSON
JavaScript Object Notation

3.22
LDAP
Lightweight Directory Access Protocol

3.23
LUN
Logical Unit Number

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

7 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

64
65

66
67

68
69

70
71

72
73

74
75

76
77

78
79

80
81
82
83

84
85

86
87

88
89

90
91

92
93
94

ISO/IEC 17826:2016(E)

© ISO/I
3.24
metadata
data about other data (see ISO 14701:2012)

3.25
MIME
Multipurpose Internet Mail Extensions

3.26
NFS
Network File System

3.27
object
entity that has an object ID, has a unique URI, and contains state

Note 1 to entry: Types of CDMI objects include data objects, container objects, capability objects, domain 
objects, and queue objects. 

3.28
object identifier
globally-unique value assigned at creation time to identify an object

3.29
OCCI
Open Cloud Computing Interface

3.30
POSIX
Portable Operating System Interface

3.31
Representational State Transfer
REST
specific set of principles for defining, addressing, and interacting with resources addressable by URIs

3.32
RPO
recovery point objective

3.33
RTO
recovery time objective

3.34
service level
performance targets for a service

3.35
SNMP
Simple Network Management Protocol

3.36
thin provisioning
technology that allocates the physical capacity of a volume or file system as applications write data, rather 
than pre-allocating all the physical capacity at the time of provisioning

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 8
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

95
96
97

98
99

100
101
102

103
104

105
106

ISO/IEC 17826:2016(E)

© ISO/I
3.37
Uniform Resource Identifier
URI
compact sequence of characters that identifies an abstract or physical resource

3.38
VIM
Vendor Interface Module

3.39
virtualization
presentation of resources as if they are physical, when in fact, they are decoupled from the underlying 
physical resources

3.40
WebDAV
Web Distributed Authoring and Versioning

3.41
XAM
eXtensible Access Method

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

9 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3

4

5

6

7
8
9

10
11

12
13
14
15
16
17
18

19
20

ISO/IEC 17826:2016(E)

© ISO/I
4    Conventions

4.1 Interface format

Each interface description has nine components, as described in Table 1.

4.2 Typographical conventions

All code text and HTTP status codes are shown in a fixed-width font, as follows:

EXAMPLE 1  

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "mimetype" : "text/plain",
    "metadata" : {
        
    },
    "value" : "This is the Value of this Data Object"
}

EXAMPLE 2 Requesting an optional field that is not present shall result in an HTTP status code of 404 Not 
Found.

Table 1 — Interface format

Component Description

Synopsis The GET, PUT, POST, and DELETE semantics

Delayed completion For long-running operations, a description of behavior when the operation does 
not immediately complete

Capabilities A description of the supported operations

Request headers The request headers, such as Accept, Authorization, Content-Length, Content-
Type, X-CDMI-Specification-Version

Request message body A description of the message body contents

Response headers The response headers, such as Content-Length, Content-Type

Response message body A description of the message body contents

Response status A list of HTTP status codes

Example An example of the operation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 10
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

21

22

23

24
25
26

27

28

29
30

ISO/IEC 17826:2016(E)

© ISO/I
4.3 Request and response body requirements 

In request and response body tables, the Requirement column contains one of the following three values. 

• Mandatory. The value specified in this row shall be provided. 

• Conditional. If the conditions specified in the Description cell of this row (to the left of the 
Requirement) are met, the value specified in this row shall be provided. Otherwise, it can be 
provided unless the Description specifically prohibits it, in which case it shall not be provided. 

• Optional. The value specified in this row may be provided. 

4.4 Key word requirements

In this International Standard, the key words in Table 2 shall be interpreted as described in ISO/IEC 
Directives, Part 2.

Table 2 — Key word requirements

Key words Denotes Description
Equivalent 
expressions (for 
exception cases only)

shall requirement An action that is unconditionally required.

• Do not use must as an alternative to shall.

• To express a direct instruction, for example, when 
referring to steps to be taken in a test method, use 
the imperative mood in English. 
EXAMPLE: Switch on the recorder.

• is to

• is required to

• it is required that

• has to

• only ... is permitted

• it is necessary

shall not An action  that is unconditionally prohibited.

Do not use may not instead of shall not to express a 
prohibition.

• is not allowed 
[permitted] 
[acceptable] 
[permissible]

• is required to be not

• is required that ... be 
not

• is not to be

should recommendation An action that is recommended when choosing 
among several possibilities, or an action that is 
preferred but not necessarily required.

• it is recommended 
that

• ought to

should not An action or certain possibility or course of action 
that is deprecated but not prohibited.

• it is not 
recommended that

• ought not to

may permission An action that indicates what is allowed within the 
limits of the document.

Do not use possible or can in this context. May 
signifies permission expressed by the document, 
whereas can refers to the ability of a user of the 
document or to a possibility open to him or her.

• is permitted

• is allowed

• is permissible

need not An action that indicates what is not required within 
the limits of the document.

Do not use impossible in this context.

• it is not required that

• no ... is required

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

11 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
can possibility and 
capability

An action used for statements that indicate 
possibility and capability, whether material, causal, 
or physical.

Do not use may instead of can in this context.Can 
refers to the ability of a user of the document or to a 
possibility open to him or her, whereas may signifies 
permission expressed by the document.

• be able to

• it is possible to

cannot An action used for statements that indicate 
impossibility and incapability, whether material, 
causal, or physical.

• be unable to

• it is impossible to

Table 2 — Key word requirements

Key words Denotes Description
Equivalent 
expressions (for 
exception cases only)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 12
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4
5
6
7
8

9
10
11
12

13
14
15
16

17

18
19
20
21

22
23
24
25

26
27

28

29
30
31

ISO/IEC 17826:2016(E)

© ISO/I
5    Overview of cloud storage

5.1 Introduction

When discussing cloud storage and standards, it is important to distinguish the various resources that are 
being offered as services. These resources are exposed to clients as functional interfaces (i.e., data paths) 
and are managed by management interfaces (i.e., control paths). This International Standard explores the 
various types of interfaces that are part of cloud services today and shows how they are related. This 
International Standard defines a model for the interfaces that can be mapped to the various cloud services 
and a model that forms the basis for cloud storage interfaces into the future.

Another important concept in this International Standard is that of metadata. When managing large 
amounts of data with differing requirements, metadata is a convenient mechanism to express those 
requirements in such a way that underlying data services differentiate their treatment of the data to meet 
those requirements.

The appeal of cloud storage is due to some of the same attributes that define other cloud services: pay as 
you go, the illusion of infinite capacity (elasticity), and the simplicity of use/management. It is therefore 
important that any interface for cloud storage support these attributes, while allowing for a multitude of 
business use cases.

5.2 What is cloud storage?

The use of the term cloud in describing these new models arose from architecture drawings that typically 
used a cloud as the icon for a network. The cloud represents any-to-any network connectivity in an 
abstract way. In this abstraction, the network connectivity in the cloud is represented without concern for 
how it is made to happen.

The cloud abstraction of complexity produces a simple base on which other features can be built. The 
general cloud model extends this base by adding a pool of resources. An important part of the cloud model 
is the concept of a pool of resources that is drawn from, on demand, in small increments. A relatively 
recent innovation that has made this possible is virtualization. 

Thus, cloud storage is simply the delivery of virtualized storage on demand. The formal term that is used 
for this is Data storage as a Service (DaaS).

5.3 Data storage as a Service 

By abstracting data storage behind a set of service interfaces and delivering it on demand, a wide range of 
actual cloud services and implementations are possible. The only type of storage that is excluded from this 
definition is that which is delivered in fixed-capacity increments instead of that which is based on demand. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

13 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

32
33
34

35
36
37
38
39
40
41

42
43
44

45
46
47
48

49
50

ISO/IEC 17826:2016(E)

© ISO/I
An important part of any DaaS system is the support of legacy clients. Support is accommodated with 
existing standard protocols such as iSCSI (and others) for block network storage and CIFS/NFS or 
WebDAV for file network storage, as shown in Figure 1.

The difference between purchasing a dedicated appliance or purchasing cloud storage is not the functional 
interface, but the fact that the storage is delivered on demand. Customers pay for either what they actually 
use or what they have allocated for use. For block storage, a Logical Unit Number (LUN)—or virtual 
volume—is the granularity of allocation. For file protocols, a file system is the unit of granularity. In either 
case, the actual storage space may be thin-provisioned and billed for based on actual usage. Data 
services, such as compression and deduplication, can be used to further reduce the actual space 
consumed.

Managing this storage is typically done out of band for these standard data storage interfaces, either 
through an API, or more commonly, through an administrative browser-based user interface. This out-of-
band interface can be used to invoke other data services as well (e.g., snapshots or cloning).

In this model, the underlying storage space that has been exposed by the out-of-band interfaces is 
abstracted and exposed using the notion of a container. A container is not only a useful abstraction for 
storage space, but also serves as a grouping of the data stored in it and a point of control for applying data 
services in the aggregate.

Each data object is created, retrieved, updated, and deleted as a separate resource. In this type of 
interface, a container, if used, is a simple grouping of data objects for convenience. Nothing prevents the 

Figure 1 — Existing data storage interface standards

Container

POSIX (NFS, CIFS, 
WebDAV)

iSCSI LUNs, Targets

Block Storage Client Filesystem Client

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 14
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

51
52

53

54
55
56
57

58
59
60
61

62
63
64
65

66
67
68

69
70
71

72
73
74
75

ISO/IEC 17826:2016(E)

© ISO/I
concept of containers from being hierarchical, although any given implementation might support only a 
single level (see Figure 2).

5.4 Data management for cloud storage

Many of the initial implementations of cloud storage focused on a kind of best effort quality of storage 
service and ignored most other types of data services. To address the needs of enterprise applications 
with cloud storage, however, there is an increasing need to offer better quality of service and to deploy 
additional data services.

Cloud storage can lose its abstraction and simplicity benefits if new data services that require complex 
management are added. Cloud storage customers are likely to resist new demands on their time (e.g., 
setting up backup schedules through dedicated interfaces, deploying data services individually for stored 
objects).

By supporting metadata in a cloud storage interface and prescribing how the storage system and data 
system metadata is interpreted to meet the requirements of the data, the simplicity required by the cloud 
storage model can be maintained while still addressing the requirements of enterprise applications and 
their data.

User metadata is retained by the cloud and can be used to find the data objects and containers by 
performing a query for specific metadata values. The schema for this metadata may be determined by 
each application, domain, or user. For more information on support for user metadata, see 16.2.

Storage system metadata is produced/interpreted by the cloud service and basic storage functions (e.g., 
modification and access statistics, access control). For more information on support for storage system 
metadata, see 16.3.

Data system metadata is interpreted by the cloud service as data requirements that control the operation 
of underlying data services for that data. Depending on the level of granularity supported by the cloud, data 
system metadata may apply to an aggregation of data objects in a container or to individual data objects. 
For more information on support for data system metadata, see 16.4.

Figure 2 — Storage interfaces for object storage client data

Object Storage Client

CRUD 
operations via 

HTTP

Container
 Container

Container

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

15 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

76

77
78
79
80
81
82

83
84
85
86
87

88

89

90
91
92

ISO/IEC 17826:2016(E)

© ISO/I
5.5 Data and container management

There is no reason that managing data and managing containers should involve different interfaces. 
Therefore, the use of metadata is extended from applying to individual objects to applying to containers of 
objects as well. Thus, any data placed into a container inherits the data system metadata of the container 
into which it was placed. When creating a new container within an existing container, the new container 
would similarly inherit the metadata settings of its parent's data system metadata. After an object is 
created, the data system metadata can be overridden at the container or individual object level, as desired.

Even if the provided interface does not support setting metadata on individual objects, metadata can still 
be applied to the containers. In such a case, the interface does not provide a mechanism to override 
metadata that an individual object inherits from its parent container. For file-based interfaces that support 
extended attributes (e.g., CIFS, NFSv4), these extended attributes can be used to specify the data system 
metadata to override that specified for the container. 

5.6 Reference model for cloud storage interfaces

The cloud storage reference model is shown in Figure 3.

This model shows multiple types of cloud data storage interfaces that are able to support both legacy and 
new applications. All of the interfaces allow storage to be provided on demand, drawn from a pool of 
resources. The storage capacity is drawn from a pool of storage capacity provided by storage services. 

Figure 3 — Cloud storage reference model

Data Storage Cloud

Storage 
Services

Data Services

Storage 
Services

Data Services

Storage 
Services

Data Services

Storage 
Services

Data Services

Storage 
Services

Data Services

Storage 
Services

Data Services

CDMI

Cloud Data 
Management

Ta
b

le
Ta

b
le

Ta
b

le
Ta

b
le

Ta
b

le

Draws resources 
on demand

 Container

POSIX (NFS, 
CIFS, WebDAV)

iSCSI, FC, FCoE 
LUNs, Targets

XAM VIM 
for CDMI Database/Table 

Client

XAM ClientObject Storage Client

Block Storage Client File System Client

CDMI Multiple, vendor-
specific interfaces

Container
 Container

Container

Data/Storage 
Management Client

Management of the cloud 
storage can be standalone 
or part of the overall cloud 
computing management. 

Clients acting in the role of using a data storage interface

Clients acting in the 
role of managing data/
storage

Clients can be inside the 
storage cloud (i.e., 
providing storage 
resources to the cloud as 
well as consuming them) 
or outside the storage 
cloud (i.e., only consuming 
resources).

Information 
Services 
(future)
Information 

Services 
(future)
Information 

Services 
(future)

Exports to cloud 
computing

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 16
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

93
94

95

96
97

98

99

100

101
102
103

104
105
106
107

108
109

110

111
112
113

114
115

116
117
118
119
120

121
122

123

124

125

126
127
128

129
130
131
132
133

134
135
136

ISO/IEC 17826:2016(E)

© ISO/I
The data services are applied to individual objects, as determined by the data system metadata. Metadata 
specifies the data requirements on the basis of individual objects or for groups of objects (containers). 

5.7 Cloud Data Management Interface

The Cloud Data Management Interface (CDMI™) shown in Figure 3 can be used to create, retrieve, 
update, and delete objects in a cloud. The features of the CDMI include functions that: 

• allow clients to discover the capabilities available by the cloud provider,

• manage containers and the data that is placed in them, and

• allow metadata to be associated with containers and the objects they contain.

This International Standard divides operations into two types: those that use a CDMI content type in the 
HTTP body and those that do not. While much of the same data is available via both types, providing both 
allows for CDMI-aware clients and non-CDMI-aware clients to interact with a CDMI provider. 

CDMI can also be used by administrative and management applications to manage containers, domains, 
security access, and monitoring/billing information, even for storage that is functionally accessible by 
legacy or proprietary protocols. The capabilities of the underlying storage and data services are exposed 
so that clients can understand what services the cloud provides. 

Conformant cloud services can support a subset of the CDMI, as long as they expose the limitations in the 
capabilities reported via the interface.

This International Standard uses RESTful principles in the interface design where possible (see REST). 

CDMI defines both a means to manage the data as well as a means to store and retrieve the data. The 
means by which the storage and retrieval of data is achieved is termed a data path. The means by which 
the data is managed is termed a control path. CDMI specifies both a data path and control path interface. 

CDMI does not need to be used as the only data path and is able to manage cloud storage properties for 
any data path interface (e.g., standardized or vendor specific). 

Container metadata is used to configure the data requirements of the storage provided through the 
exported protocol (e.g., block protocol or file protocol) that the container exposes. When an 
implementation is based on an underlying file system to store data for a block protocol (e.g., iSCSI), the 
CDMI container provides a useful abstraction for representing the data system metadata for the data and 
the structures that govern the exported protocols. 

A cloud service may also support domains that allow administrative ownership to be associated with stored 
objects. Domains allow this International Standard to (among other things): 

• determine how user credentials are mapped to principals used in an Access Control List (ACL), 

• allow granting of special cloud-related privileges, and 

• allow delegation to external user authorization systems (e.g., LDAP or Active Directory). 

Domains may also be hierarchical, allowing for corporate domains with multiple children domains for 
departments or individuals. The domain concept is also used to aggregate usage data that is used to bill, 
meter, and monitor cloud use.

Finally, capabilities allow a client to discover the capabilities of a CDMI implementation. Requirements 
throughout this International Standard shall be understood in the context of CDMI capabilities. Mandatory 
requirements on functionality that is conditioned on a CDMI capability shall not be interpreted to require 
implementation of that capability, but rather shall be interpreted to apply only to implementations that 
support the functionality required by that capability.

For example, in 5.10, this International Standard states, "Every cloud storage system shall allow object ID-
based access to stored objects." This requirement shall be understood in the context that access by object 
ID is predicated on the presence of the cdmi_object_access_by_ID capability.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

17 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

137

138

139
140

141
142
143
144
145
146
147

148
149

150
151
152
153
154

155
156

ISO/IEC 17826:2016(E)

© ISO/I
5.8 Object model for CDMI

The model for CDMI is shown in Figure 4.

The five types of resources defined are shown in Table 3. The content type in any given operation is 
specific to each type of resource.

For data storage operations, the client of the interface only needs to know about container objects and 
data objects. All data path implementations are required to support at least one level of containers (see 
5.5). Using the CDMI object model (see Figure 4), the client can send a PUT via CDMI (see 5.6) to the new 
container URI and create a new container with the specified name. Container metadata are optional and 
are expressed as a series of name-value pairs. After a container is created, a client can send a PUT to 
create a data object within the newly created container. A subsequent GET will fetch the data object, 
including the value field.

Queue objects are also defined (see Figure 4) and provide in-order, first-in-first-out access to enqueued 
objects. More information on queues can be found in Clause 11. 

CDMI defines two namespaces that can be used to access stored objects, a flat object ID namespace and 
a hierarchical path-based namespace. Support for objects accessed by object ID is indicated by the 
system-wide capability cdmi_object_access_by_ID, and support for objects accessed by hierarchical path 
is indicated by the container capability cdmi_create_dataobject found on the root container (and any 
subcontainers).

Objects are created by ID by performing an HTTP POST against a special URI, designated as 
/cdmi_objectid/ (see 9.6). Subsequent to creation, objects are modified by performing PUTs using the 

Figure 4 — CDMI object model

Table 3 — Types of resources in the model 

Resource type Description Reference

Data objects Data objects are used to store values and provide functionality similar to 
files in a file system.

See Clause 8.

Container objects Container objects have zero or more children, but do not store values. They 
provide functionality similar to directories in a file system.

See Clause 9.

Domain objects Domain objects represent administrative groupings for user authentication 
and accounting purposes.

See Clause 10.

Queue objects Queue objects store zero or move values and are accessed in a first-in-first-
out manner.

See Clause 11.

Capability objects Capability objects describe the functionality implemented by a CDMI server 
and are used by a client to discover supported functionality.

See Clause 12.

Key/Vale Metadata
Children

Root Container

Key/Value Metadata
Children

Container

Key/Value Metadata
Values

Queue Object

Capability Entries
Children

Capability Objects

Summary
Membership
Children

Domain Objects

Key/Value Metadata
Value

Data Object

0..*
child

0..*
child

Child

capabilitiesURI

0..* 0..* 0..*

domainURI 1

1

capabilitiesURI

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 18
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

157
158

159
160
161

162
163
164
165

166

167
168

169
170
171

172
173
174

175
176
177

178
179
180

181
182

183

ISO/IEC 17826:2016(E)

© ISO/I
object ID assigned by the CDMI server, using the /cdmi_objectid/ URI (see 8.4 "Update a data object using 
CDMI"). The same URI is used to retrieve and delete objects by ID. 

Objects are created by name by performing an HTTP PUT to the desired path URI (see 8.2 "Create a data 
object using CDMI"). Subsequent to creation, objects are modified by performing PUTs using the object 
path specified by the client (see 8.4). The same URI is used to retrieve and delete objects by path. 

CDMI defines mechanisms so that objects having only an object ID can be assigned a path location within 
the hierarchical namespace, and so that objects having both an object ID and path can have their path 
dropped, such that the object only has an object ID. This function is accomplished by using a "move" 
modifier to a PUT or POST operation, as shown in Figure 5.

5.9 CDMI metadata

CDMI uses many different types of metadata, including HTTP metadata, data system metadata, user 
metadata, and storage system metadata.

HTTP metadata is metadata that is related to the use of the HTTP protocol (e.g., Content-Length, Content-
Type, etc.). HTTP metadata is not specifically related to this International Standard but needs to be 
discussed to explain how CDMI uses the HTTP standard.

CDMI data system metadata, user metadata, and storage system metadata is defined in the form of name- 
value pairs. Vendor-defined data system metadata and storage system metadata names shall begin with 
the reverse domain name of the vendor.

Data system metadata is metadata that is specified by a CDMI client and is a component of objects. Data 
system metadata abstractly specifies the data requirements associated with data services that are 
deployed in the cloud storage system.

User metadata consists of client-defined JSON strings, arrays, and objects that are stored in the metadata 
field. The namespace used for user metadata names is self-administered (e.g., using the reverse domain 
name), and user metadata names shall not begin with the prefix "cdmi_."

Storage system metadata is metadata that is generated by the storage services in the system (e.g., 
creation time, size) to provide useful information to a CDMI client. 

The matrix of the creation and consumption of storage system metadata is shown in Table 4. 

Figure 5 — Object transitions between named and ID-only

Table 4 — Creation/consumption of storage system metadata

Created by user Created by system

Consumed by user User metadata Storage system metadata

Consumed by system Data system metadata N/A

Object with 
Name and ID

Object with ID 
only

PUT /name, {“move” : “/cdmi_objectid/<object ID>/"}

POST /cdmi_objectID/, {“move” : “/name"}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

19 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

184

185
186
187
188
189

190
191
192
193

194

195

196
197
198

199

200

201

202
203

204

205
206
207
208

209

210

211
212
213

214

215
216

ISO/IEC 17826:2016(E)

© ISO/I
5.10 Object ID

Every object stored within a CDMI-compliant system shall have a globally unique object identifier (ID) 
assigned at creation time. The CDMI object ID is a string with requirements for how it is generated and how 
it obtains its uniqueness. Each cloud service that implements CDMI shall generate these identifiers such 
that the probability of conflicting with identifiers generated by other cloud services and the probability of 
generating an identifier that has already been used is effectively zero. 

Every cloud storage system shall allow object ID-based access to stored objects by allowing the object's ID 
to be appended to the root container URI. If the data object "MyDataObject.txt", located in the root 
container, has an object ID of "00006FFD001001CCE3B2B4F602032653", the following pair of URIs 
access the same data object: 

http://cloud.example.com/root/MyDataObject.txt

http://cloud.example.com/root/cdmi_objectid/00006FFD001001CCE3B2B4F602032653 

If containers are supported, they shall also be accessible by object ID. If the container "MyContainer", 
located in the root container, has an object ID of "00006FFD0010AA33D8CEF9711E0835CA", the 
following pairs of URIs access the same object: 

http://cloud.example.com/root/MyContainer/

http://cloud.example.com/root/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA/

http://cloud.example.com/root/MyContainer/MyDataObject.txt

http://cloud.example.com/root/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA/MyDataOb-
ject.txt

5.11 CDMI object ID format

The cloud service shall create the object ID, which identifies an object. The object ID shall be globally 
unique and shall conform to the format defined in Figure 6. The native format of an object ID is a variable-
length byte sequence and shall be a maximum length of 40 bytes. A client should treat object IDs as 
opaque byte strings.

The fields shown in Figure 6 are defined as follows.

• The reserved bytes shall be set to zero.

• The Enterprise Number field shall be the SNMP enterprise number of the offering organization that 
developed the system that created the object ID, in network byte order. See RFC 2578 and http://
www.iana.org/assignments/enterprise-numbers. 0 is a reserved value.

• The byte at offset 5 shall contain the full length of the object ID, in bytes.

• The CRC field shall contain a 2-byte (16-bit) CRC in network byte order. The CRC field enables 
the object ID to be validated for integrity. The CRC field shall be generated by running the 

0 1 2 3 4 5 6 7 8 9 10 ... 38 39

Reserved 
(zero)

Enterprise Number Reserved 
(zero)

Length CRC Opaque Data

Figure 6 — Object ID format

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 20
Version 1.1.1 

EC 2016 – All rights reserved

http://www.iana.org/assignments/enterprise-numbers
https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

217
218

219

220

221

222

223

224

225

226

227
228

229

230
231
232

233

234

235
236

237
238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255
256

257
258
259

ISO/IEC 17826:2016(E)

© ISO/I
algorithm (see ISO 14701:2012) across all bytes of the object ID, as defined by the Length field, 
with the CRC field set to zero. The CRC function shall have the following fields:

— Name : "CRC-16",

— Width : 16,

— Poly : 0x8005,

— Init : 0x0000,

— RefIn : True,

— RefOut : True,

— XorOut : 0x0000, and

— Check : 0xBB3D.

This function defines a 16-bit CRC with polynomial 0x8005, reflected input, and reflected output. 
This CRC-16 is specified in ISO 14701:2012.

• Opaque data in each object ID shall be unique for a given Enterprise Number.

The native format for an object ID is binary. When necessary, such as when included in URIs and JSON 
strings, the object ID textual representation shall be encoded using Base16 encoding rules described in 
RFC 4648 and shall be case insensitive. 

5.12 Security

5.12.1 Security objectives

Security, in the context of CDMI, refers to the protective measures employed in managing and accessing 
data and storage. The specific objectives to be addressed by security include providing a mechanism that: 

• assures that the communications between a CDMI client and server cannot be read or modified by 
a third party; 

• allows CDMI clients and servers to assure their identity; 

• allows control of the actions a CDMI client is permitted to perform on a CDMI server; 

• allows records to be generated for actions performed by a CDMI client on a CDMI server; 

• protects data at rest; 

• eliminates data in a controlled manner; and 

• discovers the security capabilities of of a particular implementation. 

Security measures within CDMI are summarized as: 

• transport security, 

• user and entity authentication, 

• authorization and access controls, 

• data integrity, 

• data and media sanitization, 

• data retention, 

• protections against malware, 

• data at-rest encryption, and 

• security capabilities. 

With the exception of both the transport security and the security capabilities, which are mandatory to 
implement, the security measures can vary significantly from implementation to implementation.

When security is a concern, the CDMI client should begin with a series of security capability lookups (see 
12.1.1) to determine the exact nature of the security features that are available. Based on the values of 
these capabilities, a risk-based decision should be made as to whether the CDMI server should be used. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

21 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

260
261
262

263

264
265
266
267

268

269
270
271
272

273

274

275
276
277
278
279
280

281

282

283
284
285

286
287
288
289
290

291
292

293
294

295
296

297

298

299
300

301
302
303

ISO/IEC 17826:2016(E)

© ISO/I
This is particularly true when the data to be stored in the cloud storage is sensitive or regulated in a way 
that requires stored data to be protected (e.g., encrypted) or handled in a particular manner (e.g., full 
accountability and traceability of management and access).

5.12.2 HTTP security

HTTP is the mandatory transport mechanism for this version of CDMI. It is important to note that HTTP, by 
itself, offers no confidentiality or integrity protections. As CDMI is built on top of HTTP, HTTP over 
Transport Layer Security (TLS) (i.e., HTTPS) is the mechanism that is used to secure the communications 
between CDMI clients and servers. 

To ensure both security and interoperability, all CDMI implementations shall:

• implement the TLS protocol as described in the latest version of the "SNIA TLS Specification for 
Storage Systems," with a six-month transition period for implementations. The TLS specification is 
updated when new vulnerabilities are found, and CDMI implementations shall support the latest 
specification within six months of its publication announcement; 

• support both HTTP over TLS and HTTP without TLS; and 

• allow HTTP without TLS to be disabled.

When TLS is used to secure HTTP, the client and server typically perform some form of entity 
authentication. However, the specific nature of this entity authentication depends on the cipher suite 
negotiated; a cipher suite specifies the encryption algorithm and digest algorithm to use on a TLS 
connection. A very common scenario involves using server-side certificates, which the client trusts, as the 
basis for unidirectional entity authentication. It is possible that mutual authentication involving both client-
side and server-side certificates are required.

5.12.3 Client authentication

A CDMI client shall comply with all security requirements for HTTP that apply to clients. 

CDMI clients can be responsible for initiating user authentication for each CDMI operation that is 
performed. The CDMI server functions as the authenticator and receives and validates authentication 
credentials from the client.

RFC 2616 and RFC 2617 define requirements for HTTP authentication, which generally starts with an 
HTTP client request. If the client request does not include an "Authorization" header and authentication is 
required, the server responds with an HTTP status code of 401 Unauthorized and a WWW-
Authenticate response header. The HTTP client shall then respond with the appropriate Authorization 
header in a subsequent request. 

The format of the WWW-Authenticate and Authorization headers varies depending on the type of 
authentication required.

• HTTP basic authentication involves sending the user name and password in the clear, and it 
should only be used on a secure network or in conjunction with TLS.

• HTTP digest authentication sends a secure digest of the user name and password (and other 
information such as a nonce value), and can be used on an insecure network without TLS.

• HTTP status codes of 401 Unauthorized should not include a choice of authentication.

• HTTP basic authentication or HTTP digest authentication should be implemented.

• Authentication credentials used with one type of HTTP authentication (i.e., basic or digest) should 
never be subsequently used with the other type of HTTP authentication.

Once a user is authenticated, the provided principal name shall be mapped by the CDMI domain to a 
domain user (or used directly as the ACE "who" if domains are not supported). This mapping is then used 
to determine authorization.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 22
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

304
305
306

307

308

309
310

311
312

313
314

315

316

317

318

319
320
321

322

323
324
325

326
327
328
329

330
331
332
333

334

335
336

337

338
339

340
341

ISO/IEC 17826:2016(E)

© ISO/I
A CDMI server typically relies on an authentication service (local or external) to validate client credentials. 
Differing authentication schemes can be supported, including host-based authentication, Kerberos, PKI, or 
other; the authentication service is beyond the scope of this International Standard.

5.12.4 Use of TLS and HTTP

Recommendations for using HTTP and TLS are as follows:

• A client connecting to a CMDI server using TLS should use TCP port 443, and a client connecting 
without TLS should use TCP port 80.

• A client that fails to connect to a CDMI server on port 443 should retry without TLS on TCP port 80 
if their security policy allows it.

• Servers may respond to HTTP requests on port 80 with an HTTP REDIRECT to the appropriate 
TLS URI (using port 443). Clients should honor such redirects in this situation.

5.12.5 Further information

For further information pertaining to storage security techniques, see ISO 14701:2012.

5.13 Required HTTP support 

5.13.1 RFC 2616 support requirements

A conformant implementation of CDMI shall also be a conformant implementation of RFC2616 (see RFC 
2616) (i.e., HTTP 1.1). The subclauses below list the sections of RFC 2616 that shall be supported; 
however, this list is not comprehensive.

5.13.2 Content-type negotiation

For CDMI operations, media types for CDMI objects are used as defined in RFC 6208. All CDMI 
representations follow the rules established for "application/json" as defined in RFC 4627. The use of the 
CDMI media types with the "+json" suffix shall be supported as defined in RFC 6839. 

A client can optionally supply an HTTP Accept header, as per section 14.1 of RFC 2616. If a client is 
restricting the response to a specific CDMI media type, the corresponding media type shall be specified in 
the Accept header. Otherwise, the Accept header can contain "*/*" or a list of media types, or it can be 
omitted. 

If a request body is present, the client shall include a Content-Type header, as per section 14.17 of RFC 
2616. If the client does not provide a Content-Type header when required or provides a media type in the 
Content-Type header that does not match with the existing resource media type, the server shall return an 
HTTP status code of 400 Bad Request.

If a response body is present, the server shall provide a Content-Type header. 

This International Standard can further qualify content negotiation (e.g., in 9.3, the absence of a Content-
Type header has a specific meaning).

5.13.3 Range support

The server shall support HTTP Range headers and partial content responses (see Section 14.16 of RFC 
2616). 

The values of the childrange, valuerange and queuerange fields are formatted based on the HTTP byte-
range-resp-spec, as defined in clause 14.16 of RFC 2616.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

23 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

342

343
344
345
346

347
348

349
350

351
352
353
354

355

356
357
358

359
360
361
362
363
364
365

366

367

368
369
370

371
372
373

374

ISO/IEC 17826:2016(E)

© ISO/I
5.13.4 URI escaping 

Percent escaping of reserved characters specified in RFC 3986 shall be applied to all text strings used in 
HTTP request URIs and HTTP header URIs. This includes user-supplied field names, metadata names, 
data object names, container object names, queue object names, and domain object names when used in 
HTTP request URIs and HTTP header URIs. 

Field names and values shall not be escaped when stored and when sent in request body and response 
bodies.

EXAMPLE  A client retrieving a metadata item named "@user" from a container object with the name of 
"@MyContainer" would perform the following request: 

GET /%40MyContainer/?objectName;metadata:%40user HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.1

The response shall be:

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "objectName": "@MyContainer/",
    "metadata": {
        "@user": "test",

...
    }
}

5.13.5 Use of URIs

The format and syntax of URIs are defined by RFC 3986. 

Every CDMI client shall maintain one or more root URIs that each correspond to a root container on the 
CDMI server. Since all URIs to CDMI containers end in a trailing slash, all root URIs will end in a trailing 
slash. 

All URIs in this International Standard are relative to the root URI unless otherwise noted. As a 
consequence, the algorithm used for calculating the resolved URI is as described in Section 5.2 of RFC 
3986.

Table 5 shows how relative URIs are resolved against root URIs.

Table 5 — Relative URIs resolved against root URIs

Root URI + Relative URI => Resolved URI

http://cloud.example.com/ cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject 

http://cloud.example.com/ /cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject

http://cloud.example.com/p1/ cdmi_object/testObject http://cloud.example.com/p1/cdmi_object/testObject 

http://cloud.example.com/p1/ /cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject 

http://cloud.example.com/p1/p2/ cdmi_object/testObject http://cloud.example.com/p1/p2/cdmi_object/
testObject 

http://cloud.example.com/p1/p2/ /cdmi_object/testObject http://cloud.example.com/cdmi_object/testObject 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 24
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

375
376
377

378
379

380
381
382
383

384
385
386

387
388

389

390
391

392

393
394
395
396
397

398
399
400
401
402
403

404

405

406
407
408
409

410
411
412
413

ISO/IEC 17826:2016(E)

© ISO/I
This International Standard places no restrictions on root and relative URIs. All of the examples in this 
specification use a root URI of http://cloud.example.com/ and return absolute path references as shown in 
the second line of Table 5.

• If the root URI is "/", the container located at the root URI shall omit the parentID field and shall 
return an empty string ("") for the value of the parentURI field. 

• If the root URI is not "/" and the parent is a CDMI container, the container located at the root URI 
shall populate parentID field with the CDMI object ID of the CDMI container corresponding to the 
parent path component, and populate the parentURI field with the URI of the parent path 
component. 

• If the root URI is not "/" and the parent is not a CDMI container, the container located at the root 
URI shall omit the parentID field, and populate the parentURI field with the URI of the parent path 
component. 

• If the root URI is not "/" and the parent is not accessible, the server can omit the parentID field and 
return an empty string ("") for the value of the parentURI field.

5.13.6 Reserved characters

The name of CDMI data objects, container objects, queue objects, domain objects and capability objects 
shall not contain the "/" or "?" characters, as these characters are reserved for delimiters.

5.14 Time representations

Unless otherwise specified, all date/time values are in the ISO 8601:2004 extended representation (YYYY-
MM-DDThh:mm:ss.ssssssZ). The full precision shall be specified, the sub-second separator shall be a ".", 
the Z UTC zone indicator shall be included, and all timestamps shall be in UTC time zone. The YYYY-MM-
DDT24:00:00.000000Z hour shall not be used, and instead, it shall be represented as YYYY-MM-
DDT00:00:00.000000Z. 

Unless otherwise specified, all date/time intervals are in the ISO 8601:2004 start date/end date 
representation (YYYY-MM-DDThh:mm:ss.ssssssZ/YYYY-MM-DDThh:mm:ss.ssssssZ). The end date shall 
be equal to or later than the start date. The full precision shall be specified, the sub-second separator shall 
be a ".", the Z UTC zone indicator shall be included, and all timestamps shall be in UTC time zone. The 
YYYY-MM-DDT24:00:00.000000Z hour shall not be used, and instead, it shall be represented as YYYY-
MM-DDT00:00:00.000000Z. 

5.15 Backwards compatibility

5.15.1 Value transfer encoding

CDMI version 1.0.1 introduces the concept of value transfer encoding to enable the storage and retrieval of 
arbitrary binary data via CDMI content-type operations. Data objects created by CDMI 1.0 clients through 
CDMI content-type operations shall have a value transfer encoding of "utf-8", and data objects created 
through non-CDMI content-type operations shall have a value transfer encoding of "base64". 

Data objects with a value transfer encoding of base 64 shall not have their value field accessible to CDMI 
1.0 clients through CDMI content-type operations. Attempts to read the value of these objects shall return 
an empty value field ("") to these clients. CDMI 1.0 clients can detect this condition when the cdmi_size 
metadata is not 0 and the value field is empty.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

25 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

414

415
416

417

418

419

420

421

422
423
424

425
426
427
428
429
430

431
432

433
434
435

436

437
438
439
440

441

442
443

444
445

446

447
448
449
450

451

452
453

454

455
456

ISO/IEC 17826:2016(E)

© ISO/I
5.15.2 Container export capabilities 

CDMI version 1.0.2 normalizes the names of capabilities used by a client to discover if a container can be 
exported via various protocols and deprecates the following container export capability names: 

• cdmi_cifs_export,

• cdmi_nfs_export,

• cdmi_iscsi_export, and

• cdmi_occi_export.

5.16 Object references

Object references are URIs within the cloud storage namespace that redirect to another URI within the 
same or another cloud storage namespace. References are similar to soft links in a file system. The cloud 
does not guarantee that the referenced URI will be valid after the time of creation.

References are visible as children in a container and are distinguished from non-references in container 
children listings by the presence of a trailing "?" character added to the reference name. Performing an 
operation (with the exception of create or delete) to a reference URI will result in an HTTP status code of 
302 Found, with the HTTP Location header containing the absolute redirect destination URI that was 
specified at the time the reference was created. The reference’s destination URI shall not be changed after 
a reference has been created.

To continue, when CDMI clients receive an HTTP status code of 302 Found, they should retry the 
operation using the URI contained within the Location header.

A delete operation on a reference URI shall delete the reference. References cannot be updated. To 
update the destination of a redirect, the client shall first delete the reference and then create a new 
reference to the desired destination.

EXAMPLE 1 GET to a URI, where the URI is a reference:

GET /MyContainer/MyDataObject.txt HTTP/1.1 
Host: cloud.example.com 
Accept: application/cdmi-object 
X-CDMI-Specification-Version: 1.1 

The following shows the response.

HTTP/1.1 302 Found 
Location: http://cloud.example.com/MyContainer/MyOtherDataObject.txt

References by object ID shall always redirect to a URI that ends with the same object ID as the request 
URI. 

EXAMPLE 2 GET to an object ID URI, where the URI is a reference:

GET /cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA HTTP/1.1 
Host: cloud.example.com 
Accept: application/cdmi-object 
X-CDMI-Specification-Version: 1.1 

The following shows the response.

HTTP/1.1 302 Found 
Location: http://archive.example.com/cdmi_objectid/00006FFD0010AA33D8CEF9711E0835CA

EXAMPLE 3 PUT to create a reference: 

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com Accept: application/cdmi-object

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 26
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

457
458

459
460
461

462

463

464

465
466
467
468

469
470
471

472

473
474

475

476
477
478

479

480

ISO/IEC 17826:2016(E)

© ISO/I
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "reference": "http://cloud.example.com/MyContainer/MyOtherDataObject.txt"
}

The following shows the response. 

HTTP/1.1 201 Created 

EXAMPLE 4 POST to create a reference:

POST /cdmi_objectid/ HTTP/1.1 
Host: cloud.example.com Accept: application/cdmi-object 
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1

{
    "reference": "http://cloud.example.com/MyContainer/MyOtherDataObject.txt"
}

The following shows the response. 

HTTP/1.1 201 Created
Location: http://cloud.example.com/cdmi_objectid/00007ED90010DF417BAD70A0C7F5CDDA

EXAMPLE 5 DELETE to delete a reference:

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com 
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

27 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


Section II

Basic Cloud Storage

ISO/IEC 17826:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4

5
6
7

8
9

10
11
12

13
14

15
16
17
18

19

20

21

22

23

24

25
26

27

28

29

30
31

32
33

34
35

ISO/IEC 17826:2016(E)

© ISO/I
6    Data object resource operations using HTTP

6.1 Overview

Data objects are the fundamental storage components within CDMI™ and are analogous to files in a file 
system. 

As CDMI builds on top of, and is compatible with, the HTTP standard (RFC 2616), this allows unmodified 
HTTP clients to communicate with a CDMI server. This also allows CDMI operations to coexist with other 
HTTP-based storage protocols, such as WebDAV, S3, and OpenStack Swift. 

A CDMI server differentiates between HTTP and CDMI operations using the standard Content-Type and 
Accept headers. When CDMI MIME types defined in RFC 6208 are used in these headers, this indicates 
that CDMI behaviors, as described in Clause 8, are used in addition to the standard HTTP behaviors. 
When CDMI MIME types are used, the X-CDMI-Specification-Version header is included to indicate which 
version of CDMI is being requested by the client and provided by the server. 

In CDMI 1.0.2, basic HTTP operations were described as "Non-CDMI" operations to distinguish them from 
operations using CDMI MIME types. 

A CDMI implementation that supports data objects shall include support for basic data object HTTP 
operations corresponding with the CDMI capabilities that are published by the implementation. Capabilities 
allow a client to discover which operations (such as create, update, delete, etc.) are supported and are 
described in Clause 12.

6.2 Create a data object using HTTP

6.2.1 Synopsis

The following HTTP PUT creates a new data object at the specified URI:

PUT <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., 
"/") between each pair of container names.

• <DataObjectName> is the name specified for the data object to be created.

After it is created, the data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

6.2.2 Capabilities

The following capabilities describe the supported operations that can be performed when creating a new 
data object:

• Support for the ability to create a new data object is indicated by the presence of the 
cdmi_create_dataobject capability in the parent container.

• Support for the ability to create the value of a new data object in specified byte ranges is indicated 
by the presence of the "cdmi_create_value_range" capability in the parent container.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

29 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

36

37

38

39

40

41

42

43

44

45

ISO/IEC 17826:2016(E)

© ISO/I
6.2.3 Request headers

The HTTP request headers for creating a data object using HTTP are shown in Table 6.

6.2.4 Request message body 

The request message body contains the data to be stored in the value of the data object.

6.2.5 Response headers 

No response headers are specified.

6.2.6 Response message body 

No response message body fields are specified.

6.2.7 Response status

The HTTP status codes that occur when creating a data object using HTTP are described in Table 7. 

Table 6 — Request headers - Create a data object using HTTP

Header Type  Description Requirement

Content-Type Header 
string

The content type of the data to be stored as a data object. 
The value specified here shall be used as the mimetype 
field of the data object. 

• If the content type includes the charset parameter as 
defined in RFC 2046 of "utf-8" (e.g., ";charset=utf-8"), the 
valuetransferencoding field of the data object shall be set 
to "utf-8". Otherwise, the valuetransferencoding field of 
the data object shall be set to "base64".

• If not specified, the mimetype field shall be set to 
"application/octet-stream".

Optional

X-CDMI-Partial Header 
string

"true". Indicates that the newly created object is part of a 
series of writes and has not yet been fully created. When 
set, the completionStatus field shall be set to "Processing". 
X-CDMI-Partial works across CDMI and non-CDMI 
operations.

Optional

Content-Range Header 
string

A valid ranges-specifier (see RFC 2616 Section 14.35.1 Optional

Table 7 — HTTP status codes - Create a data object using HTTP

HTTP status Description

201 Created The new data object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a state 
transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 30
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

46

47

48
49
50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

67
68
69

70
71
72
73

74

75

76

77

ISO/IEC 17826:2016(E)

© ISO/I
6.2.8 Example

EXAMPLE 1 PUT to the container URI the data object name and contents:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain;charset=utf-8
Content-Length: 37

This is the Value of this Data Object

The following shows the response.

HTTP/1.1 201 Created

6.3 Read a data object using HTTP

6.3.1 Synopsis

The following HTTP GET reads from an existing data object at the specified URI:

GET <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be read from.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

6.3.2 Capabilities

The following capabilities describe the supported operations that can be performed when reading an 
existing data object:

• Support for the ability to read the value of an existing data object is indicated by the presence of 
the cdmi_read_value capability in the specified object. Any read from a specific byte location not 
previously written to by a create or update operation shall return zero for the byte value.

• Support for the ability to read the value of an existing data object in specific byte ranges is 
indicated by the presence of the cdmi_read_value_range capability in the specified object. Any 
read from a specific byte location within the value range specified not previously written to by a 
create or update operation shall return zero for the byte value.

6.3.3 Request header

The HTTP request header for reading a data object using HTTP is shown in Table 8. 

6.3.4 Request message body

A request body shall not be provided.

Table 8 — Request header - Read a data object using HTTP

Header Type Description Requirement

Range Header 
string

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

31 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

78

79

80

81

82

83

84

85

86

87

88
89

90

91
92
93

94

95

96
97
98

ISO/IEC 17826:2016(E)

© ISO/I
6.3.5 Response headers

The HTTP response headers for reading a data object using HTTP are shown in Table 9.

6.3.6 Response message body

When reading a data object using HTTP, the following applies:

• The response message body shall be the contents of the data object's value field.

• When reading a value, zeros shall be returned for any gaps resulting from non-contiguous writes.

6.3.7 Response status

The HTTP status codes that occur when reading a data object using HTTP are described in Table 10.

6.3.8 Examples

EXAMPLE 1 GET to the data object URI to read the value of the data object:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com 

The following shows the response.

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 37

This is the Value of this Data Object

EXAMPLE 2 GET to the data object URI to read the first 11 bytes of the value of the data object:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com 
Range: bytes=0-10

Table 9 — Response headers - Read a data object using HTTP 

Header Type Description Requirement

Content-Type Header 
string

The content type returned shall be the mimetype field in the 
data object.

Mandatory

Location Header 
string

The server shall respond with the URI that the reference 
redirects to if the object is a reference.

Conditional

Table 10 — HTTP status codes - Read a data object using HTTP

HTTP status Description

200 OK The data object content was returned in the response.

206 Partial Content A requested range of the data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI, or a requested field within 
the resource was not found.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 32
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

99

100
101
102
103

104

105

106

107

108

109

110

111

112

113
114

115

116
117

118
119

120
121

122

123

ISO/IEC 17826:2016(E)

© ISO/I
The following shows the response.

HTTP/1.1 206 Partial Content
Content-Type: text/plain
Content-Range: bytes 0-10/37
Content-Length: 11

This is the

6.4 Update a data object using HTTP

6.4.1 Synopsis

The following HTTP PUT updates an existing data object at the specified URI:

PUT <root URI>/<ContainerName>/<DataObjectName>.

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be updated.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>. An update shall not result in a 
change to the object ID.

6.4.2 Capabilities 

The following capabilities describe the supported operations that can be performed when updating an 
existing data object:

• Support for the ability to modify the value of an existing data object or MIME type is indicated by 
the presence of the cdmi_modify_value capability in the specified object.

• Support for the ability to modify the value of an existing data object in specified byte ranges is 
indicated by the presence of the cdmi_modify_value_range capability in the specified object.

6.4.3 Request headers

The HTTP request headers for updating a data object using HTTP are shown in Table 11. 

Table 11 — Request headers - Update a data object using HTTP

Header Type Description Requirement

Content-Type Header 
string

The content type of the data to be stored as a data object. The 
value specified here shall be used in the mimetype field of the 
data object.

Mandatory

Content-
Range

Header 
string

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

X-CDMI-
Partial

Header 
string

"true". Indicates that the object is in the process of being 
updated and has not yet been fully updated. When set, the 
completionStatus field shall be set to "Processing".

If the completionStatus field had previously been set to 
"Processing" by including this header in a create or update, the 
next update without this field shall change the completionStatus 
field back to "Complete". X-CDMI-Partial works across CDMI 
and non-CDMI operations.

Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

33 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

124

125

126

127

128

129

130

131

132

133

134
135
136
137

138

139

140

ISO/IEC 17826:2016(E)

© ISO/I
6.4.4 Request message body 

The request message body contains the data to be stored in the value of the data object.

6.4.5 Response header

The HTTP response header for updating a data object using HTTP is shown in Table 12. 

6.4.6 Response message body 

A response body can be provided as per RFC 2616.

6.4.7 Response status

The HTTP status codes that occur when updating a data object using HTTP are described in Table 13. 

6.4.8 Examples

EXAMPLE 1 PUT to the data object URI to update the value of the data object:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain
Content-Length: 37

This is the value of this data object 

The following shows the response.

HTTP/1.1 204 No Content

Table 12 — Response header - Update a data object using HTTP 

Header Type Description Requirement

Location Header 
string

The server shall respond with the URI to which the 
reference redirects if the object is a reference.

Conditional

Table 13 — HTTP status codes - Update a data object using HTTP

HTTP status Description

204 No Content The data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 34
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

141

142
143
144
145
146

147

148

149

150

151

152

153

154

155

156

157

158

159

160
161

162
163

164

165

166

167

168

169

170

171

ISO/IEC 17826:2016(E)

© ISO/I
EXAMPLE 2 PUT to the data object URI to update four bytes within the value of the data object:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com 
Content-Range: bytes 21-24/37
Content-Type: text/plain
Content-Length: 4

that

The following shows the response.

HTTP/1.1 204 No Content 

6.5 Delete a data object using HTTP

6.5.1 Synopsis

The following HTTP DELETE deletes an existing data object at the specified URI:

DELETE <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

6.5.2 Capability 

The following capability describes the supported operations that may be performed when deleting an 
existing data object:

Support for the ability to delete an existing data object is indicated by the presence of the 
cdmi_delete_dataobject capability in the specified object.

6.5.3 Request headers 

Request headers can be provided as per RFC 2616.

6.5.4 Request message body 

A request body can be provided as per RFC 2616.

6.5.5 Response headers 

Response headers can be provided as per RFC 2616.

6.5.6 Response message body 

A response body can be provided as per RFC 2616.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

35 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

172

173

174

175

176
177

178

179

ISO/IEC 17826:2016(E)

© ISO/I
6.5.7 Response status

Table 14 describes the HTTP status codes that occur when deleting a data object using HTTP. 

6.5.8 Example

EXAMPLE DELETE to the data object URI:

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 204 No Content

Table 14 — HTTP status codes - Delete a data object using HTTP

HTTP status Description

204 No Content The data object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server, or the data object cannot be deleted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 36
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4

5
6

7
8
9

10
11
12
13

14
15
16
17
18

19
20
21
22

23

24

25

26

27

28

29
30

31

32

33
34

35

36
37

38
39

ISO/IEC 17826:2016(E)

© ISO/I
7    Container object resource operations using HTTP

7.1 Overview

Container objects are the fundamental grouping mechanism of stored data within CDMITM and are 
analogous to directories in a file system. Each container object has zero or more child objects. 

Following the URI conventions for hierarchical paths, container URIs shall consist of one or more container 
names that are separated by forward slashes ("/") and that end with a forward slash ("/"). 

As basic HTTP operations do not use the CDMI MIME types that distinguish data object operations from 
container object operations, a CDMI implementation shall use the presence or absence of a forward slash 
at the end of a URI to distinguish between a container object create or a data object create, respectively. 

If a basic HTTP read, update, or delete operation is performed against an existing container resource and 
the trailing slash at the end of the URI is omitted, the server shall respond with an HTTP status code of 
301 Moved Permanently. In addition, a Location header containing the URI with the trailing slash 
added shall be returned. 

A CDMI server differentiates between HTTP and CDMI operations using the standard Content-Type and 
Accept headers. When CDMI MIME types defined in RFC 6208 are used in these headers, this indicates 
that CDMI behaviors, as described in Clause 9, are used in addition to the standard HTTP behaviors. 
When CDMI MIME types are used, the X-CDMI-Specification-Version header is included to indicate which 
version of CDMI is being requested by the client and provided by the server. 

A CDMI implementation that supports container objects shall include support for basic container object 
HTTP operations corresponding with the CDMI capabilities that are published by the implementation. 
Capabilities allow a client to discover which operations (such as create, update, delete, etc.) are supported 
and are described in Clause 12.

7.2 Create a container object using HTTP

7.2.1 Synopsis

To create a new container object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<NewContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash 
(i.e., "/") between each pair of container object names.

• <NewContainerName> is the name specified for the container object to be created.

After it is created, the container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

The presence of a trailing slash at the end of the HTTP PUT URI indicates that a container object is being 
created and distinguishes it from a request to create a data object.

7.2.2 Capability

The following capability describes the supported operations that may be performed when creating a new 
container object:

Support for the ability to create a new container object is indicated by the presence of the 
cdmi_create_container capability in the parent container object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

37 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

40

41

42

43

44

45

46

47

48

49

50

51

52
53

54

55

56

57
58
59

60

61
62

ISO/IEC 17826:2016(E)

© ISO/I
7.2.3 Request headers 

Request headers can be provided as per RFC 2616.

7.2.4 Request message body 

A request body shall not be provided.

7.2.5 Response headers 

Response headers can be provided as per RFC 2616.

7.2.6 Response message body

A response body can be provided as per RFC 2616.

7.2.7 Response status

Table 15 describes the HTTP status codes that occur when creating a container object using HTTP. 

7.2.8 Example

EXAMPLE PUT to the URI the container object name:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 201 Created

7.3 Read a container object using HTTP

Reading a container object using HTTP is not defined by this version of this International Standard. 9.3 
describes how to read a container object using CDMI. A server is allowed to implement responses such as 
an Apache directory listing or an S3/Swift-style bucket listing.

7.4 Update a container object using HTTP

Updating a container object using HTTP is not defined by this version of this International Standard. 9.4 
describes how to update a container object using CDMI.

Table 15 — HTTP status codes - Create a container object using HTTP

HTTP status Description

201 Created The new container object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 38
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

63

64

65
66

67

68

69

70

71

72

73

74
75

76
77

78

79

80

81

82

83

84

85

ISO/IEC 17826:2016(E)

© ISO/I
7.5 Delete a container object using HTTP

7.5.1 Synopsis

To delete an existing container object, including all contained children and snapshots, the following request 
shall be performed:

DELETE <root URI>/<ContainerName>/<TheContainerName>/ 

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name of the container object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

7.5.2 Capability 

The following capability describes the supported operations that may be performed when deleting an 
existing container object:

Support for the ability to delete an existing container object is indicated by the presence of the 
cdmi_delete_container capability in the specified container object.

7.5.3 Request headers 

Request headers can be provided as per RFC 2616.

7.5.4 Request message body 

A request body can be provided as per RFC 2616.

7.5.5 Response headers 

Response headers can be provided as per RFC 2616.

7.5.6 Response message body 

A response body can be provided as per RFC 2616.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

39 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

86

87

88

89

90
91

92

93

94

95

96
97

98

99

100

101
102

103
104

105
106
107

ISO/IEC 17826:2016(E)

© ISO/I
7.5.7 Response status

Table 16 describes the HTTP status codes that occur when deleting a container object using HTTP.

7.5.8 Example

EXAMPLE DELETE to the container object URI:

DELETE /MyContainer/ HTTP/1.1
Host: cloud.example.com

The following shows the response.

HTTP/1.1 204 No Content

7.6 Create (POST) a new data object using HTTP

7.6.1 Synopsis

To create a new data object in a specified container where the name of the data object is a server-assigned 
object identifier, the following request shall be performed:

POST <root URI>/<ContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash 
(i.e., "/") between each pair of container object names.

The data object shall be accessible as a child of the container with a server-assigned name and shall also 
be accessible at <root URI>/cdmi_objectid/<objectID>.

HTTP POST to a container is used to enable CDMI servers to support RFC 1867 form-based file 
uploading. When implementing RFC 1867, the CDMI server-assigned name can be the user-provided file 
name.

Table 16 — HTTP status codes - Delete a container object using HTTP

HTTP status Description

204 No Content The container object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 40
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

108

109
110

111
112
113

114
115
116

117
118
119

120
121

122

123

124

125

126

127

ISO/IEC 17826:2016(E)

© ISO/I
7.6.2 Capabilities

The following capabilities describe the supported operations that can be performed when creating a new 
data object:

• Support for the ability to create data objects through this operation is indicated by  the presence of 
both the cdmi_post_dataobject and cdmi_create_dataobject capabilities in the specified container 
object.

• If the new data object is being created in "/cdmi_objectid/", support for the ability to create the 
value of the new data object in specified byte ranges is indicated by the presence of the 
"cdmi_create_value_range_by_ID" system capability.

• If the new data object is being created in a container object, support for the ability to create the 
value of the new data object in specified byte ranges is indicated by the presence of the 
"cdmi_create_value_range" capability in the parent container.

• Support for the ability to create a new data object by ID using multi-part MIME is indicated by the 
presence of the "cdmi_multipart_mime" system-wide capability.

7.6.3 Request headers 

The HTTP request header for creating a new data object using HTTP is shown in Table 17.

7.6.4 Request message body 

The message body shall contain the contents (value) of the data object to be created.

7.6.5 Response header

The HTTP response header for creating a new data object using HTTP is shown in Table 18. 

Table 17 — Request headers - Create a new data object using HTTP

Header Type Description Requirement

Content-Type Header 
string

The content type of the data to be stored as a data object. 
The value specified here shall be converted to lower case 
and stored in the mimetype field of the data object. If the 
content type includes the charset parameter as defined 
in RFC 2616 of "utf-8" (e.g., ";charset=utf-8"), the 
valuetransferencoding field of the data object shall be set to 
"utf-8". Otherwise, the valuetransferencoding field of the 
data object shall be set to "base64".

Mandatory

X-CDMI-Partial Header 
string

"true". Indicates that the newly created object is part of a 
series of writes and has not yet been fully created. When 
set, the completionStatus field shall be set to "Processing". 
X-CDMI-Partial works across CDMI and non-CDMI 
operations.

Optional

Table 18 — Response header - Create a new data object using HTTP

Header Type Description Requirement

Location Header 
string 

The unique absolute URI for the new data object as 
assigned by the system. In the absence of file name 
information from the client, the system shall assign the URI 
in the form: http://host:port/<root URI>/<ContainerName>/
<ObjectID> or https://host:port/<root URI>/
<ContainerName>/<ObjectID>.

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

41 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

128

129

130

131

132

133

134
135
136

137

138

139
140
141

ISO/IEC 17826:2016(E)

© ISO/I
7.6.6 Response message body 

A response body can be provided as per RFC 2616.

7.6.7 Response status 

Table 19 describes the HTTP status codes that occur when creating a new data object using HTTP.

7.6.8 Examples

EXAMPLE 1 POST to the container object URI the data object contents:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: text/plain;charset=utf-8

<object contents>

The following shows the response.

HTTP/1.1 201 Created
Location: http://cloud.example.com/MyContainer/00007ED900104E1D14771DC67C27BF8B
utf-8

Table 19 — HTTP status codes - Create a new data object using HTTP

HTTP status Description

201 Created The new data object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 42
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


Section III

CDMI Core

ISO/IEC 17826:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4

5

6

7

8

9
10

11
12

13
14

15
16

17

18
19

20

21

22
23

24
25

26
27
28

29
30

31

32

33
34
35
36

37

38
39

ISO/IEC 17826:2016(E)

© ISO/I
8    Data object resource operations using CDMI

8.1 Overview

Data objects are the fundamental storage component within CDMI™ and are analogous to files within a file 
system. Each data object has a set of well-defined fields that include: 

• a single value; and 

• optional metadata that is generated by the cloud storage system and specified by the cloud user. 

Data objects are addressed in CDMI in two ways: 

• by name (e.g., http://cloud.example.com/dataobject); and

• by object ID (e.g., http://cloud.example.com/cdmi_objectid/
00007ED90010D891022876A8DE0BC0FD).

Every data object has a single, globally-unique object identifier (ID) that remains constant for the life of the 
object. Each data object shall have one or more URI addresses that allow the object to be accessed. 

Every data object has a parent object from which the data object inherits data system metadata that is not 
explicitly specified in the data object itself. 

EXAMPLE 1 The "budget.xls" data object stored at the following URI would inherit data system metadata from its 
parent container, "finance":

http://cloud.example.com/finance/budget.xls

Individual fields within a data object can be accessed by specifying the field name after a question mark "?" 
that is appended to the end of the data object URI. 

EXAMPLE 2 The following URI returns the value field in the response body:

http://cloud.example.com/dataobject?value

The encoding of the data transported in the data object value field depends on the data object 
valuetransferencoding field.

• If the value transfer encoding of the object is set to "utf-8", the data stored in the value of the data 
object shall be a valid UTF-8 string and shall be transported as a UTF-8 string in the value field.

• If the value transfer encoding of the object is set to "base64", the data stored in the value of the 
data object can contain arbitrary binary sequences, and it shall be transported as a base 
64-encoded string in the value field.

Specific ranges of the value of a data object can be accessed by specifying a byte range after the value 
field name. 

EXAMPLE 3 The following URI returns the first thousand bytes in the value field:

http://cloud.example.com/dataobject?value:0-999

Because a byte range of a UTF-8 string is often not a valid UTF-8 string, the response to a range request 
shall always be transported in the value field as a base 64-encoded string. Likewise, when updating a 
range of bytes within the value of a data object, the contents of the value field shall be transported as a 
base 64-encoded string.

Byte ranges are specified as single inclusive byte ranges as per Section 14.35.1 of RFC 2616.

A list of unique fields, separated by a semicolon ";" can be specified, allowing multiple fields to be 
accessed in a single request. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 44
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

40

41

42
43
44

45
46

47
48
49

50
51
52
53
54

55
56
57

58
59
60

61

62
63
64
65

66

67

68
69

70
71

72
73
74
75

76
77

78
79
80

ISO/IEC 17826:2016(E)

© ISO/I
EXAMPLE 4 The following URI returns the value and metadata fields in the response body:

http://cloud.example.com/dataobject?value;metadata

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields 
shall be returned. If no requested fields are permitted to be read, an HTTP status code of 403 
Forbidden shall be returned to the client. 

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be 
performed, and an HTTP status code of 403 Forbidden shall be returned to the client.

When a client provides fields that are not defined in this International Standard or deserializes an object 
containing fields that are not defined in this International Standard, these fields shall be stored as part of 
the object but shall not be interpreted.

The value of a data object can also be specified and retrieved using multi-part MIME, where the CDMI 
JSON is transferred in the first MIME part, and the raw object value is transferred in the second MIME part. 
Each MIME part, including any header fields, shall conform to RFC 2045, RFC 2046, and RFC 2616. The 
length of each part can optionally be specified by a Content-Length header in addition to the MIME 
boundary delimiter.

Multiple non-overlapping ranges of the value of a data object can also be accessed or updated in a multi-
part MIME operation by transferring one MIME part for each range of the value. The byte ranges for these 
operations shall be specified as per Section 14.35.1 of RFC 2616.

Multi-part MIME enables the efficient transfer of binary data alongside CDMI object metadata without 
incurring the overhead of the UTF-8 or Base64 encoding and validation required to represent binary data 
in JSON.

8.1.1 Data object metadata

Data object metadata can also include arbitrary user-supplied metadata, storage system metadata, and 
data system metadata, as specified in Clause 16. Metadata shall be stored as a valid UTF-8 string. Binary 
data stored in user metadata shall be first encoded such that it can be contained in a UTF-8 string, with the 
use of base 64 encoding recommended.

8.1.2 Data object consistency

Writing to a data object is an atomic operation. 

• If a client reads a data object simultaneously with a write to that same data object, the reading 
client shall get either the old version or the new version, but not a mixture of both. 

• If a write is terminated due to errors, the contents of the data object shall be as if the write never 
occurred (i.e., writes are atomic in the face of errors). 

Create and update timestamps that are returned in response to multiple client writes to a given object 
indicate that a specific write is the newest (i.e., the write whose data is expected to be returned to 
subsequent reads until another write is processed). However, there is no guarantee that the write with the 
latest timestamp is the one whose data is returned on subsequent reads.

Range writes can result in a gap in an object value that have had no data written to them. Reading from a 
gap in a data object value shall return zero for each byte read. 

Implementations of this International Standard shall provide the atomicity features described in this 
subclause for data objects that are accessed via CDMI. The atomicity properties of data objects that are 
accessed by protocols other than CDMI are outside the scope of this International Standard.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

45 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

81

82
83
84
85

86

87

88

89

90

91

92

93
94

95

96

97

98
99

100
101

102
103

104
105

106

107
108

109
110

111
112

113
114

115
116

117
118

119
120
121

ISO/IEC 17826:2016(E)

© ISO/I
8.1.3 Data object representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support 
UTF-8 JSON representation. The request and response body JSON fields can be specified or returned in 
any order, with the exception that, if present, for data objects, the valuerange and value fields shall appear 
last and in that order. 

8.2 Create a data object using CDMI

8.2.1 Synopsis

To create a new data object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<DataObjectName>

To create a new data object by ID, see 9.7 "Create (POST) a new queue object using CDMI".

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., 
"/") between each pair of container names.

• <DataObjectName> is the name specified for the data object to be created.

After it is created, the data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.2.2 Delayed completion of create

In response to a create operation for a data object, the server can return an HTTP status code of 202 
Accepted to indicate that the object is in the process of being created. This response is useful for long-
running operations (e.g., copying a large data object from a source URI). Such a response has the 
following implications.

• The server shall return a Location header with an absolute URI to the object to be created along 
with an HTTP status code of 202 Accepted.

• With an HTTP status code of 202 Accepted, the server implies that the following checks have 
passed:

— user authorization for creating the object;

— user authorization for read access to any source object for move, copy, serialize, or 
deserialize; and

— availability of space to create the object or at least enough space to create a URI to report an 
error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting 
from the implementation’s use of eventual consistency. 

The client performs GET operations to the URI to track the progress of the operation. In response, the 
server returns two fields in its response body to indicate progress. 

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error 
string starting with the value "Error".

• An optional percentComplete field contains the percentage of the operation that has completed
(0 to 100). 

GET shall not return any value for the data object when completionStatus is not "Complete". If the final 
result of the create operation is an error, the URI is created with the completionStatus field set to the error 
message. It is the client's responsibility to delete the URI after the error has been noted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 46
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

122

123
124

125
126

127
128

129
130

131
132

133
134
135

136
137
138
139

140
141

142
143

144

145

ISO/IEC 17826:2016(E)

© ISO/I
8.2.3 Capabilities

The following capabilities describe the supported operations that can be performed when creating a new 
data object:

• Support for the ability to create a new data object is indicated by the presence of the 
cdmi_create_dataobject capability in the parent container.

• If the object being created in the parent container is a reference, support for that ability is indicated 
by the presence of the cdmi_create_reference capability in the parent container.

• If the new data object is a copy of an existing data object, support for the ability to copy is indicated 
by the presence of the cdmi_copy_dataobject capability in the parent container.

• If the new data object is the destination of a move, support for the ability to move the data object is 
indicated by the presence of the cdmi_move_dataobject capability in the parent container.

• If the new data object is the destination of a deserialize operation, support for the ability to 
deserialize the source data object is indicated by the presence of the cdmi_deserialize_dataobject 
capability in the parent container.

• If the new data object is the destination of a serialize operation, support for the ability to serialize 
the source data object is indicated by the presence of the cdmi_serialize_dataobject, 
cdmi_serialize_container, cdmi_serialize_domain, or cdmi_serialize_queue capability in the parent 
container.

• Support for the ability to create the value of a new data object in specified byte ranges is indicated 
by the presence of the "cdmi_create_value_range" capability in the parent container.

• Support for the ability to create a new data object using multi-part MIME is indicated by the 
presence of the "cdmi_multipart_mime" system-wide capability.

8.2.4 Request headers

The HTTP request headers for creating a data object using CDMI are shown in Table 20.

Table 20 — Request headers for creating a data object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-object" or a consistent value as per 
clause 5.13.2 "Content-type negotiation".

Optional

Content-Type Header 
string

"application/cdmi-object” or "multipart/mixed"

• If "multipart/mixed" is specified, the body shall consist of 
at least two MIME parts, where the first part shall contain 
a body of content-type "application/cdmi-object", and the 
second and subsequent parts shall contain one or more 
byte ranges of the value as described in 6.2 "Create a 
data object using HTTP".

• If multiple byte ranges are included and the Content-
Range header is omitted for a part, the data in the part 
shall be appended to the data in the preceding part, with 
the first part having a byte offset of zero.

Mandatory

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

X-CDMI-Partial Header 
string 

"true". Indicates that the newly created object is part of a 
series of writes and the value has not yet been fully 
populated. If X-CDMI-Partial is present, the 
completionStatus field in the response body shall be set to 
"Processing". X-CDMI-Partial works across CDMI and non-
CDMI operations.

Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

47 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

146

147

ISO/IEC 17826:2016(E)

© ISO/I
8.2.5 Request message body

The request message body fields for creating a data object using CDMI are shown in Table 21.

Table 21 — Request message body - Create a data object using CDMI (Sheet 1 of 3)

Field name Type Description Requirement

mimetype JSON 
string

MIME type of the data contained within the value field 
of the data object

• This field may be included when creating by value or 
when deserializing, serializing, copying, and moving 
a data object.

• If this field is not included and multi-part MIME is not 
being used, the value of "text/plain" shall be 
assigned as the field value.

• If this field is not included and multi-part MIME is 
being used, the value of the Content-Type header of 
the second MIME part shall be assigned as the field 
value.

• This field shall be stored as part of the data object.

• This MIME type value shall be converted to lower 
case before being stored. 

Optional

metadata JSON 
object

Metadata for the data object

• If this field is included when deserializing, serializing, 
copying, or moving a data object, the value provided 
in this field shall replace the metadata from the 
source URI. 

• If this field is not included when deserializing, 
serializing, copying, or moving a data object, the 
metadata from the source URI shall be used. 

• If this field is included when creating a new data 
object by specifying a value, the value provided in 
this field shall be used as the metadata. 

• If this field is not included when creating a new data 
object by specifying a value, an empty JSON object 
(i.e., "{}") shall be assigned as the field value. 

• This field shall not be included when referencing a 
data object. 

Optional

domainURI JSON 
string

URI of the owning domain

• If different from the parent domain, the user shall 
have the "cross-domain" privilege (see 
cdmi_member_privileges in Table 63 "Required 
settings for domain member user objects"). 

• If not specified, the domain of the parent container 
shall be used. 

Optional

deserialize JSON 
string

URI of a serialized data object that shall be 
deserialized to create the new data object

Optionala

serialize JSON 
string

URI of a CDMI object that shall be serialized into the 
new data object

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 48
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
copy JSON 
string

URI of a source data object or queue object that shall 
be copied into the new destination data object. 

• If the destination data object URI and the copy 
source object URI both do not specify individual 
fields, the destination data object shall be a 
complete copy of the source data object. 

• If the destination data object URI or the copy source 
object URI specifies individual fields, only the fields 
specified shall be used to create the destination data 
object. If specified fields are not present in the 
source, default field values shall be used. 

• If the destination data object URI and the copy 
source object URI both specify fields, an HTTP 
status code of 400 Bad Request shall be returned 
to the client. 

• If the copy source object URI points to a queue 
object, as part of the copy operation, multiple queue 
values shall be concatenated into a single data 
object value. 

• If the copy source object URI points to one or more 
queue object values, as part of the copy operation, 
the specified queue values shall be concatenated 
into a single data object value.

• If there are insufficient permissions to read the data 
object at the source URI or create the data object at 
the destination URI, or if the read operation fails, the 
copy shall return an HTTP status code of 400 Bad 
Request, and the destination object shall not be 
created.

Optionala

move JSON 
string

URI of an existing local or remote data object (source 
URI) that shall be relocated to the URI specified in the 
PUT. The contents of the object, including the object 
ID, shall be preserved by a move, and the data object 
at the source URI shall be removed after the data 
object at the destination has been successfully 
created. 

If there are insufficient permissions to read the data 
object at the source URI, write the data object at the 
destination URI, or delete the data object at the source 
URI, or if any of these operations fail, the move shall 
return an HTTP status code of 400 Bad Request, 
and the source and destination are left unchanged.

Optionala

reference JSON 
string

URI of a data object that shall be redirected to by a 
reference. If any other fields are supplied when 
creating a reference, the server shall respond with an 
HTTP status code of 400 Bad Request.

Optionala

deserializevalue JSON 
string

A data object serialized as specified in Clause 15 and 
encoded using base 64 encoding rules described 
in RFC 4648.

Optionala

Table 21 — Request message body - Create a data object using CDMI (Sheet 2 of 3)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

49 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
valuetransferencoding JSON 
string

The value transfer encoding used for the data object 
value. Two value transfer encodings are defined.

• "utf-8" indicates that the data object contains a valid 
UTF-8 string, and it shall be transported as a UTF-8 
string in the value field.

• "base64" indicates that the data object may contain 
arbitrary binary sequences, and it shall be 
transported as a base 64-encoded string in the 
value field. Setting the contents of the data object 
value field to any value other than a valid base 64 
string shall result in an HTTP status code of 400 
Bad Request being returned to the client.

• This field shall only be included when creating a 
data object by value.

• If this field is not included and multi-part MIME is not 
being used, the value of "utf-8" shall be assigned as 
the field value.

• If this field is not included and multi-part MIME is 
being used, the value of "utf-8" shall be assigned as 
the field value if the Content-Type header of the 
second and all MIME parts includes the charset 
parameter as defined in RFC 2046 of "utf-8" (e.g., 
";charset=utf-8"). Otherwise, the value of "base64" 
shall be assigned as the field value. This field 
applies only to the encoding of the value when 
represented in JSON; the Content-Transfer-
Encoding header of the part specifies the encoding 
of the value within a multi-part MIME request, as 
defined in RFC 2045.

• This field shall be stored as part of the object.

Optional

value JSON 
string

The data object value

• If this field is not included and multi-part MIME is not 
being used, an empty JSON string (i.e., "") shall be 
assigned as the field value.

• If this field is not included and multi-part MIME is 
being used, the contents of the second MIME part 
shall be assigned as the field value.

• If the valuetransferencoding field indicates UTF-8 
encoding, the value shall be a UTF-8 string escaped 
using the JSON escaping rules described in RFC 
4627.

• If the valuetransferencoding field indicates base 64 
encoding, the value shall be first encoded using the 
base 64 encoding rules described in RFC 4648.

Optionala

Table 21 — Request message body - Create a data object using CDMI (Sheet 3 of 3)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 50
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

148

149

150

151

ISO/IEC 17826:2016(E)

© ISO/I
8.2.6 Response headers

The HTTP response headers for creating a data object using CDMI are shown in Table 22.

8.2.7 Response message body

The response message body fields for creating a data object using CDMI are shown in Table 23.

Table 22 — Response headers - Create a data object using CDMI

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header 
string 

The server shall respond with the highest version supported 
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status code 
of 400 Bad Request.

Mandatory

Location Header 
string

When an HTTP status code of 202 Accepted is returned, 
the server shall respond with the absolute URL of the object 
that is in the process of being created.

Conditional

Table 23 — Response message body - Create a data object using CDMI (Sheet 1 of 2)

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-object" Mandatory

objectID JSON 
string

Object ID of the object Mandatory

objectName JSON 
string

Name of the object Mandatory

parentURI JSON 
string

URI for the parent object. 

Appending the objectName to the parentURI shall always 
produce a valid URI for the object. 

Mandatory

parentID JSON 
string

Object ID of the parent container object Mandatory

domainURI JSON 
string

URI of the owning domain Mandatory

capabilitiesURI JSON 
string

URI to the capabilities for the object Mandatory

completionStatus JSON 
string

A string indicating if the object is still in the process of being 
created or updated by another operation, and after that 
operation is complete, indicates if it was successfully 
created or updated or if an error occurred.

The value shall be the string "Processing", the string 
"Complete", or an error string starting with the value "Error".

Mandatory
IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 17

82
6:2

01
6

51 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

152

153

154

155

156
157
158
159
160

161
162
163
164
165
166
167

ISO/IEC 17826:2016(E)

© ISO/I
8.2.8 Response status

The HTTP status codes that occur when creating a data object using CDMI are described in Table 24.

8.2.9 Examples

EXAMPLE 1 PUT to the container URI the data object name and contents:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "mimetype" : "text/plain",
    "metadata" : {
        
    },
    "value" : "This is the Value of this Data Object"
}

percentComplete JSON 
string

• When the value of completionStatus is "Processing", this 
field, if provided, shall indicate the percentage of 
completion as a numeric integer value from 0 through 
100. 

• When the value of completionStatus is "Complete", this 
field, if provided, shall contain the value "100". 

• When the value of completionStatus is "Error", this field, if 
provided, can contain any integer value from 0 through 
100.

Optional

mimetype JSON 
string

MIME type of the value of the data object Mandatory

metadata JSON 
object

Metadata for the data object. This field includes any user 
and data system metadata specified in the request body 
metadata field, along with storage system metadata 
generated by the cloud storage system. See Clause 16 for 
a further description of metadata.

Mandatory

Table 24 — HTTP status codes - Create a data object using CDMI 

HTTP status Description

201 Created The new data object was created.

202 Accepted The data object is in the process of being created. The CDMI client should 
monitor the completionStatus and percentComplete fields to determine the 
current status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server.

Table 23 — Response message body - Create a data object using CDMI (Sheet 2 of 2)

Field name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 52
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

168

169
170
171

172
173
174
175
176
177
178
179
180
181
182
183
184
185

186

187
188
189
190
191

192
193
194
195
196
197

198

199
200
201

202
203
204
205
206
207
208
209
210
211
212
213
214

ISO/IEC 17826:2016(E)

© ISO/I
The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "objectType" : "application/cdmi-object",
    "objectID" : "00007ED90010D891022876A8DE0BC0FD",
    "objectName" : "MyDataObject.txt",
    "parentURI" : "/MyContainer/",
    "parentID" : "00007E7F00102E230ED82694DAA975D2", 
    "domainURI" : "/cdmi_domains/MyDomain/",
    "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
    "completionStatus" : "Complete",
    "mimetype" : "text/plain",
    "metadata" : {
        "cdmi_size" : "37" 
    }
}

EXAMPLE 2 PUT to the container URI the data object name and binary contents:

PUT /MyContainer/MyDataObject.txt HTTP/1.1 
Host: cloud.example.com 
Accept: application/cdmi-object 
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1

{
   "mimetype" : "text/plain", 
   "metadata" : { }, 
   "valuetransferencoding" : "base64"
   "value" : "VGhpcyBpcyB0aGUgVmFsdWUgb2YgdGhpcyBEYXRhIE9iamVjdA=="
}

The following shows the response.

HTTP/1.1 201 Created 
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1

{
   "objectType": "application/cdmi-object",
   "objectID": "00007ED9001008C174ABCE6AC3287E5F",
   "objectName": "MyDataObject.txt",
   "parentURI": "/MyContainer/",
   "parentID" : "00007E7F00102E230ED82694DAA975D2", 
   "domainURI": "/cdmi_domains/MyDomain/",
   "capabilitiesURI": "/cdmi_capabilities/dataobject/",
   "completionStatus": "Complete",
   "mimetype": "text/plain",
   "metadata": {
       "cdmi_size": "37"
   }

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

53 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

215

216
217
218
219
220

221
222

223
224
225
226
227
228

229
230
231

232

233

234

235
236
237

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254
255

256
257
258
259
260

261
262
263

264
265
266
267
268
269

ISO/IEC 17826:2016(E)

© ISO/I
EXAMPLE 3 } PUT to the container URI the data object name and binary contents using multi-part MIME:

PUT /MyContainer/MyDataObject.txt HTTP/1.1 
Host: cloud.example.com 
Accept: application/cdmi-object 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object 

{
    "domainURI": "/cdmi_domains/MyDomain/",
    "metadata": {
        "colour": "blue"
    }
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream 
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created 
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1

{
"objectType": "application/cdmi-object", 
"objectID": "00007ED900103ADE9DE3A8D1CF5436A3", 
"objectName": "MyDataObject.txt", 
"parentURI": "/MyContainer/", 
"parentID" : "00007E7F00102E230ED82694DAA975D2", 
"domainURI": "/cdmi_domains/MyDomain/", 
"capabilitiesURI": "/cdmi_capabilities/dataobject/", 
"completionStatus": "Complete", 
"mimetype": "application/octet-stream", 
"metadata": {
"cdmi_size": "37",
"colour": "blue",
...

}
}

EXAMPLE 4 PUT to the container URI the data object name and binary contents using multi-part MIME with 
optional content-lengths for the parts:

PUT /MyContainer/MyDataObject.txt HTTP/1.1 
Host: cloud.example.com 
Accept: application/cdmi-object 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object 
Content-Length: 82

{
"domainURI": "/cdmi_domains/MyDomain/",
"metadata": {
"colour": "blue"

}
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 54
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

270
271
272
273

274

275

276

277
278
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

296

297

298

299
300
301
302

303

304

305

306

307

308
309

310

311

312
313

314
315

ISO/IEC 17826:2016(E)

© ISO/I
--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream 
Content-Transfer-Encoding: binary
Content-Length: 37

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created 
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1

{
"objectType": "application/cdmi-object", 
"objectID": "00007ED900103ADE9DE3A8D1CF5436A3", 
"objectName": "MyDataObject.txt", 
"parentURI": "/MyContainer/", 
"parentID" : "00007E7F00102E230ED82694DAA975D2", 
"domainURI": "/cdmi_domains/MyDomain/", 
"capabilitiesURI": "/cdmi_capabilities/dataobject/", 
"completionStatus": "Complete", 
"mimetype": "application/octet-stream", 
"metadata": {
"cdmi_size": "37",
"colour": "blue",
...

}
}

8.3 Read a data object using CDMI

8.3.1 Synopsis

The following HTTP GET reads from an existing data object at the specified URI:

GET <root URI>/<ContainerName>/<DataObjectName>
GET <root URI>/<ContainerName>/<DataObjectName>?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<DataObjectName>?value:<range>;...
GET <root URI>/<ContainerName>/<DataObjectName>?metadata:<prefix>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be read from.

• <fieldname> is the name of a field.

• <range> is a byte range of the data object value to be returned in the value field.<prefix> is a 
matching prefix that returns all metadata items that start with the prefix value.

The object shall also also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.3.2 Capabilities 

The following capabilities describe the supported operations that can be performed when reading an 
existing data object:

• Support for the ability to read the metadata of an existing data object is indicated by the presence 
of the cdmi_read_metadata capability in the specified object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

55 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

316
317

318
319

320
321

322

323

324

325

326

327

ISO/IEC 17826:2016(E)

© ISO/I
• Support for the ability to read the value of an existing data object is indicated by the presence of 
the cdmi_read_value capability in the specified object. 

• Support for the ability to read the value of an existing data object in specific byte ranges is 
indicated by the presence of the cdmi_read_value_range capability in the specified object.

• Support for the ability to read a data object using multi-part MIME is indicated by the presence of 
the "cdmi_multipart_mime" system-wide capability.

8.3.3 Request headers

The HTTP request headers for reading a data object using CDMI are shown in Table 25. 

8.3.4 Request message body 

A request body shall not be provided.

8.3.5 Response headers

The HTTP response headers for reading a data object using CDMI are shown in Table 26. 

Table 25 — Request headers - Read a data object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-object", "multipart/mixed", or a consistent 
value as per clause 5.13.2 "Content-type negotiation"

Optional

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 26 — Response headers - Read a data object using CDMI 

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header 
string

The server shall respond with the highest version supported 
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status code 
of 400 Bad Request.

Mandatory

Content-Type Header 
string

"application/cdmi-object" or "multipart/mixed"

• If "multipart/mixed", the body shall consist of at least two 
MIME parts, where the first part shall contain a body of 
content-type "application/cdmi-object" and the second 
and subsequent parts shall contain the requested byte 
ranges of the value as described in 8.4 "Update a data 
object using CDMI". 

• If multiple byte ranges are included and the Content-
Range header is omitted for a part, the data in the part 
shall be appended to the data in the preceding part, with 
the first part having a byte offset of zero.

Mandatory

Location Header 
string

The server shall respond with the URI that the reference 
redirects to if the object is a reference.

Conditional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 56
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

328

329

ISO/IEC 17826:2016(E)

© ISO/I
8.3.6 Response message body

The response message body fields for reading a data object using CDMI are shown in Table 27. 

Table 27 — Response message body - Read a data object using CDMI (Sheet 1 of 2)

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-object" Mandatory

objectID JSON 
string

Object ID of the object Mandatory

objectName JSON 
string

Name of the object

• For objects in a container, the objectName field shall 
be returned. 

• For objects not in a container (objects that are only 
accessible by ID), the objectName field does not exist 
and shall not be returned. 

Conditional

parentURI JSON 
string

URI for the parent object

• For objects in a container, the parentURI field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the parentURI field does not exist 
and shall not be returned. 

Appending the objectName to the parentURI shall 
always produce a valid URI for the object. 

Conditional

parentID JSON 
string

Object ID of the parent container object

• For objects in a container, the parentID field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the parentID field does not exist 
and shall not be returned.

Conditional

domainURI JSON 
string

URI of the owning domain Mandatory

capabilitiesURI JSON 
string

URI to the capabilities for the object Mandatory

completionStatus JSON 
string

A string indicating if the object is still in the process of 
being created or updated by another operation, and 
after that operation is complete, indicates if it was 
successfully created or updated or if an error occurred.

The value shall be the string "Processing", the string 
"Complete", or an error string starting with the value 
"Error".

Mandatory

percentComplete JSON 
string

• When the value of completionStatus is "Processing", 
this field, if provided, shall indicate the percentage of 
completion as a numeric integer value from 0 through 
100. 

• When the value of completionStatus is "Complete", 
this field, if provided, shall contain the value "100". 

• When the value of completionStatus is "Error", this 
field, if provided, may contain any integer value from 0 
through 100. 

Optional

mimetype JSON 
string

MIME type of the value of the data object Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

57 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

330
331

ISO/IEC 17826:2016(E)

© ISO/I
If individual fields are specified in the GET request, only these fields are returned in the result body. 
Optional fields that are requested but do not exist are omitted from the result body.

metadata JSON 
object

Metadata for the data object

This field includes any user and data system metadata 
specified in the request body metadata field, along with 
storage system metadata generated by the cloud 
storage system. 

See Clause 16 for a further description of metadata.

Mandatory

valuerange JSON 
string

The range of bytes of the data object to be returned in 
the value field

• If a specific value range has been requested, the 
valuerange field shall correspond to the bytes 
requested. If the request extends beyond the end of 
the value, the valuerange field shall indicate the 
smaller byte range returned.

• If the object value has gaps (due to PUTs with non-
contiguous value ranges), the value range will 
indicate the range to the first gap in the object value.

• The cdmi_size storage system metadata of the data 
object shall always indicate the complete size of the 
object, including zero-filled gaps.

Mandatory

valuetransferencoding JSON 
string

The value transfer encoding used for the data object 
value. Two value transfer encodings are defined:

• "utf-8" indicates that the data object contains a valid 
UTF-8 string, and it shall be transported as a UTF-8 
string in the value field.

• "base64" indicates that the data object may contain 
arbitrary binary sequences, and it shall be transported 
as a base 64-encoded string in the value field.

Mandatory

value JSON 
string

The data object value

• If the valuetransferencoding field indicates UTF-8 
encoding, the value field shall contain a UTF-8 string 
using JSON escaping rules described in RFC 4627.

• If the valuetransferencoding field indicates base 64 
encoding, the value field shall contain a base 64-
encoded string as described in RFC 4648.

• The value field shall not be provided when using 
multi-part MIME.

• The value field shall only be provided when the 
completionStatus field contains "Complete".

• When reading a value, zeros shall be returned for any 
gaps resulting from non-contiguous writes.

Conditional

Table 27 — Response message body - Read a data object using CDMI (Sheet 2 of 2)

Field name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 58
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

332

333

334

335

336
337
338
339

340

341
342
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

361

362
363
364
365

ISO/IEC 17826:2016(E)

© ISO/I
8.3.7 Response status

The HTTP status codes that occur when reading a data object using CDMI are described in Table 28. 

8.3.8 Examples

EXAMPLE 1 GET to the data object URI to read all fields of the data object:

GET /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
X-CDMI-Specification-Version: 1.1
Content-Type: application/cdmi-object

{
    "objectType" : "application/cdmi-object",
    "objectID" : "00007ED90010D891022876A8DE0BC0FD",
    "objectName" : "MyDataObject.txt",
    "parentURI" : "/MyContainer/",
    "parentID" : "00007E7F00102E230ED82694DAA975D2", 
    "domainURI" : "/cdmi_domains/MyDomain/",
    "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
    "completionStatus" : "Complete",
    "mimetype" : "text/plain",
    "metadata" : {
        "cdmi_size" : "37" 
    },
    "valuerange" : "0-36",
    "valuetransferencoding" : "utf-8",
    "value" : "This is the Value of this Data Object"
}

EXAMPLE 2 GET to the data object URI by ID to read all fields of the data object:

GET /cdmi_objectid/00007ED90010D891022876A8DE0BC0FD HTTP/1.1
Host: cloud.example.com 
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1 

Table 28 — HTTP status codes - Read a data object using CDMI 

HTTP status Description

200 OK The data object content was returned in the response.

202 Accepted The data object is in the process of being created. The CDMI client should 
monitor the completionStatus and percentComplete fields to determine the 
current status of the operation.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the specified in the Accept 
header.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

59 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

366

367
368
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

387

388
389
390
391

392

393
394
395

396
397
398
399

400

401
402
403
404

405

406
407
408

409
410
411
412

413

414
415
416
417

ISO/IEC 17826:2016(E)

© ISO/I
The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "objectType" : "application/cdmi-object",
    "objectID" : "00007ED90010D891022876A8DE0BC0FD",
    "objectName" : "MyDataObject.txt",
    "parentURI" : "/MyContainer/",
    "parentID" : "00007E7F00102E230ED82694DAA975D2", 
    "domainURI" : "/cdmi_domains/MyDomain/",
    "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
    "completionStatus" : "Complete",
    "mimetype" : "text/plain",
    "metadata" : {
        "cdmi_size" : "37" 
    },
    "valuetransferencoding" : "utf-8",
    "valuerange" : "0-36",
    "value" : "This is the Value of this Data Object" 
}

EXAMPLE 3 GET to the data object URI to read the value and mimetype fields of the data object:

GET /MyContainer/MyDataObject.txt?value;mimetype HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "value" : "This is the Value of this Data Object",
    "mimetype" : "text/plain"
}

EXAMPLE 4 GET to the data object URI to read the first 11 bytes of the value of the data object:

GET /MyContainer/MyDataObject.txt?valuerange;value:0-10 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "valuerange" : "0-10",
    "value" : "VGhpcyBpcyB0aGU="
}

EXAMPLE 5 GET to the data object URI to read the data object using multi-part MIME:

GET /MyContainer/MyDataObject.txt HTTP/1.1 
Host: cloud.example.com 
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 60
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

418

419
420
421

422
423

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

442
443
444

445

446

447
448

449
450
451
452

453

454
455
456

457
458
459

460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

ISO/IEC 17826:2016(E)

© ISO/I
The following shows the response.

HTTP/1.1 200 OK 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"objectType": "application/cdmi-object", 
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "MyDataObject.txt", 
"parentURI": "/MyContainer/", 
"parentID" : "00007E7F00102E230ED82694DAA975D2", 
"domainURI": "/cdmi_domains/MyDomain/", 
"capabilitiesURI": "/cdmi_capabilities/dataobject/", 
"completionStatus": "Complete", 
"mimetype": "application/octet-stream", 
"metadata": {
"cdmi_size": "37",
"colour": "blue",
...

},
"valuerange": "0-36",
"valuetransferencoding": "base64"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p—

EXAMPLE 6 GET to the data object URI to read the data object using multi-part MIME, with optional content-
lengths for the parts:

GET /MyContainer/MyDataObject.txt HTTP/1.1 
Host: cloud.example.com 
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object
Content-Length: 505

{
"objectType": "application/cdmi-object", 
"objectID": "00007ED90010C2414303B5C6D4F83170",
"objectName": "MyDataObject.txt", 
"parentURI": "/MyContainer/", 
"parentID" : "00007E7F00102E230ED82694DAA975D2", 
"domainURI": "/cdmi_domains/MyDomain/", 
"capabilitiesURI": "/cdmi_capabilities/dataobject/", 
"completionStatus": "Complete", 
"mimetype": "application/octet-stream", 
"metadata": {
"cdmi_size": "37",
"colour": "blue",
...

},

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

61 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

475
476
477

478
479
480
481

482

483

484
485

486
487
488
489

490

491
492
493

494
495

496
497
498
499
500
501
502

503
504
505
506

507

508
509
510
511

512

513

514

515

516

517
518
519

ISO/IEC 17826:2016(E)

© ISO/I
"valuerange": "0-36",
"valuetransferencoding": "base64"

}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Length: 37

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p—

EXAMPLE 7 GET to the data object URI to read the metadata and multiple byte ranges of the binary contents 
using multi-part MIME:

GET /MyContainer/MyDataObject.txt?metadata;value:0-10;value:21-24 HTTP/1.1 
Host: cloud.example.com 
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"metadata": {
"cdmi_size": "37",
"colour": "blue",
...

}
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Range: bytes 0-10/37

<11 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary
Content-Range: bytes 21-24/37

<4 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

8.4 Update a data object using CDMI

8.4.1 Synopsis

The following HTTP PUT updates an existing data object at the specified URI:

PUT <root URI>/<ContainerName>/<DataObjectName>
PUT <root URI>/<ContainerName>/<DataObjectName>?value:<range>
PUT <root URI>/<ContainerName>/<DataObjectName>?metadata:<metadataname>;....

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 62
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

520

521

522

523

524

525
526

527

528
529

530
531

532
533

534
535

536
537

538

539

ISO/IEC 17826:2016(E)

© ISO/I
Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be updated.

• <range> is a byte range for the data object value to be updated.

The data object shall also be accessible at <root URI>/cdmi_objectid/<objectID>, and an update shall not 
result in a change to the object ID.

8.4.2 Capabilities

The following capabilities describe the supported operations that can be performed when updating an 
existing data object:

• Support for the ability to modify the metadata of an existing data object is indicated by the 
presence of the cdmi_modify_metadata capability in the specified object.

• Support for the ability to modify the value of an existing data object or MIME type is indicated by 
the presence of the cdmi_modify_value capability in the specified object.

• Support for the ability to modify the value of an existing data object in specified byte ranges is 
indicated by the presence of the cdmi_modify_value_range capability in the specified object.

• Support for the ability to modify an existing data object using multi-part MIME is indicated by the 
presence of the "cdmi_multipart_mime" system-wide capability.

8.4.3 Request headers

The HTTP request headers for updating a data object using CDMI are shown in Table 29. 

Table 29 — Request headers - Update a data object using CDMI

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-object" or "multipart/mixed"

• If multipart/mixed is specified, the body shall consist of at 
least two MIME parts, where the first part shall contain a 
body of content-type "application/cdmi-object" and the 
second and subsequent parts shall contain one or more 
byte ranges of the value as described in 8.7. 

• If multiple byte ranges are included and the "Content-
Range" header is omitted for a part, the data in the part 
shall be appended to the data in the preceding part, with 
the first part having a byte offset of zero.

Mandatory

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

X-CDMI-Partial Header 
string

"true". Indicates that the object is in the process of being 
updated and has not yet been fully updated. When set, the 
completionStatus field shall be set to "Processing".

If the completionStatus field had previously been set to 
"Processing" by including this header in a create or update, 
the next update without this field shall change the 
completionStatus field back to "Complete". X-CDMI-Partial 
works across CDMI and non-CDMI operations.

Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

63 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

540

541

ISO/IEC 17826:2016(E)

© ISO/I
8.4.4 Request message body

The request message body fields for updating a data object using CDMI are shown in Table 30.

Table 30 — Request message body - Update a data object using CDMI (Sheet 1 of 3)

Field name Type Description Requirement

mimetype JSON 
string

MIME type of the data contained within the value field of 
the data object. If present, this value replaces the 
existing mimetype field value.

• This field may be included when updating by value, 
deserializing, and copying a data object.

• If this field is not included, the existing value of the 
mimetype field shall be left unchanged.

• This field shall be stored as part of the data object.

• This mimetype field value shall be converted to lower 
case before being stored. 

Optional

metadata JSON 
object

Metadata for the data object. If present, the new 
metadata specified replaces the existing object 
metadata. If individual metadata items are specified in 
the URI, only those items are replaced; other items are 
preserved.

See Clause 16 for a further description of metadata.

Optional

domainURI JSON 
string

URI of the owning domain

• If different from the parent domain, the user shall have 
the "cross-domain" privilege (see 
cdmi_member_privileges in Table 63).

• If not specified, the existing domain shall be 
preserved.

Optional

deserialize JSON 
string

URI of a serialized data object that shall be deserialized 
to update an existing data object. The object ID of the 
serialized data object shall match the object ID of the 
destination data object.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 64
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
copy JSON 
string

URI of a source data object or queue object that shall be 
copied into an existing destination data object. 

• If the destination data object URI and the copy source 
object URI both do not specify individual fields, the 
destination data object shall be replaced with the 
source data object. 

• If the destination data object URI or the copy source 
object URI specifies individual fields, only the fields 
specified shall be used to update the destination data 
object. If specified fields are not present in the source, 
these fields shall be ignored. 

• If the destination data object URI and the copy source 
object URI both specify fields, an HTTP status code of 
400 Bad Request shall be returned to the client. 

If the copy source object URI points to a queue object, 
as part of the copy operation, multiple queue values 
shall be concatenated into a single data object value. 

If there are insufficient permissions to read the data 
object at the source URI, update the data object at the 
destination URI, or if the read operation fails, the copy 
shall return an HTTP status code of 400 Bad 
Request, and the destination shall be left unchanged. 

Optionala

deserializevalue JSON 
string

A data object serialized as specified in Clause 15 and 
encoded using base 64 encoding rules described in 
RFC 4648. The object ID of the serialized data object 
shall match the object ID of the destination data object.

Optionala

Table 30 — Request message body - Update a data object using CDMI (Sheet 2 of 3)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

65 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
valuetransferencoding JSON 
string

The value transfer encoding used for the data object 
value. Two value transfer encodings are defined:

• "utf-8" indicates that the data object contains a valid 
UTF-8 string and shall be transported as a UTF-8 
string in the value field.

• "base64" indicates that the data object may contain 
arbitrary binary sequence and shall be transported as 
a base 64 encoded string in the value field. Setting 
the contents of the data object value field to any value 
other than a valid base 64 string shall result in an 
HTTP status code of 400 Bad Request being 
returned to the client.

This field shall only be included when updating a data 
object by value. 

• If this field is not included and multi-part MIME is not 
being used, the existing value of 
"valuetransferencoding" shall be left unchanged.

• If this field is not included and multi-part MIME is 
being used, the value of "utf-8" shall be assigned as 
the field value if the "Content-Type" header of the 
second and all subsequent MIME parts includes the 
charset parameter as defined in RFC 2046 of "utf-8" 
(e.g., ";charset=utf-8"). Otherwise, the value of 
"base64" shall be assigned as the field value. This 
field applies only to the encoding of the value when 
represented in JSON; the "Content-Transfer-
Encoding" header of the part specifies the encoding of 
the value within a multi-part MIME request, as defined 
in RFC 2045.

This field shall be stored as part of the object.

Optional

value JSON 
string

This field contains the new data for the object. If present, 
this value replaces the existing value.

• If this field is not included and multi-part MIME is 
being used, the contents of the second and 
subsequent MIME parts shall be assigned to the 
corresponding byte ranges of the field value.

• If the valuetransferencoding field indicates UTF-8 
encoding, the value shall be a UTF-8 string escaped 
using the JSON escaping rules described in RFC 
4627.

• If the valuetransferencoding field indicates base 64 
encoding, the value shall be first encoded using the 
base 64 encoding rules described in RFC 4648.

• If a value range was specified in the request, the new 
data shall be inserted at the location specified by the 
range. Any resulting gaps between ranges shall be 
treated as if zeros had been written and shall be 
included when calculating the size of the value. When 
storing a range, the value shall be encoded using 
base 64, and the valuetransferencoding field shall be 
set to "base64".

Optionala

Table 30 — Request message body - Update a data object using CDMI (Sheet 3 of 3)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 66
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

542

543

544

545

546

547

548

549

550
551
552
553

554
555
556
557
558
559
560
561

562

563

ISO/IEC 17826:2016(E)

© ISO/I
8.4.5 Response header

The HTTP response header for updating a data object using CDMI is shown in Table 31.

8.4.6 Response message body

A response body can be provided as per RFC 2616.

8.4.7 Response status

The HTTP status codes that occur when updating a data object using CDMI are described in Table 32. 

8.4.8 Examples

EXAMPLE 1 PUT to the data object URI to set new field values:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "mimetype" : "text/plain",
    "metadata" : {
        "colour" : "blue",
        "length" : "10" 
    },
    "value" : "This is the Value of this Data Object"
}

The following shows the response.

HTTP/1.1 204 No Content 

Table 31 — Response header - Update a data object using CDMI

Header Type Description Requirement

Location Header 
string

The server shall respond with the URI to which the 
reference redirects if the object is a reference.

Conditional

Table 32 — HTTP status codes - Update a data object using CDMI 

HTTP status Description

204 No Content The data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

67 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

564

565
566
567
568

569
570
571

572

573

574

575
576
577
578

579
580
581

582

583

584
585

586
587

588
589
590
591

592

593
594
595
596

597
598
599
600
601
602

603

604

ISO/IEC 17826:2016(E)

© ISO/I
EXAMPLE 2 PUT to the data object URI to set a new MIME type:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "mimetype" : "text/plain"
}

The following shows the response.

HTTP/1.1 204 No Content 

EXAMPLE 3 PUT to the data object URI to update a range of the value:

PUT /MyContainer/MyDataObject.txt?value:21-24 HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "value" : "dGhhdA=="
}

The following shows the response.

HTTP/1.1 204 No Content

When updating a value without specifying a value transfer encoding, the client must be aware of the 
current value transfer encoding of the object. 

• If a client sends a value containing a UTF-8 string that is not a valid base 64 string to update an 
existing object with a value transfer encoding of "base64", the server shall return an error. 

• If a client sends a value containing a base 64 string to update an existing object with a value 
transfer encoding of "utf-8", the server shall not return an error. Instead, the server shall store the 
literal base 64 character sequence in the data object instead of the data encoded in the base 64 
string.

EXAMPLE 4 PUT to the data object URI to replace all metadata with new metadata:

PUT /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "metadata" : {
        "colour" : "red",
        "number" : "7"
    }
}

The following shows the response.

HTTP/1.1 204 No Content

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 68
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

605

606
607
608
609

610
611
612
613
614

615

616

617

618
619
620
621

622
623
624
625
626

627

628

629

630
631
632
633

634
635
636

637

638

639
640
641
642

643
644

645
646
647

648
649
650
651
652
653

ISO/IEC 17826:2016(E)

© ISO/I
EXAMPLE 5 PUT to the data object URI to add a new metadata item while preserving existing metadata:

PUT /MyContainer/MyDataObject.txt?metadata:shape HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "metadata" : {
        "shape" : "round"
    }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 6 PUT to the data object URI to replace just one metadata item with a new value:

PUT /MyContainer/MyDataObject.txt?metadata:colour HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "metadata" : {
        "colour" : "green"
    }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 7 Delete a single metadata item:

PUT /MyContainer/MyDataObject.txt?metadata:colour HTTP/1.1 
Host: cloud.example.com 
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1

{
    "metadata": {}
}

The following shows the response. 

HTTP/1.1 204 No Content

EXAMPLE 8 Add, update, and delete metadata items. Assume a starting condition where the object has a 
metadata item "colour" with value "green" and a metadata item "shape" with value "round" and does 
not have a metadata item "size". After the update, "colour" has value "red", "shape" is deleted, and 
"size" has been added with value "10". 

PUT /MyContainer/MyDataObject.txt?metadata:colour;metadata:shape;metadata:size 
HTTP/1.1

Host: cloud.example.com
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "metadata": {
        "colour": "red",
        "size": "10"
    }
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

69 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

654

655

656

657
658
659
660

661
662

663
664
665
666
667
668

669
670
671

672

673

674

675

676
677

678
679
680
681

682
683

684
685
686
687
688

689
690
691

692

693
694
695

696

697

698

699

ISO/IEC 17826:2016(E)

© ISO/I
The following shows the response. 

HTTP/1.1 204 No Content

EXAMPLE 9 PUT to the data object URI to set new field values and the binary contents using multi-part MIME:

PUT /MyContainer/MyDataObject.txt HTTP/1.1 
Host: cloud.example.com 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object 

{
"metadata": {
"colour": "red",
"number": "7"

}
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No Content 

EXAMPLE 10 PUT to the data object URI to replace just one metadata item and update multiple byte ranges within 
the binary contents of the data object using multi-part MIME:

PUT /MyContainer/BinaryObject.txt?metadata:colour HTTP/1.1 
Host: cloud.example.com 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object 

{
"metadata": {
"colour": "green"

}
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Range: bytes 0-10/37

<11 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Range: bytes 21-24/37

<4 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No Content

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 70
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

700

701

702

703

704

705

706

707

708

709

710
711

712
713

714

715

716

717

718

719

720

721

ISO/IEC 17826:2016(E)

© ISO/I
8.5 Delete a data object using CDMI

8.5.1 Synopsis

The following HTTP DELETE deletes an existing data object at the specified URI:

DELETE <root URI>/<ContainerName>/<DataObjectName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <DataObjectName> is the name of the data object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

8.5.2 Capability

The following capability describes the supported operations that may be performed when deleting an 
existing data object:

Support for the ability to delete an existing data object is indicated by the presence of the 
cdmi_delete_dataobject capability in the specified object.

8.5.3 Request header

The HTTP request header for deleting a data object using CDMI is shown in Table 33.

8.5.4 Request message body 

A request body can be provided as per RFC 2616.

8.5.5 Response headers 

Response headers can be provided as per RFC 2616.

8.5.6 Response message body 

A response body can be provided as per RFC 2616.

Table 33 — Request header - Delete a data object using CDMI

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

71 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

722

723

724

725

726
727
728

729

730

ISO/IEC 17826:2016(E)

© ISO/I
8.5.7 Response status

Table 34 describes the HTTP status codes that occur when deleting a data object using CDMI. 

8.5.8 Example

EXAMPLE DELETE to the data object URI:

DELETE /MyContainer/MyDataObject.txt HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content 

Table 34 — HTTP status codes - Delete a data object using CDMI

HTTP status Description

204 No Content The data object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server, or the data object cannot be deleted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 72
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4
5
6

7

8

9
10

11
12
13
14

15
16
17

18
19

20
21

22

23

24

25
26

27
28
29
30
31
32

33
34

35

36

37

38

39

ISO/IEC 17826:2016(E)

© ISO/I
9    Container object resource operations using CDMI

9.1 Overview

Container objects are the fundamental grouping of stored data within CDMI™ and are analogous to 
directories within a file system. Each container object has zero or more child objects and a set of well-
defined fields that include standardized and optional metadata. The metadata is generated by the cloud 
storage system and specified by the cloud user.

Containers are addressed in CDMI in two ways:

• by name (e.g., http://cloud.example.com/container/); and

• by object ID (e.g., http://cloud.example.com/cdmi_objectid/
00007ED900104E1D14771DC67C27BF8B/).

Every container object has a single, globally-unique object ID that remains constant for the life of the 
object. Each container object may also have one or more URI addresses that allow the container object to 
be accessed. Following the URI conventions for hierarchical paths, container URIs shall consist of one or 
more container names that are separated by forward slashes ("/") and that end with a forward slash ("/"). 

If a request is performed against an existing container resource and the trailing slash at the end of the URI 
is omitted, the server shall respond with an HTTP status code of 301 Moved Permanently. In addition, 
a Location header containing the URI with the trailing slash added shall be returned. 

If a CDMI request is performed to create a new container resource and the trailing slash at the end of the 
URI is omitted, the server shall respond with an HTTP status code of 400 Bad Request.

Non-CDMI requests to create a container resource shall include the trailing slash at the end of the URI; 
otherwise, the request shall be considered a request to create a data object.

Containers may also be nested.

EXAMPLE 1 The following URI represents a nested container:

http://cloud.example.com/container/subcontainer/

A nested container has a parent container object, shall be included in the children field of the parent 
container object, and shall inherit data system metadata and ACLs from its parent container. 

This model allows direct mapping between CDMI-managed cloud storage and file systems (e.g., NFSv4 or 
WebDAV). If a CDMI container object is exported as a file system, then the file system may make the 
CDMI metadata accessible via file system-specific mechanisms. As files and directories are created by the 
file system, they become visible through the CDMI interface acting as a data path. The mapping between 
file system constructs and CDMI data objects, container objects, and metadata is outside the scope of this 
International Standard.

Individual fields within a container object may be accessed by specifying the field name after a question 
mark "?" appended to the end of the container object URI. 

EXAMPLE 2 The following URI returns just the children field in the response body:

http://cloud.example.com/container/?children

By specifying a range after the children field name, specific ranges of the children field may be accessed. 

EXAMPLE 3 The following URI returns the first three children from the children field:

http://cloud.example.com/container/?children:0-2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

73 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

40
41
42

43
44

45

46

47
48
49

50
51

52
53

54

55

56
57

58

59
60
61

62

63

64

65

66

67

68
69
70

71

72
73

ISO/IEC 17826:2016(E)

© ISO/I
Children ranges are specified in a way that is similar to byte ranges as per Section 14.35.1 of RFC 2616. A 
client can determine the number of children present by requesting the childrenrange field without 
requesting a range of children.

A list of fields, separated by a semicolon ";" may be specified, allowing multiple fields to be accessed in a 
single request. 

EXAMPLE 4 The following URI would return the children and metadata fields in the response body:

http://cloud.example.com/container/?children;metadata

If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields 
shall be returned. If no requested fields are permitted to be read, an HTTP status code of 403 
Forbidden shall be returned to the client. 

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be 
performed, and an HTTP status code of 403 Forbidden shall be returned to the client.

When a client includes deserialized fields that are not defined in this International Standard, these fields 
shall be stored as part of the object.

9.1.1 Container metadata

The following optional data system metadata may be provided (see Table 35).

Container metadata may also include arbitrary user-supplied metadata, storage system metadata, and 
data system metadata as described in Clause 16.

9.1.2 Reserved container names 

This International Standard defines reserved container names that shall not be used when creating new 
containers. These container names are reserved for use by this International Standard, and if an attempt is 
made to create or delete them, an HTTP status code of 400 Bad Request shall be returned to the client. 

The reserved container names include

• cdmi_objectid, 

• cdmi_domains, 

• cdmi_capabilities, 

• cdmi_snapshots, and 

• cdmi_versions. 

As additional names may be added in future versions of this International Standard, server 
implementations shall prevent the creation of user-defined containers if the container name starts with 
"cdmi_". 

9.1.3 Container object addressing

Each container object is addressed via one or more unique URIs, and all operations may be performed 
through any of these URIs. For example, a container object may be accessible via multiple virtual hosting 

Table 35 — Container metadata

Metadata name Type Description Requirement

cdmi_assignedsize JSON 
string

The number of bytes that is reported via exported 
protocols (e.g., the device may be thin provisioned). This 
number may limit cdmi_size.

Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 74
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

74
75
76

77

78
79
80
81

82

83

84

85

86

87

88
89

90

91

92

93
94
95
96

97
98

99
100

101

102
103

104
105

106
107

108
109

110
111

112
113
114

ISO/IEC 17826:2016(E)

© ISO/I
paths, where http://cloud.example.com/users/snia/cdmi/ is also accessible through http://
snia.example.com/cdmi/. Conflicting writes via different paths shall be managed the same way that 
conflicting writes via one path are managed, via the principle of eventual consistency (see 9.2).

9.1.4 Container object representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support 
UTF-8 JSON representation. The request and response body JSON fields may be specified or returned in 
any order, with the exception that, if present, for container objects, the childrenrange and children fields 
shall appear last and in that order. 

9.2 Create a container object using CDMI

9.2.1 Synopsis 

To create a new container object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<NewContainerName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash 
(i.e., "/") between each pair of container object names.

• <NewContainerName> is the name specified for the container object to be created.

After it is created, the container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

9.2.2 Delayed completion of create

In response to a create operation for a container object, the server may return an HTTP status code of 202 
Accepted to indicate that the object is in the process of being created. This response is useful for long-
running operations (e.g., deserializing a source data object to create a large container object hierarchy). 
Such a response has the following implications.

• The server shall return a Location header with an absolute URI to the object to be created along 
with an HTTP status code of 202 Accepted. 

• With an HTTP status code of 202 Accepted, the server implies that the following checks have 
passed:

— user authorization for creating the container object;

— user authorization for read access to any source object for move, copy, serialize, or 
deserialize; and

— availability of space to create the container object or at least enough space to create a URI to 
report an error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting 
from the implementation’s use of eventual consistency. 

The client performs GET operations to the URI to track the progress of the operation. In response, the 
server returns two fields in its response body to indicate progress. 

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error 
string starting with the value "Error".

• An optional percentComplete field contains the percentage that the accepted PUT has completed 
(0 to 100). GET does not return any children for the container object when completionStatus is not 
"Complete".

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

75 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

115
116

117

118
119

120
121

122
123

124
125

126
127
128

129
130
131

132

133

ISO/IEC 17826:2016(E)

© ISO/I
When the final result of the create operation is an error, the URI is created with the completionStatus field 
set to the error message. It is the client's responsibility to delete the URI after the error has been noted.

9.2.3 Capabilities 

The following capabilities describe the supported operations that can be performed when creating a new 
container object:

• Support for the ability to create a new container object is indicated by the presence of the 
cdmi_create_container capability in the parent container object.

• If the object being created in the parent container object is a reference, support for that ability is 
indicated by the presence of the cdmi_create_reference capability in the parent container object.

• If the new container object is a copy of an existing container object, support for the ability to copy is 
indicated by the presence of the cdmi_copy_container capability in the parent container object.

• If the new container object is the destination of a move, support for the ability to move the 
container object is indicated by the presence of the cdmi_move_container capability in the parent 
container object.

• If the new container object is the destination of a deserialize operation, support for the ability to 
deserialize the source data object serialization of a container object is indicated by the presence of 
the cdmi_deserialize_container capability in the parent container object.

9.2.4 Request headers

The HTTP request headers for creating a container object using CDMI are shown in Table 36. 

Table 36 — Request headers - Create a container object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-container" or a consistent value as per 
clause 5.13.2 "Content-type negotiation"

Optional

Content-Type Header 
string

"application/cdmi-container" Mandatory

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client 
supports, for example, "1.1, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 76
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

134

135

ISO/IEC 17826:2016(E)

© ISO/I
9.2.5 Request message body

The request message body fields for creating a container object using CDMI are shown in Table 37. 

Table 37 — Request message body - Create a container object using CDMI (Sheet 1 of 2)

Field name Type Description Requirement

metadata JSON 
object

Metadata for the container object

• If this field is included when deserializing, serializing, 
copying, or moving a container object, the value 
provided in this field shall replace the metadata from the 
source URI. 

• If this field is not included when deserializing, serializing, 
copying, or moving a container object, the metadata from 
the source URI shall be used. 

• If this field is included when creating a new container 
object by specifying a value, the value provided in this 
field shall be used as the metadata. 

• If this field is not included when creating a new container 
object by specifying a value, an empty JSON object (i.e., 
"{}") shall be assigned as the field value. 

• This field shall not be included when referencing a 
container object.

Optional

domainURI JSON 
string

URI of the owning domain

• If different from the parent domain, the user shall have 
the "cross-domain" privilege (see 
cdmi_member_privileges in Table 63 "Required settings 
for domain member user objects").

• If not specified, the parent domain shall be used.

Optional

exports JSON 
object

A structure for each protocol enabled for this container 
object (see Clause 13). This field shall not be included 
when referencing a container object. 

Optional

deserialize JSON 
string

URI of a data object that shall be deserialized to create the 
new container object, including all child objects inside the 
source serialized data object (see Clause 15).

When deserializing a container object, any exported 
protocols from the original serialized container object are 
not applied to the newly created container objects.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

77 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
copy JSON 
string

URI of a source container object that shall be copied into 
the new destination container object. 

• If the destination container object URI and the copy 
source object URI both do not specify individual fields, 
the destination container object shall be a complete copy 
of the source container object, including all child objects 
under the source container object. 

• If the destination container object URI or the copy source 
object URI specifies individual fields, only the fields 
specified shall be used to create the destination 
container object. If specified fields are not present in the 
source, default field values shall be used. 

• If the destination container object URI and the copy 
source object URI both specify fields, an HTTP status 
code of 400 Bad Request shall be returned to the 
client. 

When copying a container object, exported protocols are 
not preserved across the copy. 

If there are insufficient permissions to read the container 
object at the source URI or create the container object at 
the destination URI, or if the read operation fails, the copy 
shall return an HTTP status code of 400 Bad Request, 
and the destination container object shall not be created.

Optionala

move JSON 
string

URI of an existing local or remote container object (source 
URI) that shall be relocated, along with all child objects, to 
the URI specified in the PUT. The contents of the container 
object and all children, including the object ID, shall be 
preserved by a move, and the container object and all 
children of the source URI shall be removed after the 
objects at the destination have been successfully created. 

If there are insufficient permissions to read the objects at 
the source URI, write the objects at the destination URI, or 
delete the objects at the source URI, or if any of these 
operations fail, the move shall return an HTTP status code 
of 400 Bad Request, and the source and destination are 
left unchanged.

Optionala

reference JSON 
string

URI of a container object that shall be redirected to by a 
reference. If other fields are supplied when creating a 
reference, the server shall respond with an HTTP status 
code of 400 Bad Request.

Optionala

deserializevalue JSON 
string

A container object serialized as specified in Clause 15 and 
encoded using base 64 encoding rules described in RFC 
4648. The object ID of the serialized container object shall 
match the object ID of the destination container object.

Optionala

Table 37 — Request message body - Create a container object using CDMI (Sheet 2 of 2)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 78
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

136

137

138

139

ISO/IEC 17826:2016(E)

© ISO/I
9.2.6 Response headers

The HTTP response headers for creating a container object using CDMI are shown in Table 38. 

9.2.7 Response message body

The response message body fields for creating a container object using CDMI are shown in Table 39. 

Table 38 — Response headers - Create a container object using CDMI

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-container" Mandatory

X-CDMI-
Specification-
Version

Header 
string

The server shall respond with the highest version 
supported by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status 
code of 400 Bad Request.

Mandatory

Location Header 
string

When an HTTP status code of 202 Accepted is returned, 
the server shall respond with the absolute URL of the 
object that is in the process of being created.

Conditional

Table 39 — Response message body - Create a container object using CDMI (Sheet 1 of 2)

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-container" Mandatory

objectID JSON 
string

Object ID of the object Mandatory

objectName JSON 
string

Name of the object Mandatory

parentURI JSON 
string

URI for the parent object

Appending the objectName to the parentURI shall always 
produce a valid URI for the object. 

Mandatory

parentID JSON 
string

Object ID of the parent container object Mandatory

domainURI JSON 
string

URI of the owning domain Mandatory

capabilitiesURI JSON 
string

URI to the capabilities for the object Mandatory

completionStatus JSON 
string

A string indicating if the object is still in the process of being 
created or updated by another operation, and after that 
operation is complete, indicates if it was successfully 
created or updated or if an error occurred.

The value shall be the string "Processing", the string 
"Complete", or an error string starting with the value 
"Error".

Mandatory

aReturned only if present.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

79 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
percentComplete JSON 
string

• When the value of completionStatus is "Processing", this 
field, if provided, shall indicate the percentage of 
completion as a numeric integer value from 0 through 
100. 

• When the value of completionStatus is "Complete", this 
field, if provided, shall contain the value "100". 

• When the value of completionStatus is "Error", this field, 
if provided, may contain any integer value from 0 through 
100.

Optional

metadata JSON 
object

Metadata for the container object. 

• This field includes any user and data system metadata 
that is specified in the request body metadata field, along 
with storage system metadata that is generated by the 
cloud storage system. 

• See Clause 16 for a further description of metadata.

Mandatory

exports JSON 
object

A structure for each protocol that is enabled for this 
container object. See Clause 13.

Optionala

snapshots JSON 
array of 
JSON 
strings

URIs of the snapshot container objects. See Clause 14. Optionala

childrenrange JSON 
string 

The children of the container expressed as a range. If a 
range of children is requested, this field indicates the 
children returned as a range.

This field should not be returned in the response message 
body that is associated with a copy, move, deserialize, or 
deserialize value operation.

Optional

children JSON 
array of 
JSON 
strings

Names of the children objects in the container object. Child 
container objects end with "/".

This field should not be returned in the response message 
body that is associated with a copy, move, deserialize, or 
deserialize value operation.

Optional

Table 39 — Response message body - Create a container object using CDMI (Sheet 2 of 2)

Field name Type Description Requirement

aReturned only if present.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 80
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

140

141

142

143

144
145
146
147
148

149
150

151

152
153
154

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

170

171
172
173
174
175

ISO/IEC 17826:2016(E)

© ISO/I
9.2.8 Response status

Table 40 describes the HTTP status codes that occur when creating a container object using CDMI. 

9.2.9 Examples

EXAMPLE 1 Create a new container with no metadata:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "objectType": "application/cdmi-container",
    "objectID": "00007ED900104E1D14771DC67C27BF8B",
    "objectName": "MyContainer/",
    "parentURI": "/",
    "parentID": "00007E7F0010128E42D87EE34F5A6560",
    "domainURI": "/cdmi_domains/MyDomain/",
    "capabilitiesURI": "/cdmi_capabilities/container/",
    "completionStatus": "Complete",
    "metadata": {
        ...
    },
    "childrenrange": "",
    "children": []
}

EXAMPLE 2 Create a container with metadata:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

Table 40 — HTTP status codes - Create a container object using CDMI

HTTP status Description

201 Created The new container object was created.

202 Accepted The container is in the process of being created. The CDMI client should monitor the 
completionStatus and percentComplete fields to determine the current status of the 
operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a state 
transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

81 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

176
177
178
179
180

181

182
183
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

201

202
203
204
205
206

207
208
209

210

211
212
213

214
215
216
217
218
219
220
221
222
223
224
225
226
227

228

229
230
231
232

ISO/IEC 17826:2016(E)

© ISO/I
{
    "metadata": {
        "Colour": "Yellow"
    }
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "objectType": "application/cdmi-container",
    "objectID": "00007ED900104E1D14771DC67C27BF8B",
    "objectName": "MyContainer/",
    "parentURI": "/",
    "parentID": "00007E7F0010128E42D87EE34F5A6560",
    "domainURI": "/cdmi_domains/MyDomain/",
    "capabilitiesURI": "/cdmi_capabilities/container/",
    "completionStatus": "Complete",
    "metadata": {
        "Colour": "Yellow",
        ...
    },
    "childrenrange": "",
    "children": []
}

EXAMPLE 3 Create a container that is a copy of a container:

PUT /MyContainerCopy/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "copy": "/MyContainer/"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "objectType": "application/cdmi-container",
    "objectID": "00007ED900104E1D14771DC67C27BF8B",
    "objectName": "MyContainerCopy/",
    "parentURI": "/",
    "parentID": "00007E7F0010128E42D87EE34F5A6560",
    "domainURI": "/cdmi_domains/MyDomain/",
    "capabilitiesURI": "/cdmi_capabilities/container/",
    "completionStatus": "Complete",
    "metadata": {
        "Colour": "Yellow",
        ...
    },
}

EXAMPLE 4 Rename a container:

PUT /MyContainerRenamed/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 82
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

233

234
235
236

237

238
239
240

241
242
243
244
245
246
247
248
249
250
251
252
253
254

255

256

257

258

259
260

261
262
263

264

265

266

267

268

269

270

271

272

273
274

275
276

277
278

ISO/IEC 17826:2016(E)

© ISO/I
X-CDMI-Specification-Version: 1.1

{
    "move": "/MyContainer/"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "objectType": "application/cdmi-container",
    "objectID": "00007ED900104E1D14771DC67C27BF8B",
    "objectName": "MyContainerRenamed/",
    "parentURI": "/",
    "parentID": "00007E7F0010128E42D87EE34F5A6560",
    "domainURI": "/cdmi_domains/MyDomain/",
    "capabilitiesURI": "/cdmi_capabilities/container/",
    "completionStatus": "Complete",
    "metadata": {
        "Colour": "Yellow",
        ...
    },
}

9.3 Read a container object using CDMI

9.3.1 Synopsis

To read all fields from an existing container object, the following request shall be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/

To read one or more requested fields from an existing container object, one of the following requests shall 
be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<TheContainerName>/?children:<range>;...
GET <root URI>/<ContainerName>/<TheContainerName>/?metadata:<prefix>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name specified for the container object to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

9.3.2 Capabilities

The following capabilities describe the supported operations that can be performed when reading an 
existing container object:

• Support for the ability to read the metadata of an existing container object is indicated by the 
presence of the cdmi_read_metadata capability in the specified container object.

• Support for the ability to list the children of an existing container object is indicated by the presence 
of the cdmi_list_children capability in the specified container object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

83 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

279
280

281

282

283

284

285

286

287

288

ISO/IEC 17826:2016(E)

© ISO/I
• Support for the ability to list ranges of the children of an existing container object is indicated by 
the presence of the cdmi_list_children_range capability in the specified container object.

9.3.3 Request headers

The HTTP request headers for reading a container object using CDMI are shown in Table 41. 

9.3.4 Request message body 

A request body shall not be provided.

9.3.5 Response headers

The HTTP response headers for reading a container object using CDMI are shown in Table 42.

9.3.6 Response message body

The response message body fields for reading a container object using CDMI are shown in Table 43.

Table 41 — Request headers - Read a container object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-container" or a consistent value as per 
clause 5.13.2 "Content-type negotiation"

Optional

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 42 — Response headers - Read a container object using CDMI

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header 
string

The server shall respond with the highest version 
supported by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status code 
of 400 Bad Request.

Mandatory

Content-Type Header 
string

"application/cdmi-container" Mandatory

Location Header 
string

The server shall respond with an absolute URI to which the 
reference redirects if the object is a reference.

Conditional

Table 43 — Response message body - Read a container object using CDMI (Sheet 1 of 3)

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-container" Mandatory

objectID JSON 
string

Object ID of the object Mandatory

aReturned only if present.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 84
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
objectName JSON 
string

Name of the object

• For objects in a container, the objectName field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the objectName field does not exist 
and shall not be returned. 

Conditional

parentURI JSON 
string

URI for the parent object

• For objects in a container, the parentURI field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the parentURI field does not exist and 
shall not be returned. 

Appending the objectName to the parentURI shall always 
produce a valid URI for the object. 

Conditional

parentID JSON 
string

Object ID of the parent container object

• For objects in a container, the parentID field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the parentID field does not exist and 
shall not be returned.

Conditional

domainURI JSON 
string

URI of the owning domain Mandatory

capabilitiesURI JSON 
string

URI to the capabilities for the object Mandatory

completionStatus JSON 
string

A string indicating if the object is still in the process of being 
created or updated by another operation, and after that 
operation is complete, indicates if it was successfully 
created or updated or if an error occurred.

The value shall be the string "Processing", the string 
"Complete", or an error string starting with the value "Error".

Mandatory

percentComplete JSON 
string

• When the value of completionStatus is "Processing", this 
field, if provided, shall indicate the percentage of 
completion as a numeric integer value from 0 through 
100. 

• When the value of completionStatus is "Complete", this 
field, if provided, shall contain the value "100". 

• When the value of completionStatus is "Error", this field, 
if provided, may contain any integer value from 0 through 
100.

Optional

metadata JSON 
object

Metadata for the container object. This field includes any 
user and data system metadata specified in the request 
body metadata field, along with storage system metadata 
generated by the cloud storage system. See Clause 16 for 
a further description of metadata.

Mandatory

exports JSON 
object

A structure for each protocol that is enabled for this 
container object (see Clause 13)

Optionala

Table 43 — Response message body - Read a container object using CDMI (Sheet 2 of 3)

Field name Type Description Requirement

aReturned only if present.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

85 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

289
290

291

292

293

294

295
296
297
298

299

300
301
302

ISO/IEC 17826:2016(E)

© ISO/I
If individual fields are specified in the GET request, only these fields are returned in the result body. 
Optional fields that are requested but do not exist are omitted from the result body.

9.3.7 Response status

Table 44 describes the HTTP status codes that occur when reading a container object using CDMI. 

9.3.8 Examples

EXAMPLE 1 GET to the container object URI to read all the fields of the container object:

GET /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

snapshots JSON 
array of 
JSON 
strings

URIs of the snapshot container objects Optionala

childrenrange JSON 
string 

The children of the container expressed as a range. If a 
range of children is requested, this field indicates the 
children returned as a range.

Mandatory

children JSON 
array of 
JSON 
strings

Names of the children objects in the container object. When 
a client uses a child name in a request URI or a header 
URI, the client shall escape reserved characters  according 
to RFC 3986, e.g., a "%" character in a child name shall be 
replaced with "%25". 

• Children that are container objects shall have "/" 
appended to the child name.

• Children that are references shall have "?" appended to 
the child name.

Mandatory

Table 44 — HTTP status codes - Read a container object using CDMI

HTTP status Description

200 OK The metadata for the container object is provided in the message body.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the 
Accept header.

Table 43 — Response message body - Read a container object using CDMI (Sheet 3 of 3)

Field name Type Description Requirement

aReturned only if present.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 86
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337

338
339
340
341

342

343
344
345

346
347
348
349
350
351
352
353
354
355

356

357
358
359
360

361

ISO/IEC 17826:2016(E)

© ISO/I
{
    "objectType" : "application/cdmi-container",
    "objectID" : "00007ED900104E1D14771DC67C27BF8B",
    "objectName" : "MyContainer/",
    "parentURI" : "/",
    "parentID" : "00007E7F0010128E42D87EE34F5A6560",
    "domainURI" : "/cdmi_domains/MyDomain/",
    "capabilitiesURI" : "/cdmi_capabilities/container/",
    "completionStatus" : "Complete",
    "metadata" : {
        ...
    },
    "exports" : {
    "OCCI/iSCSI": {
        "identifier": "00007E7F00104BE66AB53A9572F9F51E",
        "permissions": [
            "http://example.com/compute/0/",
            "http://example.com/compute/1/"
        ]
    },
        "Network/NFSv4" : {
            "identifier" : "/users",
            "permissions" : "domain" 
        },
        "childrenrange" : "0-4",
        "children" : [
            "red",
            "green",
            "yellow",
            "orange/",
            "purple/" 
        ] 
    }
}

EXAMPLE 2 GET to the container object URI to read parentURI and children of the container object:

GET /MyContainer/?parentURI;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "parentURI" : "/",
    "children" : [
        "red",
        "green",
        "yellow",
        "orange/",
        "purple/" 
    ]
}

EXAMPLE 3 GET to the container object URI to read children 0..2 and childrenrange of the container object:

GET /MyContainer/?childrenrange;children:0-2 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
X-CDMI-Specification-Version: 1.1

The following shows the response.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

87 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

362
363
364

365
366
367
368
369
370
371
372

373

374
375
376
377
378

379

380
381
382

383
384
385
386
387
388
389
390

391

392

393

394

395
396

397

398

399

400

401

402
403

404

405
406
407

ISO/IEC 17826:2016(E)

© ISO/I
HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "childrenrange" : "0-2",
    "children" : [
        "red",
        "green",
        "yellow" 
    ]
}

EXAMPLE 4 GET to the container object by ID to read children 0..2 and childrenrange of the container object: 

GET /cdmi_objectid/0000706D0010B84FAD185C425D8B537E/?childrenrange;children:0-2 
HTTP/1.1 

Host: cloud.example.com 
Accept: application/cdmi-container 
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK 
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "childrenrange": "0-2",
    "children": [
        "red",
        "green",
        "yellow"
    ]
}

9.4 Update a container object using CDMI

9.4.1 Synopsis

To update some or all fields in an existing container object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<TheContainerName>/

To add, update, and remove specific metadata items of an existing container object, the following request 
shall be performed:

PUT <root URI>/<ContainerName>/<TheContainerName>/?metadata:<metadataname>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name of the container object to be updated.

The container object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/. An update shall not 
result in a change to the object ID.

9.4.2 Delayed completion of snapshot

If the creation of a snapshot (see Clause 14) is requested by including a snapshot field in the request 
message body, the server may return an HTTP status code of 202 Accepted. Such a response has the 
following implications:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 88
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

408
409

410

411

412
413

414
415

416
417

418
419

420
421

422
423
424

425

426
427

428
429

430
431

432
433

434

435

ISO/IEC 17826:2016(E)

© ISO/I
• With an HTTP status code of 202 Accepted, the server implies that the following checks have 
passed:

— user authorization for creating the snapshot, 

— user authorization for read access to the container object, and

— availability of space to create the snapshot or at least enough space to create a URI to report 
an error.

• A client might not be able to immediately access the snapshot, e.g., due to delays resulting from 
the implementation’s use of eventual consistency.

The client performs GET operations to the snapshot URI to track the progress of the operation. In 
particular, the server returns two fields in its response body to indicate progress: 

• A completionStatus field contains either "Processing", "Complete", or an error string starting with 
the value "Error".

• An optional percentComplete field contains the percentage that the accepted PUT has completed 
(0 to 100). GET does not return any value for the object when completionStatus is not "Complete".

When the final result of the snapshot operation is an error, the snapshot URI is created with the 
completionStatus field set to the error message. It is the client's responsibility to delete the URI after the 
error has been noted.

9.4.3 Capabilities 

The following capabilities describe the supported operations that can be performed when updating an 
existing container object:

• Support for the ability to modify the metadata of an existing container object is indicated by the 
presence of the cdmi_modify_metadata capability in the specified container object.

• Support for the ability to snapshot the contents of an existing container object is indicated by the 
presence of the cdmi_snapshot capability in the specified container object.

• Support for the ability to add an exported protocol to an existing container object is indicated by the 
presence of the cdmi_export_<protocol> capabilities for the specified container object.

9.4.4 Request headers

The HTTP request headers for updating a container object using CDMI are shown in Table 45. 

Table 45 — Request headers - Update a container object using CDMI

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-container" Mandatory

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

89 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

436

437

ISO/IEC 17826:2016(E)

© ISO/I
9.4.5 Request message body

The request message body fields for updating a container object using CDMI are shown in Table 46.

Table 46 — Request message body - Update a container object using CDMI (Sheet 1 of 2)

Field name Type Description Requirement

metadata JSON 
object

Metadata for the container object. If present, the new 
metadata specified replaces the existing object metadata. If 
individual metadata items are specified in the URI, only 
those items are replaced; other items are preserved. 

See Clause 16 for a further description of metadata.

Optional

domainURI JSON 
string

URI of the owning domain

• If different from the parent domain, the user shall have 
the "cross-domain" privilege (see 
cdmi_member_privileges in Table 63 "Required settings 
for domain member user objects").

• If not specified, the existing domain shall be preserved.

Optional

snapshot JSON 
string

Name of the snapshot to be taken. This is not a URL, but 
rather, the final component of the absolute URL where the 
snapshot will exist when the snapshot operation 
successfully completes. 

• If a snapshot is added or changed, the PUT operation 
only returns after the snapshot is added to the snapshot 
list. 

• After they are created, snapshots may be accessed as 
children container objects under the cdmi_snapshots 
child container object of the container object receiving a 
snapshot.

• When creating a snapshot with the same name as an 
existing snapshot, the new snapshot will replace the 
existing snapshot.

Optional

deserialize JSON 
string

URI of a container object that shall be deserialized to 
update an existing container object. The object ID of the 
serialized container object shall match the object ID of the 
destination container object. 

• If the serialized container object does not contain 
children, the update is applied only to the container 
object, and any existing children are left as is. 

• If the serialized container object does contain children, 
then creates, updates, and deletes are recursively 
applied for each child, depending on the differences 
between the provided serialized state and the current 
state of the child.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 90
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
copy JSON 
string

URI of a source container object that shall be copied into 
the existing destination container object. 

• If the destination container object URI and the copy 
source object URI both do not specify individual fields, 
the destination container object shall be replaced with 
the source container object, including all child objects 
under the source container object. 

• If the destination container object URI or the copy source 
object URI specifies individual fields, only the fields 
specified shall be used to update the destination 
container object. If specified fields are not present in the 
source, these fields shall be ignored. 

• If the destination container object URI and the copy 
source object URI both specify fields, an HTTP status 
code of 400 Bad Request shall be returned to the 
client. 

Note:  When copying a container object, exported protocols 
are not preserved across the copy. 

If there are insufficient permissions to read the container 
object at the source URI or create the container object at 
the destination URI, or if the read operation fails, the copy 
shall return an HTTP status code of 400 Bad Request, 
and the destination container object shall not be updated. 

Optionala

deserializevalue JSON 
Sting

A container object serialized as specified in Clause 15 and 
encoded using base 64 encoding rules described in RFC 
4648. 

The object ID of the serialized container object shall match 
the object ID of the destination container object. Otherwise, 
the server shall return an HTTP status code of 400 Bad 
Request.

• If the serialized container object does not contain 
children, the update is applied only to the container 
object, and any existing children are left as is. 

• If the serialized container object does contain children, 
then creates, updates, and deletes are recursively 
applied for each child, depending on the differences 
between the provided serialized state and the current 
state of the children.

Optionala

exports JSON 
object

A structure for each protocol that is enabled for this 
container object (see Clause 13). If an exported protocol is 
added or changed, the PUT operation only returns after the 
export operation has completed. If not specified, the 
existing exports shall be preserved.

Optional

Table 46 — Request message body - Update a container object using CDMI (Sheet 2 of 2)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

91 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

438

439

440

441

442

443

444

445

446
447
448
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

ISO/IEC 17826:2016(E)

© ISO/I
9.4.6 Response header

The HTTP response header for updating a container object using CDMI is shown in Table 47. 

9.4.7 Response message body 

A response body can be provided as per RFC 2616.

9.4.8 Response status

Table 48 describes the HTTP status codes that occur when updating a container object using CDMI. 

9.4.9 Examples

EXAMPLE 1 PUT to the container object URI to set new field values:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "metadata" : {
        
    } ,
    "exports" : {
        "OCCI/iSCSI": {
        "identifier": "00007E7F00104BE66AB53A9572F9F51E",
        "permissions": [
            "http://example.com/compute/0/",
            "http://example.com/compute/1/"
        ]
    },
        "Network/NFSv4" : {
            "identifier" : "/users",
            "permissions" : "domain" 

Table 47 — Response header - Update a container object using CDMI

Header Type Description Requirement

Location Header 
string

The server shall respond with an absolute URI to which the 
reference redirects if the object is a reference.

Conditional

Table 48 — HTTP status codes - Update a container object using CDMI

HTTP status Description

204 No Content The data object content was returned in the response.

202 Accepted The container or  snapshot (subcontainer object) is in the process of being created. 
The CDMI client should montitor the completionStatus and percentComplete fields 
to determine the current status of the operation.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a state 
transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 92
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

465
466
467

468

469

470

471
472
473
474

475
476
477
478
479
480
481
482
483
484
485
486

487

488

489

490

491
492

493

494

495

496

497

498

499

500
501

502
503

ISO/IEC 17826:2016(E)

© ISO/I
        } 
    }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 PUT to the container object URI to set a new exported protocol value:

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.1

{
    "exports" : {
        "OCCI/iSCSI" : {
            "identifier" : "00007ED900104E1D14771DC67C27BF8B",
            "permissions" : "00007E7F00104EB781F900791C70106C" 
        } ,
        "Network/NFSv4" : {
            "identifier" : "/users",
            "permissions" : "domain" 
        } 
    }
}

The following shows the response.

HTTP/1.1 204 No Content

9.5 Delete a container object using CDMI

9.5.1 Synopsis

To delete an existing container object, including all contained children and snapshots, the following request 
shall be performed:

DELETE <root URI>/<ContainerName>/<TheContainerName>/ 

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects.

• <TheContainerName> is the name of the container object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

9.5.2 Capability 

The following capability describes the supported operations that may be performed when deleting an 
existing container object:

Support for the ability to delete an existing container object is indicated by the presence of the 
cdmi_delete_container capability in the specified container object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

93 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

504

505

506

507

508

509

510

511

512

513

514

515

516
517
518

519

520

ISO/IEC 17826:2016(E)

© ISO/I
9.5.3 Request header

The HTTP request header for deleting a container object using CDMI is shown in Table 49. 

9.5.4 Request message body 

A request body can be provided as per RFC 2616.

9.5.5 Response headers 

Response headers can be provided as per RFC 2616.

9.5.6 Response message body 

A response body can be provided as per RFC 2616.

9.5.7 Response status

Table 50 describes the HTTP status codes that occur when deleting a container object using CDMI. 

9.5.8 Example

EXAMPLE DELETE to the container object URI:

DELETE /MyContainer/ HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

Table 49 — Request header - Delete a container object using CDMI

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 50 — HTTP status codes - Delete a container object using CDMI

HTTP status Description

204 No Content The container object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 94
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

521

522

523
524

525

526
527

528

529

530

531
532

533

534
535

536

537
538
539
540

541
542

543
544

545

546
547

548
549

550
551

552
553

554
555

556
557

558
559
560

ISO/IEC 17826:2016(E)

© ISO/I
9.6 Create (POST) a new data object using CDMI

9.6.1 Synopsis

To create a new data object in a specified container where the name of the data object is a server-
assigned object identifier, the following request shall be performed:

POST <root URI>/<ContainerName>/

To create a new data object where the data object does not belong to a container and is only accessible by 
ID (see 5.8 "Object model for CDMI"), the following request shall be performed:

POST <root URI>/cdmi_objectid/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash 
(i.e., "/") between each pair of container object names.

If created in "/cdmi_objectid/", the data object shall be accessible at <root URI>/cdmi_objectid/<objectID>. 

If created in a container, the data object shall be accessible as a child of the container with a server-
assigned name, and shall also be accessible at <root URI>/cdmi_objectid/<objectID>. 

9.6.2 Delayed completion of create

In response to a create operation for a data object, the server may return an HTTP status code of 202 
Accepted to indicate that the object is in the process of being created. This response is useful for long-
running operations (e.g., copying a large data object from a source URI). Such a response has the 
following implications.

• The server shall return a Location header with an absolute URI to the object to be created along 
with an HTTP status code of 202 Accepted.

• With an HTTP status code of 202 Accepted, the server implies that the following checks have 
passed:

— user authorization for creating the object;

— user authorization for read access to any source object for move, copy, serialize, or 
deserialize; and

— availability of space to create the object or at least enough space to create a URI to report an 
error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting 
from the implementation’s use of eventual consistency. 

The client performs GET operations to the URI to track the progress of the operation. In response, the 
server returns two fields in its response body to indicate progress.

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error 
string starting with the value "Error".

• An optional percentComplete field contains the percentage that the Accepted POST has 
completed (0 to 100). 

GET does not return any value for the object when completionStatus is not "Complete". When the final 
result of the create operation is an error, the URI is created with the completionStatus field set to the error 
message. It is the client's responsibility to delete the URI after the error has been noted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

95 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

561

562
563

564
565

566
567

568
569
570

571
572
573

574
575
576

577
578
579
580

581
582

583
584
585

586
587

588
589

590
591

592
593
594

595
596
597
598

ISO/IEC 17826:2016(E)

© ISO/I
9.6.3 Capabilities 

The following capabilities describe the supported operations that can be performed when creating a new 
data object by ID in "/cdmi_objectid/": 

• Support for the ability to create data objects through this operation is indicated by the presence of 
the cdmi_post_dataobject_by_ID system capability. 

• If the object being created in "/cdmi_objectid/" is a reference, support for that ability is indicated by 
the presence of the cdmi_create_reference_by_ID system capability. 

• If the new data object being created in "/cdmi_objectid/" is a copy of an existing data object, 
support for the ability to copy is indicated by the presence of the cdmi_copy_dataobject_by_ID 
system capability. 

• If the new data object being created in "/cdmi_objectid/" is the destination of a move, support for 
the ability to move the data object to "/cdmi_objectid/" is indicated by the presence of the 
cdmi_object_move_to_ID system capability. 

• If the new data object being created in "/cdmi_objectid/" is the destination of a deserialization 
operation, support for the ability to deserialize the data object is indicated by the presence of the 
cdmi_deserialize_dataobject_by_ID system capability. 

• If the new data object being created in "/cdmi_objectid/" is the destination of a serialize operation, 
support for the ability to serialize the data object is indicated by the presence of the 
cdmi_serialize_dataobject_to_ID, cdmi_serialize_container_to_ID, cdmi_serialize_domain_to_ID, 
or cdmi_serialize_queue_to_ID system capabilities. 

The following capabilities describe the supported operations that can be performed when creating a new 
data object by ID in a container: 

• Support for the ability to create data objects through this operation is indicated by the presence of 
both the cdmi_post_dataobject and the cdmi_create_dataobject capabilities in the specified 
container object. 

• If the object being created in the parent container object is a reference, support for that ability is 
indicated by the presence of the cdmi_create_reference capability in the parent container object. 

• If the new data object is a copy of an existing data object, support for the ability to copy is indicated 
by the presence of the cdmi_copy_dataobject capability in the parent container object. 

• If the new data object is the destination of a move, support for the ability to move the data object is 
indicated by the presence of the cdmi_move_dataobject capability in the parent container object. 

• If the new data object is the destination of a deserialize operation, support for the ability to 
deserialize the the data object is indicated by the presence of the cdmi_deserialize_dataobject 
capability in the parent container object. 

• If the new data object is the destination of a serialize operation, support for the ability to serialize 
the source data object is indicated by the presence of the cdmi_serialize_dataobject, 
cdmi_serialize_container, cdmi_serialize_domain, or cdmi_serialize_queue capabilities in the 
parent container object. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 96
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

599

600

ISO/IEC 17826:2016(E)

© ISO/I
9.6.4 Request headers

The HTTP request headers for creating a new data object using CDMI are shown in Table 51. 

Table 51 — Request headers - Create a new data object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-object" or a consistent value as per 
clause 5.13.2 "Content-type negotiation"

Optional

Content-Type Header 
string

"application/cdmi-object" or "multipart/mixed"

• If multipart/mixed is specified, the body shall consist of at 
least two MIME parts, where the first part shall contain a 
body of content-type "application/cdmi-object" and the 
second and subsequent parts shall contain one or more 
byte ranges of the value as described in 8.3 "Read a data 
object using CDMI". 

• If multiple byte ranges are included and the "Content-
Range" header is omitted for a part, the data in the part 
shall be appended to the data in the preceding part, with 
the first part having a byte offset of zero.

Mandatory

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

X-CDMI-Partial Header 
string 

"true". Indicates that the newly created object is part of a 
series of writes and the value has not yet been fully 
populated. If X-CDMI-Partial is present, the 
completionStatus field in the response body shall be set to 
"Processing". X-CDMI-Partial works across CDMI and non-
CDMI operations.

Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

97 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

601

602

ISO/IEC 17826:2016(E)

© ISO/I
9.6.5 Request message body

The request message body fields for creating a new data object using CDMI are shown in Table 52.

Table 52 — Request message body - Create a new data object using CDMI (Sheet 1 of 3)

Field name Type Description Requirement

mimetype JSON 
string

MIME type of the data contained within the value field of 
the data object

• This field may be included when creating by value or 
when deserializing, serializing, copying, or moving a 
data object.

• If this field is not included and multi-part MIME is not 
being used, the value of "text/plain" shall be assigned 
as the field value.

• If this field is not included and multi-part MIME is 
being used, the value of the "Content-Type" header of 
the second MIME part shall be assigned as the field 
value.

• This field shall be stored as part of the data object.

• This field shall not be included when creating a 
reference.

• This mimetype field value shall be converted to lower 
case before being stored. 

Optional

metadata JSON 
object

Metadata for the data object

• If this field is included when deserializing, serializing, 
copying, or moving a data object, the value provided 
in this field shall replace the metadata from the 
source URI. 

• If this field is not included when deserializing, 
serializing, copying, or moving a data object, the 
metadata from the source URI shall be used. 

• If this field is included when creating a new data 
object by specifying a value, the value provided in this 
field shall be used as the metadata. 

• If this field is not included when creating a new data 
object by specifying a value, an empty JSON object 
(i.e., "{}") shall be assigned as the field value. 

• This field shall not be included when referencing a 
data object.

Optional

domainURI JSON 
string

URI of the owning domain

• Any domain may be specified, and the 
"cross_domain" privilege is not required (see 
cdmi_member_privileges in Table 63 "Required 
settings for domain member user objects").

• If not specified, the root domain "/cdmi_domains/" 
shall be used.

Optional

deserialize JSON 
string

URI of a data object that shall be deserialized to create 
the new data object

Optionala

serialize JSON 
string

URI of a CDMI object that shall be serialized into the 
new data object

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 98
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
copy JSON 
string

URI of a data object or queue object that shall be copied 
into the new data object

Optionala

move JSON 
string

URI of a data object or queue object value that shall be 
copied into the new data object. The data object or 
queue object value at the source URI shall be removed 
upon the successful completion of the copy.

Optionala

reference JSON 
string

URI of a data object that shall be redirected to by a 
reference. If other fields are supplied when creating a 
reference, the server shall respond with an HTTP status 
code of 400 Bad Request.

Optionala

deserializevalue JSON 
string

A data object serialized as specified in Clause 15 and 
encoded using base 64 encoding rules described in 
RFC 4648.

• If multi-part MIME is being used and this field 
contains the value of the MIME boundary parameter, 
the contents of the second MIME part shall be 
assigned as the field value. 

• If the serialized data object in the second MIME part 
does not include a value field, the contents of the third 
MIME part shall be assigned as the field value of the 
value field.

Optionala

Table 52 — Request message body - Create a new data object using CDMI (Sheet 2 of 3)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

99 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
valuetransferencoding JSON  
String

The value transfer encoding used for the container 
object value. Two value transfer encodings are defined:

• "utf-8" indicates that the data object contains a valid 
UTF-8 string, and it shall be transported as a UTF-8 
string in the value field. 

• "base64" indicates that the data object may contain 
arbitrary binary sequences, and it shall be 
transported as a base 64-encoded string in the value 
field. Setting the contents of the data object value 
field to any value other than a valid base 64 string 
shall result in an HTTP status code of 400 Bad 
Request being returned to the client.

This field shall only be included when creating a data 
object by value. 

• If this field is not included and multi-part MIME is not 
being used, the value of "utf-8" shall be assigned as 
the field value.

• If this field is not included and multi-part MIME is 
being used, the value of "utf-8" shall be assigned as 
the field value if the "Content-Type" header of the 
second and all subsequent MIME parts includes the 
charset parameter as defined in RFC 2046 of "utf-8" 
(e.g., ";charset=utf-8"). Otherwise, the value of 
"base64" shall be assigned as the field value. This 
field applies only to the encoding of the value when 
represented in JSON; the "Content-Transfer-
Encoding" header of the part specifies the encoding 
of the value within a multi-part MIME request, as 
defined in RFC 2045.

This field shall be stored as part of the object.

Optional

value JSON 
string

The data object value

• If this field is not included and multi-part MIME is not 
being used, an empty JSON string (i.e., "") shall be 
assigned as the field value.

• If this field is not included and multi-part MIME is 
being used, the contents of the second MIME part 
shall be assigned as the field value.

• If the valuetransferencoding field indicates UTF-8 
encoding, the value shall be a UTF-8 string escaped 
using the JSON escaping rules described in RFC 
4627.

• If the valuetransferencoding field indicates base 64 
encoding, the value shall be first encoded using the 
base 64 encoding rules described in RFC 4648.

Optionala

Table 52 — Request message body - Create a new data object using CDMI (Sheet 3 of 3)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 100
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

603

604

605

606

ISO/IEC 17826:2016(E)

© ISO/I
9.6.6 Response headers

The HTTP response headers for creating a new data object using CDMI are shown in Table 53. 

9.6.7 Response message body

The response message body fields for creating a new data object using CDMI are shown in Table 54.

Table 53 — Response headers - Create a new data object using CDMI 

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-object" Mandatory

X-CDMI-
Specification-
Version

Header 
string 

The server shall respond with the highest version supported 
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status code 
of 400 Bad Request.

Mandatory

Location Header 
string 

The unique absolute URI for the new data object as 
assigned by the system. In the absence of file name 
information from the client, the system shall assign the URI 
in the form: http://host:port/<root URI>/<ContainerName>/
<ObjectID> or https://host:port/<root URI>/
<ContainerName>/<ObjectID>.

Mandatory

Table 54 — Response message body - Create a new data object using CDMI  (Sheet 1 of 2)

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-object" Mandatory

objectID JSON 
string

Object ID of the object Mandatory

objectName JSON 
string

Name of the object

• For objects in a container, the objectName field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the objectName field does not exist 
and shall not be returned. 

Conditional

parentURI JSON 
string

URI for the parent object

• For objects in a container, the parentURI field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the parentURI field does not exist and 
shall not be returned. 

Appending the objectName to the parentURI shall always 
produce a valid URI for the object. 

Conditional

parentID JSON 
string

Object ID of the parent container object

• For objects in a container, the parentID field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the parentID field does not exist and 
shall not be returned.

Conditional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

101 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

607

608

ISO/IEC 17826:2016(E)

© ISO/I
9.6.8 Response status

Table 55 describes the HTTP status codes that occur when creating a new data object using CDMI. 

domainURI JSON 
string

URI of the owning domain Mandatory

capabilitiesURI JSON 
string

URI to the capabilities for the object Mandatory

completionStatus JSON 
string

A string indicating if the object is still in the process of being 
created or updated by another operation, and after that 
operation is complete, indicates if it was successfully 
created or updated or if an error occurred.

The value shall be the string "Processing", the string 
"Complete", or an error string starting with the value "Error".

Mandatory

percentComplete JSON 
string

• When the value of completionStatus is "Processing", this 
field, if provided, shall indicate the percentage of 
completion as a numeric integer value from 0 through 
100. 

• When the value of completionStatus is "Complete", this 
field, if provided, shall contain the value "100". 

• When the value of completionStatus is "Error", this field, if 
provided, may contain any integer value from 0 through 
100.

Optional

mimetype JSON 
string

MIME type of the value of the data object Mandatory

metadata JSON 
object

Metadata for the data object. This field includes any user 
and data system metadata specified in the request body 
metadata field, along with storage system metadata 
generated by the cloud storage system.

See Clause 16 for a further description of metadata.

Mandatory

Table 55 — HTTP status codes - Create a new data object using CDMI

HTTP status Description

201 Created The new data object was created.

202 Accepted The data object is in the process of being created. The CDMI client should monitor 
the completionStatus and percentComplete fields to determine the current status of 
the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a state 
transition error on the server.

Table 54 — Response message body - Create a new data object using CDMI  (Sheet 2 of 2)

Field name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 102
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

609

610

611
612
613
614
615

616
617
618
619
620
621
622

623

624
625
626
627

628
629
630
631
632
633
634
635
636
637
638
639
640
641

642

643
644
645
646
647

648
649
650
651
652

653

654
655
656
657

658
659
660
661
662
663
664

ISO/IEC 17826:2016(E)

© ISO/I
9.6.9 Examples

EXAMPLE 1 POST to the container object URI the data object contents:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-object
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "mimetype" : "text/plain",
    "metadata" : {
        
    },
    "value" : "This is the Value of this Data Object"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1
Location: http://cloud.example.com/MyContainer/00007ED900104E1D14771DC67C27BF8B 

{
    "objectType" : "application/cdmi-object",
    "objectID" : "00007ED900104E1D14771DC67C27BF8B",
    "objectName" : "00007ED900104E1D14771DC67C27BF8B",
    "parentURI" : "/MyContainer/",
    "parentID" : "00007ED900104E1D14771DC67C27BF8B",
    "domainURI" : "/cdmi_domains/MyDomain/",
    "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
    "completionStatus" : "Complete",
    "mimetype" : "text/plain",
    "metadata" : {
        ...
    }
}

EXAMPLE 2 POST to the object ID URI the data object contents:

POST /cdmi_objectid/ HTTP/1.1 
Host: cloud.example.com 
Accept: application/cdmi-object 
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1 

{
    "mimetype": "text/plain",
    "domainURI": "/cdmi_domains/MyDomain/",
    "value": "This is the Value of this Data Object"
} 

The following shows the response.

HTTP/1.1 201 Created 
Location: http://cloud.example.com/cdmi_objectid/00007ED900104E1D14771DC67C27BF8B
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1 

{
    "objectType": "application/cdmi-object",
    "objectID": "00007ED900104E1D14771DC67C27BF8B",
    "domainURI": "/cdmi_domains/MyDomain/",
    "capabilitiesURI": "/cdmi_capabilities/dataobject/",
    "completionStatus": "Complete",
    "mimetype": "text/plain",

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

103 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

665
666
667
668
669
670
671
672
673
674
675
676

677

678
679
680
681
682

683
684

685
686
687
688
689
690

691
692
693

694

695

696

697
698
699
700

701
702
703
704
705
706
707
708
709
710
711
712
713

ISO/IEC 17826:2016(E)

© ISO/I
    "metadata": {
        "cdmi_acl": [
            {
                "acetype": "ALLOW",
                "identifier": "OWNER@",
                "aceflags": "NO_FLAGS",
                "acemask": "ALL_PERMS"
            }
        ],

...
    }
}

EXAMPLE 3 POST to the object ID URI the data object fields and binary contents using multi-part MIME:

POST /cdmi_objectid/ HTTP/1.1 
Host: cloud.example.com 
Accept: application/cdmi-object 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-object

{
"domainURI": "/cdmi_domains/MyDomain/",
"metadata": {
"colour": "blue"

}
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 201 Created
Location: http://cloud.example.com/cdmi_objectid/00007ED90010C2414303B5C6D4F83170
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1

{
"objectType": "application/cdmi-object", 
"objectID": "00007ED90010C2414303B5C6D4F83170", 
"domainURI": "/cdmi_domains/MyDomain/", 
"capabilitiesURI": "/cdmi_capabilities/dataobject/", 
"completionStatus": "Complete", 
"mimetype": "application/octet-stream", 
"metadata": {
"cdmi_size": "37",
"colour": "blue",
...

}
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 104
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

714

715

716
717

718

719
720

721

722

723

724
725

726
727

728
729

730

731
732
733
734

735
736

737
738

739

740
741

742
743

744
745

746
747

748
749

750
751

752
753
754

ISO/IEC 17826:2016(E)

© ISO/I
9.7 Create (POST) a new queue object using CDMI

9.7.1 Synopsis

To create a new queue object (see Clause 11) in a specified container where the name of the queue object 
is a server-assigned object identifier, the following request shall be performed:

POST <root URI>/<ContainerName>/

To create a new queue object where the queue object does not belong to a container and is only 
accessible by ID (see 5.8 "Object model for CDMI"), the following request shall be performed:

POST <root URI>/cdmi_objectid/

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate container objects that already exist, with one slash 
(i.e., "/") between each pair of container object names.

If created in "/cdmi_objectid/", the queue object shall be accessible at <root URI>/cdmi_objectid/
<objectID>. 

If created in a container, the queue object shall be accessible as a child of the container with a server-
assigned name, and shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

9.7.2 Delayed completion of create

On a create operation for a queue object, the server may return an HTTP status code of 202 Accepted. 
In this case, the object is in the process of being created. This response is particularly useful for long-
running operations, e.g., copying a large number of queue values from a source URI. Such a response has 
the following implications:

• The server shall return a Location header with an absolute URI to the object to be created along 
with an HTTP status code of 202 Accepted.

• With an HTTP status code of 202 Accepted, the server implies that the following checks have 
passed:

— user authorization for creating the object;

— user authorization for read access to any source object for move, copy, serialize, or 
deserialize; and

— availability of space to create the object or at least enough space to create a URI to report an 
error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting 
from the implementation’s use of eventual consistency.

The client performs GET operations to the URI to track the progress of the operation. In response, the 
server returns two fields in its response body to indicate progress.

• A mandatory completionStatus text field contains either "Processing", "Complete", or an error 
string starting with the value "Error".

• An optional percentComplete field contains the percentage that the accepted POST has 
completed (0 to 100).

GET does not return any value for the object when completionStatus is not "Complete". When the final 
result of the create operation is an error, the URI is created with the completionStatus field set to the error 
message. It is the client's responsibility to delete the URI after the error has been noted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

105 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

755

756
757

758
759

760
761

762
763
764

765
766
767

768
769
770

771
772
773

774
775
776

777
778

779
780
781

782
783

784
785

786
787
788

789
790
791

ISO/IEC 17826:2016(E)

© ISO/I
9.7.3 Capabilities

The following capabilities describe the supported operations that can be performed when creating a new 
queue object by ID in "/cdmi_objectid/": 

• Support for the ability to create queue objects through this operation is indicated by the presence 
of the cdmi_post_queue_by_ID system capability. 

• If the object being created in "/cdmi_objectid/" is a reference, support for that ability is indicated by 
the presence of the cdmi_create_reference_by_ID system capability. 

• If the new queue object being created in "/cdmi_objectid/" is a copy of an existing queue object, 
support for the ability to copy is indicated by the presence of the cdmi_copy_queue_by_ID system 
capability. 

• If the new queue object being created in "/cdmi_objectid/" is the destination of a move, support for 
the ability to move the data object to "/cdmi_objectid/" is indicated by the presence of the 
cdmi_object_move_to_ID system capability. 

• If the new queue object being created in "/cdmi_objectid/" is the destination of a deserialization 
operation, support for the ability to deserialize the data object is indicated by the presence of the 
cdmi_deserialize_queue_by_ID system capability. 

• If the new data object is being created in "/cdmi_objectid/", support for the ability to create the 
value of the new data object in specified byte ranges is indicated by the presence of the 
"cdmi_create_value_range_by_ID" system capability.

• If the new data object is being created in a container object, support for the ability to create the 
value of the new data object in specified byte ranges is indicated by the presence of the 
"cdmi_create_value_range" capability in the parent container.

The following capabilities describe the supported operations that can be performed when creating a new 
queue object by ID in a container:

• Support for the ability to create queue objects through this operation is indicated by the presence 
of both the cdmi_post_queue and cdmi_create_queue capabilities in the specified container 
object.

• If the object being created in the parent container object is a reference, support for that ability is 
indicated by the presence of the cdmi_create_reference capability in the parent container object.

• If the new queue object is a copy of an existing queue object, support for the ability to copy is 
indicated by the presence of the cdmi_copy_queue capability in the parent container object.

• If the new queue object is the destination of a move, support for the ability to move the queue 
object is indicated by the presence of the cdmi_move_queue capability in the parent container 
object.

• If the new queue object is the destination of a deserialize operation, support for the ability to 
deserialize the the queue object is indicated by the presence of the cdmi_deserialize_queue 
capability in the parent container object.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 106
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

792

793

794

795

ISO/IEC 17826:2016(E)

© ISO/I
9.7.4 Request headers

The HTTP request headers for creating a new queue object using CDMI are shown in Table 56.

9.7.5 Request message body

The request message body fields for creating a new queue object using CDMI are shown in Table 57.

Table 56 — Request headers - Create a new queue object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-queue" or a consistent value as per 
clause 5.13.2 "Content-type negotiation"

Optional

Content-Type Header 
string

"application/cdmi-queue" Mandatory

X-CDMI- 
Specification- 
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

Content-Range Header 
string

A valid ranges-specifier (see RFC 2616 Section 14.35.1) Optional

Table 57 — Request message body - Create a new queue object using CDMI  (Sheet 1 of 2)

Field name Type Description Requirement

metadata JSON 
object

Metadata for the queue object

• If this field is included when deserializing, serializing, 
copying, or moving a queue object, the value provided in 
this field shall replace the metadata from the source URI.

• If this field is not included when deserializing, serializing, 
copying, or moving a queue object, the metadata from 
the source URI shall be used.

• If this field is included when creating a new queue object 
by specifying a value, the value provided in this field shall 
be used as the metadata.

• If this field is not included when creating a new queue 
object by specifying a value, an empty JSON object (i.e., 
"{}") will be assigned as the field value.

• This field shall not be included when referencing a queue 
object.

Optional

domainURI JSON 
string

URI of the owning domain

• Any domain may be specified, and the "cross_domain" 
privilege is not required (see cdmi_member_privileges in 
Table 63 "Required settings for domain member user 
objects").

• If not specified, the root domain "/cdmi_domains/" shall 
be used.

Optional

deserialize JSON 
string

URI of a data object that will be deserialized to create the 
new queue object

Optionala

copy JSON 
string

URI of a queue object that will be copied into the new 
queue object

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

107 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

796

797

798

799

ISO/IEC 17826:2016(E)

© ISO/I
9.7.6 Response headers

The response headers for creating a new queue object using CDMI are shown in Table 58. 

9.7.7 Response message body

The response message body fields for creating a new queue object using CDMI are shown in Table 59.

move JSON 
string

URI of a queue object that will be copied into the new 
queue object. When the copy is successfully completed, the 
queue object at the source URI is removed.

Optionala

reference JSON 
string

URI of a queue object that shall be redirected to by a 
reference. If other fields are supplied when creating a 
reference, the server shall respond with an HTTP status 
code of 400 Bad Request.

Optionala

deserializevalue JSON 
string

A queue object serialized as specified in Clause 15 and 
encoded using base 64 encoding rules described in RFC 
4648

Optionala

Table 58 — Response headers - Create a new queue object using CDMI

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-queue" Mandatory

X-CDMI- 
Specification- 
Version

Header 
string

The server shall respond with the highest version supported 
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status code 
of 400 Bad Request.

Mandatory

Location Header 
string

The unique absolute URI for the new data object as 
assigned by the system. In the absence of file name 
information from the client, the system shall assign the URI 
in the form: http://host:port/<root URI>/<ContainerName>/
<ObjectID> or https://host:port/<root URI>/
<ContainerName>/<ObjectID>.

Mandatory

Table 59 — Response message body - Create a new queue object using CDMI  (Sheet 1 of 3)

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-queue" Mandatory

objectID JSON 
string

Object ID of the object Mandatory

Table 57 — Request message body - Create a new queue object using CDMI  (Sheet 2 of 2)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 108
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
objectName JSON 
string

Name of the object

• For objects in a container, the objectName field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the objectName field does not exist 
and shall not be returned. 

Conditional

parentURI JSON 
string

URI for the parent object

• For objects in a container, the parentURI field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the parentURI field does not exist and 
shall not be returned. 

Appending the objectName to the parentURI shall always 
produce a valid URI for the object. 

Conditional

parentID JSON 
string

Object ID of the parent container object

• For objects in a container, the parentID field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the parentID field does not exist and 
shall not be returned.

Conditional

domainURI JSON 
string

URI of the owning domain Mandatory

capabilitiesURI JSON 
string

URI to the capabilities for the object Mandatory

completionStatus JSON 
string

A string indicating if the object is still in the process of being 
created or updated by another operation, and after that 
operation is complete, indicates if it was successfully 
created or updated or if an error occurred.

The value shall be the string "Processing", the string 
"Complete", or an error string starting with the value "Error".

Mandatory

percentComplete JSON 
string

• When the value of completionStatus is "Processing", this 
field, if provided, shall indicate the percentage of 
completion as a numeric integer value from 0 through 
100. 

• When the value of completionStatus is "Complete", this 
field, if provided, shall contain the value "100". 

• When the value of completionStatus is "Error", this field, 
if provided, may contain any integer value from 0 through 
100.

Optional

Table 59 — Response message body - Create a new queue object using CDMI  (Sheet 2 of 3)

Field name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

109 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

800

801

802

803

804
805
806
807
808

809
810

811

812
813
814
815

816
817
818

ISO/IEC 17826:2016(E)

© ISO/I
9.7.8 Response status

Table 60 describes the HTTP status codes that occur when creating a new queue object using CDMI.

9.7.9 Example

EXAMPLE POST to the container object URI the queue object contents:

POST /MyContainer/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue 
X-CDMI-Specification-Version: 1.1 
Location: http://cloud.example.com/MyContainer/00007ED900104E1D14771DC67C27BF8B

{
    "objectType" : "application/cdmi-queue",
    "objectID" : "00007ED900104E1D14771DC67C27BF8B",

metadata JSON 
object

Metadata for the queue object. This field includes any user 
and data system metadata specified in the request body 
metadata field, along with storage system metadata 
generated by the cloud storage system. See Clause 16 for 
a further description of metadata.

Mandatory

queueValues JSON 
string

The range of designators for enqueued values. Every 
enqueued value shall be assigned a unique, monotonically-
incrementing positive integer designator, starting from 0. If 
no values are enqueued, an empty string shall be returned. 
If values are enqueued, the lowest designator, followed by 
a hyphen ("-"), followed by the highest designator shall be 
returned.

Mandatory

Table 60 — HTTP status codes - Create a new queue object using CDMI

HTTP status Description

201 Created The new queue object was created.

202 Accepted The queue object is in the process of being created. The CDMI client should monitor 
the completionStatus and percentComplete fields to determine the current status of 
the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or could cause a state 
transition error on the server.

Table 59 — Response message body - Create a new queue object using CDMI  (Sheet 3 of 3)

Field name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 110
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

819
820
821
822
823
824
825
826
827
828
829

ISO/IEC 17826:2016(E)

© ISO/I
    "objectName" : "00007ED900104E1D14771DC67C27BF8B",
    "parentURI" : "/MyContainer/",
    "parentID" : "00007ED900104E1D14771DC67C27BF8B",
    "domainURI" : "/cdmi_domains/MyDomain/",
    "capabilitiesURI" : "/cdmi_capabilities/queue/",
    "completionStatus" : "Complete",
    "metadata" : {

...
    },
    "queueValues" : ""
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

111 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


Section IV

CDMI Advanced

ISO/IEC 17826:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4
5
6
7
8
9

10
11
12
13

14

15

16
17

18
19
20
21
22

23
24
25

26
27

28
29

30

31

32

33

34

35
36
37

38
39

40

41

ISO/IEC 17826:2016(E)

© ISO/I
10    Domain object resource operations using CDMI

10.1 Overview

Domain objects represent the concept of administrative ownership of stored data within a CDMI™ storage 
system. A cloud service may include a hierarchy of domains that provide access to domain-related 
information within a CDMI context. This domain hierarchy is a series of CDMI objects that correspond to 
parent and child domains, with each domain corresponding to logical groupings of objects that are to be 
managed together. Domain measurement information about objects that are associated with each domain 
flow up to parent domains, facilitating billing and management operations that are typical for a cloud 
storage environment.

Domain objects are created in the cdmi_domains container found in the root URI for the cloud storage 
system. If the cdmi_create_domain capability is present for the URI of a given domain, then the cloud 
storage system supports the ability to create child domains under the URI. If a cloud storage system 
supports domains, the cdmi_domains container shall be present. 

Domains are addressed in CDMI in two ways: 

• by name (e.g., http://cloud.example.com/cdmi_domains/myDomain/); and 

• by object ID (e.g., http://cloud.example.com/cdmi_objectid/
00007ED90010329E642EBFBC8B57E9AD/.

Every domain object has a single, globally-unique object ID that remains constant for the life of the object. 
Each domain object shall also have one URI address that allows the domain object to be accessed. 
Following the URI conventions for hierarchical paths, domain URIs shall start with "/cdmi_domains/" and 
consist of one or more domain names that are separated by forward slashes ("/") and that end with a 
forward slash ("/"). 

If a request is performed against an existing domain resource and the trailing slash at the end of the URI is 
omitted, the server shall respond with an HTTP status code of 301 Moved Permanently, and a 
Location header containing the URI with the trailing slash will be added. 

If a CDMI request is performed to create a new domain resource and the trailing slash at the end of the 
URI is omitted, the server shall respond with an HTTP status code of 400 Bad Request. 

Individual fields within a domain object may be accessed by specifying the field name after a question 
mark "?" appended to the end of the domain object URI. 

EXAMPLE 1 The following URI returns just the children field in the response message body: 

http://cloud.example.com/cdmi_domains/myDomain/?children 

By specifying a range after the children field name, specific ranges of the children field may be accessed. 

EXAMPLE 2 The following URI returns the first three children from the children field: 

http://cloud.example.com/cdmi_domains/myDomain/?children:0-2 

Children ranges are specified in a way that is similar to byte ranges as per Section 14.35.1 of RFC 2616. A 
client can determine the number of children present by requesting the childrenrange field without 
requesting a range of children. 

A list of fields separated by a semicolon ";" may be specified, allowing multiple fields to be accessed in a 
single request. 

EXAMPLE 3 The following URI would return the children and metadata fields in the response message body: 

http://cloud.example.com/cdmi_domains/myDomain/?children;metadata 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

113 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

42
43
44

45
46

47
48

49

50

51
52
53

54

55
56
57
58

59
60
61
62

63

ISO/IEC 17826:2016(E)

© ISO/I
If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields 
shall be returned. If no requested fields are permitted to be read, an HTTP status code of 403 
Forbidden shall be returned to the client. 

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be 
performed, and an HTTP status code of 403 Forbidden shall be returned to the client.

When a client provides or includes deserialization fields that are not defined in this international standard, 
these fields shall be stored as part of the object.

10.1.1 Domain object metadata

The following domain-specific field shall be present for each domain (see Table 61).

Domains may also contain domain-specific data system metadata items as defined in 16.4 "Support for 
data system metadata" and 16.5 "Support for provided data system metadata". Domain data system 
metadata shall be inherited to child domain objects.

10.1.2 Domain object summaries

Domain object summaries provide summary measurement information about domain usage and billing. If 
supported, a domain summary container named "cdmi_domain_summary" shall be present under each 
domain container. Like any container, the domain summary subcontainer may have an Access Control List 
(ACL) (see 16.1 "Access control") that restricts access to this information.

Within each domain summary container are a series of domain summary data objects that are generated 
by the cloud storage system. The "yearly", "monthly", and "daily" containers of these data objects contain 
domain summary data objects corresponding to each year, month, and day, respectively. These 
containers are organized into the following structures:

http://example.com/cdmi_domains/domain/

Table 61 — Required metadata for a domain object

Metadata name Type Description Requirement

cdmi_domain_enabled JSON 
string

Indicates if the domain is enabled and specified at the 
time of creation. Values shall be "true" or "false".

• If a domain is disabled, the cloud storage system 
shall not permit any operations to be performed 
against any URI managed by that domain.

• If this metadata item is not present at the time of 
domain creation, the value is set to "false".

• When a domain is disabled, all operations that are 
performed against URIs that are managed by a 
disabled domain shall return an HTTP status code 
of 403 Forbidden.

Mandatory

cdmi_domain_delete_reassign JSON 
string

If the domain is deleted, indicates to which domain the 
objects that belong to the domain shall be reassigned. 

• To delete a domain that contains objects, this 
metadata item shall be present. 

• If this metadata item is not present or does not 
contain the URI of a valid domain that is different 
from the URI of the domain being deleted, an 
attempt to delete a domain that has objects shall 
result in an HTTP status code of 400 Bad 
Request.

Conditional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 114
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

64

65

66

67

68

69

70

71

72

73

74

75

76

77
78
79

80
81

82
83
84
85

86
87

88
89

90
91

92
93

94

95

ISO/IEC 17826:2016(E)

© ISO/I
http://example.com/cdmi_domains/domain/cdmi_domain_summary/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/cumulative

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-01

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-02

http://example.com/cdmi_domains/domain/cdmi_domain_summary/daily/2009-07-03

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-07

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-08

http://example.com/cdmi_domains/domain/cdmi_domain_summary/monthly/2009-10

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/2009

http://example.com/cdmi_domains/domain/cdmi_domain_summary/yearly/2010

The "cumulative" summary data object covers the entire time period, from the time the domain is created to 
the time it is accessed. Each data object at the daily, monthly, and yearly level contains domain summary 
information for the time period specified, bounded by domain creation time and access time.

If a time period extends earlier than the domain creation time, the summary information includes the time 
from when the domain was created until the end of the time period. 

EXAMPLE 1 If a domain were created on July 4, 2009, at noon, the daily summary "2009-07-04" would contain 
information from noon until midnight, the monthly summary "2009-07" would contain information 
from noon on July 4 until midnight on July 31, and the yearly summary "2009" would contain 
information from noon on July 4 until midnight on December 31.

If a time period starts after the time when the domain was created and ends earlier than the time of access, 
the summary data object contains complete information for that time period. 

EXAMPLE 2 If a domain were created on July 4, 2009, and on July 10, the "2009-07-06" daily summary data 
object was accessed, it would contain information for the complete day.

If a time period ends after the current access time, the domain summary data object contains partial 
information from the start of the time period (or the time the domain was created) until the time of access.

EXAMPLE 3 If a domain were created on July 4, 2009, and at noon on July 10, the "2009-07-10" daily summary 
data object was accessed, it would contain information from the beginning of the day until noon.

The information in Table 62 shall be present within the contents of each domain summary object, which 
are in JSON representation.

Table 62 — Contents of domain summary objects (Sheet 1 of 2)

Metadata name Type Description Requirement

cdmi_domainURI JSON 
string

Domain name corresponding to the domain that is 
summarized

Mandatory

cdmi_summary_start JSON 
string

An ISO-8601 time indicating the start of the time 
range that the summary information is presenting

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

115 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
cdmi_summary_end JSON 
string

An ISO-8601 time indicating the end of the time 
range that the summary information is presenting

Mandatory

cdmi_summary_objecthours JSON 
string

The sum of the time each object belonging to the 
domain existed during the summary time period

Optional

cdmi_summary_objectsmin JSON 
string

The minimum number of objects belonging to the 
domain during the summary time period

Optional

cdmi_summary_objectsmax JSON 
string

The maximum number of objects belonging to the 
domain during the summary time period

Optional

cdmi_summary_objectsaverage JSON 
string

The average number of objects belonging to the 
domain during the summary time period

Optional

cdmi_summary_puts JSON 
string

The number of objects written to the domain Optional

cdmi_summary_gets JSON 
string

The number of objects read from the domain Optional

cdmi_summary_bytehours JSON 
string

The sum of the time each byte belonging to the 
domain existed during the summary time period

Optional

cdmi_summary_bytesmin JSON 
string

The minimum number of bytes belonging to the 
domain during the summary time period

Optional

cdmi_summary_bytesmax JSON 
string

The maximum number of bytes belonging to the 
domain during the summary time period

Optional

cdmi_summary_bytesaverage JSON 
string

The average number of bytes belonging to the 
domain during the summary time period

Optional

cdmi_summary_writes JSON 
string

The number of bytes written to the domain Optional

cdmi_summary_reads JSON 
string

The number of bytes read from the domain Optional

cdmi_summary_charge JSON 
string

An ISO 4217 currency code (see ISO 4217:2008) 
that is followed or preceded by a numeric value 
and separated by a space, where the numeric 
value represents the closing charge in the 
indicated currency for the use of the service 
associated with the domain over the summary 
time period

Optional

cdmi_summary_kwhours JSON 
string

The sum of energy consumed (in kilowatt hours) 
by the domain during the summary time period

Optional

cdmi_summary_kwmin JSON 
string

The minimum rate at which energy is consumed 
(in kilowatt hours per hour) by the domain during 
the summary time period

Optional

cdmi_summary_kwmax JSON 
string

The maximum rate at which energy is consumed 
(in kilowatt hours per hour) by the domain during 
the summary time period

Optional

cdmi_summary_kwaverage JSON 
string

The average rate at which energy is consumed 
(in kilowatt hours per hour) by the domain during 
the summary time period

Optional

Table 62 — Contents of domain summary objects (Sheet 2 of 2)

Metadata name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 116
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

96

97
98
99

100
101
102
103
104
105
106
107
108

109
110

111
112
113

114

115
116
117
118
119

120
121
122
123
124
125
126

127
128
129

130
131

132

133

134

135

136
137
138
139

ISO/IEC 17826:2016(E)

© ISO/I
EXAMPLE An example of a daily domain summary object is as follows:

{
    "cdmi_domainURI" : "/cdmi_domains/MyDomain/",
    "cdmi_summary_start" : "2009-12-10T00:00:00",
    "cdmi_summary_end" : "2009-12-10T23:59:59",
    "cdmi_summary_objecthours" : "382239734",
    "cdmi_summary_puts" : "234234",
    "cdmi_summary_gets" : "489432",
    "cdmi_summary_bytehours" : "334895798347",
    "cdmi_summary_writes" : "7218368343",
    "cdmi_summary_reads" : "11283974933",
    "cdmi_summary_charge" : "4289.23 USD"
}

If the charge value is provided, the value is for the operational cost (excluding fixed fees) of service already 
performed and storage and bandwidth already consumed. Pricing of services is handled separately.

Domain summary information may be extended by vendors to include additional metadata or domain 
reports beyond the metadata items specified by this International Standard, as long as the field names for 
those metadata items do not begin with "cdmi_".

10.1.3 Domain object membership

In cloud storage environments, in the same way that domains are often created programmatically, domain 
user membership and credential mapping also shall be populated using such interfaces. By providing 
access to user membership, this capability enables self-enrollment, automatic provisioning, and other 
advanced self-service capabilities, either directly using CDMI or through software systems that interface 
with CDMI.

The domain membership capability provides information about, and allows the specification of, end users 
and groups of users that are allowed to access the domain via CDMI and other access protocols. The 
concept of domain membership is not intended to replace or supplant ACLs (see 16.1 "Access control"), 
but rather to provide a single, unified place to map identities and credentials to principals used by ACLs 
within the context of a domain (see model described in 10.1.4 "Domain usage in access control"). It also 
provides a place for authentication mappings to external authentication providers, such as LDAP and 
Active Directory, to be specified.

If supported, a domain membership container named cdmi_domain_members shall be present under each 
domain. Like any container, the domain membership container has an Access Control List (see 16.1) that 
restricts access to this information.

Within each domain membership container are a series of user objects that are specified through CDMI to 
define each user known to the domain. These objects are formatted into the following structure:

http://example.com/cdmi_domains/domain/

http://example.com/cdmi_domains/domain/cdmi_domain_members/

http://example.com/cdmi_domains/domain/cdmi_domain_members/john_doe

http://example.com/cdmi_domains/domain/cdmi_domain_members/john_smith

The domain membership container may also contain subcontainers with data objects. Data objects in 
these subcontainers are treated the same as data objects in the domain membership container, and no 
meaning is inferred from the subcontainer name. This organization is used to create different access 
security relationships for groups of user objects and to allow delegation to a common set of members.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

117 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

140

ISO/IEC 17826:2016(E)

© ISO/I
Table 63 lists the domain settings that shall be present within each domain member user object.

Table 63 — Required settings for domain member user objects 

Metadata name Type Description Requirement

cdmi_member_enabled JSON 
string

If true, this field indicates that requests associated with 
this domain member are allowed. If false, all requests 
performed by this domain member shall result in an 
HTTP status code of 403 Forbidden.

Mandatory

cdmi_member_type JSON 
string

This field indicates the type of member record. Values 
include "user", "group", and "delegation".

Mandatory

cdmi_member_name JSON 
string

This field contains the user or group name as presented 
by the client. This will normally be the standard full name 
of the principal.

Mandatory

cdmi_member_credentials JSON 
string

This field contains credentials to be matched against the 
credentials as presented by the client. If this field is not 
present, one or more delegations shall be present and 
shall be used to resolve user credentials. As one cannot 
log in as a group but only as a member of a group, the 
"group" type member records shall not have credentials.

Optional

cdmi_member_principal JSON 
string

This field indicates to which principal name (used in 
ACLs) the user or group is mapped. If this field is not 
present, one or more delegations shall be present and 
shall be used to resolve the principal.

Optional

cdmi_member_privileges JSON 
array of 
JSON 
strings

This field explicitly confers zero or more special 
privileges to a user or group. When delegated, privileges 
are conferred based on the information returned from 
the external system to which the delegation points.

The following privileges are defined:

• "administrator". Allows the principal to take ownership 
of any object/container.

• "backup_operator". Bypass regular ACL checks to 
allow backup and restore of objects and containers, 
including all associated attributes, metadata, ACLs 
and ownership.

• "cross_domain". Operations specifying a domain 
other than the domain of the parent object are 
permitted. Unless this privilege is conferred by the 
user record or a group (possibly nested) to which the 
user or group belongs, all attempts to change the 
domain of objects to a domain other than the parent 
domain shall fail.

Mandatory

cdmi_member_groups JSON 
array of 
JSON 
strings

This field contains a JSON array of group names to 
which the user or group belongs.

OptionalIECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 118
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

141

142

143
144
145
146
147
148
149
150
151
152
153
154
155
156

157

158
159
160
161
162
163

164

165
166
167
168
169

170
171
172

173
174

ISO/IEC 17826:2016(E)

© ISO/I
Table 64 lists the domain settings that shall be present within each domain member delegation object.

EXAMPLE 1 An example of a domain membership object for a user is as follows:

{
    "cdmi_member_enabled" : "true",
    "cdmi_member_type" : "user",
    "cdmi_member_name" : "John Doe",
    "cdmi_member_credentials" : "p+5/oX1cmExfOIrUxhX1lw==",
    "cdmi_member_groups" : [
        "users" 
    ],
    "cdmi_member_principal" : "jdoe",
    "cdmi_privileges" : [
        "administrator",
        "cross_domain"
    ]
}

EXAMPLE 2 An example of a domain membership object for a delegation is as follows:

{
    "cdmi_member_enabled" : "true",
    "cdmi_member_type" : "delegation",
    "cdmi_delegation_URI" : "/cdmi_domains/MyDomain/",
    
}

10.1.4 Domain usage in access control

When a transaction is performed against a CDMI object, the associated domain object (i.e., the domain 
object indicated by the domainURI) specifies the authentication context. The user identity and credentials 
presented as part of the transaction are compared to the domain membership list to determine if the user is 
authorized within the domain and to resolve the user's principal. If resolved, the user’s principal is 
evaluated against the object's ACL to determine if the transaction is permitted.

When evaluating members within a domain, delegations are evaluated first, in any order, followed by user 
records, in any order. If there is at least one matching record and none of the matching records indicate 
that the user is disabled, the user is considered to be a member of the domain.

When a sub-domain is initially created, the membership container contains one member record that is a 
delegation in which the delegation URI is set to the URI of the parent domain.

Table 64 — Required settings for domain member delegation objects 

Metadata name Type Description Requirement

cdmi_member_enabled JSON 
string

If true, this field indicates that requests associated with 
this domain member are allowed. If false, all requests 
performed by this domain member shall result in an 
HTTP status code of 403 Forbidden.

Mandatory

cdmi_member_type JSON 
string

This field indicates the type of member record. Values 
include "user" and "delegation".

Mandatory

cdmi_delegation_URI JSON 
string

This field contains the URI of an external identity 
resolution provider (such as LDAP or Active Directory) or 
the URI of a domain membership container object.

External delegations are expressed in the form of ldap:// 
or ad://.

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

119 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

175

176
177
178
179

180

181

182

183

184

185

186

187

188

189

190
191

192
193

194
195

196
197
198

199

200

ISO/IEC 17826:2016(E)

© ISO/I
10.1.5 Domain object representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support 
UTF-8 JSON representation. The request and response body JSON fields may be specified or returned in 
any order, with the exception that, if present, for domain objects, the childrenrange and children fields shall 
appear last and in that order.

10.2 Create a domain object using CDMI

10.2.1 Synopsis

To create a new domain object, the following request shall be performed:

PUT <root URI>/cdmi_domains/<DomainName>/<NewDomainName>/

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more intermediate domains that already exist.

• <NewDomainName> is the name specified for the domain to be created.

After it is created, the domain shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

10.2.2 Capabilities 

The following capabilities describe the supported operations that can be performed when creating a new 
domain:

• Support for the ability to create a new domain object is indicated by the presence of the 
cdmi_create_domain capability in the parent domain.

• If the new domain object is a copy of an existing domain object, support for the ability to copy is 
indicated by the presence of the cdmi_copy_domain capability in the source domain.

• If the new domain is the destination of a deserialize operation, support for the ability to deserialize 
the source data object serialization of a domain is indicated by the presence of the 
cdmi_deserialize_domain capability in the parent domain. 

10.2.3 Request headers

The HTTP request headers for creating a domain object using CDMI are shown in Table 65. 

Table 65 — Request headers - Create a domain object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-domain" or a consistent value as per 
clause 5.13.2 "Content-type negotiation"

Optional

Content-Type Header 
string

"application/cdmi-domain" Mandatory

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
for example, "1.1, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 120
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

201

202

ISO/IEC 17826:2016(E)

© ISO/I
10.2.4 Request message body

The request message body fields for creating a domain object using CDMI are shown in Table 66. 

Table 66 — Request message body - Create a domain object using CDMI

Field name Type Description Requirement

metadata JSON 
object

Metadata for the domain object

• If this field is included when deserializing, serializing, 
copying, or moving a domain object, the value provided 
in this field shall replace the metadata from the source 
URI. 

• If this field is not included when deserializing, serializing, 
copying, or moving a domain object, the metadata from 
the source URI shall be used. 

• If this field is included when creating a new domain 
object by specifying a value, the value provided in this 
field shall be used as the metadata. 

• If this field is not included when creating a new domain 
object by specifying a value, an empty JSON object (i.e., 
"{}") shall be assigned as the field value.

Optional

copy JSON 
string

URI of a CDMI domain that shall be copied into the new 
domain, including all child domains and membership from 
the source domain

Optionala

move JSON 
string

URI of an existing local domain object (source URI) that 
shall be relocated, along with all child domains, to the URI 
specified in the PUT. The contents of the domain and all 
sub-domains, including the object ID, shall be preserved 
by a move, and the domain and sub-domains of the source 
URI shall be removed after the objects at the destination 
have been successfully created. 

If there are insufficient permissions to read the objects at 
the source URI, write the objects at the destination URI, or 
delete the objects at the source URI, or if any of these 
operations fail, the move shall return an HTTP status code 
of 400 Bad Request, and the source and destination are 
left unchanged.

Optionala

deserialize JSON 
string

URI of a serialized data object that shall be deserialized to 
create the new domain, including all child objects inside 
the source serialized data object

Optionala

deserializevalue JSON 
string

A domain object serialized as specified in Clause 15 and 
encoded using base 64 encoding rules described in RFC 
4648.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

121 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

203

204

205

206

ISO/IEC 17826:2016(E)

© ISO/I
10.2.5 Response headers

The HTTP response headers for creating a domain object using CDMI are shown in Table 67. 

10.2.6 Response message body

The response message body fields for creating a domain object using CDMI are shown in Table 68. 

Table 67 — Response headers - Create a domain object using CDMI

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-domain" Mandatory

X-CDMI-
Specification-
Version

Header 
string

The server shall respond with the highest version 
supported by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status 
code of 400 Bad Request.

Mandatory

Table 68 — Response message body - Create a domain object using CDMI 

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-domain" Mandatory

objectID JSON 
string

Object ID of the domain Mandatory

objectName JSON 
string

Name of the object Mandatory

parentURI JSON 
string

URI for the parent objectAppending the objectName to the 
parentURI shall always produce a valid URI for the object. 

Mandatory

parentID JSON 
string

Object ID of the parent container object Mandatory

domainURI JSON 
string

URI of the owning domain. A domain object is always 
owned by itself.

Mandatory

capabilitiesURI JSON 
string

URI to the capabilities for the object Mandatory

metadata JSON 
object

Metadata for the domain. This field includes any user and 
data system metadata specified in the request body 
metadata field, along with storage system metadata 
generated by the cloud storage system. See Clause 16 for 
a further description of metadata. 

Mandatory

childrenrange JSON 
string 

The sub-domains of the domain expressed as a range. If a 
range of sub-domains is requested, this field indicates the 
children returned as a range.

Mandatory

children JSON 
array of 
JSON 
strings

Names of the children domains in the domain. Child 
containers end with "/".

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 122
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

207

208

209

210

211
212
213
214
215

216
217
218
219

220

221
222
223

224
225
226
227
228
229
230
231
232
233
234
235
236

237
238
239
240
241
242

ISO/IEC 17826:2016(E)

© ISO/I
10.2.7 Response status

Table 69 describes the HTTP status codes that occur when creating a domain object using CDMI. 

10.2.8 Example

EXAMPLE PUT to the domain URI the domain name and metadata:

PUT /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

"metadata": 
{
    "cdmi_domain_enabled": "true"
} 

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

{
    "objectType" : "application/cdmi-domain",
    "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
    "objectName" : "MyDomain/",
    "parentURI" : "/cdmi_domains/",
    "parentID" : "00007E7F0010C058374D08B0AC7B3550", 
    "domainURI" : "/cdmi_domains/MyDomain/",
    "capabilitiesURI" : "/cdmi_capabilities/domain/",
    "metadata" : {
        "cdmi_domain_enabled": "true",
        "cdmi_authentication_methods": "anonymous, basic",

...
    },

    "childrenrange" : "0-1",
    "children" : [
        "cdmi_domain_summary/",
        "cdmi_domain_members/"
    ] 
}

Table 69 — HTTP status codes - Create a domain object using CDMI

HTTP status Description

201 Created The new domain object was created.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

123 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

243

244

245

246

247
248

249
250
251
252

253

254

255

256

257

258

259

260

261

262
263

264
265

266
267

268

269

270

271

ISO/IEC 17826:2016(E)

© ISO/I
10.3 Read a domain object using CDMI

10.3.1 Synopsis

To read all fields from an existing domain object, the following request shall be performed:

GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/

To read one or more requested fields from an existing domain object, one of the following requests shall be 
performed:

GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/
?<fieldname>;<fieldname>;...

GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?children:<range>;...
GET <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/?metadata:<prefix>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

10.3.2 Capabilities 

The following capabilities describe the supported operations that can be performed when reading an 
existing domain:

• Support for the ability to read the metadata of an existing domain object is indicated by the 
presence of the cdmi_read_metadata capability in the specified domain.

• Support for the ability to list the children of an existing domain object is indicated by the presence 
of the cdmi_list_children capability in the specified domain.

10.3.3 Request headers

The HTTP request headers for reading a domain object using CDMI are shown in Table 70. 

10.3.4 Request message body 

A request body shall not be provided.

Table 70 — Request headers - Read a domain object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-domain" or a consistent value as per clause 
5.13.2 "Content-type negotiation"

Optional

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 124
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

272

273

274

275

276
277

ISO/IEC 17826:2016(E)

© ISO/I
10.3.5 Response headers

The HTTP response headers for reading a domain object using CDMI are shown in Table 71. 

10.3.6 Response message body

The response message body fields for reading a domain object using CDMI are shown in Table 72.

If individual fields are specified in the GET request, only these fields are returned in the result body. 
Optional fields that are requested but do not exist are omitted from the result body.

Table 71 — Response headers - Read a domain object using CDMI

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header 
string

The server shall respond with the highest version supported 
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status code 
of 400 Bad Request.

Mandatory

Content-Type Header 
string

"application/cdmi-domain" Mandatory

Location Header 
string

The server shall respond with an absolute URI to which the 
reference redirects if the object is a reference.

Conditional

Table 72 — Response message body - Read a domain object using CDMI  

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-domain" Mandatory

objectID JSON 
string

Object ID of the domain Mandatory

objectName JSON 
string

Name of the object Mandatory

parentURI JSON 
string

URI for the parent object Mandatory

parentID JSON 
string

Object ID of the parent container object Mandatory

domainURI JSON 
string

URI of the owning domain. A domain object is always owned 
by itself.

Mandatory

capabilitiesURI JSON 
string

URI to the capabilities for the object Mandatory

metadata JSON 
object

Metadata for the domain. This field includes any user and 
data system metadata specified in the request body 
metadata field, along with storage system metadata 
generated by the cloud storage system. See Clause 16 for a 
further description of metadata.

Mandatory

childrenrange JSON 
string 

The sub-domains of the domain expressed as a range. If a 
range of sub-domains is requested, this field indicates the 
children returned as a range.

Mandatory

children JSON 
array of 
JSON 
strings

The children of the domain. Sub-domains end with "/". Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

125 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

278

279

280

281

282
283
284
285

286

287
288
289

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

309

310
311
312
313

ISO/IEC 17826:2016(E)

© ISO/I
10.3.7 Response status

Table 73 describes the HTTP status codes that occur when reading a domain object using CDMI. 

10.3.8 Examples

EXAMPLE 1 GET to the domain URI to read all the fields of the domain:

GET /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

{
    "objectType": "application/cdmi-domain",
    "objectID": "00007E7F00104BE66AB53A9572F9F51E",
    "objectName": "MyDomain/",
    "parentURI": "/cdmi_domains/",
    "parentID": "00007E7F0010C058374D08B0AC7B3550",
    "domainURI": "/cdmi_domains/MyDomain/",
    "capabilitiesURI": "/cdmi_capabilities/domain/",
    "metadata": {
        "cdmi_domain_enabled": "true",
        "cdmi_authentication_methods": "anonymous, basic",

...
    },
    "childrenrange": "0-1",
    "children": [
        "cdmi_domain_summary/",
        "cdmi_domain_members/"
    ]
}

EXAMPLE 2 GET to the domain URI to read the parentURI and children of the domain:

GET /MyDomain/?parentURI;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

Table 73 — HTTP status codes - Read a domain object using CDMI

HTTP status Description

200 OK The domain object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the 
Accept header.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 126
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

314

315
316
317

318
319
320
321
322
323
324

325

326
327
328
329

330

331
332
333

334
335
336
337
338
339
340

341

342

343

344

345
346

347
348

349

350

351

352

353
354

ISO/IEC 17826:2016(E)

© ISO/I
The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

{
    "parentURI" : "/cdmi_domains/",
    "children" : [
        "cdmi_domain_summary/",
        "cdmi_domain_members/" 
    ]
}

EXAMPLE 3 GET to the domain URI to read the first two children of the domain:

GET /MyDomain/?childrenrange;children:0-1 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

{
    "childrenrange" : "0-1",
    "children" : [
        "cdmi_domain_summary/",
        "cdmi_domain_members/" 
    ]
}

10.4 Update a domain object using CDMI

10.4.1 Synopsis

To update some or all fields in an existing domain object, the following request shall be performed:

PUT <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/

To add, update, and remove specific metadata items of an existing domain object, the following request 
shall be performed:

PUT <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/
?metadata:<metadataname>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be updated.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/. An update shall not result in 
a change to the object ID.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

127 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

355

356
357

358
359

360

361

362

363

ISO/IEC 17826:2016(E)

© ISO/I
10.4.2 Capability 

The following capability describes the supported operations that may be performed when updating an 
existing domain:

Support for the ability to modify the metadata of an existing domain object is indicated by the presence 
of the cdmi_modify_metadata capability in the specified domain.

10.4.3 Request headers

The HTTP request headers for updating a domain object using CDMI are shown in Table 74.

10.4.4 Request message body

The request message body fields for updating a domain object using CDMI are shown in Table 75.

Table 74 — Request headers - Update a domain object using CDMI

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-domain" Mandatory

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 75 — Request message body - Update a domain object using CDMI (Sheet 1 of 2)

Field name Type Description Requirement

metadata JSON 
object

Metadata for the domain object. If present, the new 
metadata specified replaces the existing object metadata. If 
individual metadata items are specified in the URI, only 
those items are replaced; other items are preserved. 

See Clause 16 for a further description of metadata.

Optional

copy JSON 
string

URI of a domain object that shall be copied into the existing 
domain object. Only the metadata and membership of the 
domain shall be copied, not any sub-domains of the domain. 

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 128
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

364

365

366

367

ISO/IEC 17826:2016(E)

© ISO/I
10.4.5 Response header

The HTTP response header for updating a domain object using CDMI is shown in Table 76. 

10.4.6 Response message body 

A response body can be provided as per RFC 2616.

deserialize JSON 
string

URI of a serialized domain object that shall be deserialized 
to update an existing domain object. The object ID of the 
serialized domain object shall match the object ID of the 
destination domain object.

If the serialized domain does not contain children, the 
update is applied only to the domain object, and any 
existing children are left as is. If the serialized domain object 
does contain children, then creates, updates, and deletes 
are recursively applied for each child, depending on the 
differences between the provided serialized state and the 
current state of the children. 

Optionala

deserializevalue JSON 
string

A domain object serialized as specified in Clause 15 and 
encoded using base 64 encoding rules described in RFC 
4648. The object ID of the serialized domain object shall 
match the object ID of the destination domain object.

If the serialized domain does not contain children, the 
update is applied only to the domain object, and any 
existing children are left as is. If the serialized domain object 
does contain children, then creates, updates, and deletes 
are recursively applied for each child, depending on the 
differences between the provided serialized state and the 
current state of the children.

Optionala

Table 76 — Response header - Update a domain object using CDMI

Header Type Description Requirement

Location Header 
string

The server shall respond with an absolute URI to which the 
reference redirects if the object is a reference.

Conditional

Table 75 — Request message body - Update a domain object using CDMI (Sheet 2 of 2)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

129 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

368

369

370

371

372
373
374
375

376
377
378
379
380

381

382

383

384

385
386

387

388

389

390

391

392

ISO/IEC 17826:2016(E)

© ISO/I
10.4.7 Response status

Table 77 describes the HTTP status codes that occur when updating a domain object using CDMI. 

10.4.8 Example

EXAMPLE PUT to the domain URI to set new field values:

PUT /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-domain
X-CDMI-Specification-Version: 1.1

{
    "metadata" : {
        "test" : "value" 
    }
}

The following shows the response.

HTTP/1.1 204 No Content

10.5 Delete a domain object using CDMI

10.5.1 Synopsis

To delete an existing domain object and transfer all objects associated with that domain to another domain 
(to preserve access), the following request shall be performed:

DELETE <root URI>/cdmi_domains/<DomainName>/<TheDomainName>/ 

Where:

• <root URI> is the path to the CDMI cloud.

• <DomainName> is zero or more parent domains.

• <TheDomainName> is the name specified for the domain to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

Table 77 — HTTP status codes - Update a domain object using CDMI

HTTP status Description

204 No Content The data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused 
a state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 130
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

393

394
395

396
397

398

399

400

401

402

403

404

405

406

407

ISO/IEC 17826:2016(E)

© ISO/I
10.5.2 Capability

The following capability describes the supported operations that may be performed when deleting an 
existing domain:

Support for the ability to delete an existing domain object is indicated by the presence of the 
cdmi_delete_domain  capability in the specified domain.

10.5.3 Request header

The HTTP request header for deleting a domain object using CDMI is shown in Table 78.

10.5.4 Request message body

A request body can be provided as per RFC 2616.

10.5.5 Response headers 

Response headers can be provided as per RFC 2616.

10.5.6 Response message body 

A response body can be provided as per RFC 2616.

10.5.7 Response status

Table 79 describes the HTTP status codes that occur when deleting a domain object using CDMI. 

Table 78 — Request header - Delete a domain object using CDMI

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 79 — HTTP status codes - Delete a domain object using CDMI

HTTP status Description

204 No Content The domain object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused 
a state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

131 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

408

409

410
411
412

413

414

ISO/IEC 17826:2016(E)

© ISO/I
10.5.8 Example

EXAMPLE DELETE to the domain URI:

DELETE /cdmi_domains/MyDomain/ HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 132
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4
5
6
7
8

9

10

11
12

13
14

15
16

17
18

19

20
21

22
23

24

25
26

27
28
29

30
31
32

33
34

35

36

37
38

39

ISO/IEC 17826:2016(E)

© ISO/I
11    Queue object resource operations using CDMI

11.1 Overview

Queue objects provide first-in, first-out access when storing and retrieving data. A queue object writer 
POSTs data into a queue object, and a queue object reader GETs values from the queue object and 
subsequently deletes the values to acknowledge receipt of the values that it received. Queuing provides a 
simple mechanism for one or more writers to send data to a single reader in a reliable way. If supported by 
the cloud storage system, cloud clients create the queue objects by using the mechanism described in 9.7 
"Create (POST) a new queue object using CDMI" and this clause.

Queue objects are addressed in CDMI™ in two ways:

• by name (e.g., http://cloud.example.com/queueobject); and

• by object ID (e.g., http://cloud.example.com/cdmi_objectid/
00007ED900104F67307652BAC9A37C93/).

Every queue object has a single, globally-unique object identifier (ID) that remains constant for the life of 
the object. Each queue object shall have one or more URI addresses that allow the object to be accessed.  

A queue object may have a parent object. In this case, the queue object inherits data system metadata that 
is not explicitly specified in the queue object itself. 

EXAMPLE 1 The "receipts.queue" queue object stored at the following URI would inherit data system metadata 
from its parent container, "finance":

http://cloud.example.com/finance/receipts.queue

Individual fields within a queue object may be accessed by specifying the field name after a question mark 
"?" that is appended to the end of the data object URI. 

EXAMPLE 2 The following URI returns the value field containing the oldest queue object value in the response 
body:

http://cloud.example.com/queueobject?value

The encoding of the data transported in the queue object value field depends on the queue object 
valuetransferencoding field.

• If the value transfer encoding of the object is set to "utf-8", the data stored in the value of the 
queue object shall be a valid UTF-8 string, and it shall be transported as a UTF-8 string in the 
value field.

• If the value transfer encoding of the object is set to "base64", the data stored in the value of the 
queue object can contain arbitrary binary sequences, and it shall be transported as a base 64-
encoded string in the value field.

Specific ranges of the value of a queue object may be accessed by specifying a byte range after the value 
field name. 

EXAMPLE 3 The following URI returns the first thousand bytes of the oldest value enqueued:

http://cloud.example.com/queueobject?value:0-999

Because a byte range of a UTF-8 string is often not a valid UTF-8 string, the response to a range request 
shall always be transported in the value field as a base 64-encoded string.

Byte ranges are specified as single, inclusive byte ranges as per Section 14.35.1 of RFC 2616.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

133 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

40
41
42

43
44

45
46

47
48
49
50
51

52

53
54

55

56
57

58

59
60
61
62

63

64

65

66

67

68

69

70
71

72

73

74
75

ISO/IEC 17826:2016(E)

© ISO/I
If read access to any of the requested fields is not permitted by the object ACL, only the permitted fields 
shall be returned. If no requested fields are permitted to be read, an HTTP status code of 403 
Forbidden shall be returned to the client. 

If write access to any of the requested fields is not permitted by the object ACL, no updates shall be 
performed, and an HTTP status code of 403 Forbidden shall be returned to the client.

When a client provides or includes deserialization fields that are not defined in this International Standard, 
these fields shall be stored as part of the object.

The value of a queue object may also be specified and retrieved using multi-part MIME, where the CDMI 
JSON is transferred in the first MIME part and the raw queue values are transferred in the subsequent 
MIME parts. Each MIME part, including any header fields, shall conform to RFC 2045, RFC 2046, and 
RFC 2616, and the length of each part may optionally be specified by a Content-Length header in addition 
to the MIME boundary delimiter.

11.1.1 Queue object metadata

Queue object metadata may also include arbitrary user-supplied metadata, storage system metadata, and 
data system metadata, as specified in Clause 16.

11.1.2 Queue object addressing

Each queue object is addressed via one or more unique URIs, and all operations may be performed 
through any of these URIs. 

11.1.3 Queue object representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support 
UTF-8 JSON representation. The request and response body JSON fields may be specified or returned in 
any order, with the exception that, if present, for queue objects, the valuerange and value fields shall 
appear last and in that order. 

11.2 Create a queue object using CDMI

11.2.1 Synopsis

To create a new queue object, the following request shall be performed:

PUT <root URI>/<ContainerName>/<QueueName>

To create a new queue object by ID, see 9.7 "Create (POST) a new queue object using CDMI".

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., 
"/") between each pair of container names.

• <QueueName> is the name specified for the queue object to be created.

After it is created, the object shall also be accessible at <root URI>/cdmi_objectid/<objectID>. 

The newly created queue shall have no values unless the queue is created as a result of copying or 
moving a source queue that has values or as a result of deserializing a serialized queue that has values.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 134
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

76

77
78
79
80

81
82

83
84

85

86
87

88
89

90
91

92
93

94
95

96
97

98
99

100

101

102
103

104
105

106
107

108
109

110
111

112
113
114

ISO/IEC 17826:2016(E)

© ISO/I
11.2.2 Delayed completion of create 

In response to a create operation for a queue object, the server may return an HTTP status code of 202 
Accepted. In this case, the queue object is in the process of being created. This response is particularly 
useful for long-running operations, (e.g., for copying a queue object with a large number of enqueued 
values from a source URI). Such a response has the following implications:

• The server shall return a Location header with an absolute URI to the object to be created along 
with an HTTP status code of 202 Accepted.

• With an HTTP status code of 202 Accepted, the server implies that the following checks have 
passed:

— user authorization for creating the queue object;

— user authorization for read access to any source object for move, copy, serialize, or 
deserialize; and

— availability of space to create the queue object or at least enough space to create a URI to 
report an error.

• A client might not be able to immediately access the created object, e.g., due to delays resulting 
from the implementation’s use of eventual consistency. 

The client performs GET operations to the URI to track the progress of the operation. In response, the 
server returns two fields in its response body to indicate progress.

• A completionStatus text field contains either "Processing", "Complete", or an error string starting 
with the value "Error".

• An optional percentComplete field contains the percentage that the accepted PUT has completed 
(0 to 100).

GET does not return any value for the object when completionStatus is not "Complete". When the final 
result of the create operation is an error, the URI is created with the completionStatus field set to the error 
message. It is the client's responsibility to delete the URI after the error has been noted. 

11.2.3 Capabilities 

The following capabilities describe the supported operations that can be performed when creating a new 
queue object:

• Support for the ability to create a new queue object is indicated by the presence of the 
cdmi_create_queue capability in the parent container.

• If the object being created in the parent container is a reference, support for that ability is indicated 
by the presence of the cdmi_create_reference capability in the parent container.

• If the new queue object is a copy of an existing queue object, support for the ability to copy is 
indicated by the presence of the cdmi_copy_queue capability in the parent container.

• If the new queue object is the destination of a move, support for the ability to move the queue 
object is indicated by the presence of the cdmi_move_queue capability in the parent container.

• If the new queue object is the destination of a deserialize operation, support for the ability to 
deserialize the source data object is indicated by the presence of the cdmi_deserialize_queue 
capability in the parent container.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

135 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

115

116

117

118

ISO/IEC 17826:2016(E)

© ISO/I
11.2.4 Request headers

The HTTP request headers for creating a queue object using CDMI are shown in Table 80. 

11.2.5 Request message body

The request message body fields for creating a queue object using CDMI are shown in Table 81.

Table 80 — Request headers - Create a queue object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-queue" or a consistent value as per  per 
clause 5.13.2 "Content-type negotiation"

Mandatory

Content-Type Header 
string

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 81 — Request message body - Create a queue object using CDMI  (Sheet 1 of 2)

Field name Type Description Requirement

metadata JSON 
object

Metadata for the queue object

• If this field is included when deserializing, serializing, 
copying, or moving a queue object, the value provided in 
this field shall replace the metadata from the source URI. 

• If this field is not included when deserializing, serializing, 
copying, or moving a queue object, the metadata from the 
source URI shall be used. 

• If this field is included when creating a new queue object 
by specifying a value, the value provided in this field shall 
be used as the metadata. 

• If this field is not included when creating a new queue 
object by specifying a value, an empty JSON object (i.e., 
"{}") shall be assigned as the field value. 

• This field shall not be included when referencing a queue 
object. 

Optional

domainURI JSON 
string

URI of the owning domain

• If different from the parent domain, the user shall have 
the "cross_domain" privilege (see 
cdmi_member_privileges in Table 63 "Required settings 
for domain member user objects").

• If not specified, the parent domain shall be used.

Optional

deserialize JSON 
string

URI of a serialized data object that shall be deserialized to 
create the new queue object

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 136
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
copy JSON 
string

URI of a source queue object that shall be copied into the 
new destination queue object. 

• If the destination queue object URI and the copy source 
queue object URI both do not specify individual fields, the 
destination queue object shall be a complete copy of the 
source queue object, including all enqueued values. 

• If the destination queue object URI or the copy source 
queue object URI specifies individual fields, only the 
fields specified shall be used to create the destination 
queue object. If specified fields are not present in the 
source, default field values shall be used. 

• If the destination queue object URI and the copy source 
queue object URI both specify fields, an HTTP status 
code of 400 Bad Request shall be returned to the 
client. 

If there are insufficient permissions to read the queue object 
at the source URI or create the queue object at the 
destination URI, or if the read operation fails, the copy shall 
return an HTTP status code of 400 Bad Request, and the 
destination queue object shall not be created.

Optionala

move JSON 
string

URI of an existing local or remote queue object (source 
URI) that shall be relocated to the URI specified in the PUT. 
The contents of the queue object, including the object ID, 
shall be preserved by a move, and the queue object at the 
source URI shall be removed after the queue object at the 
destination has been successfully created. 

If there are insufficient permissions to read the queue object 
at the source URI, write the queue object at the destination 
URI, or delete the queue object at the source URI, or if any 
of these operations fail, the move shall return an HTTP 
status code of 400 Bad Request, and the source and 
destination are left unchanged.

Optionala

reference JSON 
string

URI of a queue object that shall be redirected to by a 
reference. If other fields are supplied when creating a 
reference, the server shall respond with an HTTP status 
code of 400 Bad Request.

Optionala

deserializevalue JSON 
string

A queue object serialized as specified in Clause 15 and 
encoded using base 64 encoding rules described in RFC 
4648.

Optionala

Table 81 — Request message body - Create a queue object using CDMI (Continued) (Sheet 2 of 2)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

137 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

119

120

121

122

ISO/IEC 17826:2016(E)

© ISO/I
11.2.6 Response headers

The HTTP response headers for creating a queue object using CDMI are shown in Table 82. 

11.2.7 Response message body

The response message body fields for creating a queue object using CDMI are shown in Table 83. 

Table 82 — Response headers - Create a queue object using CDMI

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header 
string 

The server shall respond with the highest version supported 
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status code 
of 400 Bad Request.

Mandatory

Location Header 
string

When an HTTP status code of 202 Accepted is returned, 
the server shall respond with the absolute URL of the object 
that is in the process of being created.

Conditional

Table 83 — Response message body - Create a queue object using CDMI (Sheet 1 of 2)

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-queue" Mandatory

objectID JSON 
string

Object ID of the object Mandatory

objectName JSON 
string

Name of the object Mandatory

parentURI JSON 
string

URI for the parent object

Appending the objectName to the parentURI shall always 
produce a valid URI for the object. 

Mandatory

parentID JSON 
string

Object ID of the parent container object Mandatory

domainURI JSON 
string

URI of the owning domain. Mandatory

capabilitiesURI JSON 
string

URI to the capabilities for the object Mandatory

completionStatus JSON 
string

A string indicating if the object is still in the process of being 
created or updated by another operation, and after that 
operation is complete, indicates if it was successfully 
created or updated or if an error occurred.

The value shall be the string "Processing", the string 
"Complete", or an error string starting with the value "Error".

MandatoryIECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 138
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

123

124

ISO/IEC 17826:2016(E)

© ISO/I
11.2.8 Response status

Table 84 describes the HTTP status codes that occur when creating a queue object using CDMI. 

percentComplete JSON 
string

• When the value of completionStatus is "Processing", this 
field, if provided, shall indicate the percentage of 
completion as a numeric integer value from 0 through 
100. 

• When the value of completionStatus is "Complete", this 
field, if provided, shall contain the value "100". 

• When the value of completionStatus is "Error", this field, if 
provided, may contain any integer value from 0 through 
100. 

Optional

metadata JSON 
object

Metadata for the queue object. This field includes any user 
and data system metadata specified in the request body 
metadata field, along with storage system metadata 
generated by the cloud storage system. See Clause 16 for a 
further description of metadata.

Mandatory

queueValues JSON 
string

The range of designators for enqueued values. Every 
enqueued value shall be assigned a unique, monotonically-
incrementing positive integer designator, starting from 0. If 
no values are enqueued, an empty string shall be returned. 
If values are enqueued, the lowest designator, followed by a 
hyphen ("-"), followed by the highest designator shall be 
returned.

Mandatory

Table 84 — HTTP status codes - Create a queue object using CDMI

HTTP status Description

201 Created The new queue object was created.

202 Accepted The queue object is in the process of being created. The CDMI client should 
monitor the completionStatus and percentComplete fields to determine the 
current status of the operation.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server.

Table 83 — Response message body - Create a queue object using CDMI (Sheet 2 of 2)

Field name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

139 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

125

126

127
128
129
130
131

132
133
134
135
136

137

138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154

155

156
157
158
159

160
161
162

163

164
165
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180

ISO/IEC 17826:2016(E)

© ISO/I
11.2.9 Examples

EXAMPLE 1 PUT to the queue URI the queue object name and contents:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
    "metadata" : {
        
    }
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
    "objectType" : "application/cdmi-queue",
    "objectID" : "00007E7F00104BE66AB53A9572F9F51E",
    "objectName" : "MyQueue",
    "parentURI " : "/MyContainer/",
    "parentID" : "00007ED900104F67307652BAC9A37C93", 
    "domainURI" : "/cdmi_domains/MyDomain/",
    "capabilitiesURI" : "/cdmi_capabilities/queue/",
    "completionStatus" : "Complete",
    "metadata" : {
        ...
    },
    "queueValues" : ""
}

EXAMPLE 2 PUT to the queue object URI to create a new queue, copying from another queue:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
    "copy": "/MyContainer/SourceQueue?value:0-9"
}

The following shows the response.

HTTP/1.1 201 Created
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
    "objectType": "application/cdmi-queue",
    "objectID": "00007E7F00104BE66AB53A9572F9F51E",
    "objectName": "MyQueue",
    "parentURI ": "/MyContainer/",
    "parentID": "00007ED900104F67307652BAC9A37C93",
    "domainURI": "/cdmi_domains/MyDomain/",
    "capabilitiesURI": "/cdmi_capabilities/queue/",
    "completionStatus": "Complete",
    "metadata": {

...
},

    "queueValues": "0-9"
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 140
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

181

182

183

184

185
186

187
188
189

190

191

192

193

194

195

196

197
198

199

200
201
202

203

204
205

206

207
208

209
210

211
212

213
214

ISO/IEC 17826:2016(E)

© ISO/I
11.3 Read a queue object using CDMI

11.3.1 Synopsis 

To read all fields from an existing queue object, the following request shall be performed:

GET <root URI>/<ContainerName>/<QueueName>

To read one or more requested fields from an existing queue object, one of the following requests shall be 
performed:

GET <root URI>/<ContainerName>/<QueueName>?<fieldname>;<fieldname>;...
GET <root URI>/<ContainerName>/<QueueName>?value:<range>;...
GET <root URI>/<ContainerName>/<QueueName>?metadata:<prefix>;...

To read one or more queue values from an existing queue object, the following request shall be performed:

GET <root URI>/<ContainerName>/<QueueName>?values:<count>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be read from.

• <fieldname> is the name of a field.

• <range> is a byte range of the queue object value to be returned in the value field. If a byte range 
is requested, the range returned shall be from the oldest queue object value.

• <prefix> is a matching prefix that returns all metadata items that start with the prefix value.

• <count> is the number of values to be retrieved from the queue object. If more queue object 
entries are requested to be retrieved than exist in the queue object, the count is processed as if it 
is equal to the number of entries in the queue object.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>. 

Reading a queue object shall, by default, return the complete value of the oldest item in the queue, unless 
the queueValues range is empty.

11.3.2 Capabilities

The following capabilities describe the supported operations that can be performed when reading an 
existing queue object:

• Support for the ability to read the metadata of an existing queue object is indicated by the 
presence of the cdmi_read_metadata capability in the specified queue object.

• Support for the ability to read the value of an existing queue object is indicated by the presence of 
the cdmi_read_value capability in the specified queue object.

• Support for the ability to read a queue object using multi-part MIME is indicated by the presence of 
the "cdmi_multipart_mime" system-wide capability.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

141 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

215

216

217

218

219

220

221

222

ISO/IEC 17826:2016(E)

© ISO/I
11.3.3 Request headers

The HTTP request headers for reading a queue object using CDMI are shown in Table 85. 

11.3.4 Request message body 

A request body shall not be provided.

11.3.5 Response headers

The HTTP response headers for reading a queue object using CDMI are shown in Table 86. 

11.3.6 Response message body

The response message body fields for reading a queue object using CDMI are shown in Table 87. 

Table 85 — Request headers - Read a queue object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-queue", "multipart/mixed", or a consistent 
value as per clause 5.13.2 "Content-type negotiation"

If "multipart/mixed", the body shall consist of one or more 
MIME parts, where the first part shall contain a body of 
content-type "application/cdmi-queue", and the second and 
subsequent parts shall each contain a queue value as 
described in 8.4 "Update a data object using CDMI".

Optional

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 86 — Response headers - Read a queue object using CDMI

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header 
string 

The server shall respond with the highest version supported 
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status code 
of 400 Bad Request.

Mandatory

Content-Type Header 
string

"application/cdmi-queue" Mandatory

Location Header 
string

The server shall respond with an absolute URI to which the 
reference redirects if the object is a reference.

Conditional

Table 87 — Response message body - Read a queue object using CDMI (Sheet 1 of 4)

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-queue" Mandatory

objectID JSON 
string

Object ID of the object Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 142
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
objectName JSON 
string

Name of the object

• For objects in a container, the objectName field shall 
be returned. 

• For objects not in a container (objects that are only 
accessible by ID), the objectName field does not 
exist and shall not be returned. 

Conditional

parentURI JSON 
string

URI for the parent object

• For objects in a container, the parentURI field shall 
be returned. 

• For objects not in a container (objects that are only 
accessible by ID), the parentURI field does not exist 
and shall not be returned. 

Appending the objectName to the parentURI shall 
always produce a valid URI for the object. 

Conditional

parentID JSON 
string

Object ID of the parent container object

• For objects in a container, the parentID field shall be 
returned. 

• For objects not in a container (objects that are only 
accessible by ID), the parentID field does not exist 
and shall not be returned.

Conditional

domainURI JSON 
string

URI of the owning domain Mandatory

capabilitiesURI JSON 
string

URI to the capabilities for the object Mandatory

completionStatus JSON 
string

A string indicating if the object is still in the process of 
being created or updated by another operation, and 
after that operation is complete, indicates if it was 
successfully created or updated or if an error occurred.

The value shall be the string "Processing", the string 
"Complete", or an error string starting with the value 
"Error".

Mandatory

percentComplete JSON 
string

• When the value of completionStatus is "Processing", 
this field, if provided, shall indicate the percentage of 
completion as a numeric integer value from 0 
through 100. 

• When the value of completionStatus is "Complete", 
this field, if provided, shall contain the value "100". 

• When the value of completionStatus is "Error", this 
field, if provided, may contain any integer value from 
0 through 100. 

Optional

metadata JSON 
object

Metadata for the queue object. This field includes any 
user and data system metadata specified in the request 
body metadata field, along with storage system 
metadata generated by the cloud storage system. See 
Clause 16 for a further description of metadata.

Mandatory

Table 87 — Response message body - Read a queue object using CDMI (Sheet 2 of 4)

Field name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

143 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
queueValues JSON 
string

The range of designators for enqueued values. Every 
enqueued value shall be assigned a unique, 
monotonically-incrementing positive integer designator, 
starting from 0. If no values are enqueued, an empty 
string shall be returned. If values are enqueued, the 
lowest designator, followed by a hyphen ("-"), followed 
by the highest designator shall be returned.

Mandatory

mimetype JSON 
array of 
JSON 
strings

MIME types for each queue object value

• The MIME types of the values are returned, each 
corresponding to the value in the same position in 
the JSON array.

• This field shall only be provided when 
completionStatus is "Complete" and when one or 
more values are enqueued.

Optional

valuerange JSON 
array of 
JSON 
strings

The range of bytes of the queue object values to be 
returned in the value field

• The value ranges of the values are returned, each 
corresponding to the value in the same position in 
the JSON array.

• If a specific value range has been requested, the 
entry in the valuerange field shall correspond to the 
bytes requested. If the request extends beyond the 
end of the value, the valuerange field shall indicate 
the smaller byte range returned.

• The valuerange field shall only be provided when the 
completionStatus field contains "Complete".

Optional

valuetransferencoding JSON 
array of 
JSON 
strings

The value transfer encoding used for each queue 
object value. Two value transfer encodings are defined:

• "utf-8" indicates that the queue object value contains 
a valid UTF-8 string, and it shall be transported as a 
UTF-8 string in the value field.

• "base64" indicates that the queue object value may 
contain arbitrary binary sequences, and it shall be 
transported as a base 64-encoded string in the value 
field.

The value transfer encodings are returned, each 
corresponding to the value in the same position in the 
JSON array.

The valuetransferencoding field shall only be provided 
when the completionStatus field contains "Complete".

Optional

Table 87 — Response message body - Read a queue object using CDMI (Sheet 3 of 4)

Field name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 144
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

223
224

225

226

227

228

229
230
231
232

233

234
235
236

237
238
239

ISO/IEC 17826:2016(E)

© ISO/I
If individual fields are specified in the GET request, only these fields are returned in the result body. 
Optional fields that are requested but do not exist are omitted from the result body.

11.3.7 Response status

Table 88 describes the HTTP status codes that occur when reading a queue object using CDMI. 

11.3.8 Examples

EXAMPLE 1 GET to the queue object URI to read all fields of the queue object:

GET /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK 
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1 

{
    "objectType": "application/cdmi-queue",
    "objectID": "00007E7F00104BE66AB53A9572F9F51E",

value JSON 
array of 
JSON 
strings

The oldest enqueued queue object values

• The values in the JSON array are returned in order 
from oldest to newest.

• If the valuetransferencoding field indicates UTF-8 
encoding, the corresponding value field shall contain 
a UTF-8 string using JSON escaping rules described 
in RFC 4627.

• If the valuetransferencoding field indicates base 64 
encoding, the corresponding value field shall contain 
a base 64-encoded string as described in RFC RFC 
4648.

• The value field shall not be provided when using 
multi-part MIME.

• The value field shall only be provided when the 
completionStatus field contains "Complete".

Conditional

Table 88 — HTTP status codes - Read a queue object using CDMI

HTTP status Description

200 OK The queue object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in the 
Accept header.

Table 87 — Response message body - Read a queue object using CDMI (Sheet 4 of 4)

Field name Type Description Requirement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

145 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

261

262
263
264
265

266

267
268
269

270
271
272
273
274
275

276

277
278
279
280

281

282
283
284

285
286
287
288
289

290

291
292
293
294

ISO/IEC 17826:2016(E)

© ISO/I
    "objectName": "MyQueue",
    "parentURI": "/MyContainer/",
    "parentID" : "00007ED900104F67307652BAC9A37C93", 
    "domainURI": "/cdmi_domains/MyDomain/",
    "capabilitiesURI": "/cdmi_capabilities/queue/",
    "completionStatus": "Complete",
    "metadata": {},
    "queueValues": "1-1",
    "mimetype": [
        "text/plain"
    ],
    "valuerange": [
        "0-19"
    ],
    "valuetransferencoding": [
        "utf-8"
    ],
    "value": [
        "First Enqueued Value"
    ]
}

EXAMPLE 2 GET to the queue object URI to read the value and queue items of the queue object:

GET /MyContainer/MyQueue?value;queueValues HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK 
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1 

{
    "queueValues" : "1-1",
    "value" : [
        "First Enqueued Value" 
    ] 
}

EXAMPLE 3 GET to the queue object URI to read the first five bytes of the value of the queue object:

GET /MyContainer/MyQueue?value:0-4 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

The following shows the response:

HTTP/1.1 200 OK 
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1 

{
    "value" : [
        "First" 
    ] 
} 

EXAMPLE 4 GET to the queue object URI to read two values of the queue object:

GET /MyContainer/MyQueue?mimetype;valuerange;values:2 HTTP/1.1 
Host: cloud.example.com 
Accept: application/cdmi-queue 
X-CDMI-Specification-Version: 1.1 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 146
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

295

296
297
298

299
300
301
302
303
304
305
306
307
308
309
310
311
312

313

314
315
316
317

318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

ISO/IEC 17826:2016(E)

© ISO/I
The following shows the response.

HTTP/1.1 200 OK 
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1 

{
    "mimetype" : [
        "text/plain",
        "text/plain" 
    ],
    "valuerange" : [
        "0-19",
        "0-20" 
    ],
    "value" : [
        "First Enqueued Value",
        "Second Enqueued Value" 
    ] 
}

EXAMPLE 5  GET to the queue object URI to read the queue object using multi-part MIME:

GET /MyContainer/MyQueue HTTP/1.1 
Host: cloud.example.com 
Accept: multipart/mixed
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue

{
"objectType": "application/cdmi-queue", 
"objectID": "00007ED9001035E14BD1BA70C2EE98FC", 
"objectName": "MyQueue", 
"parentURI": "/MyContainer/", 
"parentID" : " 00007ED90010C2414303B5C6D4F83170", 
"domainURI": "/cdmi_domains/MyDomain/", 
"capabilitiesURI": "/cdmi_capabilities/queue/", 
"completionStatus": "Complete", 
"metadata": {
...

},
"queueValues": "1-2",
"mimetype": [
"application/octet-stream", 
"application/octet-stream"

],
"valuerange": [
"0-19", 
"0-36"

],
"valuetransferencoding": [
"base64",
"base64"

]
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<20 bytes of binary data>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

147 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

358
359
360
361
362
363
364
365

366

367

368
369

370

371
372

373

374

375

376

377

378
379

380

381
382

383
384

385

386

ISO/IEC 17826:2016(E)

© ISO/I
--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream 
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

11.4 Update a queue object using CDMI

11.4.1 Synopsis 

To update some or all fields in an existing queue object (excluding the enqueueing of values), the following 
request shall be performed:

PUT <root URI>/<ContainerName>/<QueueName>

To add, update, and remove specific metadata items of an existing queue object, the following request 
shall be performed:

PUT <root URI>/<ContainerName>/<QueueName>?metadata:<metadataname>;...

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be updated.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>. An update shall not result in a 
change to the object ID.

11.4.2 Capability 

The following capability describes the supported operations that may be performed when updating an 
existing queue object:

Support for the ability to modify the metadata of an existing queue object is indicated by the presence 
of the cdmi_modify_metadata capability in the specified queue object.

11.4.3 Request headers

The HTTP request headers for updating a queue object using CDMI are shown in Table 89. 

Table 89 — Request headers - Update a queue object using CDMI

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-queue" Mandatory

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 148
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

387

388

ISO/IEC 17826:2016(E)

© ISO/I
11.4.4 Request message body

The request message body fields for updating a queue object using CDMI are shown in Table 90.

Table 90 — Request message body - Update a queue object using CDMI (Sheet 1 of 2)

Field name Type Description Requirement

metadata JSON 
object

Metadata for the queue object. If present, the new metadata 
specified replaces the existing object metadata. If individual 
metadata items are specified in the URI, only those items 
are replaced; other items are preserved. 

See Clause 16 for a further description of metadata.

Optional

domainURI JSON 
string

URI of the owning domain. 

• If different from the parent domain, the user shall have 
the "cross_domain" privilege (see 
cdmi_member_privileges in Table 63 "Required settings 
for domain member user objects"). 

• If not specified, the existing domain shall be preserved.

Optional

deserialize JSON 
string

URI of a serialized queue object that shall be deserialized to 
update an existing queue object. The object ID of the 
serialized queue object shall match the object ID of the 
destination queue object. 

All enqueued items in the serialized queue object shall be 
added to the destination queue object. 

Optionala

copy JSON 
string

URI of a source queue object that shall be copied into the 
existing destination queue object. 

• If the destination queue object URI and the copy source 
queue object URI both do not specify individual fields, the 
destination queue object shall be replaced with the 
source queue object, with the exception that the 
destination queue values shall be preserved. See 11.6 
"Enqueue a new queue value using CDMI" to copy 
enqueued items. 

• If the destination queue object URI or the copy source 
queue object URI specifies individual fields, only the 
fields specified shall be used to update the destination 
queue object. If specified fields are not present in the 
source, these fields shall be ignored. If the value field is 
specified, it shall be ignored.  

• If the destination queue object URI and the copy source 
queue object URI both specify fields, an HTTP status 
code of 400 Bad Request shall be returned to the 
client. 

If there are insufficient permissions to read the queue object 
at the source URI or update the queue object at the 
destination URI, or if the read operation fails, the copy shall 
return an HTTP status code of 400 Bad Request, and the 
destination queue object shall not be updated.

Optionala

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

149 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

389

390

391

392

393

394

395

396

397
398
399
400

401
402

ISO/IEC 17826:2016(E)

© ISO/I
11.4.5 Response header

The HTTP response header for updating a queue object using CDMI is shown in Table 91. 

11.4.6 Response message body 

A response body can be provided as per RFC 2616.

11.4.7 Response status

Table 92 describes the HTTP status codes that occur when updating a queue object using CDMI. 

11.4.8 Examples

EXAMPLE 1 PUT to the queue object URI to set new metadata:

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
    "metadata" : {

deserializevalue JSON 
string

A queue object serialized as specified in Clause 15 and 
encoded using base 64 encoding rules described in RFC 
4648. The object ID of the serialized queue object shall 
match the object ID of the destination queue object.

All enqueued items in the serialized queue object shall be 
added to the destination queue object. 

Optionala

Table 91 — Response header - Update a queue object using CDMI

Header Type Description Requirement

Location Header 
string

The server shall respond with an absolute URI to which the 
reference redirects if the object is a reference.

Conditional

Table 92 — HTTP status codes - Update a queue object using CDMI

HTTP status Description

204 No Content The data object content was returned in the response.

302 Found The resource is a reference to another resource.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused 
a state transition error on the server.

Table 90 — Request message body - Update a queue object using CDMI (Sheet 2 of 2)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 150
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

403
404
405

406

407

408

409
410
411
412

413
414
415

416

417

418

419

420
421

422

423

424

425

426

427

428

429
430

431
432

433

434

ISO/IEC 17826:2016(E)

© ISO/I
        
    }
}

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 PUT to the queue object URI to move six queue values from another queue: 

PUT /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
Content-Type: application/cdmi-queue
X-CDMI-Specification-Version: 1.1

{
    "move": "/MyContainer/SourceQueue?value:10-15"
}

The following shows the response.

HTTP/1.1 204 No Content

11.5 Delete a queue object using CDMI

11.5.1 Synopsis 

To delete an existing queue object, along with all enqueued values, the following request shall be 
performed:

DELETE <root URI>/<ContainerName>/<QueueName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be deleted.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

11.5.2 Capability 

The following capability describes the supported operations that may be performed when deleting an 
existing queue object:

Support for the ability to delete an existing queue object is indicated by the presence of the 
cdmi_delete_queue capability in the specified queue object.

11.5.3 Request header

The HTTP request header for deleting a queue object using CDMI is shown in Table 93. 

Table 93 — Request header - Delete a queue object using CDMI

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

151 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

435

436

437

438

439

440

441

442

443

444

445
446
447

448

449

450

451

452

453

454

455

456
457

458

ISO/IEC 17826:2016(E)

© ISO/I
11.5.4 Request message body 

A request body can be provided as per RFC 2616.

11.5.5 Response headers 

Response headers can be provided as per RFC 2616.

11.5.6 Response message body 

A response body can be provided as per RFC 2616.

11.5.7 Response status

Table 94 describes the HTTP status codes that occur when deleting a queue object using CDMI. 

11.5.8 Example

EXAMPLE DELETE to the queue object URI:

DELETE /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

11.6 Enqueue a new queue value using CDMI

11.6.1 Synopsis 

To enqueue one or more values into an existing queue object, the following request shall be performed:

POST <root URI>/<ContainerName>/<QueueName>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers that already exist, with one slash (i.e., 
"/") between each pair of container names.

• <QueueName> is the name of the queue object to be enqueued into.

Table 94 — HTTP status codes - Delete a queue object using CDMI

HTTP status Description

204 No Content The queue object was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused a 
state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 152
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

459

460

461
462

463
464

465
466

467

468

469

470

471

ISO/IEC 17826:2016(E)

© ISO/I
The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

11.6.2 Capabilities

The following capabilities describe the supported operations that can be performed when enqueuing a new 
value into an existing queue object:

• Support for the ability to modify the value of an existing queue object is indicated by the presence 
of the cdmi_modify_value capability in the specified queue object.

• Support for the ability to modify the value of an existing queue object using multi-part MIME is 
indicated by the presence of the "cdmi_multipart_mime" system-wide capability.

11.6.3 Request headers

The HTTP request headers for enqueuing a new queue object value using CDMI are shown in Table 95. 

11.6.4 Request message body

The request message body fields for enqueuing a new queue object value using CDMI are shown in 
Table 96.

Table 95 — Request headers - Enqueue a new queue object value using CDMI

Header Type Description Requirement

Content-Type Header 
string

"application/cdmi-queue" or "multipart/mixed"

If "multipart/mixed", the first part shall contain a body of 
content-type "application/cdmi-queue", and the subsequent 
parts shall contain the queue values as described in 8.3 
"Read a data object using CDMI".

Mandatory

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

Table 96 — Request message body - Enqueue a new queue object value using CDMI  (Sheet 1 of 3)

Field name Type Description Requirement

mimetype JSON 
array of 
JSON 
strings

MIME types of the data values to be enqueued into the 
queue object. 

• This field shall be stored as part of the queue object.

• If this field is not included and multi-part MIME is not 
being used, the value of "text/plain" shall be 
assigned as the field value.

• If this field is not included and multi-part MIME is 
being used, the value of the "Content-Type" header 
of the corresponding MIME part shall be assigned as 
the field value.

• The same number of array elements shall be 
present as is present in the value field, and the 
mimetype field shall be associated with the value in 
the corresponding position.

• This mimetype field value shall be converted to 
lower case before being stored. 

Optional

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

153 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
copy JSON 
string

URI of a source data object or queue object from which 
the value shall be copied and enqueued 

• If a copy source object URI to a data object is 
provided, the value, mimetype, and 
valuetransferencoding field values from the source 
data object are used to enqueue the new item into 
the destination queue object. 

• If a copy source object URI to a queue object is 
provided, the corresponding value, mimetype, and 
valuetransferencoding field values of the specified 
number of enqueued items in the source queue 
object are copied to the destination queue object.

Optionala

move JSON 
string

URI of a source data object or queue object from which 
the value shall be moved and enqueued

• If a move source object URI to a data object is 
provided, the value, mimetype, and 
valuetransferencoding field values from the source 
data object are used to enqueue the new item into 
the destination queue object, and the source data 
object is atomically deleted. 

• If a move source object URI to a queue object is 
provided, the corresponding value, mimetype, and 
valuetransferencoding field values of the specified 
number of enqueued items in the source queue 
object are transferred to the destination queue 
object and atomically removed from the source 
queue object.

Optionala

Table 96 — Request message body - Enqueue a new queue object value using CDMI  (Sheet 2 of 3)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 154
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

472

473

474

475

ISO/IEC 17826:2016(E)

© ISO/I
11.6.5 Response headers 

Response headers can be provided as per RFC 2616.

11.6.6 Response message body 

A response body can be provided as per RFC 2616.

valuetransferencoding JSON 
array of 
JSON 
strings

The value transfer encoding used for the queue object 
value. Two value transfer encodings are defined:

• "utf-8" indicates that the queue object value contains 
a valid UTF-8 string, and shall be transported as a 
UTF-8 string in the value field.

• "base64" indicates that the queue object value may 
contain arbitrary binary sequences, and shall be 
transported as a base 64 encoded string in the value 
field. Setting the contents of the queue object value 
field to any value other than a valid base 64 string 
shall result in an HTTP status code of 400 Bad 
Request being returned to the client.

• If this field is not included and multi-part MIME is not 
being used, the value of "utf-8" shall be assigned as 
the field value.

• If this field is not included and multi-part MIME is 
being used, the value of "utf-8" shall be assigned as 
the field value if the "Content-Type" header of the 
corresponding MIME part includes the charset 
parameter as defined in RFC 2046 of "utf-8" (e.g., 
";charset=utf-8"). Otherwise, the value of "base64" 
shall be assigned as the field value. This field 
applies only to the encoding of the value when 
represented in JSON; the "Content-Transfer-
Encoding" header of the part specifies the encoding 
of the value within a multi-part MIME request, as 
defined in RFC 2045.

• This field shall be stored as part of the object.

Optional

value JSON 
array of 
JSON 
strings

Data to be enqueued into the queue object.

• If this field is not included and multi-part MIME is 
being used, the contents of the MIME parts shall be 
assigned as the field value.

• If the corresponding valuetransferencoding field 
indicates UTF-8 encoding, the value shall be a 
UTF-8 string escaped using the JSON escaping 
rules described in RFC 4627.

• If the corresponding valuetransferencoding field 
indicates base 64 encoding, the value shall be first 
encoded using the base 64 encoding rules as 
described in RFC 4648.

Optionala

Table 96 — Request message body - Enqueue a new queue object value using CDMI  (Sheet 3 of 3)

Field name Type Description Requirement

aOnly one of these fields shall be specified in any given operation. Except for value, these fields shall not be 
stored. If more than one of these fields is supplied, the server shall respond with an HTTP status code of 400 
Bad Request.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

155 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

476

477

478

479

480
481
482
483

484
485
486
487
488
489
490
491

492

493

494

495
496
497
498

499
500
501

502

503

ISO/IEC 17826:2016(E)

© ISO/I
11.6.7 Response status

Table 97 describes the HTTP status codes that occur when enqueuing a new queue object using CDMI. 

11.6.8 Examples

EXAMPLE 1 POST to the queue object URI a new value:

POST /MyContainer/MyQueue HTTP/1.1 
Host: cloud.example.com 
Content-Type: application/cdmi-queue 
X-CDMI-Specification-Version: 1.1 

{
    "mimetype" : [
        "text/plain" 
    ],
    "value" : [
        "Value to Enqueue" 
    ] 
} 

The following shows the response.

HTTP/1.1 204 No Content 

EXAMPLE 2 POST to the queue object URI to copy an existing value:

POST /MyContainer/MyQueue HTTP/1.1 
Host: cloud.example.com 
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1 

{
    "copy" : "/MyContainer/MyDataObject.txt" 
} 

The following shows the response.

HTTP/1.1 204 No Content

Table 97 — HTTP status codes - Enqueue a new queue object value using CDMI

HTTP status Description

204 No Content The new queue object values were enqueued.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused 
a state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 156
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

504

505
506
507
508

509
510
511

512

513

514

515
516
517
518

519
520
521
522
523
524
525
526
527
528

529

530

531
532

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

552

553

ISO/IEC 17826:2016(E)

© ISO/I
EXAMPLE 3 POST to the queue object URI to transfer 20 values from another queue object:

POST /MyContainer/MyQueue HTTP/1.1 
Host: cloud.example.com 
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1 

{
    "move" : "/MyContainer/FirstQueue?values:20" 
}

The following shows the response.

HTTP/1.1 204 No Content 

EXAMPLE 4 POST to the queue object URI two new values:

POST /MyContainer/MyQueue HTTP/1.1 
Host: cloud.example.com 
Content-Type: application/cdmi-object 
X-CDMI-Specification-Version: 1.1 

{
    "mimetype" : [
        "text/plain",
        "text/plain" 
    ],
    "value" : [
        "First",
        "Second" 
    ] 
} 

The following shows the response.

HTTP/1.1 204 No Content 

EXAMPLE 5 POST to the queue object URI two new values, one with base 64 transfer encoding and one with 
utf-8 transfer encoding:

POST /MyContainer/MyQueue HTTP/1.1
Host: cloud.example.com 
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
   "mimetype": [
       "text/plain",
       "text/plain"
   ],
   "valuetransferencoding": [
       "utf-8",
       "base64"
   ],
   "value": [
       "First",
       "U2Vjb25k"
   ]
}

The following shows the response.

HTTP/1.1 204 No Content

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

157 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

554

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

578

579

580
581

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

610

611

ISO/IEC 17826:2016(E)

© ISO/I
EXAMPLE 6 POST to the queue object URI the binary contents of two new values using multi-part MIME:

POST /MyContainer/MyQueue HTTP/1.1 
Host: cloud.example.com 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue 

{}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream 
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No content

EXAMPLE 7 POST to the queue object URI the mime types and binary contents of two new values using multi-
part MIME:

POST /MyContainer/MyQueue HTTP/1.1 
Host: cloud.example.com 
Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08j34c0p
X-CDMI-Specification-Version: 1.1

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/cdmi-queue 

{
"mimetype" : [
"application/pdf",
"image/jpeg"

]
}

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream 
Content-Transfer-Encoding: binary

<20 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p
Content-Type: application/octet-stream
Content-Transfer-Encoding: binary

<37 bytes of binary data>

--gc0p4Jq0M2Yt08j34c0p--

The following shows the response.

HTTP/1.1 204 No content

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 158
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

612

613

614
615

616
617
618

619

620

621

622

623
624
625

626
627
628
629
630
631
632

633

634
635
636

637

638
639

640
641

642

643

644

645

ISO/IEC 17826:2016(E)

© ISO/I
11.7 Delete a queue object value using CDMI

11.7.1 Synopsis 

To delete one or more of the oldest enqueued values in an existing queue, the following request shall be 
performed:

DELETE <root URI>/<ContainerName>/<QueueName>?value
DELETE <root URI>/<ContainerName>/<QueueName>?values:<count>
DELETE <root URI>/<ContainerName>/<QueueName>?values:<range>

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <QueueName> is the name of the queue object to be deleted.

• <count> is the number of values, starting from the oldest, to be removed from the queue object. If 
more queue object entries are requested to be deleted than exist in the queue object, the count 
shall be considered equal to the number of entries in the queue object.

• <range> is the lowest to highest numbers as found in the queueValues field that are to be removed 
from the queue object. The first range value shall be smaller or equal to the lowest queue value. If 
the first range value is smaller than the lowest queue value, the lowest existing queue value shall 
be used. If the first range value is larger than the lowest queue value, an HTTP status code of 400 
Bad Request shall be returned to the client. If the second range value is higher than the highest 
existing queue value, the highest existing queue value shall be used, which allows for idempotent 
queue value deletion.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>.

The "?value" suffix at the end of the queue resource URI shall be included to distinguish the deletion of the 
oldest value from the deletion of the queue object itself, as described in 11.5 "Delete a queue object using 
CDMI" (which deletes all enqueued values).

11.7.2 Capability 

The following capability describes the supported operations that may be performed when deleting an 
existing queue object value:

Support for the ability to modify the value of an existing queue object is indicated by the presence of 
the cdmi_modify_value capability in the specified queue object.

11.7.3 Request header

The HTTP request header for deleting a queue object value using CDMI is shown in Table 98. 

11.7.4 Request message body 

A request body can be provided as per RFC 2616.

Table 98 — Request header - Delete a queue object value using CDMI

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

Mandatory

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

159 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

646

647

648

649

650

651

652

653

654
655
656

657

658

659

660
661
662

663

664

665

666
667
668

669

670

ISO/IEC 17826:2016(E)

© ISO/I
11.7.5 Response headers 

Response headers can be provided as per RFC 2616.

11.7.6 Response message body 

A response body can be provided as per RFC 2616.

11.7.7 Response status

Table 99 describes the HTTP status codes that occur when deleting a queue object value using CDMI. 

11.7.8 Examples 

EXAMPLE 1 DELETE to the queue object URI value to delete the oldest enqueued value:

DELETE /MyContainer/MyQueue?value HTTP/1.1
Host: cloud.example.com
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 204 No Content

EXAMPLE 2 DELETE to the queue object URI value to remove the ten oldest values: 

DELETE /MyContainer/MyQueue?values:10 HTTP/1.1 
Host: cloud.example.com 
X-CDMI-Specification-Version: 1.1 

The following shows the response. 

HTTP/1.1 204 No Content

EXAMPLE 3 DELETE to the queue object URI value to remove queue values 10 through 19: 

DELETE /MyContainer/MyQueue?values:10-19 HTTP/1.1 
Host: cloud.example.com 
X-CDMI-Specification-Version: 1.1 

The following shows the response. 

HTTP/1.1 204 No Content

Table 99 — HTTP status codes - Delete a queue object value using CDMI

HTTP status Description

204 No Content The queue object value was successfully deleted.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

409 Conflict The operation conflicts with a non-CDMI access protocol lock or has caused 
a state transition error on the server.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 160
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4

5
6
7
8

9
10
11

12
13
14
15

16
17
18
19

20
21
22

23
24

25
26

ISO/IEC 17826:2016(E)

© ISO/I
12    Capability object resource operations using CDMI

12.1 Overview

Capability objects allow a CDMI™ client to discover what subset of this International Standard is 
implemented by a CDMI provider.

For each URI in a cloud storage system, the set of interactions that the system is capable of performing for 
that URI are described by the presence of named capabilities. Each capability present for a given URI 
indicates what functionality the cloud storage system will allow against that URI. Capabilities are always 
static.

Capabilities may differ from the operations permitted by an Access Control List (ACL) (see 16.1) 
associated with a given URI‚ e.g., a read-only cloud may not permit write access to a container or object, 
despite the presence of an ACL allowing write access.

Cloud clients may use capabilities to discover what operations are supported. If an operation is attempted 
on a CDMI object that does not have a corresponding capability, an HTTP status code of 400 Bad 
Request shall be returned to the client. All CDMI-compliant cloud storage systems shall implement the 
ability to read capabilities, but support for the functionality indicated by each capability is optional.

Every CDMI data object, container object, domain object, and queue object shall have a capabilitiesURI 
field that contains a valid URI of a capabilities object. Within the capabilities object, the name of each 
capability confers a specific meaning that has been agreed to between the cloud storage provider and the 
cloud storage consumer. 

The capabilities defined as part of this International Standard are described starting in 12.1.1 "Cloud 
storage system-wide capabilities". Vendor-defined capabilities not specified in this International Standard 
shall not start with "cdmi_". 

Figure 7 shows the hierarchy of capabilities and shows how the capabilitiesURI links data objects and 
container objects into the capabilities tree. 

The capabilities container within the capabilities tree to which an object is linked is based on the type of the 
object and the data system metadata fields present in the object. 

Figure 7 — Hierarchy of capabilities

domain/mydomain/

capabilitiesURI

gold_container/

container/

Immutable/

dataobject/

mycontainer/ capabilitiesURI

mygoldcontainer/

capabilitiesURI

capabilitiesURI

mydataobject capabilitiesURI

myimmutabledataobject
capabilitiesURI

queue/

myqueue
capabilitiesURI

“/” Root URI cdmi_capabilities/

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

161 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

27
28

29
30
31
32

33

34

35

36

ISO/IEC 17826:2016(E)

© ISO/I
EXAMPLE A container with no data system metadata fields specified may map to the "container" capabilities 
entry.

As an option, a CDMI implementation may map a container to a "gold_container" capabilities entry, if a 
data system metadata field is present and set to a given value, such as if the cdmi_data_redundancy field 
was set to the value of "4". This permits a cloud provider to create profiles of data system metadata fields 
and values.

Capabilities do not have a CDMI metadata field.

12.1.1 Cloud storage system-wide capabilities

Table 100 defines the system-wide capabilities in a cloud storage system. These capabilities, which are 
found in the capabilities object, are referred to by the root URI (root capabilities).

Table 100 — System-wide capabilities (Sheet 1 of 4)

Capability name Type Definition

cdmi_domains JSON 
string

If present and "true", indicates that the cloud storage system 
supports domains. If not present, the domainURI field shall not be 
present in response bodies and the "cdmi_domains" URI shall not 
be present.

cdmi_export_cifs JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports CIFS exports.

cdmi_dataobjects JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports data objects.

cdmi_export_iscsi JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports iSCSI exports.

cdmi_export_nfs JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports NFS protocol exports.

cdmi_export_occi_iscsi JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports OCCI/iSCSI exports.

cdmi_export_webdav JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports WebDAV exports.

cdmi_metadata_maxitems JSON 
string

If present, this capability indicates the maximum number of user-
defined metadata items supported per object. If absent, there is no 
limit placed on the number of user-defined metadata items.

cdmi_metadata_maxsize JSON 
string

If present, this capability indicates the maximum size, in bytes, of 
each user-defined metadata item supported per object. If absent, 
there is no limit placed on the size of user- defined metadata 
items.

cdmi_metadata_maxtotalsize JSON 
string

If present, this capability indicates the maximum size, in bytes, of 
user-defined metadata supported by the cloud storage system. If 
absent, there is no limit placed on the size of user-defined 
metadata.

cdmi_notification JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports notification queues.

cdmi_logging JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports logging queues.

cdmi_query JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports query queues.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 162
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
cdmi_query_regex JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports query with regular expressions.

cdmi_query_contains JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports query with "contains" expressions.

cdmi_query_tags JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports query with tag-matching expressions.

cdmi_query_value JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports query of value fields.

cdmi_queues JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports queue objects.

cdmi_security_access_control JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports ACLs. See 12.1.3 "Data system 
metadata capabilities" for additional information.

cdmi_security_audit JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports audit logging. See 20.3 "Security 
logging" for additional information.

cdmi_security_data_integrity JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports data integrity/authenticity. See 12.1.3 
"Data system metadata capabilities" for additional information.

cdmi_security_encryption JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports data at-rest encryption. See 12.1.3 "Data 
system metadata capabilities" for additional information.

cdmi_security_immutability JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports data immutability/retentions. See 12.1.3 
"Data system metadata capabilities" for additional information.

cdmi_security_sanitization JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports data/media sanitization. See 12.1.3 
"Data system metadata capabilities" for additional information.

cdmi_serialization_json JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports JSON as a serialization format.

cdmi_snapshots JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports snapshots.

cdmi_references JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports references.

cdmi_object_move_from_local JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports moving CDMI objects from URIs within 
the same storage system.

cdmi_object_move_from_remote JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports moving CDMI objects from URIs within 
other CDMI storage systems. 

cdmi_object_move_from_ID JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports moving CDMI objects without a path 
from a /cdmi_objectid/ URI within the same storage system. This 
effectively adds a path, allowing the object to be accessed by ID 
and by path.

Table 100 — System-wide capabilities (Sheet 2 of 4)

Capability name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

163 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
cdmi_object_move_to_ID JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports moving CDMI objects with a path to a /
cdmi_objectid/ URI within the same storage system. This 
effectively removes the path, leaving the object only accessible by 
ID. 

cdmi_object_copy_from_local JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports copying CDMI objects from URIs within 
the same storage system. 

cdmi_object_copy_from_remote JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports copying CDMI objects from URIs within 
other CDMI storage systems. 

cdmi_object_access_by_ID JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports accessing, updating, and deleting 
objects through /cdmi_objectid/. 

cdmi_post_dataobject_by_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system supports adding a new data object by ID via POST 
to "/cdmi_objectid/". 

cdmi_post_queue_by_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system supports adding a new queue object by ID via 
POST to "/cdmi_objectid/". 

cdmi_deserialize_dataobject_by_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system supports deserializating serialized data objects 
when creating a new data object by ID via POST to 
/cdmi_objectid/. 

cdmi_deserialize_queue_by_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system supports deserializating serialized queue objects 
when creating a new queue object by ID via POST to "/
cdmi_objectid/". 

cdmi_serialize_dataobject_to_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system supports serializing data objects when creating a 
new data object by ID via POST to "/cdmi_objectid/". 

cdmi_serialize_domain_to_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system supports serializing domain objects when creating 
a new data object by ID via POST to "/cdmi_objectid/". 

cdmi_serialize_container_to_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system allows serializing container objects when creating 
a new data object by ID via POST to "/cdmi_objectid/". 

cdmi_serialize_queue_to_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system allows serializing queue objects when creating a 
new data object by ID via POST to "/cdmi_objectid/". 

cdmi_copy_dataobject_by_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system supports copying an existing data object when 
creating a new data object by ID via POST to "/cdmi_objectid/". 

cdmi_copy_queue_by_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system supports copying an existing queue object when 
creating a new queue object by ID via POST to "/cdmi_objectid/". 

cdmi_create_reference_by_ID JSON 
string 

If present and "true", this capability indicates that the cloud 
storage system supports creating a new reference via POST to "/
cdmi_objectid/". 

Table 100 — System-wide capabilities (Sheet 3 of 4)

Capability name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 164
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

37

38
39

40

41

42
43

ISO/IEC 17826:2016(E)

© ISO/I
12.1.2 Storage system metadata capabilities

Table 101 defines the capabilities for storage system metadata in a cloud storage system. These 
capabilities are found in the capabilities objects for domain objects, data objects, container objects, and 
queue objects. See16.3 for a description of these storage system metadata items.

12.1.3 Data system metadata capabilities

Table 102 defines the capabilities that indicate which data system metadata items are supported for 
objects stored in a cloud storage system. These capabilities are found in the capabilities objects for 

cdmi_copy_dataobject_from_queue JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports the ability to copy to a data object from a 
queue object.

cdmi_multipart_mime JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports storing and retrieving the value of data 
and queue objects using multi-part MIME.

cdmi_create_value_range_by_ID JSON 
string

If present and "true", this capability indicates that the system 
allows a new data object’s value to be created with byte ranges 
through "/cdmi_objectid/".

Table 101 — Capabilities for storage system metadata 

Capability name Type Definition

cdmi_acl JSON 
string

If present and "true", this capability indicates that the cloud 
storage system supports ACLs. When a CDMI implementation 
supports ACLs for the purpose of access control, the system-wide 
capability of cdmi_security_access_control specified in Table 101 
of 12.1.1 "Cloud storage system-wide capabilities" shall be set to 
"true". Otherwise, it shall not be present, indicating that there is no 
support for access control.

cdmi_size JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall generate a cdmi_size storage system 
metadata for each stored object.

cdmi_ctime JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall generate a cdmi_ctime storage system 
metadata for each stored object.

cdmi_atime JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall generate a cdmi_atime storage system 
metadata for each stored object.

cdmi_mtime JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall generate a cdmi_mtime storage system 
metadata for each stored object.

cdmi_acount JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall generate a cdmi_acount storage system 
metadata for each stored object.

cdmi_mcount JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall generate a cdmi_mcount storage system 
metadata for each stored object.

Table 100 — System-wide capabilities (Sheet 4 of 4)

Capability name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

165 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

44

45

ISO/IEC 17826:2016(E)

© ISO/I
domains, data objects, containers, and queues. See 16.4 "Support for data system metadata" (Table 119) 
for a description of the meaning of the corresponding data system metadata items.

Table 102 — Capabilities for data system metadata (Sheet 1 of 3)

Capability name Type Definition

cdmi_assignedsize JSON 
string

When the cloud storage system supports the cdmi_assignedsize 
data system metadata as defined in 16.4, the cdmi_assignedsize 
capability shall be present and set to the string value "true". When 
this capability is absent, or present and set to the string value 
"false", cdmi_assignedsize data system metadata shall not be 
used.

cdmi_data_redundancy JSON 
string

When the cloud storage system supports the 
cdmi_data_redundancy data system metadata as defined in 16.4, 
the cdmi_data_redundancy capability shall be present and set to a 
positive numeric string representing the maximum value that the 
server supports. When this capability is absent, or present and set 
to an empty string value "", cdmi_data_redundancy data system 
metadata shall not be used. 

cdmi_data_dispersion JSON 
string

When the cloud storage system supports the 
cdmi_data_dispersion data system metadata as defined in 16.4, 
the cdmi_data_dispersion capability shall be present and set to 
the string value "true". When this capability is absent, or present 
and set to the string value "false", cdmi_data_dispersion data 
system metadata shall not be used. 

cdmi_data_retention JSON 
string

When the cloud storage system supports both the 
cdmi_retention_id and cdmi_retention_period data system 
metadata as defined in 16.4, the cdmi_data_retention capability 
shall be present and set to the string value "true". When this 
capability is absent, or present and set to the string value "false", 
cdmi_retention_id and cdmi_retention_period data system 
metadata shall not be used. 

cdmi_data_autodelete JSON 
string

When the cloud storage system supports the 
cdmi_data_autodelete data system metadata as defined in 16.4, 
the cdmi_data_autodelete capability shall be present and set to 
the string value "true". When this capability is absent, or present 
and set to the string value "false", cdmi_data_autodelete data 
system metadata shall not be used. 

cdmi_data_holds JSON 
string

When the cloud storage system supports the cdmi_hold_id data 
system metadata as defined in 16.4, the cdmi_data_holds 
capability shall be present and set to the string value "true". When 
this capability is absent, or present and set to the string value 
"false", cdmi_data_holds data system metadata shall not be used. 

When a cloud storage system supports holds for the purpose of 
making data immutable, the system-wide capability of 
cdmi_security_immutability specified in Table 100 of 12.1.1 shall 
be present and set to "true".

cdmi_encryption JSON 
array of 
JSON 
strings

When the cloud storage system supports the cdmi_encryption 
data system metadata as defined in 16.4, the cdmi_encryption 
capability shall be present and set to one or more values 
described in the cdmi_encryption data system metadata section in 
16.4. When this capability is absent, or present and is an empty 
JSON array, cdmi_encryption data system metadata shall not be 
used. 

When a cloud storage system supports at-rest encryption, the 
system-wide capability of cdmi_security_encryption specified in 
Table 100 of 12.1.1 shall be present and set to "true".

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 166
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
cdmi_geographic_placement JSON 
string

When the cloud storage system supports the 
cdmi_geographic_placement data system metadata as defined in 
16.4, the cdmi_geographic_placement capability shall be present 
and set to the string value "true". When this capability is absent, or 
present and set to the string value "false", 
cdmi_geographic_placement data system metadata shall not be 
used. 

cdmi_immediate_redundancy JSON 
string

When the cloud storage system supports the 
cdmi_immediate_redundancy data system metadata as defined in 
16.4, the cdmi_immediate_redundancy capability shall be present 
and set to a positive numeric string representing the maximum 
value that the server supports. When this capability is absent, or 
present and set to an empty string value "", 
cdmi_immediate_redundancy data system metadata shall not be 
used. 

cdmi_infrastructure_redundancy JSON 
string

When the cloud storage system supports the 
cdmi_infrastructure_redundancy data system metadata as 
defined in 16.4, the cdmi_infrastructure_redundancy capability 
shall be present and set to a positive numeric string representing 
the maximum value that the server supports. When this capability 
is absent, or present and set to an empty string value "", 
cdmi_infrastructure_redundancy data system metadata shall not 
be used. 

cdmi_latency JSON 
string

When the cloud storage system supports the cdmi_latency data 
system metadata as defined in 16.4, the cdmi_latency capability 
shall be present and set to the string value "true". When this 
capability is absent, or present and set to the string value "false", 
cdmi_latency data system metadata shall not be used.

cdmi_RPO JSON 
string

When the cloud storage system supports the cdmi_RPO data 
system metadata as defined in 16.4, the cdmi_RPO capability 
shall be present and set to the string value "true". When this 
capability is absent, or present and set to the string value "false", 
cdmi_RPO data system metadata shall not be used. 

cdmi_RTO JSON 
string

When the cloud storage system supports the cdmi_RTO data 
system metadata as defined in 16.4, the cdmi_RTO capability 
shall be present and set to the string value "true". When this 
capability is absent, or present and set to the string value "false", 
cdmi_RTO data system metadata shall not be used.

cdmi_sanitization_method JSON 
array of 
JSON 
strings

When the cloud storage system supports the 
cdmi_sanitization_method data system metadata as defined in 
16.4, the cdmi_sanitization_method capability shall be present 
and set to one or more values described in the 
cdmi_sanitization_method data system metadata section in 16.4. 
When this capability is absent, or present and is an empty JSON 
array, cdmi_sanitization_method data system metadata shall not 
be used. 

When a cloud storage system supports sanitization, the system-
wide capability of cdmi_security_sanitization specified in 
Table 100 of 12.1.1 shall be present and set to "true".

cdmi_throughput JSON 
string

When the cloud storage system supports the cdmi_throughput 
data system metadata as defined in 16.4, the cdmi_throughput 
capability shall be present and set to the string value "true". When 
this capability is absent, or present and set to the string value 
"false", cdmi_throughput data system metadata shall not be used. 

Table 102 — Capabilities for data system metadata (Sheet 2 of 3)

Capability name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

167 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

46

47

ISO/IEC 17826:2016(E)

© ISO/I
12.1.4 Data object capabilities

Table 103 defines the capabilities for data objects in a cloud storage system.

cdmi_value_hash JSON 
array of 
JSON 
strings

When the cloud storage system supports the cdmi_value_hash 
data system metadata as defined in 16.4, the cdmi_value_hash 
capability shall be present and set to one or more values 
described in the cdmi_value_hash data system metadata section 
in 16.4. When this capability is absent, or present and is an empty 
JSON array, cdmi_value_hash data system metadata shall not be 
used. 

When a cloud storage system supports value hashing, the 
system-wide capability of cdmi_security_data_integrity specified 
in Table 100 of 12.1.1 shall be present and set to "true". 

cdmi_authentication_methods JSON 
array of 
JSON 
strings

If present, this capability contains a list of server-supported 
authentication methods that are supported by a domain. The 
following values for authentication method strings are defined: 

• "anonymous" - Absence of authentication supported 

• "basic" - HTTP basic authentication supported (RFC 2617) 

• "digest" - HTTP digest authentication supported (RFC 2617) 

• "krb5" - Kerberos authentication supported, using the Kerberos 
domain specified in the CDMI domain (RFC 4559) 

• "x509" - certificate-based authentication via TLS (SNIA TLS) 

The following values are examples of other widely used 
authentication methods that may be supported by a CDMI server: 

• "s3" - S3 API signed header authentication supported 

• "openstack" - OpenStack Identity API header authentication 
supported

Interoperability with these authentication methods are not defined 
by this International Standard. 

Servers may include other authentication methods not included in 
the above list. In these cases, it is up to the CDMI client and CDMI 
server to ensure interoperability. 

When present, the cdmi_authentication_methods data system 
metadata shall be supported for all domains.

Table 103 — Capabilities for data objects (Sheet 1 of 2)

Capability name Type Definition

cdmi_read_value JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to read the object’s 
value.

cdmi_read_value_range JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to read the object’s value 
with byte ranges.

cdmi_read_metadata JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to read the object’s 
metadata.

Table 102 — Capabilities for data system metadata (Sheet 3 of 3)

Capability name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 168
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

48

49

ISO/IEC 17826:2016(E)

© ISO/I
12.1.5 Container capabilities

Table 104 defines the capabilities for containers in a cloud storage system.

cdmi_modify_value JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to modify the object’s 
value.

cdmi_modify_value_range JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to modify the object’s 
value with byte ranges.

cdmi_modify_metadata JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to modify the object’s 
metadata.

cdmi_modify_deserialize_dataobject JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability of the data object to 
deserialize a serialized data object into the data object as an 
update.

cdmi_delete_dataobject JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to delete the object. 

Table 104 — Capabilities for containers (Sheet 1 of 3)

Capability name Type Definition

cdmi_list_children JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to list the container’s 
children.

cdmi_list_children_range JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to list the container’s 
children with ranges.

cdmi_read_metadata JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to read the container’s 
metadata.

cdmi_modify_metadata JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to modify the container’s 
metadata.

cdmi_modify_deserialize_container JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability of the container object to 
deserialize a serialized container object into the container object 
as an update.

cdmi_snapshot JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability of the container object to 
create a new snapshot.

cdmi_serialize_dataobject JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to serialize a data object.

cdmi_serialize_container JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to serialize the container 
and all children’s contents.

Table 103 — Capabilities for data objects (Sheet 2 of 2)

Capability name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

169 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
cdmi_serialize_queue JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to serialize a queue 
object.

cdmi_serialize_domain JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to serialize the domain 
and all child domains. 

cdmi_deserialize_container JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability of the container to 
deserialize the serialized containers and associated serialized 
children into the container.

cdmi_deserialize_queue JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability of the container to 
deserialize the serialized queue objects into the container.

cdmi_deserialize_dataobject JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability of the container to 
deserialize the serialized data objects into the container.

cdmi_create_dataobject JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability of the container to add a 
new data object.

cdmi_post_dataobject JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability of the container to add a 
new data object via POST.

cdmi_post_queue JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability of the container to add a 
new queue object via POST.

cdmi_create_container JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to create a new container 
object via PUT.

cdmi_create_queue JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to create new queue 
objects..

cdmi_create_reference JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to create a new child 
reference via PUT.

cdmi_export_container_cifs JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to export a container as a 
file system via CIFS.

cdmi_export_container_nfs JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to export a container as a 
file system via NFS.

cdmi_export_container_iscsi JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to export a container as a 
file system via iSCSI.

cdmi_export_container_occi JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to export a container as a 
file system via OCCI.

cdmi_export_container_webdav JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to export a container as a 
file system via WebDAV.

Table 104 — Capabilities for containers (Sheet 2 of 3)

Capability name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 170
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

50

51

52

ISO/IEC 17826:2016(E)

© ISO/I
12.1.6 Domain object capabilities

Table 105 defines the capabilities for domains in a cloud storage system. (All capabilities refer to what may 
be done via CDMI content-type operations.  

cdmi_delete_container JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to delete a container.

cdmi_move_container JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to move a container object 
into a container.

cdmi_copy_container JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to copy a container object 
into a container.

cdmi_move_dataobject JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to move a data object into 
a container.

cdmi_copy_dataobject JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to copy a data object into 
a container.

cdmi_create_value_range JSON 
string

If present and "true", this capability indicates that the container 
allows a new data object’s value to be created with byte ranges.

Table 105 — Capabilities for domain objects (Sheet 1 of 2)

Capability name Type Definition

cdmi_create_domain JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to add a new 
subdomain.

cdmi_delete_domain JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to delete a domain.

cdmi_move_domain JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to move a domain.

cdmi_domain_summary JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to support domain 
summaries.

cdmi_domain_members JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to support domain user 
management.

cdmi_list_children JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to list the domain's 
children.

cdmi_read_metadata JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to read the domain's 
metadata.

cdmi_modify_metadata JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to modify the 
domain's metadata.

Table 104 — Capabilities for containers (Sheet 3 of 3)

Capability name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

171 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

53

54

55

56
57

ISO/IEC 17826:2016(E)

© ISO/I
12.1.7 Queue object capabilities

Table 106 defines the capabilities for queue objects in a cloud storage system.

12.1.8 Capability object representations

The representations in this clause are shown using JSON notation. Both clients and servers shall support 
UTF-8 JSON representation. The request and response body JSON fields may be specified or returned in 

cdmi_modify_deserialize_domain JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to deserialize a 
serialized domain object into the domain object as an update.

cdmi_copy_domain JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to copy the domain 
(via PUT)  to another URI.

cdmi_deserialize_domain JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to deserialize 
serialized domains and associated serialized children into the 
domain.

Table 106 — Capabilities for queue objects 

Capability name Type Definition

cdmi_read_value JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to read a queue's value.

cdmi_read_metadata JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to read the queue's 
metadata.

cdmi_modify_value JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to modify the queue's 
value.

cdmi_modify_metadata JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to modify the queue's 
metadata.

cdmi_modify_deserialize_queue JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to deserialize a serialized 
queue into the queue as an update.

cdmi_delete_queue JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to delete a queue.

cdmi_move_queue JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to move a queue to 
another URI.

cdmi_copy_queue JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to copy a queue to another 
URI.

cdmi_reference_queue JSON 
string

If present and "true", this capability indicates that the cloud 
storage system shall support the ability to reference a queue  from 
another queue.

Table 105 — Capabilities for domain objects (Sheet 2 of 2)

Capability name Type Definition

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 172
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

58
59

60

61

62

63

64
65

66
67
68

69

70

71

72

73

74

75

76

77
78

79

80

81

82

83

ISO/IEC 17826:2016(E)

© ISO/I
any order, with the exception that, if present, for capability objects, the childrenrange and children fields 
shall appear last and in that order. 

12.2 Read a capabilities object using CDMI

12.2.1 Synopsis 

To read all fields from an existing capability object, the following request shall be performed:

GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/

To read one or more requested fields from an existing capability object, one of the following requests shall 
be performed:

GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/
?<fieldname>;<fieldname>

GET <root URI>/cdmi_capabilities/<Capability>/<TheCapability>/?children:<range> 

Where:

• <root URI> is the path to the CDMI cloud.

• <Capability> is zero or more intermediate capabilities containers.

• <TheCapability> is the name specified for the capabilities to be read from.

• <fieldname> is the name of a field.

• <range> is a numeric range within the list of children.

The object shall also be accessible at <root URI>/cdmi_objectid/<objectID>/.

12.2.2 Capability 

The following capability describes the supported operations that may be performed when reading an 
existing capabilities object:

All CDMI implementations shall permit clients to read all fields of all capabilities objects.

12.2.3 Request headers

The HTTP request headers for reading a capabilities object using CDMI are shown in Table 107. 

12.2.4 Request message body 

A request body shall not be provided.

Table 107 — Request headers - Read a capabilities object using CDMI

Header Type Description Requirement

Accept Header 
string

"application/cdmi-capability" or a consistent value as per 
clause 5.13.2 "Content-type negotiation"

Optional

X-CDMI-
Specification-
Version

Header 
string

A comma-separated list of versions that the client supports, 
e.g., "1.1, 1.5, 2.0"

MandatoryIECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

173 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

84

85

86

87

88
89

ISO/IEC 17826:2016(E)

© ISO/I
12.2.5 Response headers

The HTTP response headers for reading a capabilities object using CDMI are shown in Table 108.

12.2.6 Response message body

The response message body fields for reading a capabilities object using CDMI are shown in Table 109.

If individual fields are specified in the GET request, only these fields are returned in the result body. 
Optional fields that are requested but do not exist are omitted from the result body.

Table 108 — Response headers - Read a capabilities object using CDMI

Header Type Description Requirement

X-CDMI-
Specification-
Version

Header 
string

The server shall respond with the highest version supported 
by both the client and the server, e.g., "1.1".

If the server does not support any of the versions that the 
client supports, the server shall return an HTTP status code 
of 400 Bad Request.

Mandatory

Content-Type Header 
string

"application/cdmi-capability" Mandatory

Table 109 — Response message body - Read a capabilities object using CDMI 

Field name Type Description Requirement

objectType JSON 
string

"application/cdmi-capability" Mandatory

objectID JSON 
string

Object ID of the object Mandatory

objectName JSON 
string

Name of the object Mandatory

parentURI JSON 
string

URI for the parent object Mandatory

parentID JSON 
string

Object ID of the parent container object Mandatory

capabilities JSON 
object

The capabilities supported by the corresponding object. 
Capabilities in the "/cdmi_capabilities/" object are system-
wide capabilities. Capabilities found in children objects 
under "/cdmi_capabilities/" correspond to the capabilities of 
a specific subset of objects. Each capability is expressed as 
a JSON string.

Mandatory

childrenrange JSON 
string 

The child capabilities of the capability expressed as a range. 
If a range of child capabilities is requested, this field 
indicates the children returned as a range.

Mandatory

children JSON 
array of 
JSON 
strings

Names of the children capabilities objects. For the root 
container capabilities, this includes "domain/", "container/", 
"dataobject/", and "queue/". Within each of these 
capabilities objects, further more specialized capabilities 
profiles may be specified by the cloud storage system.

MandatoryIECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 174
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

90

91

92

93

94
95
96
97

98

99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126

127
128
129
130

ISO/IEC 17826:2016(E)

© ISO/I
12.2.7 Response status

Table 110 describes the HTTP status codes that occur when reading a capabilities object using CDMI. 

12.2.8 Examples

EXAMPLE 1 GET to the root container capabilities URI to read all fields of the container:

GET /cdmi_capabilities/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

{
    "objectType": "application/cdmi-capability",
    "objectID": "00007E7F00104BE66AB53A9572F9F51E",
    "objectName": "cdmi_capabilities/",
    "parentURI": "/",
    "parentID": "00007E7F0010128E42D87EE34F5A6560",
    "capabilities": {
        "cdmi_domains": "true",
        "cdmi_export_nfs": "true",
        "cdmi_export_iscsi": "true",
        "cdmi_queues": "true",
        "cdmi_notification": "true",
        "cdmi_query": "true",
        "cdmi_metadata_maxsize": "4096",
        "cdmi_metadata_maxitems": "1024"
    },
    "childrenrange": "0-3",
    "children": [
        "domain/",
        "container/",
        "dataobject/",
        "queue/"
    ]
}

EXAMPLE 2 GET to the root container capabilities URI to read the capabilities and children of the container:

GET /cdmi_capabilities/?capabilities;children HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

Table 110 — HTTP status codes - Read a capabilities object using CDMI

HTTP status Description

200 OK The capabilities object content was returned in the response.

400 Bad Request The request contains invalid parameters or field names.

401 Unauthorized The authentication credentials are missing or invalid.

403 Forbidden The client lacks the proper authorization to perform this request.

404 Not Found The resource was not found at the specified URI.

406 Not Acceptable The server is unable to provide the object in the content type specified in 
the Accept header.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

175 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

131

132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

154
155
156
157

158

159
160
161

162
163
164
165
166
167
168

ISO/IEC 17826:2016(E)

© ISO/I
The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

{
    "capabilities": {
        "cdmi_domains": "true",
        "cdmi_export_nfs": "true",
        "cdmi_export_iscsi": "true",
        "cdmi_queues": "true",
        "cdmi_notification": "true",
        "cdmi_query": "true",
        "cdmi_metadata_maxsize": "4096",
        "cdmi_metadata_maxitems": "1024"
    },
    "children": [
        "domain/",
        "container/",
        "dataobject/",
        "queue/"
    ]
}

EXAMPLE 3 GET to the root container capabilities URI to read the first two children of the container:

GET /cdmi_capabilities/?childrenrange;children:0-1 HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

The following shows the response.

HTTP/1.1 200 OK
Content-Type: application/cdmi-capability
X-CDMI-Specification-Version: 1.1

{
    "childrenrange" : "0-1",
    "children" : [
        "domain/",
        "container/" 
    ]
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 176
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4
5

6
7
8
9

10

ISO/IEC 17826:2016(E)

© ISO/I
13    Exported protocols

13.1 Overview

CDMI™ containers are accessible not only via CDMI as a data path, but also via other protocols as well. 
This access is especially useful for using CDMI as the storage interface for a cloud computing 
environment, as Figure 8 shows.

The exported protocols from CDMI containers may be used by the virtual machines in the cloud computing 
environment as virtual disks on each guest as shown. The cloud computing infrastructure management is 
shown as implementing both an Open Cloud Computer Interface (OCCI) and CDMI interfaces. With the 
internal knowledge of the network and the virtual machine manager's mapping of drives, this infrastructure 
may associate the CDMI containers to the guests using the appropriate exported protocol. 

Figure 8 — CDMI and OCCI in an integrated cloud computing environment

VM VM VM

Data Storage Resources

Compute Resources

iSCSI NFS

OCCI
API

CDMI
API

iSCSI NFS WebDAV

NFS NFS

Client

iSCSI
Web
DAV

Virtual
Machine
Manager

        CDMI
Exported
Protocols

Cloud Computing 
and Storage
Infrastructure

CDMI 

OCCI

                        Private, Hidden Storage Network for the Cloud

Container Container Container Container Container

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

177 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

11
12
13
14
15

16
17

18
19
20

21
22

23

24

25
26
27
28
29

30

31

32

33

34
35
36

37

38

39

40
41
42
43

44
45
46

47
48
49
50
51
52

53
54

55
56
57
58

ISO/IEC 17826:2016(E)

© ISO/I
To support exported protocols and improve their interoperability with CDMI, CDMI provides a type of 
exported protocol that contains information obtained via the OCCI interface. In addition, OCCI provides a 
type of storage that corresponds to a CDMI container that is exported with a specific type of protocol used 
by OCCI. A client of both interfaces performs operations that align the architectures, including the 
following.

• The client creates a CDMI container through the CDMI interface and exports it as an OCCI export 
protocol type. The CDMI container object ID is returned as a result.

• The client creates a virtual machine through the OCCI interface and attaches a storage volume of 
type CDMI using the object ID and protocol type. The OCCI virtual machine ID is returned as a 
result.

• The client updates the export protocol structure of the CDMI container object with the OCCI virtual 
machine ID to allow the virtual machine access to the container.

• The client starts the virtual machine through the OCCI interface.

13.2 Exported protocol structure

The export of a container, via data path protocols other than CDMI, is accomplished by creating or 
updating a container and supplying one or more export protocol structures, one for each such protocol. In 
this International Standard, all such protocols are referred to as foreign protocols. The implementation of 
foreign protocols shall be indicated by "true" values for system-wide capabilities in 12.1.1 that shall always 
begin with "cdmi_export_".

An export protocol structure includes

• the protocol being used;

• the identity of the container as standardized by the protocol;

• the internet domain of the protocol name server for the clients being served; 

• the list of who may mount that container via that protocol, identified as standardized by that 
protocol or optionally by leveraging the name mapping protocol (see 13.2.1) and specifying CDMI 
user or groupnames;

• required export parameters for the protocol;

• optional export parameters for the protocol; and

• export control parameters.

This International Standard defines JSON export structures for several well known foreign protocols. All 
depend on the following user and groupname mapping feature in the case that multi-protocol access to the 
container is desired. However, name mapping is not required if CDMI is used only to provision containers 
to be used exclusively by foreign protocols.

Implementations that support authenticated and authorized access to CDMI objects via both CDMI and 
foreign protocols need a way to support the setting of security on a per-object basis. The numerous 
methods of doing this include the following.

• Defining or adopting a security scheme and mapping all requests into that scheme. CDMI 
implementations that adopt this scheme shall use a name mapping technique to accomplish it, as 
(a) this mapping is easier for administrators to manage than straight id-to-id mapping, and (b) it is 
desired that interoperable CDMI implementations behave similarly in this respect. This means that 
the name of the principal in an incoming request is mapped to the name of a principal in the 
security domain, and that principal’s id is acquired and used in the authorization procedure.

• Allowing each protocol to set its own security, which implies that an object might be accessible to a 
given user via one protocol but not another.

• Using the security scheme of the last protocol that was used to set permissions on the object. This 
method also requires mapping the principal in the incoming request to a principal in the security 
domain of the object. As in the first case, the server shall use a name mapping procedure to obtain 
the id that is used to authorize the user against the desired object’s ACL.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 178
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

59
60

61

62
63
64
65

66
67
68
69
70
71
72

73
74
75
76

77
78
79
80

81
82
83

84

85
86

87
88
89
90

91
92
93

94

95
96
97

98

99
100
101
102
103
104
105
106

ISO/IEC 17826:2016(E)

© ISO/I
CDMI does not mandate which method shall be used. It does, however, specify how users and groups 
shall be mapped between protocols.

13.2.1 Mapping names from CDMI to another protocol

Clients wishing to restrict exports via foreign protocols to mounting only by certain users and groups may 
be required to provide user and groupname mapping information to the server. This mapping information is 
also required if access to the container is desired by multiple protocols, e.g., both CDMI and NFS. The 
mapping is done as follows.

1 When a network share on a CDMI container is created, the server should use the appropriate 
mechanism, e.g., Powershell WmiClass.Create( ) on the Windows platform or /etc/exports on Unix, 
to limit permitted mounts of the share from other servers, as specified in the "hosts" line of the 
"exports" property. The syntax of the hosts line follows the syntax of /etc/exports in the Linux 
operating system, as encoded in a JSON string. If the CDMI server is unable to limit mounts as 
specified by the hosts line, an error shall result, but the success or failure of the operation depends 
on the implementation.

2 When any request requiring the use of a CDMI principal name comes in via a foreign protocol, the 
foreign domain controller to which the foreign server belongs shall be queried for the principal name 
corresponding to the user id given in the request. Failure to procure the principal name shall cause 
the original request to fail.

3 The usermap list for that protocol shall be searched, in order, for an entry matching the username 
gotten from the foreign domain controller (see 13.2.3  for details on the search). If no match is found, 
the request shall be denied. The search results may be kept in the same cache entry as the 
information from the preceding step.

4 The CDMI principal name gotten from the first matching usermap entry during this search is then 
used to authorize the user request via the security mechanism of the protocol whose security 
governs access to the object.

13.2.1.1 Capabilities

The following capabilities describe the supported operations that can be performed on an existing 
container:

• The system-wide capability to export via a given protocol is indicated by the 
cdmi_<protocol>_export capability in the system-level metadata (e.g., "cdmi_nfs_export", when 
set to "true", indicates the ability of the system to export containers via NFS). If false or not set, 
attempts to export containers via the given protocol shall fail.

• Support for the ability to export an existing container object via a given foreign protocol is indicated 
by the cdmi_<protocol>_export capability in the specified container. The default shall be "true" if 
this capability is unset.

13.2.1.2 Domains

The internet domain name corresponding to each export shall be given as a JSON-formatted string in the 
"domain" child of the protocol export specification. If it is not present, it shall be assumed that the domain is 
the same as that of the server hosting the CDMI implementation.

13.2.1.3 Caching

The lookup to a foreign domain controller can be quite expensive, especially for stateless protocols such 
as NFS v3, in which it can be theoretically required for nearly every operation. It shall be permissible to 
cache the results of this lookup. The recommended lifetime of a username cache entry is 30 minutes. 
Implementations should use this value or less when possible. Servers shall flush this cache whenever a 
change is made to the exports metadata concerning the protocol being cached. A client may request that 
the cache be flushed by reading in the usermap data for one or more protocols and writing them back 
without change. Servers shall flush their username mapping caches, as part of the rewrite operation, for 
any protocol for which the usermap information has been changed or reset.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

179 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

107
108
109
110
111
112
113
114

115

116
117

118

119

120
121
122
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

ISO/IEC 17826:2016(E)

© ISO/I
For authorization by group to operate via a foreign protocol, a similar mapping exercise must be 
performed. Multiple lookups to the foreign domain controller may be required to get all the groupnames for 
a given user (e.g., it is common for an NFS user to be a member of several groups). A groupname cache 
may be used to mitigate the cost of these lookups. The recommended lifetime of a groupname cache entry 
is 12 hours. Implementations should use this value or less when possible. Clients may force a flush of the 
cache by reading in and resetting the group map information. Servers shall immediately flush their 
groupname mapping cache, as part of the rewrite operation, for any protocol for which the group map 
information has been changed or reset.

13.2.1.4 Groups

Groupname mapping for each foreign protocol shall be specified in a groupname field of the foreign 
protocol export specification. Its syntax is identical to the syntax for the username field.

Note: The mapping information is only required on the container being exported.

13.2.1.5 Synopsis

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/cdmi-container
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
    "exports": {
        "nfs": {
            "hosts": [
                "*.mycollege.edu",
                "derf.cs.myuni.edu"
            ],
            "domain": "lab.mycollege.edu",
            "usermap": [
                [
                    "<cdminame>",
                    "<mapping_operator>",
                    "<nfsname>"
                ],
                [
                    "jimsmith",
                    "<-->",
                    "jims"
                ],
                [
                    "*",
                    "<-->",
                    "*"
                ]
            ],
            "groupmap": [
                [
                    "<cdminame>",
                    "<mapping_operator>",
                    "<nfsname>"
                ],
                [
                    "admins",
                    "<-",
                    "wheel"
                ],
                [
                    "everyone",
                    "<-",
                    "*"
                ]
            ],

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 180
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208

209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225

226

227
228

ISO/IEC 17826:2016(E)

© ISO/I
            "cifs": {
                "hosts": "*",
                "domain": "lab.mycollege.edu",
                "usermap": [
                    [
                        "<cdminame>",
                        "<mapping_operator>",
                        "<cifsname>"
                    ],
                    [
                        "jimsmith",
                        "<-->",
                        "james.smith"
                    ],
                    [
                        "*",
                        "<-->",
                        "*"
                    ]
                ],
                "groupmap": [
                    [
                        "<cdminame>",
                        "<mapping_operator>",
                        "<cifsname>"
                    ],
                    [
                        "admins",
                        "<-",
                        "Administrators"
                    ],
                    [
                        "everyone",
                        "<-",
                        "*"
                    ]
                ]
            }
        }
    }
}

The following shows the response. 

HTTP/1.1 200 OK
Content-Type: application/cdmi-container
X-CDMI-Specification-Version: 1.0

{
    "objectURI" : "/Containers/MyContainer/",
    "objectID" : "00007E7F00100C435125A61B4C289455",
    "objectName" : "MyContainer/",
    "parentURI" : "/Containers/",
    "parentID" : "00007E7F0010D538DEEE8E38399E2815",
    "domainURI" : "/cdmi_domains/MyDomain/",
    "capabilitiesURI" : "/cdmi_capabilities/container/",
    "completionStatus" : "Complete",
    "metadata" : { 

... 
},

    "exports" : { <exports as listed in request> }
}

13.2.2 Administrative users

By default, the following users shall be considered "root", or administrative users, and equivalent to each 
other: 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

181 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

229

230

231

232
233

234
235

236
237

238
239
240
241
242

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

261

262
263
264
265
266

267
268
269

270

271

272
273
274
275
276
277
278
279
280

ISO/IEC 17826:2016(E)

© ISO/I
• root (Unix/NFS/LDAP),

• Administrator (Windows/AD/CIFS), and 

• the domain owner (CDMI). 

Servers shall automatically map these users to the root user of the target protocol unless otherwise 
instructed by the usermaps. 

As an automatic mapping does not meet strict security standards, servers shall override these built-in 
entries with any usermap entries that apply to one or more root users. 

EXAMPLE In the following example, root gets mapped to nobody, and everyone else is mapped to a user of the 
same name in the NFS domain and the CDMI domain.

PUT /MyContainer/ HTTP/1.1
Host: cloud.example.com
Accept: application/vnd.org.snia.cdmi.container+json
Content-Type: application/vnd.org.snia.cdmi.container+json
X-CDMI-Specification-Version: 1.1

{
    "exports": {
        "nfs": {
            "usermap": [
                [
                    "nobody",
                    "<-",
                    "root"
                ],
                [
                    "*",
                    "<-->",
                    "*"
                ]
            ]
        }
    }
}

Permissions mapping

The permissions sets of file-serving protocols, unfortunately, do not map on a one-to-one basis to each 
other. NFSv4 ACLs, Windows ACLs, POSIX ACLs, NFSv3 perms and object-based capabilities all are 
capable of representing security conditions that the others are not, except NFSv3, which is the least 
expressive. The primary area of concern is in representing the possibly rich set of permissions in a CDMI 
ACL in a more restricted perms-based system, such as NFSv3, for display to users. 

As there are a number of possible ways to coordinate the permissions/ACLs and CDMI ACLs, this 
international specification does not mandate a particular method. However, all mappings of user and 
groupnames between domains shall use the name mapping mechanism specified in 13.2.3.

13.2.3 User and groupname mapping syntax and evaluation rules

A BNF-style grammar for name mapping is as follows:

name_mapping_list = protocol protocol mapping_list
protocol = "cdmi" | "nfs" | "cifs" | "ldap" 
mapping_list = name mapping_operator name
name = pattern | utf8_name | quoted_utf8_name
quoted_utf8_name = " utf8_name "
utf8_name = <any legal utf8 character sequence not including the characters ",',\,/

,:,*,?>
pattern =  <utf8_name> * | *
mapping_operator = "<--" | "<-->" | "-->"

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 182
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

281
282
283
284
285

286
287
288

289
290

291
292
293
294

295

296
297

298

299

300

301

302
303

304

305

306

307
308

309
310
311

312
313
314
315

316
317
318
319
320
321

ISO/IEC 17826:2016(E)

© ISO/I
To restate this in English, a mapping entry consists of two names separated by a directional indicator. As 
most environments use the same usernames and groupnames across administrative domains, the most 
common mapping is " * <--> * ", which maps any name to the same name in the foreign protocol domain, 
and vice versa. It is highly recommended that this be both the default map and the last entry on all more 
complex maps.

CDMI specifies pattern matching on names in the name map, but only prefix matching is required. The 
symbol " * " at the end of a character string shall match zero or more occurrences of any non-whitespace 
character.

Evaluation of the name mapping list shall proceed in order; once a match is made, evaluation shall cease 
and the result of the match shall be returned.

If no matches are found on the match list, the result is system dependent. However, it is recommended 
that servers either deny access altogether or map the user in question to the equivalent of "anonymous" on 
the destination protocol. It is also recommended that an entry be devoted to the special user 
"EVERYONE@".

13.3 Discovering and mounting containers via foreign protocols

Clients need a way to discover exported containers that may be available for mounting. Discovering 
containers is done via a GET operation to the "exports" member of a container. 

Synopsis: 

To read all exports for an existing container object, the following request shall be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/?exports

To read selected exports for an existing container object, the following request shall be performed:

GET <root URI>/<ContainerName>/<TheContainerName>/
?exports:protocol=<protocol>,user=<user>,verbose="false"

Where:

• <root URI> is the path to the CDMI cloud.

• <ContainerName> is zero or more intermediate containers.

• <TheContainerName> is the name specified for the topmost container for which exports are 
available.

• <protocol> is the name of a protocol to which query results should be restricted. This parameter is 
optional; if it is omitted or a value of "all" is given, information about all protocols shall be returned, 
subject to additional filtering.

• <user> is the login name of a CDMI user who wishes to mount the share. This parameter is 
optional and defaults to the owner of the container. When non-empty, servers shall filter the 
returned export list to include only exports which may be mounted given the restrictions in the 
protocol export structures.

• <verbose> is an optional parameter indicating a desire for maximum information about the 
exports. When present, it shall have the values "true" or "false". The default is "false". When true, 
the server should return additional information about the container, as contained in its "exports" 
member. The amount of said information that is returned is implementation dependent, as server 
implementors need to be able to balance the needs of their clients against various security 
considerations.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

183 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

322

323
324
325
326

327

328

ISO/IEC 17826:2016(E)

© ISO/I
13.4 NFS exported protocol

To export a container via NFS, the information required is exactly what the server implementation will use 
to do the export. Normally, this information is contained in the /etc/exports file on a server or the 
equivalent. Administrators should be aware that lines may be automatically added to that file for each 
CDMI container that is exported.

Required members of the protocol structure for NFS are described in Table 111.

Optional export parameters for NFS are described in Table 112.

Table 111 — Required members of the NFS protocol structure  

Member Description

protocol The protocol being requested. This value shall be "NFSv3", "NFSv4", "NFSv4.1", or any 
subsequent NFS version enshrined in a major IETF RFC. Version 2 of NFS is not supported by 
CDMI.

exportpath The pathname to which the export should be surfaced. This value shall be a UTF8 string of the 
form [<server>]:/<path>, where the <server> component is optional, (e.g., "eeserver:/lessons/
number1"). The <server> component of the path must be obtained from an administrator of the 
service running the CDMI implementation.

exportdomain The internet domain of the protocol name server for the clients being served. This value is 
normally the name of the LDAP domain for the organization, e.g., "iti.edu". A value of "." shall 
be interpreted to be the DNS name of the domain occupied by the CDMI server.

mode This value shall be "ro", "rw", "root" or "rpc_gsssec" and becomes the default export mode. 
Hosts requiring different access shall be specified in the optional "rw_mode", "ro_mode", and 
"root_mode" structure members. However, the "rpc_gsssec" mode overrides all other modes, 
and all other mode members and their contents shall be ignored if it is specified.

control Export control for the container. This value shall be "immediate", "off", "on", or <n> (a number). 
Servers may set the value to on, but clients shall not. A numeric value (<n>) indicates that the 
export should be shut down in <n> seconds, possibly after a message has been sent to clients 
mounting the export. If a client specifies a value for <n> but the server does not support 
delayed shutdown of exports, then <n> shall be interpreted to mean off.

Table 112 — Optional NFS export parameters (Sheet 1 of 2)

Parameter Description

domain_servers A list of server names or IP addresses that function as name servers for the domain given in 
"domain". If given, this list shall override the names obtainable by the CDMI server via other 
programmatic means.

mount_name The name the client should use to surface the export. This name replaces the last name in the 
path string, (e.g., mounting "eeserver:/lessons/number1" with a mountname of "1" over the 
directory /somepath/lessons/num1 should result in a /somepath/lessons/1 directory on the 
client).IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 17

82
6:2

01
6

Cloud Data Management Interface SNIA Technical Position 184
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

329
330
331
332
333

334
335
336
337
338
339
340
341
342
343

344

345

346
347

348
349

350
351
352
353
354

355
356

357
358

ISO/IEC 17826:2016(E)

© ISO/I
Other export parameters for NFS are not specified by the CDMI protocol but may be included in the export 
structure. These parameters include Linuxisms, such as "sync", "no_wdelay", "insecure_locks", and 
"no_acl", as well as any other parameters used by a given server operating system.  In all such cases, the 
parameter shall be specified as a JSON tuple in which "true" and "false" are explicitly called out for binary 
flags, and a JSON-formatted string or list is used for other parameters. 

EXAMPLE

{
    "exports": {
        "nfs": {
            ...
            "no_wdelay": "true",
            "refer": "otherserver://path/leaf"
            ...
        }
    }
} 

Export control

Export control is accomplished with the use of a single member, named "control."

• The value "immediate" shall indicate to the server that the export shall be made successfully 
before the PUT operation returns. Servers shall reset the value to "on" and place that in the reply.

• The value "off" shall indicate to the server that the export, if new, shall not be enabled, and if 
existing, shall be shut down and all client connections forcibly broken.

• A numeric value <n> shall indicate that the server shall wait <n> seconds before forcibly shutting 
down the export and breaking client connections. Whether the server sends a warning message to 
clients, giving them a chance to exit from the connection gracefully, is recommended but 
implementation dependent. Once the export has been shut down, the server shall also change the 
value of  "control" to "off" in the export structure.

Servers shall support wildcard matching on the " * " and " ? " characters in the hosts lists (this is standard 
practice), so that **.cs.uscs.edu" matches all servers in the cs.ucsc.edu department.

Servers may support netgroup names in the various hosts lists. When this functionality is supported, these 
names shall resolve to ordinary lists of hostnames via queries to the domain nameserver.

hosts A list of hosts that can access the container in the mode given in "mode". The default shall be 
"*"; other values restrict the possibilities.

root_hosts A list of hosts that can access the container in superuser mode. The default shall be an empty 
list.

rw_hosts A list of hosts that can access the container in r/w mode. The default shall be an empty list.

ro_hosts A list of hosts that can access the container in r/o mode only. The default shall be an empty list.

mount_type One of the two strings "hard" or "soft". Clients hang when a server serving a hard mount 
becomes unresponsive. Clients with soft mounts generate error messages. The default is 
implementation dependent.

recurse This value shall be either "true" or "false". The default shall be "true". When true, recurse 
indicates that mounts within the CDMI directory structure (presumably put there by other NFS 
operations) shall be followed and the mounted directory exposed as though it were part of the 
CDMI container actually being exported. This parameter is equivalent to the Linux "crossmnt" 
parameter.

Table 112 — Optional NFS export parameters (Sheet 2 of 2)

Parameter Description

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

185 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

359
360
361
362
363

364
365
366

367

368
369
370
371

372

373

374
375

376
377
378
379
380

381

382
383
384
385
386
387
388
389
390
391
392
393
394

ISO/IEC 17826:2016(E)

© ISO/I
Servers may also support IP address ranges in the various lists of hosts. These IP addresses shall 
beaugmented by the same wildcard matching as is used for ordinary host names (e.g., "192.168.1.*" 
exports to all the machines on a default home network). Client-side developers should note that "exporting 
to" only means making a container available for export. The client must still mount the exported container 
before there is a connection with the server.

Users wishing to use optional and vendor-specific settings are responsible for determining from the CDMI 
product vendor the legal settings and their format. Servers shall return an HTTP status code of 400 Bad 
Request when an export setting does not conform to an allowable setting on the server.

13.5 CIFS exported protocol

To export a container via CIFS, the information required is exactly what the server implementation will use 
to do the export. Where this information is contained on a server is implementation dependent. The server 
may add or delete lines automatically to and from that file for each CDMI container that is exported or 
unexported.

Required members of the protocol structure for CIFS are described in Table 113.

There is no protocol specification; CDMI assumes that normal SMB protocol negotiation will take place. 

An optional export parameter is "comment," which is often used as a user-friendly share name on the 
client.

Other export parameters for CIFS are not specified by the CDMI protocol but may be included in the export 
structure. These parameters include vendor settings such as "forcegroup", "umask", "caching", and 
"oplocks", as well as any other parameters used by a given server operating system.  In all such cases, the 
parameter shall be specified as a JSON tuple in which "true" and "false" are explicitly called out for binary 
flags, and a JSON-formatted string or list is used for other parameters. 

EXAMPLE  

{
    "exports": {
        "cifs": {
            "caching": [
                "manual",
                "document",
                "program"
            ],
            "oplocks": "true"
        }
    }
}

Table 113 — Required members of the CIFS protocol structure

Member Description

share_name The name that CIFS shall use to discover the share.

exportdomain The domain of the protocol name server for the clients being served. This value is normally 
the name of the Active Directory LDAP domain for the organization, e.g. "iti.edu". A value of 
"." shall be interpreted to be the domain occupied by the CDMI server.

mode This value shall be either "ro" or "rw".

control Export control for the container. This value shall be "immediate", "off", or <n> (a number). 
Servers may set the value to on, but clients shall not. The semantics and normative 
requirements are exactly the same as for NFS, as documented in the paragraph "Export 
control" in the subclause on NFS Exports (see 13.4).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 186
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

395
396
397

398
399
400

401

402

403

404

405
406

407

408
409
410
411
412
413
414

415

416
417

418

419
420
421
422

423

424

425

426

427

428
429

430

431

432
433
434
435
436
437
438

ISO/IEC 17826:2016(E)

© ISO/I
Users wishing to manipulate vendor-specific settings are responsible for determining from the CDMI 
product vendor the legal settings and their format. Servers shall return an HTTP status code of 400 Bad 
Request when an export setting does not conform to an allowable setting on the server.

For more detail on the use of the OCCI export protocol structure attributes, see 13.1 "Overview". Because 
the actual networking and access control is under the control of a hidden, common infrastructure 
implementing both OCCI and CDMI, the normal permission structure shall not be provided.

13.6 OCCI exported protocol

CDMI defines an export protocol structure for the Open Cloud Computing Interface (OCCI) as follows.

• The protocol is "OCCI/<protocol standard>" (e.g., "OCCI/NFSv4").

• The identifier is the CDMI object ID.

• A JSON array of URIs to OCCI compute resources shall have access (permissions) to the 
exported container.

EXAMPLE An example of an OCCI export protocol structure in JSON is as follows:

"OCCI/iSCSI": {
        "identifier": "00007E7F00104BE66AB53A9572F9F51E",
        "permissions": [
            "http://example.com/compute/0/",
            "http://example.com/compute/1/"
        ]
    }

For more detail on using the OCCI export protocol structure attributes, see 13.1 "Overview". Because the 
actual networking and access control is under the control of a hidden, common infrastructure that 
implements both OCCI and CDMI, the normal permission structure shall not be provided.

13.7 iSCSI export modifications

CDMI defines the export of a container using the iSCSI protocol (see RFC 3720). Each container is 
exported as a single SCSI Logical Unit as a Logical Unit Number (LUN). One or more iSCSI initiators 
import the LUN through an iSCSI target node and port using one or more iSCSI network portals (IP 
addresses). 

The export is described by the presence of an export field structure on the container that specifies the

• export protocol ("Network/iSCSI");

• iSCSI target information (IP addresses or fully qualified domain names, target identifier, and LUN);

• logical unit world-wide name; and

• iSCSI initiators having access.

The target identifier may be in iqn, naa, or eui format and shall have the target portal group tag appended 
in hexadecimal.

13.7.1 Read container

All of the information in the export structure is returned:

"exports" : 
{
    "Network/iSCSI": {
        "portals": [
            "192.168.1.101",
            "192.168.1.102"
        ],

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

187 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

439
440
441
442
443
444
445
446
447
448

449

450
451
452
453

454
455
456
457
458
459
460
461
462

463
464
465

466

467
468
469

470
471
472
473
474
475
476
477

478

479

480

481

482
483

484

485
486
487
488
489

ISO/IEC 17826:2016(E)

© ISO/I
        "target_identifier": "iqn.2010-
01.com.cloudprovider:acmeroot.container1,t,0x0001",

        "logical_unit_number": "3",
        "logical_unit_name": "0x60012340000000000000000000000001",
        "permissions": [
            "iqn.2010-01.com.acme:host1",
            "iqn.2010-01.com.acme:host2"
        ]
    }
} 

13.7.2 Create and update containers

The following export field contents, when included in a container create or update, indicates that the 
container shall be exported via iSCSI. Support for either of these operations is indicated by the 
cdmi_export_iscsi capability on the parent container of the created container or of the existing container, 
respectively.

"exports" : 
{
    "Network/iSCSI": {
        "permissions": [
            "iqn.2010-01.com.acme:host1",
            "iqn.2010-01.com.acme:host2"
        ]
    }
}

For these export creation operations, the CDMI implementation selects the IP portals, iSCSI target, logical 
unit number, and logical unit name; these are not supplied. Only the list of initiator identifiers that are to 
have access to the container are specified.

13.7.3 Modify an export

The following code modifies an export on an existing container. Support for this operation is indicated by 
the cdmi_export_iscsi on the parent container of the existing container. For this operation, only the current 
list of initiator identifiers that are to have access to the container are specified.

"exports" : 
{
    "Network/iSCSI": {
        "permissions": [
            "iqn.2010-01.com.acme:host2"
        ]
    }
}

13.8  WebDAV exported protocol

CDMI defines an export protocol structure for the WebDAV standard as follows (see RFC 4918): 

• The protocol is "Network/WebDAV".

• The path of the WebDAV mount point is as presented to clients (including server host name).

• The list of who may access the share is determined by the standard CDMI ACLs for each resource 
as exported via WebDAV.

EXAMPLE The following example shows a WebDAV export protocol structure in JSON: 

"Network/WebDAV" : 
{
    "identifier": "/users",
    "permissions": "domain"
} 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 188
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

490
491

492
493
494

ISO/IEC 17826:2016(E)

© ISO/I
In this example, the value "domain" in the permissions field indicates that user credentials should be 
mapped through the domain membership in the domain of the CDMI container being exported. 

WebDAV supports locking, but it is up to implementations to support any locking of access through CDMI 
as a result, and the interaction between the two protocols is purposely not described in this International 
Standard. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

189 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

Cloud Data Management Interface SNIA Technical Position 190
Version 1.1.1 

14    CDMI snapshots

A snapshot is a point-in-time copy (image) of a container and all of its contents, including subcontainers 
and all data objects and queue objects. The client names a snapshot of a container at the time the 
snapshot is requested. A snapshot operation creates a new container to contain the point-in-time image. 
The first processing of a snapshot operation also adds a cdmi_snapshots child container to the source 
container. Each new snapshot container is added as a child of the cdmi_snapshots container. The 
snapshot does not include the cdmi_snapshots child container or its contents (see Figure 9).

A snapshot operation is requested using the container update operation (see 9.4), in which the snapshot 
field specifies the requested name of the snapshot.

A snapshot may be accessed in the same way that any other CDMI™ object is accessed. An important 
use of a snapshot is to allow the contents of the source container to be restored to their values at a 
previous point in time using a CDMI copy operation. 

Figure 9 — Snapshot container structure

Source Container

cdmi_snapshots

Snap_Shot_A

Snap_Shot_B...

PUT(Container Update) A

PUT(Container Update) B

https://example.com/
source/

https://example.com/source/
cdmi_snapshots/

https://example.com/source/cdmi_snapshots/
Snap_Shot_A/

https://example.com/source/cdmi_snapshots/
Snap_Shot_B/

1

2
3
4
5
6
7

8
9

10
11
12

ISO/IEC 17826:2016(E)

© ISO/IEC 2016 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4
5

6

7

8

9
10
11

12

13
14
15
16
17

18
19

20
21

22
23
24

25
26
27
28
29

30
31

32

33
34
35

36
37
38
39
40

41
42
43

ISO/IEC 17826:2016(E)

© ISO/I
15    Serialization/deserialization

15.1 Overview

Occasionally, bulk data movement is needed between, into, or out of clouds. When moving bulk data, 
cloud serialization operations provide a means to normalize data to a canonical, self-describing format, 
which includes:

• data migration between clouds,

• data migration during upgrades (or replacements) of cloud implementations, and

• robust backup.

The canonical format of serialized data describes how the data is to be represented in a byte stream. As 
long as this byte stream is not changed during the transfer from source to destination, the data may be 
reconstituted on the destination system.

15.2 Exporting serialized data

A canonical encoding of the data is obtained by creating a new data object and specifying that the source 
for the creation is to serialize a given CDMI™ data object, container object, or queue object. On a 
successful serialization, the result shall be a data object that is created with the serialized data as its value. 
If a container object has an exported block protocol, the serialized data may contain the block-by-block 
contents of that container object along with its metadata.

The resulting data object that is produced is the canonical representation of the selected data object, 
container object and children, or queue object. 

• If the source specified is a data object, the canonical format shall contain all data object fields, 
including the value, valuetransferencoding, and metadata fields. 

• If the source being specified is a queue object, the canonical format shall contain all queue object 
fields, including the value and valuetransferencoding fields of enqueued items, along with the 
metadata of the queue object itself. 

• If the source being specified is a container object, the canonical format shall contain all container 
object fields, recursively, including all children of the container object. If a user attempts to serialize 
a container object that includes children that the user, who is performing the serialization 
operation, does not have permission to read, these objects shall not be included in the resulting 
serialized object.

When performing a serialization operation, objects shall only be included if the principal initiating the 
serialization has sufficient permissions to read those objects.

15.3 Importing serialized data

Canonical data may be deserialized back into the cloud by creating a new data object, container object, or 
queue object and by specifying that the source for the creation is to deserialize a given data object or by 
specifying the serialized data in base 64 encoding in the deserializevalue field.

The destination may or may not exist previously. If not, a create operation is performed. If a container 
object already exists, an update operation with serialized children shall update the container object and all 
children. If the serialized container object does not contain children, only the container object is updated. 
Data objects are recreated as specified in the canonical format, including all metadata and the data object 
ID.

• If the user who is deserializing a serialized data object has the cross_domain privilege and has not 
specified a domainURI as part of the deserialize operation, the original domainURIs from the 
serialized object shall be used. If any of the specified domainURIs are not valid in the context of 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

191 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

44
45

46
47
48
49
50
51

52
53
54
55

56
57
58
59
60

61

62
63
64
65
66
67
68

69
70

71

72

73

74

75

76

77

78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93

ISO/IEC 17826:2016(E)

© ISO/I
the storage system on which the deserialization operation is being performed, the entire 
deserialize operation shall fail.

• If the user who is deserializing a serialized object specifies a domainURI as part of the deserialize 
operation, the domainURI of every object being deserialized shall be set to the specified 
domainURI. To specify a domainURI other than the domainURI of the parent, the user shall have 
the cross_domain privilege. If the user does not have the cross_domain privilege and specifies a 
domainURI other than the domainURI of the parent, an HTTP status code of 400 Bad Request 
shall be returned.

• If the user who is deserializing a serialized object does not specify a domainURI and does not 
have the cross_domain privilege, then the deserialization operation shall only be successful if all 
objects have the same domainURI as the parent object on which the deserialization operation is 
being performed.

Deserialization operations shall restore all metadata from the specified source. If the original provider of 
the serialized data-supported vendor extensions is through custom metadata keys and values, then these 
customized requirements shall be restored when deserialized. However, the custom metadata keys and 
values may be treated as user metadata (preserved, but not interpreted) by the destination provider. 
Preservation allows custom data requirements to move between clouds without losing this information.

15.3.1 Canonical format

The canonical format shall represent specified data objects and container objects as they exist within the 
storage system. Each object shall be represented by the metadata for the object, identifiers, and the data 
stream contents of the data object. Because metadata is inherited from enclosing container objects, all 
parent metadata shall be represented in the canonical format (essentially flattening the hierarchy). To 
preserve the actual metadata values that apply to the data object that is being serialized, the non-
overridden metadata is included from both the immediate parent container object of the specified object 
and from the parent of each higher-level container object. 

Support for CDMI serialization using JSON as the canonical format requires the presence of the 
cdmi_serialization_json capability.

The canonical format shall have the following characteristics:

• recursive JSON for the data object, consistent with the rest of CDMI;

• user and data system metadata for each data object/container object; 

• data stream contents for each data object and queue object; 

• binary data represented using escaped JSON strings; and 

• typing of data values consistent with CDMI JSON representations. 

15.3.2 Example JSON canonical serialized format

EXAMPLE In this example, a data object and a queue object in a container object have been selected for 
serialization:

{
    "objectType": "application/cdmi-container",
    "objectID": "00007E7F00102E230ED82694DAA975D2",
    "objectName": "MyContainer/",
    "parentURI": "/",
    "parentID": "00007E7F0010128E42D87EE34F5A6560",
    "domainURI": "/cdmi_domains/MyDomain/",
    "capabilitiesURI": "/cdmi_capabilities/container/",
    "completionStatus": "Complete",
    "metadata": {

...
},

    "exports": {
        "OCCI/iSCSI": {

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 192
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

156
157

ISO/IEC 17826:2016(E)

© ISO/I
            "identifier": "00007E7F00104BE66AB53A9572F9F51E",
            "permissions": [
                "http://example.com/compute/0/",
                "http://example.com/compute/1/"
            ]
        },
        "Network/NFSv4": {
            "identifier": "/users",
            "permissions": "domain"
        }
    },
    "childrenrange": "0-1",
    "children": [
        {
            "objectType": "application/cdmi-object",
            "objectID": "00007ED900104F67307652BAC9A37C93",
            "objectName": "MyDataObject.txt",
            "parentURI": "/MyContainer/",
            "parentID": "00007E7F00102E230ED82694DAA975D2",
            "domainURI": "/cdmi_domains/MyDomain/",
            "capabilitiesURI": "/cdmi_capabilities/dataobject/",
            "completionStatus": "Complete",
            "mimetype": "text/plain",
            "metadata": {

...
},

            "valuerange": "0-36",
            "valuetransferencoding": "utf-8",
            "value": "This is the Value of this Data Object"
        },
        {
            "objectType": "application/cdmi-queue",
            "objectID": "00007E7F00104BE66AB53A9572F9F51E",
            "objectName": "MyQueue",
            "parentURI": "/MyContainer/",
            "parentID": "00007E7F00102E230ED82694DAA975D2",
            "domainURI": "/cdmi_domains/MyDomain/",
            "capabilitiesURI": "/cdmi_capabilities/queue/",
            "completionStatus": "Complete",
            "metadata": {

...
},

            "queueValues": "0-1",
            "mimetype": [
                "text/plain",
                "text/plain"
            ],
            "valuetransferencoding": [
                "utf-8",
                "utf-8"
            ],
            "valuerange": [
                "0-2",
                "0-3"
            ],
            "value": [
                "red",
                "blue"
            ]
        }
    ]
}

To allow efficient deserialization in stream mode when serializing container objects to JSON, the children 
array should be the last item in the canonical serialized JSON format.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

193 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

1

2

3
4
5
6

7

8
9

10
11
12
13

14
15
16

17

18

19
20

21
22

23

24
25
26

ISO/IEC 17826:2016(E)

© ISO/I
16    Metadata

16.1 Access control

Access control comprises the mechanisms by which various types of access to objects are authorized and 
permitted or denied. CDMI™ uses the well-known mechanism of an Access Control List (ACL) as defined 
in the NFSv4 standard (see RFC 3530). ACLs are lists of permissions-granting or permissions-denying 
entries called access control entries (ACEs). 

16.1.1 ACL and ACE structure

An ACL is an ordered list of ACEs. The two types of ACEs in CDMI are ALLOW and DENY. An ALLOW 
ACE grants some form of access to a principal. Principals are either users or groups and are represented 
by identifiers. A DENY ACE denies access of some kind to a principal. For instance, a DENY ACE may 
deny the ability to write the metadata or ACL of an object but may remain silent on other forms of access. 
In that case, if another ACE ALLOWs write access to the object, the principal is allowed to write the 
object's data, but nothing else. 

ACEs are composed of four fields: type, who, flags and access_mask, as per RFC 3530. The type, flags, 
and access_mask shall be specified as either unsigned integers in hex string representation or as a 
comma-delimited list of bit mask string form values taken from Table 114, Table 116, and Table 117.

16.1.2 ACE types

Table 114 defines the following ACE types, following NFSv4.

Note: the reason that the string forms may be safely abbreviated is that they are local to the ACE 
structure type, as opposed to constants, which are relatively global in scope.

The client is responsible for ordering the ACEs in an ACL. The server shall not enforce any ordering and 
shall store and evaluate the ACEs in the order given by the client.

16.1.3 ACE who

The special "who" identifiers need to be understood universally, rather than in the context of a particular 
external security domain (see Table 115). Some of these identifiers may not be understood when a CDMI 
client accesses the server, but they may have meaning when a local process accesses the file. The ability 

Table 114 — ACE types

String form Description Constant Bit mask

"ALLOW" Allow access rights for a principal CDMI_ACE_ACCESS_ALLOW 0x00000000

"DENY" Deny access rights for a principal CDMI_ACE_ACCESS_DENY 0x00000001

"AUDIT" Generate an audit record when the 
principal attempts to exercise the specified 
access rights

CDMI_ACE_SYSTEM_AUDIT 0x00000002

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 194
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

27
28

29
30

31

32
33
34

35

ISO/IEC 17826:2016(E)

© ISO/I
to display and modify these permissions is permitted over CDMI, even if none of the access methods on 
the server understands the identifiers.

To avoid name conflicts, these special identifiers are distinguished by an appended "@" (with no domain 
name).

16.1.4 ACE flags

CDMI allows for nested containers and mandates that objects and subcontainers be able to inherit access 
permissions from their parent containers. However, it is not enough to simply inherit all permissions from 
the parent; it might be desirable, for example, to have different default permissions on child objects and 
subcontainers of a given container. The flags in Table 116 govern this behavior. 

Table 115 — Who identifiers

Who Description

"OWNER@" The owner of the file

"GROUP@" The group associated with the file

"EVERYONE@" The world

"ANONYMOUS@" Access without authentication

"AUTHENTICATED@" Any authenticated user (opposite of ANONYMOUS)

"ADMINISTRATOR@" A user with administrative status, e.g., root

"ADMINUSERS@" A group whose members are given administrative status

Table 116 — ACE flags 

String form Description Constant Bit mask

"NO_FLAGS" No flags are set CDMI_ACE_FLAGS_NO
NE

0x00000000

"OBJECT_INHE
RIT"

An ACE on which OBJECT_INHERIT is set is inherited by objects 
as an effective ACE: OBJECT_INHERIT is cleared on the child 
object. When the ACE is inherited by a 
container, OBJECT_INHERIT is retained for the purpose of 
inheritance, and additionally, INHERIT_ONLY is set. 

CDMI_ACE_FLAGS_OBJ
ECT_INHERIT_ACE

0x00000001

"CONTAINER_IN
HERIT"

An ACE on which CONTAINER_INHERIT is set is inherited 
by a subcontainer as an effective ACE. Both INHERIT_ONLY 
and CONTAINER_INHERIT are cleared on the child 
container. 

CDMI_ACE_FLAGS_CO
NTAINER_INHERIT_ACE

0x00000002

"NO_PROPAGA
TE"

An ACE on which NO_PROPAGATE is set is not inherited by 
any objects or subcontainers. It applies only to the container 
on which it is set. 

CDMI_ACE_FLAGS_NO
_PROPAGATE_ACE

0x00000004

"INHERIT_ONLY
"

An ACE on which INHERIT_ONLY is set is propagated to 
children during ACL inheritance as specified 
by OBJECT_INHERIT and CONTAINER_INHERIT. The ACE 
is ignored when evaluating access to the container on which 
it is set and is always ignored when set on objects. 

CDMI_ACE_FLAGS_INH
ERIT_ONLY_ACE

0x00000008

"IDENTIFIER_G
ROUP"

An ACE on which IDENTIFIER_GROUP is set indicates that 
the "who" refers to a group identifier.

CDMI_ACE_FLAGS_IDE
NTIFIER_GROUP

0x00000040

"INHERITED" An ACE on which INHERITED is set indicates that this ACE 
is inherited from a parent directory. A server that supports 
automatic inheritance will place this flag on any ACEs 
inherited from the parent directory when creating a 
new object.

CDMI_ACE_FLAGS_INH
ERITED_ACE

0x00000080

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

195 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

36

37

38

ISO/IEC 17826:2016(E)

© ISO/I
16.1.5 ACE bit masks

The mask field of an ACE contains 32 bits. Table 117 defines the ACE bit masks in CDMI; their values are 
taken from the IETF NFSv4 RFC 3530.  

Table 117 — ACE bit masks (Sheet 1 of 3)

String form Description Constant Bit mask

"READ_OBJEC
T"

Permission to read the value of an object. 

If "READ_OBJECT" is not permitted: 

• A CDMI GET that requests all fields shall return all fields 
with the exception of the value field. 

• A CDMI GET that requests specific fields shall return the 
requested fields with the exception of the value field. 

• A CDMI GET for only the value field shall return an HTTP 
status code of 403 Forbidden. 

• A non-CDMI GET shall return an HTTP status code of 403 
Forbidden.

CDMI_ACE_READ_OBJ
ECT

0x00000001

"LIST_CONTAIN
ER"

Permission to list the children of an object. 

If "LIST_CONTAINER" is not permitted: 

• A CDMI GET that requests all fields shall return all fields 
with the exception of the children field and childrenrange 
field. 

• A CDMI GET that requests specific fields shall return the 
requested fields with the exception of the children field and 
childrenrange field. 

• A CDMI GET for only the children field or childrenrange 
field shall return an HTTP status code of 403 Forbidden.

CDMI_ACE_LIST_CONT
AINER

0x00000001

"WRITE_OBJEC
T"

Permission to modify the value of an object 

If "WRITE_OBJECT" is not permitted, a PUT that requests 
modification of the value of an object shall return an HTTP 
status code of 403 Forbidden.

CDMI_ACE_WRITE_OB
JECT

0x00000002

"ADD_OBJECT" Permission to add a new child data object or queue object. 

If "ADD_OBJECT" is not permitted, a PUT or POST that 
requests creation of a new child data object or new queue 
object shall return an HTTP status code of 403 Forbidden.

CDMI_ACE_ADD_OBJE
CT

0x00000002

"APPEND_DATA
"

Permission to append data to the value of a data object. 

If "APPEND_DATA" is permitted and "WRITE_OBJECT" is 
not permitted, a PUT that requests modification of any 
existing part of the value of an object shall return an HTTP 
status code of 403 Forbidden.

CDMI_ACE_APPEND_D
ATA

0x00000004

"ADD_SUBCON
TAINER"

Permission to create a child container object or domain 
object. 

If "ADD_SUBCONTAINER" is not permitted, a PUT that 
requests creation of a new child container object or new 
domain object shall return an HTTP status code of 403 
Forbidden.

CDMI_ACE_ADD_SUBC
ONTAINER

0x00000004

[1]The value fields, children fields, and metadata field are considered to be non-attribute fields. All other fields are considered to be 
attribute fields. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 196
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

ISO/IEC 17826:2016(E)

© ISO/I
"READ_METAD
ATA"

Permission to read the metadata of an object. 

If "READ_METADATA" is not permitted: 

• A CDMI GET that requests all fields shall return all fields 
with the exception of the metadata field. 

• A CDMI GET that requests specific fields shall return the 
requested fields with the exception of the metadata field. 

• A CDMI GET for only the metadata field shall return an 
HTTP status code of 403 Forbidden.

CDMI_ACE_READ_MET
ADATA

0x00000008

"WRITE_METAD
ATA"

Permission to modify the metadata of an object.

If "WRITE_METADATA" is not permitted, a CDMI PUT that 
requests modification of the metadata field of an object shall 
return an HTTP status code of 403 Forbidden.

CDMI_ACE_WRITE_ME
TADATA

0x00000010

"EXECUTE" Permission to execute an object. CDMI_ACE_EXECUTE 0x00000020

"TRAVERSE_C
ONTAINER"

Permission to traverse a container object or domain object.

If "TRAVERSE_CONTAINER" is not permitted for a parent 
container, all operations against all children below that 
container shall return an HTTP status code of 403 Forbidden.

CDMI_ACE_TRAVERSE
_CONTAINER

0x00000020

"DELETE_OBJE
CT"

Permission to delete a child data object or child queue object 
from a container object. 

If "DELETE_OBJECT" is not permitted, all DELETE 
operations shall return an HTTP status code of 403 
Forbidden.

CDMI_ACE_DELETE_O
BJECT

0x00000040

"DELETE_SUBC
ONTAINER"

Permission to delete a child container object from a container 
object or to delete a child domain object from a domain 
object. 

If "DELETE_SUBCONTAINER" is not permitted, all DELETE 
operations shall return an HTTP status code of 403 
Forbidden.

CDMI_ACE_DELETE_S
UBCONTAINER

0x00000040

"READ_ATTRIB
UTES"

Permission to read the attribute fields[1] of an object. 

If "READ_ATTRIBUTES" is not permitted: 

• A CDMI GET that requests all fields shall return all non-
attribute fields and shall not return any attribute fields. 

• A CDMI GET that requests at least one non-attribute field 
shall only return the requested non-attribute fields. 

• A CDMI GET that requests only non-attribute fields shall 
return an HTTP status code of 403 Forbidden. 

CDMI_ACE_READ_ATT
RIBUTES

0x00000080

"WRITE_ATTRIB
UTES"

Permission to change attribute fields[1] of an object. 

If "WRITE_ATTRIBUTES" is not permitted, a CDMI PUT that 
requests modification of any non-attribute field shall return an 
HTTP status code of 403 Forbidden.

CDMI_ACE_WRITE_ATT
RIBUTES

0x00000100

"WRITE_RETEN
TION"

Permission to change retention attributes of an object. 

If "WRITE_RETENTION" is not permitted, a CDMI PUT that 
requests modification of any non-hold retention metadata 
items shall return an HTTP status code of 403 Forbidden.

CDMI_ACE_WRITE_RE
TENTION

0x00000200

Table 117 — ACE bit masks (Sheet 2 of 3)

String form Description Constant Bit mask

[1]The value fields, children fields, and metadata field are considered to be non-attribute fields. All other fields are considered to be 
attribute fields. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

197 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

39
40

41

42
43
44

45
46
47

ISO/IEC 17826:2016(E)

© ISO/I
Implementations shall use the correct string form to display permissions, if the object type is known. If the 
object type is unknown, the "object" version of the string shall be used.

16.1.6 ACL evaluation

When evaluating whether access to a particular object O by a principal P is to be granted, the server shall 
traverse the object's logical ACL (its ACL after processing inheritance from parent containers) in list order, 
using a temporary permissions bitmask m, initially empty (all zeroes).

• If the object still does not contain an ACL, the algorithm terminates and access is denied for all 
users and groups. This condition is not expected, as CDMI implementations should require an 
inheritable default ACL on all root containers.

"WRITE_RETEN
TION_HOLD"

Permission to change retention hold attributes of an object. 

If "WRITE_RETENTION_HOLD" is not permitted, a CDMI 
PUT that requests modification of any retention hold 
metadata items shall return an HTTP status code of 403 
Forbidden.

CDMI_ACE_WRITE_RE
TENTION_HOLD

0x00000400

"DELETE" Permission to delete an object. 

If "DELETE" is not permitted, all DELETE operations shall 
return an HTTP status code of 403 Forbidden.

CDMI_ACE_DELETE 0x00010000

"READ_ACL" Permission to read the ACL of an object. 

If "READ_ACL" is not permitted: 

• A CDMI GET that requests all metadata items shall return 
all metadata items with the exception of the cdmi_acl 
metadata item. 

• A CDMI GET that requests specific metadata items shall 
return the requested metadata items with the exception of 
the cdmi_acl metadata item. 

• A CDMI GET for only the cdmi_acl metadata item shall 
return an HTTP status code of 403 Forbidden.

If "READ_ACL" is permitted and "READ_METADATA" is not 
permitted, then to read the ACL, a client CDMI GET for only 
the cdmi_acl metadata item shall be permitted.

CDMI_ACE_READ_ACL 0x00020000

"WRITE_ACL" Permission to write the ACL of an object. 

• If "WRITE_ACL" is not permitted, a CDMI PUT that 
requests modification of the cdmi_acl metadata item shall 
return an HTTP status code of 403 Forbidden. 

• If "WRITE_ACL" is permitted and "WRITE_METADATA" is 
not permitted, then to write the ACL, a client CDMI PUT for 
only the cdmi_acl metadata item shall be permitted. 

CDMI_ACE_WRITE_AC
L

0x00040000

"WRITE_OWNE
R"

Permission to change the owner of an object. 

• If "WRITE_OWNER" is not permitted, a CDMI PUT that 
requests modification of the cdmi_owner metadata item 
shall return an HTTP status code of 403 Forbidden. 

• If "WRITE_OWNER" is permitted and 
"WRITE_METADATA" is not permitted, then to write the 
owner, a client CDMI PUT for only the cdmi_owner 
metadata item shall be permitted. 

CDMI_ACE_WRITE_OW
NER

0x00080000

"SYNCHRONIZ
E"

Permission to access an object locally at the server with 
synchronous reads and writes.

CDMI_ACE_SYNCHRO
NIZE

0x00100000

Table 117 — ACE bit masks (Sheet 3 of 3)

String form Description Constant Bit mask

[1]The value fields, children fields, and metadata field are considered to be non-attribute fields. All other fields are considered to be 
attribute fields. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 198
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

48

49
50

51
52
53

54
55
56

57
58

59

60
61
62
63

64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81
82
83

84
85
86
87
88
89

90
91
92
93
94
95

96
97
98
99

100

101
102
103
104

ISO/IEC 17826:2016(E)

© ISO/I
• ACEs that do not refer to the principal P requesting the operation are ignored.

• If an ACE is encountered that denies access to P for any of the requested mask bits, access is 
denied and the algorithm terminates.

• If an ACE is encountered that allows access to P, the permissions mask m for the operation is 
XORed with the permissions mask from the ACE. If m is sufficient for the operation, access is 
granted and the algorithm terminates.

• If the end of the ACL list is reached and permission has neither been granted nor explicitly denied, 
access is denied and the algorithm terminates, unless the object is a container root. In this case, 
the server shall:

— allow access to the container owner, ADMINISTRATOR@, and any member of 
ADMINUSERS@; and 

— log an event indicating what has happened.

When permission for the desired access is not explicitly given, even ADMINISTRATOR@ and equivalents 
are denied for objects that aren't container roots. When an admin needs to access an object in such an 
instance, the root container shall be accessed and its inheritable ACEs changed in a way as to allow 
access to the original object. The resulting log entry then provides an audit trail for the access.

When a root container is created and no ACL is supplied, the server shall place an ACL containing the 
following ACEs on the container:

"cdmi_acl": 
[
    {
        "acetype": "ALLOW",
        "identifier": "OWNER@",
        "aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT",
        "acemask": "ALL_PERMS"
    },
    {
        "acetype": "ALLOW",
        "identifier": "AUTHENTICATED@",
        "aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT",
        "acemask": "READ"
    }
]

As ACLs are storage system metadata, they are stored and retrieved through the metadata field included 
in a PUT or GET request. The syntax is as follows, using the constant strings from Table 114, Table 116, 
and Table 117, above. 

ACL = { ACE [, ACE ...] }
ACE = { acetype , identifier , aceflags , acemask }
acetype = uint_t | acetypeitem
identifier  = utf8string_t
aceflags    = uint_t | aceflagsstring
acemask     = uint_t | acemaskstring

acetypeitem = aceallowedtype |
              acedeniedtype |
              aceaudittype
aceallowedtype = "CDMI_ACE_ACCESS_ALLOWED_TYPE" | 0x0
acedeniedtype  = "CDMI_ACE_ACCESS_DENIED_TYPE" | 0x01
aceaudittype   = "CDMI_ACE_SYSTEM_AUDIT_TYPE" | 0x02

aceflagsstring = aceflagsitem [| aceflagsitem ...]
aceflagsitem   = aceobinherititem |
                 acecontinherititem |
                 acenopropagateitem | 
                 aceinheritonlyitem

aceobinherititem   = "CDMI_ACE_OBJECT_INHERIT_ACE" | 0x01
acecontinherititem = "CDMI_ACE_CONTAINER_INHERIT_ACE" | 0x02
acenopropagateitem = "CDMI_ACE_NO_PROPAGATE_INHERIT_ACE" | 0x04
aceinheritonlyitem = "CDMI_ACE_INHERIT_ONLY_ACE" | 0x08

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

199 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133

134
135

136
137
138
139
140
141
142
143
144

145

146

147

148

149

150

151

ISO/IEC 17826:2016(E)

© ISO/I
acemaskstring  =   acemaskitem [| acemaskitem ...]
acemaskitem    =   acereaditem | acewriteitem | 

    aceappenditem | acereadmetaitem |
    acewritemetaitem | acedeleteitem |
    acedelselfitem | acereadaclitem |
    acewriteaclitem | aceexecuteitem | 
    acereadattritem | acewriteattritem | 
    aceretentionitem

acereaditem       = "CDMI_ACE_READ_OBJECT" |                       
                    "CDMI_ACE_LIST_CONTAINER" |      0x01                    
acewriteitem      = "CDMI_ACE_WRITE_OBJECT" |                      
                   "CDMI_ACE_ADD_OBJECT" |         0x02                     
aceappenditem     = "CDMI_ACE_APPEND_DATA" |                       
                    "CDMI_ACE_ADD_SUBCONTAINER" |  0x04                
acereadmetaitem   = "CDMI_ACE_READ_METADATA" |   0x08
acewritemetaitem  = "CDMI_ACE_WRITE_METADATA" | 0x10
acedeleteitem     = "CDMI_ACE_DELETE_OBJECT" |                     
                    "CDMI_ACE_DELETE_SUBCONTAINER" | 0x40              
acedelselfitem    = "CDMI_ACE_DELETE" |          0x10000                           
acereadaclitem    = "CDMI_ACE_READ_ACL" |        0x20000 
acewriteaclitem   = "CDMI_ACE_WRITE_ACL" |      0x40000                        
aceexecuteitem    = "CDMI_ACE_EXECUTE" |  0x80000
acereadattritem   = "CDMI_ACE_READ_ATTRIBUTES" | 0x00080
acewriteattritem  = "CDMI_ACE_WRITE_ATTRIBUTES" | 0x00100
aceretentionitem  = "CDMI_ACE_SET_RETENTION" | 0x10000000

When ACE masks are presented in numeric format, they shall, at all times, be specified in hexadecimal 
notation with a leading "0x". This format allows both servers and clients to quickly determine which of the 
two forms of a given constant is being used. When masks are presented in string format, they shall be 
converted to numeric format and then evaluated using standard bitwise operators.

When an object is created, no ACL is supplied, and an ACL is not inherited from the parent container (or 
there is no parent container), the server shall place an ACL containing the following ACEs on the object: 

"cdmi_acl": 
[
    {
        "acetype": "ALLOW",
        "identifier": "OWNER@",
        "aceflags": "OBJECT_INHERIT, CONTAINER_INHERIT",
        "acemask": "ALL_PERMS"
    }
]

16.1.7 Example ACE mask expressions

EXAMPLE 1

"READ_ALL" | 0x02

evaluates to 0x09 | 0x02 == 0x0

EXAMPLE 2

0x001F07FF

evaluates to 0x001F07FF == "ALL_PERMS"

EXAMPLE 3

"RW_ALL" | DELETE

evaluates to 0x000601DF | 0x00010000 == 0x000701DF

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 200
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

152

153
154
155

156
157

158

159

160
161

162

163
164

165

166
167

168

169
170
171

172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189

ISO/IEC 17826:2016(E)

© ISO/I
16.1.8 Canonical format for ACE hexadecimal quantities

ACE mask expressions may be evaluated and converted to a string hexadecimal value before 
transmission in a CDMI JSON body. Applications or utilities that display them to users should convert them 
into a text expression before display and accept user input in text format as well. 

The following technique should be used to decompose masks into strings. A table of masks and string 
equivalents should be maintained and ordered from greatest to least:

Given an access mask M, the following is repeated until M == 0:

1 Select the highest mask m from the table such that M & m == m.

2 If the object is a container, select the string from the 3rd column; otherwise, select the string from 
the 2nd column.

3 Bitwise subtract m from M, i.e., set M = M xor m.

The complete textual representation is then all the selected strings concatenated with ", " between them, 
e.g., "ALL_PERMS, WRITE_OWNER". The strings should appear in the order they are selected. 

A similar technique should be used for all other sets of hex/string equivalents. 

This algorithm, properly coded, requires only one (often partial) pass through the corresponding string 
equivalents table.

16.1.9 JSON format for ACLs

ACE flags and masks are members of a 32-bit quantity that is widely understood in its hexadecimal 
representations. The JSON data format does not support hexadecimal integers, however. For this reason, 
all hexadecimal integers in CDMI ACLs shall be represented as quoted strings containing a leading "0x".

ACLs containing one or more ACEs shall be represented in JSON as follows:

{
    "cdmi_acl" : [
        {
            "acetype" : "0xnn",
            "identifier" : "<user-or-group-name>",
            "aceflags" : "0xnn",
            "acemask" : "0xnn"
        },
        {
            "acetype" : "0xnn",
            "identifier" : "<user-or-group-name>",
            "aceflags" : "0xnn",
            "acemask" : "0xnn"
        } 
    ]
}

ACEs in such an ACL shall be evaluated in order as they appear. 

0x001F07FF "ALL_PERMS" "ALL_PERMS"

0x0006006F "RW_ALL" "RW_ALL"

0x0000001F "RW" "RW"

...

0x00000002 "WRITE_OBJECT" "ADD_OBJECT"

0x00000001 "READ_OBJECT" "LIST_CONTAINER"

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

201 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

t

190

191
192
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218

219
220

221
222

223
224

225
226

227

228
229

230

ISO/IEC 17826:2016(E)

© ISO/I
EXAMPLE An example of an ACL embedded in a response to a GET request is as follows:

HTTP/1.1 200 OK
Content-Type: application/cdmi-object
X-CDMI-Specification-Version: 1.1

{
    "objectType" : "/application/cdmi-object",
    "objectID" : "00007ED9001086A99CC6487FEE373D82",
    "objectName" : "MyDataItem.txt",
    "parentURI" : "/MyContainer/",
    "domainURI" : "/cdmi_domains/MyDomain/",
    "capabilitiesURI" : "/cdmi_capabilities/dataobject/",
    "completionStatus" : "Complete",
    "mimetype" : "text/plain",
    "metadata" : {
        "cdmi_size" : "17",
        "cdmi_acl" : [
            {
                "acetype" : "0x00",
                "identifier" : "EVERYONE@",
                "aceflags" : "0x00",
                "acemask" : "0x00020089"
            } 
        ],
        ... 
    },
    "valuerange" : "0-16",
    "value" : "Hello CDMI World!" 
}

16.2 Support for user metadata

All CDMI objects that support metadata shall permit the inclusion of arbitrary user-defined metadata items, 
with the restriction that the name of a user-defined metadata item shall not start with the prefix "cdmi_".

• The maximum number of user-defined metadata items is specified by the capability 
cdmi_metadata_maxitems.

• The maximum size of each user-defined metadata item is specified by the capability 
cdmi_metadata_maxsize.

• The maximum total size of user-defined metadata items for an object is specified by the capability 
cdmi_metadata_maxtotalsize.

16.3 Support for storage system metadata

After an object has been created, the storage system metadata, as described in Table 118, shall be 
generated by the cloud storage system and shall immediately be made available to a CDMI client in the 
metadata that is returned as a result of the create operation and any subsequent retrievals.

Table 118 — Storage system metadata (Sheet 1 of 3)

Metadata name Type Description Requiremen

cdmi_size JSON 
string

The number of bytes consumed by the object. This storage 
system metadata item is computed by the storage 
system, and any attempts to set or modify it will be 
ignored.

Optional

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

Cloud Data Management Interface SNIA Technical Position 202
Version 1.1.1 

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a


© SNIA

t

ISO/IEC 17826:2016(E)

© ISO/I
cdmi_ctime JSON 
string

The time when the object was created, in  ISO-8601 point-in-
time format, as described in 5.14.

This metadata value can only be updated by a client if it has 
the "backup_operator" privilege. If a client does not have the 
"backup operator privilege, updates of this metadata item shall 
be ignored.

Optional

cdmi_atime JSON 
string

The time when the object was last accessed in ISO-8601 point-
in-time format, as described in 5.14. The access or 
modification of a child is not considered an access of a parent 
container (access/modify times do not propagate up the tree). 
For a newly created object, this value shall be set to the 
creation time.

This metadata value can only be updated by a client if it has 
the "backup_operator" privilege. If a client does not have the 
"backup operator privilege, updates of this metadata item shall 
be ignored.

Optional

cdmi_mtime JSON 
string

The time when the object was last modified, in ISO-8601 point-
in-time format, as described in 5.14. The modification of a child 
is not considered a modification of a container object 
(modification times do not propagate up the tree). For a newly 
created object, this value shall be set to the creation time.

This metadata value can only be updated by a client if it has 
the "backup_operator" privilege. If a client does not have the 
"backup operator privilege, updates of this metadata item shall 
be ignored.

Optional

cdmi_acount JSON 
string

The number of times that the object has been accessed since 
it was originally created. Accesses include all reads, writes, 
and lists. For a newly created object, this value shall be set to 
the value "0".

This metadata value can only be updated by a client if it has 
the "backup_operator" privilege. If a client does not have the 
"backup operator privilege, updates of this metadata item shall 
be ignored.

Optional

cdmi_mcount JSON 
string

The number of times that the object has been modified since it 
was originally created. Modifications include all value and 
metadata changes. Modifications to metadata resulting from 
reads (such as updates to atime) do not count as a 
modification. For a newly created object, this value shall be set 
to the value "0".

This metadata value can only be updated by a client if it has 
the "backup_operator" privilege. If a client does not have the 
"backup operator privilege, updates of this metadata item shall 
be ignored.

Optional

cdmi_hash JSON 
string

The hash of the value of the object, encoded using Base16 
encoding rules described in RFC 4648. This metadata field 
shall be present when the cdmi_value_hash data system 
metadata for the object or a parent object indicates that the 
value of the object should be hashed.

Optional

Table 118 — Storage system metadata (Sheet 2 of 3)

Metadata name Type Description Requiremen

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 17
82

6:2
01

6

203 SNIA Technical Position Cloud Data Management Interface
Version 1.1.1

EC 2016 – All rights reserved

https://iecnorm.com/api/?name=49a23b8ff16c184ebc18aa1510b86a5a

	Cloud Data Management Interface (CDMI™)
	Contents
	Figures
	Tables

	Introduction

	1 Scope
	2 Normative references
	3 Terms, acronyms, and definitions
	4 Conventions
	4.1 Interface format
	4.2 Typographical conventions
	4.3 Request and response body requirements
	4.4 Key word requirements

	5 Overview of cloud storage
	5.1 Introduction
	5.2 What is cloud storage?
	5.3 Data storage as a Service
	5.4 Data management for cloud storage
	5.5 Data and container management
	5.6 Reference model for cloud storage interfaces
	5.7 Cloud Data Management Interface
	5.8 Object model for CDMI
	5.9 CDMI metadata
	5.10 Object ID
	5.11 CDMI object ID format
	5.12 Security
	5.12.1 Security objectives
	5.12.2 HTTP security
	5.12.3 Client authentication
	5.12.4 Use of TLS and HTTP
	5.12.5 Further information

	5.13 Required HTTP support
	5.13.1 RFC 2616 support requirements
	5.13.2 Content-type negotiation
	5.13.3 Range support
	5.13.4 URI escaping
	5.13.5 Use of URIs
	5.13.6 Reserved characters

	5.14 Time representations
	5.15 Backwards compatibility
	5.15.1 Value transfer encoding
	5.15.2 Container export capabilities

	5.16 Object references

	6 Data object resource operations using HTTP
	6.1 Overview
	6.2 Create a data object using HTTP
	6.2.1 Synopsis
	6.2.2 Capabilities
	6.2.3 Request headers
	6.2.4 Request message body
	6.2.5 Response headers
	6.2.6 Response message body
	6.2.7 Response status
	6.2.8 Example

	6.3 Read a data object using HTTP
	6.3.1 Synopsis
	6.3.2 Capabilities
	6.3.3 Request header
	6.3.4 Request message body
	6.3.5 Response headers
	6.3.6 Response message body
	6.3.7 Response status
	6.3.8 Examples

	6.4 Update a data object using HTTP
	6.4.1 Synopsis
	6.4.2 Capabilities
	6.4.3 Request headers
	6.4.4 Request message body
	6.4.5 Response header
	6.4.6 Response message body
	6.4.7 Response status
	6.4.8 Examples

	6.5 Delete a data object using HTTP
	6.5.1 Synopsis
	6.5.2 Capability
	6.5.3 Request headers
	6.5.4 Request message body
	6.5.5 Response headers
	6.5.6 Response message body
	6.5.7 Response status
	6.5.8 Example


	7 Container object resource operations using HTTP
	7.1 Overview
	7.2 Create a container object using HTTP
	7.2.1 Synopsis
	7.2.2 Capability
	7.2.3 Request headers
	7.2.4 Request message body
	7.2.5 Response headers
	7.2.6 Response message body
	7.2.7 Response status
	7.2.8 Example

	7.3 Read a container object using HTTP
	7.4 Update a container object using HTTP
	7.5 Delete a container object using HTTP
	7.5.1 Synopsis
	7.5.2 Capability
	7.5.3 Request headers
	7.5.4 Request message body
	7.5.5 Response headers
	7.5.6 Response message body
	7.5.7 Response status
	7.5.8 Example

	7.6 Create (POST) a new data object using HTTP
	7.6.1 Synopsis
	7.6.2 Capabilities
	7.6.3 Request headers
	7.6.4 Request message body
	7.6.5 Response header
	7.6.6 Response message body
	7.6.7 Response status
	7.6.8 Examples


	8 Data object resource operations using CDMI
	8.1 Overview
	8.1.1 Data object metadata
	8.1.2 Data object consistency
	8.1.3 Data object representations

	8.2 Create a data object using CDMI
	8.2.1 Synopsis
	8.2.2 Delayed completion of create
	8.2.3 Capabilities
	8.2.4 Request headers
	8.2.5 Request message body
	8.2.6 Response headers
	8.2.7 Response message body
	8.2.8 Response status
	8.2.9 Examples

	8.3 Read a data object using CDMI
	8.3.1 Synopsis
	8.3.2 Capabilities
	8.3.3 Request headers
	8.3.4 Request message body
	8.3.5 Response headers
	8.3.6 Response message body
	8.3.7 Response status
	8.3.8 Examples

	8.4 Update a data object using CDMI
	8.4.1 Synopsis
	8.4.2 Capabilities
	8.4.3 Request headers
	8.4.4 Request message body
	8.4.5 Response header
	8.4.6 Response message body
	8.4.7 Response status
	8.4.8 Examples

	8.5 Delete a data object using CDMI
	8.5.1 Synopsis
	8.5.2 Capability
	8.5.3 Request header
	8.5.4 Request message body
	8.5.5 Response headers
	8.5.6 Response message body
	8.5.7 Response status
	8.5.8 Example


	9 Container object resource operations using CDMI
	9.1 Overview
	9.1.1 Container metadata
	9.1.2 Reserved container names
	9.1.3 Container object addressing
	9.1.4 Container object representations

	9.2 Create a container object using CDMI
	9.2.1 Synopsis
	9.2.2 Delayed completion of create
	9.2.3 Capabilities
	9.2.4 Request headers
	9.2.5 Request message body
	9.2.6 Response headers
	9.2.7 Response message body
	9.2.8 Response status
	9.2.9 Examples

	9.3 Read a container object using CDMI
	9.3.1 Synopsis
	9.3.2 Capabilities
	9.3.3 Request headers
	9.3.4 Request message body
	9.3.5 Response headers
	9.3.6 Response message body
	9.3.7 Response status
	9.3.8 Examples

	9.4 Update a container object using CDMI
	9.4.1 Synopsis
	9.4.2 Delayed completion of snapshot
	9.4.3 Capabilities
	9.4.4 Request headers
	9.4.5 Request message body
	9.4.6 Response header
	9.4.7 Response message body
	9.4.8 Response status
	9.4.9 Examples

	9.5 Delete a container object using CDMI
	9.5.1 Synopsis
	9.5.2 Capability
	9.5.3 Request header
	9.5.4 Request message body
	9.5.5 Response headers
	9.5.6 Response message body
	9.5.7 Response status
	9.5.8 Example

	9.6 Create (POST) a new data object using CDMI
	9.6.1 Synopsis
	9.6.2 Delayed completion of create
	9.6.3 Capabilities
	9.6.4 Request headers
	9.6.5 Request message body
	9.6.6 Response headers
	9.6.7 Response message body
	9.6.8 Response status
	9.6.9 Examples

	9.7 Create (POST) a new queue object using CDMI
	9.7.1 Synopsis
	9.7.2 Delayed completion of create
	9.7.3 Capabilities
	9.7.4 Request headers
	9.7.5 Request message body
	9.7.6 Response headers
	9.7.7 Response message body
	9.7.8 Response status
	9.7.9 Example


	10 Domain object resource operations using CDMI
	10.1 Overview
	10.1.1 Domain object metadata
	10.1.2 Domain object summaries
	10.1.3 Domain object membership
	10.1.4 Domain usage in access control
	10.1.5 Domain object representations

	10.2 Create a domain object using CDMI
	10.2.1 Synopsis
	10.2.2 Capabilities
	10.2.3 Request headers
	10.2.4 Request message body
	10.2.5 Response headers
	10.2.6 Response message body
	10.2.7 Response status
	10.2.8 Example

	10.3 Read a domain object using CDMI
	10.3.1 Synopsis
	10.3.2 Capabilities
	10.3.3 Request headers
	10.3.4 Request message body
	10.3.5 Response headers
	10.3.6 Response message body
	10.3.7 Response status
	10.3.8 Examples

	10.4 Update a domain object using CDMI
	10.4.1 Synopsis
	10.4.2 Capability
	10.4.3 Request headers
	10.4.4 Request message body
	10.4.5 Response header
	10.4.6 Response message body
	10.4.7 Response status
	10.4.8 Example

	10.5 Delete a domain object using CDMI
	10.5.1 Synopsis
	10.5.2 Capability
	10.5.3 Request header
	10.5.4 Request message body
	10.5.5 Response headers
	10.5.6 Response message body
	10.5.7 Response status
	10.5.8 Example


	11 Queue object resource operations using CDMI
	11.1 Overview
	11.1.1 Queue object metadata
	11.1.2 Queue object addressing
	11.1.3 Queue object representations

	11.2 Create a queue object using CDMI
	11.2.1 Synopsis
	11.2.2 Delayed completion of create
	11.2.3 Capabilities
	11.2.4 Request headers
	11.2.5 Request message body
	11.2.6 Response headers
	11.2.7 Response message body
	11.2.8 Response status
	11.2.9 Examples

	11.3 Read a queue object using CDMI
	11.3.1 Synopsis
	11.3.2 Capabilities
	11.3.3 Request headers
	11.3.4 Request message body
	11.3.5 Response headers
	11.3.6 Response message body
	11.3.7 Response status
	11.3.8 Examples

	11.4 Update a queue object using CDMI
	11.4.1 Synopsis
	11.4.2 Capability
	11.4.3 Request headers
	11.4.4 Request message body
	11.4.5 Response header
	11.4.6 Response message body
	11.4.7 Response status
	11.4.8 Examples

	11.5 Delete a queue object using CDMI
	11.5.1 Synopsis
	11.5.2 Capability
	11.5.3 Request header
	11.5.4 Request message body
	11.5.5 Response headers
	11.5.6 Response message body
	11.5.7 Response status
	11.5.8 Example

	11.6 Enqueue a new queue value using CDMI
	11.6.1 Synopsis
	11.6.2 Capabilities
	11.6.3 Request headers
	11.6.4 Request message body
	11.6.5 Response headers
	11.6.6 Response message body
	11.6.7 Response status
	11.6.8 Examples

	11.7 Delete a queue object value using CDMI
	11.7.1 Synopsis
	11.7.2 Capability
	11.7.3 Request header
	11.7.4 Request message body
	11.7.5 Response headers
	11.7.6 Response message body
	11.7.7 Response status
	11.7.8 Examples


	12 Capability object resource operations using CDMI
	12.1 Overview
	12.1.1 Cloud storage system-wide capabilities
	12.1.2 Storage system metadata capabilities
	12.1.3 Data system metadata capabilities
	12.1.4 Data object capabilities
	12.1.5 Container capabilities
	12.1.6 Domain object capabilities
	12.1.7 Queue object capabilities
	12.1.8 Capability object representations

	12.2 Read a capabilities object using CDMI
	12.2.1 Synopsis
	12.2.2 Capability
	12.2.3 Request headers
	12.2.4 Request message body
	12.2.5 Response headers
	12.2.6 Response message body
	12.2.7 Response status
	12.2.8 Examples


	13 Exported protocols
	13.1 Overview
	13.2 Exported protocol structure
	13.2.1 Mapping names from CDMI to another protocol
	13.2.1.1 Capabilities
	13.2.1.2 Domains
	13.2.1.3 Caching
	13.2.1.4 Groups
	13.2.1.5 Synopsis

	13.2.2 Administrative users
	13.2.3 User and groupname mapping syntax and evaluation rules

	13.3 Discovering and mounting containers via foreign protocols
	13.4 NFS exported protocol
	13.5 CIFS exported protocol
	13.6 OCCI exported protocol
	13.7 iSCSI export modifications
	13.7.1 Read container
	13.7.2 Create and update containers
	13.7.3 Modify an export

	13.8 WebDAV exported protocol

	14 CDMI snapshots
	15 Serialization/deserialization
	15.1 Overview
	15.2 Exporting serialized data
	15.3 Importing serialized data
	15.3.1 Canonical format
	15.3.2 Example JSON canonical serialized format


	16 Metadata
	16.1 Access control
	16.1.1 ACL and ACE structure
	16.1.2 ACE types
	16.1.3 ACE who
	16.1.4 ACE flags
	16.1.5 ACE bit masks
	16.1.6 ACL evaluation
	16.1.7 Example ACE mask expressions
	16.1.8 Canonical format for ACE hexadecimal quantities
	16.1.9 JSON format for ACLs

	16.2 Support for user metadata
	16.3 Support for storage system metadata
	16.4 Support for data system metadata
	16.5 Support for provided data system metadata
	16.6 Metadata update operations

	17 Retention and hold management
	17.1 Introduction
	17.2 Retention management disciplines
	17.3 CDMI retention
	17.3.1 Overview
	17.3.2 Examples

	17.4 CDMI hold
	17.4.1 Overview
	17.4.2 Examples

	17.5 CDMI auto-deletion
	17.6 Retention security considerations

	18 Scope specification
	18.1 Introduction
	18.2 Examples
	18.3 Query matching expressions

	19 Results specification
	19.1 Introduction
	19.2 Examples

	20 Logging
	20.1 Overview
	20.2 Object logging
	20.3 Security logging
	20.4 Data management logging
	20.5 Logging queues
	20.6 Logging security considerations

	21 Notification queues
	21.1 Overview
	21.2 Required metadata
	21.3 System-created metadata

	22 Query queues
	22.1 Overview
	22.2 Required metadata
	22.3 System-created metadata
	22.4 Extending CDMI query

	Annex A (informative) Extensions
	A.1 Overview
	A.2 Summary metadata for bandwidth
	A.2.1 Overview
	A.2.2 Changes to CDMI 1.1

	A.3 Expiring Access Control Entries (ACEs)
	A.3.1 Overview
	A.3.2 Changes to CDMI 1.1

	A.4 Group storage system metadata
	A.4.1 Overview
	A.4.2 Changes to CDMI 1.1

	A.5 Versioning
	A.5.1 Overview
	A.5.2 Changes to CDMI 1.1

	Bibliography

	Blank Page



