International

Standard

ISO/IEC,23092-2
Information technology — Genomic Third edition
information representation — 2024-03

Part 2:
Coding of genomic information

Technologies dp l'information — Représentation des informations
génomiques —

Partie 2: Codage des informations génomiques

Reference number
ISO/IEC 23092-2:2024(en)

© ISO/IEC 2024

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 o Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

© ISO/IEC 2024 - All rights reserved

ii

https://www.iso.org
https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Contents Page
FFOTE@WOTM........o. et vii
IIUETO@UICEIONt viii
1 SCOPI@ ...tk 1
2 NOTTNATIVE TEEETEIICESocoo ettt 1
3 Terms and definitions..
4 ADDIEVIATEMA TOITIISoooo et
5 COMVEIIEIOIIS ...tk
5.1 GOTICT AL
5.2 | Arithmetic operators..
5.3 | Logical operators.....
5.4 Relational operators....
5.5 | Bit-wise operators......
5.6 Assignment operators.....)
5.7 [RANGE NOATION .ottt L9 e
5.8 Mathematical fUNCHIONS. ... C)q/ ... 8
59 Order of operation precedence.........
5.1 Variables, syntax elements and tables
5.11 Text description of logical operators......
5.1 PrOCESSES oo e
6 Synfax and SeMANTICS ...
6.1 Method of specifying syntax in tabular form..,.
6.2 Bt OTA@ITIIE e Mag et
6.3 | Specification of syntax functions and da@pes ... 13
6.4 SeMANTICS ..o Qs ————— - 14
7 Dath structures.........y \\.0
7.1 .
7.2 Data unit....en D
7.3 Raw reference.........cooce \Q
7.3.1 General.......... -
7.3.2 Syntaxand sen&s@tics
7.4 Parameter set...... CJ ...
74.1 Syntaxa semantics
7.4.2 Encod'@%arameters :
7.5 Access unit.@ .. 23
751 S X AN SEIMIATNIEICS oot e 24
7.5.2 Qggs UTUE B DS e e 27
8 D S T I P OIS .. 28
9 SEQUENCITIZ F@AUS ...t
91 \ eneral
9.2 SUPPOTEEA SYIIDOLS ..
9.3 Pailr@a-@NI0 TEAMS ..o
9.4 Reverse-complement reads
9.5 DALA CIASSES ..o
9.6 ATTGIIEA AAEA e
0.7 UNANGNEA AATA. e
10 DI@COMIING PIOCESS ...
10.1 General
10.2 dAtASET_tYPE = 0 OF Lo
T0.2.1 GOIIETAL oo
10.2.2 References padding
10.2.3 TYPE 1 AU (CIASS P oo

© ISO/IEC 2024 - All rights reserved

iii

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

11

12

ISO/IEC 23092-2:2024(en)

10.2.4 TYPE 2 AU (CIASS I oot 38
10.2.5 TYPE 3 AU (CIASS M) oot 38
10.2.6 Type 4 AU (ClassI)
10.2.7 Type 5 AU (Class HM)
10.2.8 TYPE 6 AU (CIASS U oot et 41
10.3 dataset_type =2
10.3.1 General
10.3.2
10.3.3
10.3.4
10.3.5
T0.3.6 TYPE 6 AU ..ottt et 44
10. GeNnomMiC deSCIID OIS i 44
10.4.1
10.4.2
10.4.3
10.4.4
10.4.5
10.4.6
10.4.7
10.4.8
10.4.9
10.4.10 pair........
10.4.11 mscore..

10.4.14 rtype
10.4.15 TrOUP oo

10.4.18 rftp
10.4.19 rftt

10.4.20 tokentype descriptors ..:\Q;

10.5 SeqUENCEe....ee N
10.5.1 General........ \,o ...
10.5.2 Aligned reads (CHISSes P, N, M, [, HM)..c..ccooon
10.5.3 Unmapped r (Class HM, U).......ccccc.

10.4 e-cigar .

10.6.1 Syntax
10.6.2 Deco @ process for the first alignment.
10.6.3 Decoding process for other alignments....
10.6.4 €NCe tranSFOIMAtION ...

Re
11.
11.
11.

General
11.3.2 Supported Algorithms............c.c.....
11.3.3 Reference transformation

11:3:5 LOCAL @SSEIMIDLY ...
11.3.6 GLODAL @SSEIMIDLY ...

Block payload parsing process
12.1 General....n,

12.2 ENCOAING MOAE 0.ttt
B T 1<) Y=l) T2 N 172 U (0) 0 K<
12.3.1 General

12.3.2 BINATY (B e
© ISO/IEC 2024 - All rights reserved

iv

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

13

12.4

ISO/IEC 23092-2:2024(en)

12.3.3 Truncated UNATY [TU) e
12.3.4 Exponential 8010mMD (EG) ...
12.3.5 Truncated exponential golomb (TEG)
12.3.6 Signed truncated exponential golomb (STEG)
12.3.7 Split unit-wise truncated UNATY (SUTU ..o
12.3.8 Signed split unit-wise truncated unary (SSUTU)
12.3.9 Double truncated unary (DTU)Y ...

12.3.10 Signed double truncated unary (SDTU) ...
DECOAET CONMFIGUIATION ...
12.4.1 Sequences and quality values
12,42 SUPPOTE VAIUES ..ot
12.4.3 CABAC DINATTZATIONS ..ot
12.4.4 Transformation parameters

12.5

12.7

12.9

L0 1010 1018 {0 g 11 X OO OO

13.1]
13.7

12.4.5 Msar descriptor and read identifiers
12.4.6 State variables ...
Initialization process for context variables...
Arithmetic decoding engine.........c :
12.6.1 INItIAlIZATION ..o e
12.6.2 Arithmetic deCOdINg PIrOCESS ... g b e
Decoding process for sequence descriptors..
12.7.1 General ..o
12.7.2 Block payload decoding process......
BSC decoding process...........: .
12.8.1 deCOAING PrOCESS. .o S e e e

(03 013 = OO o
1Y/ 30 O =Yoo O S
13.2.1 General ...

13.2.2 number_of_template_segments
13.2.3 number_of record_segments... (..
13.2.4 number_of_alignments..........5...
13.2.5 clasS_ID ..o .
13.2.6 TEAA_GIOUP_LIEI .o N et
BT =TT =Y TV o S
13.2.8 read_1_first..
13.29 seq_ID...
13.2.10 as_depth...
13.2.11 read_len .
13.2.12 qv_depthx............ .
S /0 G 3 == o (%=1 0 TSI =) o
ST T == U 0 =1 o [
13.2.15ead_group...
13.2.16)sequence
1322017 QUALIEY_VATUES ..ot

13:2.18 mapping_pos...
43219 nr‘irrnr_]nh ____________

13.3

o
13.2.20 ecigar_string....
13.2.21reverse_comp...
13.2.22 mapping_score.....
13.2.23 SPHE_AIIZNIMIEIIE ..
13224 A@IEA ..o
13.2.25split_pos......
13.2.26 split_seq_ID..
13.2.27flags
13.2.28 more_alignments ..
13.2.29 next_pos ...
130230 NEXE_SEO_ID et
INItIALIZATION PIOCESS .ot

© ISO/IEC 2024 - All rights reserved

\%

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Annex A (informative) Tokenization of reads identifiers............ e 150
Annex B (informative) Mapping QUALIEY ... 152
Annex C (informative) Inverse binarization eXamples............. s 153
Annex D Block Sorting, Lossless Data COMPI@SSION ... 157

© ISO/IEC 2024 - All rights reserved

Vi

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Foreword

[SO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations,

governmen

tal and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of document should be noted. This document was drafted in accordance with the editorial rules of the 1ISO/

[EC Directi

ISO and IE
use of (a) 1
claimed pa
received ng
are caution
database 4
responsible

Any trade
constitute :

For an expl
related to

Organizatign (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/forsg

In the IEC, s

This documnent was prepared by Joint TechnicalCommittee ISO/IEC JTC 1, Information

Subcommit]

This third
technically

The main c
— inclusi
inclusi

inclusi

inclusi
inform

TS, Part 2 (S6€ WWW.IS0.0rg/dTECHVES O WWWIEC.CIT/INEMDErs _EXPerts/Tefdocs):

C draw attention to the possibility that the implementation of this document(may
atent(s). ISO and IEC take no position concerning the evidence, validity or-applicah
fent rights in respect thereof. As of the date of publication of this document, ISO
tice of (a) patent(s) which may be required to implement this documentCHewever, i
ed that this may not represent the latest information, which may be-ebtained from
vailable at www.iso.org/patents and https://patents.iec.ch. ISO*and IEC shall n
for identifying any or all such patent rights.

name used in this document is information given for the/¢onvenience of users an
in endorsement.

hnation of the voluntary nature of standards, the meahing of ISO specific terms and ¢
conformity assessment, as well as information—about ISO's adherence to the W

o

involve the
ility of any
nd IEC had
plementers
the patent
ot be held

d does not

pXpressions
forld Trade
word.html.

ee www.iec.ch/understanding-standards.

tee SC 29, Coding of audio, picture, multimiedia and hypermedia information.

revised.
hanges are as follows:

bn of new low-complexity’entropy coders in subclause 7.4.2.2 (Table 9): LZMA, ZSTD,

n of new indexed entropy coder in subclause 7.4.2.2 (Table 9): PROCRUSTES;

n of the specification of BSC decoding process in subclause 12.8 and Annex D;

bn of a iew flag (extended_alignment_info) in subclause 13.2.1 to represent split
htion inthe compressed bitstream.

A list of all

technology,

edition cancels and replaces the“second edition (ISO/IEC 23092-2:2020), whiclh has been

BSC;

alignment

parts in the ISO/IEC 23092 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards

body. A complete

listing of these bodies

can be found at www.iso.org/members.html

and

www.iec.ch/national-committees.

© ISO/IEC 2024 - All rights reserved

vii

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
http://www.iso.org/patents
https://patents.iec.ch/iec/pa.nsf/pa_h.xsp?v=0
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Introduction

The advent of high-throughput sequencing (HTS) technologies has the potential to boost the adoption of
genomic information in everyday practice, ranging from biological research to personalized genomic
medicine in clinics. As a consequence, the volume of generated data has increased dramatically during the
last few years, and an even more pronounced growth is expected in the near future.

At the moment genomic information is mostly exchanged through a variety of data formats, such as
FASTA/FASTQ for unaligned sequencing reads and SAM/BAM/CRAM for aligned reads. With respect to
such formats, the ISO/IEC 23092 series provides a new solution for the representation and compression of

genome sequencing information by:

— Specifyinganabstractrepresentationof the sequencingdataratherthanaspeeifieformatwith its direct
implenjentation.

— Beingdesigned atatime point when technologies and use cases are more mature. This permitsaddressing
one linjitation of the textual SAM format, for which the incremental ad-hoc addition of features followed
along the years, resulting in an overall redundant and suboptimal format which was unpnecessarily
complifated.

— Separating free-field user-defined information with no clear semantics from the gemomic data

repres
differe

Allowi

entation. This allows a fully interoperable and automatic eXehange of informatia
t data producers.

ng multiplexing of relevant metadata information with ‘the data since data and m

partitipned at different conceptual levels.

Follow

ng a strict and supervised development processwhich has proven successful in the 13

in the dlomain of digital media for the transport format;the file format, the compressed rep

and thg

The ISO/IE(
of novel, int|

Consist

application program interfaces.

eroperable, solutions in the field of genomic information processing. In particular it offer

n between

btadata are

st 30 years
resentation

23092 series provides the enabling techniglogy that will allow the community to create aj ecosystem

S:

ent, general and properly designed.format definitions and data structures to store seqiiencing and

alignment information. A robust framework which can be used as a foundation to implemeht different
compreéssion algorithms.

— Speed and flexibility in the selective access to coded data, by means of newly designed data clustering
and opfimized storage methodologies.

— Low lgtency in data transmission and consequent fast availability at remote locationd, based on
transnlission protocelsinspired by real-time application domains.

— Built-in} privacy and protection of sensitive information, thanks to a flexible framework which allows
custonjizable:secured access at all layers of the data hierarchy.

— Reliability_of the technology and interoperability among tools and systems, owing to the prpvision of a
procedure to assess conformance to this document on an exhaustive dataset.

Support to the implementation of a complete ecosystem of compliant devices and applications, through

the availability of a normative reference implementation covering the totality of the ISO/IEC 23092 series.

The fundamental structure of the ISO/IEC 23092 series data representation is the genomic record. The
genomic record is a data structure consisting of either a single sequencing read, or a paired sequencing read,
and its associated sequencing and alignment information; it may contain detailed mapping and alignment
data, a single or paired read identifier (read name) and quality values.

Without breaking traditional approaches, the genomic record introduced in the ISO/IEC 23092 series
provides a more compact, simpler and manageable data structure grouping all the information related to a
single DNA template, from simple sequencing data to sophisticated alignment information.

© ISO/IEC 2024 - All rights reserved

viii

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

The genomic record, although it is an appropriate logic data structure for interaction and manipulation of
coded information, is not a suitable atomic data structure for compression. To achieve high compression
ratios, it is necessary to group genomic records into clusters and to transform the information of the same
type into sets of descriptors structured into homogeneous blocks. Furthermore, when dealing with selective
data access, the genomic record unit is too small to allow effective and fast information retrieval.

For these reasons, this document introduces the concept of access unit, which is the fundamental structure
for coding and access to information in the compressed domain.

The access unit is the smallest data structure that can be decoded by a decoder compliant with this
document. An access unit is composed of one block for each descriptor used to represent the information of
its genomic records; therefore, a block payload is the coded representation of all the data of the same type

(i.e.a descr

iptor) in a cluster.

In addition
data classe
sequences;
classificat

i
In fact acc%ss units inherit a specific data characterization (e.g. perfect matches ineldss P, subg

class M, in
thus consti
many diffet

Access unif

to clusters of genomic records compressed into access units, reads are further clas
: five classes are defined according to the result of their alignment against one gror
the sixth class contains either reads that could not be mapped or raw sequencin
n of sequencing reads into classes enables the development of powerful,seléctive ¢

els in class I, half-mapped reads in class HM) from the genomic records composing
fute a data structure capable of providing powerful filtering capability for the efficien
ent use cases.

s are the fundamental, finest grain data structure in terms of content protection ai

bified in six
e reference
b data. The
lata access.
titutions in
¢ them, and
L support of

nd in terms

of metadatsq association. In other words, each access unit can be individually and independently protected.
Figure 1 shows how access units, blocks and genomic records relate to each other in the ISOYIEC 23092
series data|structure.
| Acqcess Unit I
‘ Accegs Unit P
Access Ynit M - o° Cluster — | i
Accesq Unit Protection and [Genomic | &t Genomic | [Genomic |
Metadata | Record | Record | ' |
| YL __ {______}____REC_“_"___ L,
: Blodk I Header I I ’ Desc. pos value I ’ Desc. pos value | memmmnns | | :
e — == S === - e T
e Rttt ettt b fFo———— A Tm==—————— =
: Blodk : Header } : Desc: pair value I I ‘ Desc. pair value ‘ [T : :
L e B REEEE LSS e 440909 i
(% | | | | |
3 . | | . | | . |
T LK H | | H | coooooooo | . |
H		H	[H	
"		"		*
S R NTE——======x oo Ee—======= I
I Blogk : Header : I| Desc. mmtype value |l || Desc. mmtypevalue || sssssssas || Desc. mmtype value |l | .
b e o e m —— —— — — |
T | —
L . ________________ H

© ISO/IEC 2024 - All rights reserved

ix

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Dataset Group

M

I Dataset

Dataset

Dataset

[Descriptor Stream |

I Dataset Protection and Metadata I

| R =1
[) Descriptor Stream | |
l| Protection and

g . 1

| Descriptor Stream | |
| Protection and |
|

:_Descriptor Stream —i

| | Descriptor Stream-i |
Il Protection and |

|
|
| Metadata |} I Metadata _ L Metadata |

I mEmEEEE T e——— N T T T ——— =

| A Unit I Block || Block | vennnann | Block |l

| Aceess _!| (Read Descriptors)|| ||(Read Descriptors)|| | [(Read Descriptors)| | |

e — e e e e e |_| _________ i_____'r ________ _1"

v | o pa T Block . M I B0k 11

: Access Unit |Access Ur'}}'t Protectlonl : fReead I.Bl]\,(l(:,ll(;ytvlo) ! : {Read nnoo(itﬂ'?fnrc) T : (Read n.iiri.pmw) ! !

T T -l

H | . H
ammmmmEn I . l I . : LLLLLELLIN 0 (LQ I
[- | . | e

L [t Uy [— |_| _________ 1—————7————1‘1—. ==

IAC(ess Unit |Access Unit Protection | Block I Block | | Block] (—

| and Metadata | [|(Read Descriptors)|| ||(Read Descriptors)|| **"**"** || (ReadDescriptors) |l ||[__

iy i —_—_—_—_—_—_—_—_—_:—lr======= e it Ty -0 Eguppp——

Figure 2 — High-level data structure: datasets and dataset group

A dataset i a coded data structure containing headers and one or mere access units. Typical datpsets could,
for examplg, contain the complete sequencing of an individual, or apertion of it. Other datasets cquld contain
for examplg¢ a reference genome or a subset of its chromosomes: Datasets are grouped in datasef groups, as
shown in Flgure 2.
According fo the ISO/IEC 23092 series, the compressed sequencing data can be multiplexed into a bitstream
suitable for] packetization for real-time transport overtypical network protocols. In storage use dases, coded
data can bg encapsulated into a file format with thé possibility to organize blocks per descriptofr stream or
per access Winit, to further optimize the selective:access performance to the type of data access required by

the differer
a transport

The 1SO/IE
representa

identical dqg

stream into a file format and vice versa.

tapplication scenarios. The ISO/IEG23092 series further provides a reference proces

C 23092 series defines the-syntax and semantics of the compressed genome seque
ion and the deterministic decoding process that reconstructs the contents of datasets. The
decoding process is fully specified”such that all decoders that conform to this document w
coded output. A simplified diagram of the decoding process is shown in Figure 3.

5 to convert

encing data

ill produce

© ISO/IEC 2024 - All rights reserved

X

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

Data
Units

ISO/IEC 23092-2:2024(en)

Raw
Reference|

Data unit decoder

Access
Units

Access unit decoder

Block
payload 0

Block
payload 1

Block
payload N-4
Block
payload N-3

Block
payload N-2

Block
payload N-1

d AU Type 1 (P) |
escriptor N
Block payload parser |Tas10>| Descriptor decoder

descriptor
Block payload parser m’l

Descriptor decoder

i — _
Block payload parser % Descriptor decoder

descript
Block payload parser l%rmbl Descriptor decoder |
AU Type 2 [N)_:

descript
Block payload parser l%}:;_}l Descriptor decoder
AU Type 3 (M)

dataset
type
0 1| mMPEGG
reference
dataset
type
1 MPEG-G
"| reference
dataset
type
2

Raw

Descriptors assembler

Parameter

Parameter set I'

set

Block
payload N

reference

Block payload parser

Descriptor decoder

s

© ISO/IEC 2024 - All rights reserved

Xi

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

International Standard

ISO/IEC 23092-2

:2024(en)

Information technology — Genomic information
representation —

Part 2:

Coding of genomic information

1 Scope

This docun

ent provides specifications for the representation of the following types of genomic information:

— unaligmed sequencing reads including read identifiers and quality values;

— aligned

referern

2 Norm

The followi
requireme
the latest e

ISO/IEC 10

ISO/IEC 23
and storags

3 Term
For the pur
ISO and IE(
[SO On

IEC Ele

31

sequencing reads including read identifiers and quality values;

ce sequences.

ative references

g documents are referred to in the text in such a way that some or all of their content
ts of this document. For dated references, only the.edition cited applies. For undated
lition of the referenced document (including any ‘amendments) applies.

b4.6, Information technology — Universal ceded character set (UCS)

092-1:2020, Information technology - Genomic information representation — Part 1
of genomic information

5 and definitions
boses of this document, the terms and definitions given in ISO/IEC 23092-1 and the follg

maintain terminelegy databases for use in standardization at the following addressg

ine browsing platform: available at https://www.iso.org/obp

ctropediai@vailable at https://www.electropedia.org/

alignment

constitutes
references,

: Transport

wing apply.

S:

J D 9011 pa|

informatio

A | rili +1 3 lo e o b ot I+ 3 11 ;. 3
I'UcToCl lUlllS CIIC SIITTIIar lLy UTivvelil da DU\{UCIIL«C LL_)’ Plball_y CloCllMCllbllly rcuu LJ-LUJJ a1l

sequence (for instance, a reference genome)

areference

Note 1 to entry: An alignment is described in terms of a position within the reference, the strand of the reference, and
a set of edit operations (matches, mismatches, insertions and deletions, clipping of the sequence ends and splicing
information) needed to turn the first sequence into the second.

© ISO/IEC 2024 - All rights reserved

1

https://www.iso.org/obp/ui
https://www.electropedia.org/
https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

3.2

CIGAR string

CIGAR

textual way of representing an alignment (3.1)

Note 1 to entry: Several definitions have been used by different programs; the one referred to here is the one used
in the SAM format. It encodes a set of edit operations (matches, mismatches, insertions and deletions, clipping of the
sequence ends and splicing information) needed to turn the sequencing read into the reference.

3.3

dataset

compression unit containing one or more of: reference sequences; sequencing reads (3.28); and alignment
(3.1) information

Note 1 to enfry: Datasets shall be as specified in ISO/IEC 23092-1.

3.4
deletion

contiguous|removal of one or more bases from a genomic sequence

3.5
E-CIGAR

extended C[GAR syntax specified as a superset of the CIGAR syntax

Note 1 to en
and splice st

3.6
edit opera
modificatio

3.7
FASTA
GIR that ing

ry: Among other things, E-CIGAR enables the unambiguous representation of substitutions, g
randedness.

fion
n of a sequence of nucleotides (3.20) by means of asubstitution, deletion (3.4), insertion (

ludes a name and a nucleotide (3.20) sequence for each sequencing read (3.28)

Note 1 to eI)try: Additional information is usually encoded in the read identifier by bioinformatics tg

database in

3.8
FASTQ
GIR that ing

39

first end
end 1

read 1
first segme

rmation, and base calling information).

ludes FASTA (3.7) and quality values (3.22)

nt of apaired-end template (3.33)

Note 1 to en

i.e. the n-th read

3.10

g Ulumina platforms usually store first and second ends in two separate files and in the sg
= Lo £ 0 Ha o hao n = aq = Lo a i A e a NG Lo - aa

A] = can A o o

pliced reads

B.18) or clip

ols (such as

me order —

ate.

genomic descriptor

descriptor

element of the syntax used to represent a feature of a genomic sequencing read (3.28) or associated
information such as alignment (3.1) information or quality values (3.22)

3.11
genomic information representation
way to describe a sequence and some information associated with it

Note 1 to entry: Which information is represented varies depending on the GIR.

© ISO/IEC 2024 - All rights reserved

2

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

3.12

ISO/IEC 23092-2:2024(en)

genomic record

record

data structure representing a tuple (3.34) optionally associated with alignment (3.1) information, read
identifier (3.24) and quality values (3.22)

3.13

genomic record index
position of a genomic record in the sequence of genomic records (3.12) encoded in an access unit

3.15

genomic reference

reference

collection
Note 1 to en

3.16
hard clip
base or set

Note 1 to en

3.17

indel
contiguous
or alternati

Note 1 to en

3.18
insertion
contiguous

3.19

leftmost r¢
leftmost re
sequencing
sequence W

3.20
nucleotide
base

base pair

I rererence sequences

ry: Typical examples are a reference genome or a reference transcriptome.

of bases originally present at either side of a read, and removed from it\following aligs

ry: The bases are no longer present in the sequence of the read.

stretch of nucleotides (3.20) that, when aligning two sequences, are inserted into on
vely deleted from the other, in order to make the two sequences the same

ry: From “insertion or deletion”.

addition of one or more bases into a gengmiic sequence

bad end

hd

read (3.28) generated by a paired-end sequencing run and mapped at a position on th
hich is smaller than thesmapping position of the other read in the pair

monomer of a nucleiciaeid polymer such as DNA or RNA

Note 1 to er

try: Nucleotides are denoted as letters (‘A’ for adenine; ‘C’ for cytosine; ‘G’ for guanine; ‘T’

which only

ceurs/in DNA; and ‘U’ for uracil which only occurs in RNA). The chemical formula for a spe

1ment (3.1)

E sequence,

e reference

for thymine
cific DNA or

RNA molecullenis’given by the sequence of its nucleotides, which can be represented as a string over the

hlphabet (‘A

'C’,’G’, “T’) in the case of DNA, and a string over the alphabet (‘A’, ‘C’, ‘G’, ‘U’) in the case of RNA. Bases with unknown
molecular composition are denoted with ‘N’.

3.21

paired-end read

paired-end

template

tuple (3.34) made of two segments

Note 1 to entry: Typically the segments correspond to the beginning and the end of the same nucleic acid molecule.

© ISO/IEC 2024 - All rights reserved

3

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

3.22

ISO/IEC 23092-2:2024(en)

quality value
quality score
number assigned to each nucleotide (3.20) base call in automated sequencing processes

Note 1 to entry: Quality values express the base-call accuracy, i.e. the probability (or a related measure) for a nucleotide
in the sequence to have been incorrectly determined.

3.23

read group
set of reads having some property in common

3.24
read ident

fier

read heade
read name
text string
SAM (3.26)

Note 1 to er]
encoded by |

3.25

rightmost
sequencing
sequence W

3.26
SAM
GIR thatis

Note 1 to en

Itis represemted in plain ASCII, extensible by users and includes sequence, quality, alignment and analysis

3.27

second end

read 2
second seg

Note 1 to enf
i.e. the n-th 1

3.28
sequencin
read
readout, by
(3.20) extr

hssociated with each sequencing read (3.28) stored in GIRs such as FASTA (3.7),/FAST

try: The read identifier is usually unique within its dataset, and may containyadditional in
pioinformatics tools (such as database information, and base calling information).

read
read (3.28) generated by a paired-end sequencing run and:mapped at a position on th
hich is greater than the mapping position of the other readin the pair

human readable and includes FASTQ plus alignment (3.1) and analysis information

[ry: From “Sequence Alignment/Map format”, SAM originates from the 1000 Genome Sequen|

ment of a paired-end templgte-(3.33)

ry: Sequencing platforms‘usually store first and second ends in two separate files and in the s
ead of the first FASTQfile and the n-th read of the second FASTQ file belong to the same temp

b read

a specifictechnology more or less prone to errors, of a continuous part of a segment of
icted from an organic sample

3.29

@ (3.8) and

ormation as

e reference

cing Project.
nformation.

hme order —
late.

nucleotides

single-en

read

tuple (3.34) made of one segment

3.30
soft clip

soft clipped bases
base or set of bases at either side of the read that have been ignored during the alignment (3.1) process

Note 1 to entry: The bases are still present in the sequence of the read.

© ISO/IEC 2024 - All rights reserved

4

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

3.31

ISO/IEC 23092-2:2024(en)

spliced read
aligned read which, as a consequence of biological splicing, covers non-continuous portions of the reference

genome bei

ng the result of biological splicing

Note 1 to entry: This means the read must come from RNA-sequencing, and contain at least one junction between two

consecutive

3.32

exons.

split alignment
aligned paired-end read (3.21) whose ends are encoded in two different genomic records (3.12)

3.33
template

genomic se

Note 1 to en
only has ong

Huence that is produced by a sequencing machine as a single unit

try: A template can be made of one or more segments (being called single-end sequencing
segment, and paired-end sequencing read when it has two segments — typically’ they capt

beginning and the end of a nucleic acid molecule).

3.34
tuple
collection g

Note 1 to en

3.35
decoded g¢

f one or more segments

ry: Each segment can be: unmapped; mapped once; or mapped more than once.

bnomic descriptor

result of myltiplexing the decoded symbols (3.37) of one or more‘descriptor subsequences (3.36)

3.36
descriptor
ordered col

3.37
decoded sy
value need:s

Note 1 to eq
decoded syn

3.38
transform
ordered col

Note 1 to emtry: The fransformed symbols of one or more transformed subsequences can be multipld

decoded syn
3.39

subsequence
lection of decoded symbols (3.37)

'mbol
bd to reconstruct a descriptor subsequence (3.36)

try: If no inverse subsequenée transformation is applied, the transformed symbol shall be
hbol.

pd subsequence
lection of transformed symbols (3.39)

nbols.

transform

dSymbol

read when it
Lire both the

equal to the

xed to yield

concatenation of one or more decoded subsymbols (3.40)

3.40

decoded subsymbol
output of an inverse subsymbol transformation applied on a transformed subsymbol (3.41)

Note 1 to entry: See subclause 12.7.2.7. If no inverse subsymbol transformation is applied, the decoded subsymbol
shall be equal to the transformed subsymbol.

3.41

transformed subsymbol
decoded cabac subsymbol
atomic value yielded by the cabac decoding process

© ISO/IEC 2024 - All rights reserved

5

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

4 Abbreviated terms

AU access unit

CRPS computed reference parameters set
GIR genomic information representation
LUT look up table

QVPS quality values parameters set

5 Convegntions

5.1 Geng¢ral

This clausd

used throu

bhout this document.

The mathegnatical operators used in this document are similar to those used in the C programmin

However, t
additional
counting c
equivalent

e results of integer division and arithmetic shift operations are-specified more pr
operations are specified, such as exponentiation and reakwvalued division. Num|
bnventions generally begin from 0, e.g., "the first" is equivalent to the 0-th, "the
fo the 1-th, etc.

5.2 Arithhmetic operators

+

xY

~

TM< < Ix

x%y

hddition

ubtraction (as a two-argument operator).6tr negation (as a unary prefix operator)
multiplication, including matrix multiplication

pxponentiation

bpecifies x to the power of y. In other contexts, such notation is used for superscripting n

for interpretation as exponentiation.

nteger division with truncation of the result toward zero
For example, 7 / 4-and -7 / -4 are truncated to 1 and -7 / 4 and 7 / =4 are truncated t

livision in mathematical equations where no truncation or rounding is intended

livision(in mathematical equations where no truncation or rounding is intended

contains the definition of operators, notations, functions, textual conveértions and processes

g language.
bcisely, and

pering and

second" is

otintended

o -1.

fuinmation of f(i) with i taking all integer values from x up to and including y

modulus
Remainder of x divided by y, defined only for integers x and y withx = 0 and y > 0.

© ISO/IEC 2024 - All rights reserved

6

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

5.3 Logical operators

X &&y Boolean logical AND of xand y

x|y Boolean logical OR of x and y

! Boolean logical NOT

x?y:z if xis TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z

5.4 Relational operators

nnnnnnnnn

> 31 cdlll LIIidaIr

> breater than or equal to

< ess than

< ess than or equal to

== pqual to

1= hot equal to

When a relational operator is applied to a syntax element or variable-that has been assigned th¢ value "na"

(not applicable), the value "na" is treated as a distinct value for the syntax element or variablg. The value

"na" is congidered not to be equal to any other value.

5.5 Bit-wise operators

& AND
When operating on integer arguments; operates on a two's complement representation of the
nteger value. When operating on a binary argument that contains fewer bits than angther argu-
ment, the shorter argument is extended by adding more significant bits equal to 0.
DR
IWhen operating on integeratrguments, operates on a two's complement representation of the
nteger value. When operating on a binary argument that contains fewer bits than angther argu-
ment, the shorter argument is extended by adding more significant bits equal to 0.

A exclusive or
When operating on integer arguments, operates on a two's complement representation of the
nteger value: When operating on a binary argument that contains fewer bits than ang¢ther argu-
ment, the shorter argument is extended by adding more significant bits equal to 0.

X>>y *1ght shlft of atwo's complement integer representatlon ofx by y blnary dlgltS This function

It of the

rlght shlft have a value equal to the MSB ofx prlor to the shlft operatlon

X <<y left shift of a two's complement integer representation of x by y binary digits

This function is defined only for non-negative integer values of y. Bits shifted into the LSBs as a
result of the left shift have a value equal to 0.

! not operator returning 1 if applied to 0 and 0 if applied to 1

© ISO/IEC 2024 - All rights reserved

7

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

5.6 Assignment operators

assignment operator

++ increment
i.e, x++is equivalent to x =x + 1; when used in an array index, evaluates to the value of the variable
prior to the increment operation.
- - decrement
i.e., x— —isequivalent to x =x - 1; when used in an array index, evaluates to the value of the variable
prior to the decrement operation.
+= increment by amount specified
i.e, x += 3 is equivalent to x = x + 3, and x += (-3) is equivalent to x = x + (-3).
-= lecrement by amount specified
.., x —= 3 is equivalent to x = x — 3, and x —= (-3) is equivalent to x = x - (-3):
|= compound bitwise OR
5.7 Range notation
X=V.Z x takes on integer values starting from y to z, inclusive, with %, y, and z being integer numbers
and z being greater than y
array[x,y] | sub-array containing the elements of array comprised between position x and|y included
If x is greater than y, the resulting sub-array is€mpty.
5.8 Mathematical functions
Ceil(x) smallest integer greater than or equaltex (D
Floor(x) | largestinteger less than or equalte’x (2)
Log2(x) | base-2logarithm of x (3)
X ; Xx<=
Min(x,y) 3 { 7 (4)
y 5 x>y
X ; Xx>=Yy
Max(x,y) ¥ (5)
Yy 5 X<y
5.9 Ordgr of opération precedence
When the ofrderof precedence in an expression is not indicated explicitly by use of parentheses, the following
rules applylr

Operat

ions of the same precedence are evaluated sequentially from left to right.

Operations of a higher precedence are evaluated before any operation of a lower precedence.

Table 1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates
a higher precedence.

NOTE
document is

the same as used in the C programming language.

© ISO/IEC 2024 - All rights reserved

8

For those operators that are also used in the C programming language, the order of precedence used in this

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 1 — Operation precedence from highest (at top of table) to lowest (at bottom of table)

operations (with operands x, y, and z)

x++", "x
"Ix", "=x" (as a unary prefix operator)
Xy

"xFyhUx Jy" "x sy, %, x%y"

non
’

y
"x +y","x - y" (as a two-argument operator), " z f(i)"

i=x

T << yu’ Y>> yn

"x<y","x<y", "x>y", "x2y

non
’

"X - = y X != y"
"X & y"

"X | yll

llX && yll

<] |y"
"x?y:z"

"X..y"

nX:y

’ X+=YI

X -= yn

5.10 Variables, syntax elements and tables

Syntax elen
(alllower c
The decodi
decoded sy
in regular

In some caj
Such varial
and withoy
are derived
starting wi
mentioning
only used v

In some ca
with their
values. The

hents in the bitstream are represented in bold\type. Each syntax element is described
hse letters with underscore characters), and one data type for its method of coded repr
hg process behaves according to the valtie of the syntax element and to the values of
htax elements. When a value of a syntax element is used in the syntax tables or the tex
i.e., not bold) type.

es the syntax tables may use the values of other variables derived from syntax elem
les appear in the syntax tables, or text, named by a mixture of lower case and upper
t any underscore characters (camel case notation). Variables starting with an upper
for the decoding of the clrrent syntax structure and all depending syntax structure
[th an upper case letter may be used in the decoding process for later syntax structu
the originating Syntax structure of the variable. Variables starting with a lower cag
Fithin the clause.in which they are derived.

Kes, "mnefonic” names for syntax element values or variable values are used inter
numerical values. Sometimes "mnemonic” names are used without any associated
association of values and names is specified in the text. The names are constructed

by its name
esentation.
previously
[, it appears

bnts values.
case letter
case letter
s. Variables
res without
e letter are

changeably
numerical
rom one or
case letter

more grou;rs of letters separated by an underscore character. Each group starts with an upper

: 1oss
and may comtammmnore uppercasSeTeTteTs:

NOTE

The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax functions.
These functions are specified in Clause 6 and assume the existence of a bitstream pointer with an indication
of the position of the next bit to be read by the decoding process from the bitstream. Syntax functions are
described by their names, which are constructed as syntax element names and end with left and right
round parentheses including zero or more variable names (for definition) or values (for usage), separated by

commas (if

more than one variable).

Functions that are not syntax functions (including mathematical functions specified in subclause 5.2) are
described by their names, which start with an upper case letter, contain a mixture of lower and upper case

© ISO/IEC 2024 - All rights reserved

9

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

letters without any underscore character, and end with left and right parentheses including zero or more
variable names (for definition) or values (for usage) separated by commas (if more than one variable).

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays
can either be syntax elements or variables. Subscripts or square parentheses are used for the indexing of
arrays. In reference to a visual depiction of a matrix, the first subscript is used as a row (vertical) index
and the second subscript is used as a column (horizontal) index. The indexing order is reversed when using
square parentheses rather than subscripts for indexing. Thus, an element of a matrix s at horizontal position
x and vertical position y may be denoted either as s[x][y] or as s,,. A single column of a matrix may be
referred to as a list and denoted by omission of the row index. Thus, the column of a matrix s at horizontal
position x may be referred to as the list s[x].

A specification of values of the entries in rows and columns of an array may be denoted by { {...} {...} }, where

each inner
the rows af
s[0][0]is

Binary not
'01000001"
the least sig

Hexadecim
notation wij
having only

Numerical

A value eqy
value differ

5.11 Text
In the text,

if(conditio
statems

else if(conglition 1)

stateme

else /* info
statement

may be des
... as follow

If cond

paiT of brackets specifies The values of The efements Wit a row I INcreasing cotum
e ordered in increasing row order. Thus, setting a matrix s equalto {{16} {49 }} sg
setequalto1,s[1][0]issetequalto6,s[0][1]issetequalto4,ands[1][17]isset

ation is indicated by enclosing the string of bit values by single quote, marks. F
represents an eight-bit string having only its second and its last bits (counted from
bnificant bit) equal to 1.

hl notation, indicated by prefixing the hexadecimal number by "0x, may be used inste

its second and its last bits (counted from the most to the least'significant bit) equal t
alues not enclosed in single quotes and not prefixed by<'0x" are decimal values.

al to 0 represents a FALSE condition in a test statement. The value TRUE is represel
ent from zero.

description of logical operators
a statement of logical operations as would be described mathematically in the followi

h ()
nt 0

nt1l

Fmative remark on remaining condition */
h

cribed in thefollowing manner:
5 / ... thefollowing applies:

tion'0, statement 0

order and
ecifies that
equal to 9.

r example,
the most to

hd of binary

1en the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string

b 1.

hted by any

ng form:

Otherwise, if condition 1, statement 1

Otherwise (informative remark on remaining condition), statement n

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the
following applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise,
.." is always an "Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified
by matching "... as follows" or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described mathematically in the following form:

© ISO/IEC 2024 - All rights reserved

10

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

if(condition O0a && condition Ob)
statement 0

else if(condition 1a || condition 1b)
statement 1

else

statement n

... as follows / ... the following applies:

If all of the following conditions are true, statement 0:

condition Oa

— co:lldition 0Ob

Otherw

co

co

Otherw

In the text,

if(conditio
statemg
if(conditio
statemg

may be des

When
When ¢

5.12 Progd

Processes §
invoking. A
syntax stry
have a lowse
output. The

When invol

|

Fise, if one or more of the following conditions are true, statement 1:
dition 1a

dition 1b

ise, statement n
a statement of logical operations as would be describedimathematically in the followi

h 0)
nt 0
h 1)
ntl

cribed in the following manner:
ondition 0, statement 0

ondition 1, statement 1

esses

re used to describe the decoding of syntax elements. A process has a separate specif
Il syntax elements and variables that pertain to the current syntax structure and
ctures are-available in the process specification and invoking. A process specificatig
r-case variable explicitly specified as input. Each process specification has explicitly §
outputis’a variable that can either be an upper-case variable or a lower-case variabl

ng form:

ication and
depending
n may also
pecified an

h

xing a process, the assignment of variables is specified as follows:

are explicitly assigned to lower-case input or output variables of the process specification.

is implied.

If the variables at the invoking and the process specification do not have the same name, the variables

Otherwise (the variables at the invoking and the process specification have the same name), assignment

In the specification of a process, a specific coding block may be referred to by the variable name having a
value equal to the address of the specific coding block.

© ISO/IEC 2024 - All rights reserved

11

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

6 Syntax and semantics

6.1 Method of specifying syntax in tabular form

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the
syntax may be specified, either directly or indirectly, in other clauses.

Table 2 lists examples of the syntax specification format. When syntax_element appears, it specifies that
a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position

beyond the

syntax element in the bitstream parsing process.

Table 2 — Examples of the syntax specification format

Syntax

Type

/* A statem

ples */

ent can be a syntax element with an associated data type or can be an expression used.fo

specify conglitions for the existence, type and quantity of syntax elements, as in the following twe exam-

syntax_ele

ment

ue(v)

conditionin

b statement

/*A group o
as asingle g

[statements enclosed in curly brackets is a compound statement and.is/treated functionally
tatement. */

{

statement (

Statemepnt
Statemepnt
}
/* A "while'| structure specifies a test of whether a condjtion is true, and if true, specifies evaluation of a

br compound statement) repeatedly until the'condition is no longer true */

while(condjition)

stateme

nt

/*A"do ...y
dition is tru
true */

Fhile" structure specifies evaluation of a statement once, followed by a test of whether a con-
e, and if true, specifies repeated evaluation of the statement until the condition is no longer

do

stateme

nt

while(condjition)

/*An"if ... €
specifies ev|

Ise" structure specifies a test of whether a condition is true and, if the condition is true,
hldation of a primary statement, otherwise, specifies evaluation of an alternative statement.

The "else"

rtofthe structure and the assaciated alternative statementis omitted if no alternative

statement evaluation is needed */

if(condition)

primary statement

else

alternative statement

© ISO/IEC 2024 - All rights reserved

12

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 2 (continued)

Syntax

Type

/* A "for" structure specifies evaluation of an initial statement, followed by a test of a condition, and
if the condition is true, specifies repeated evaluation of a primary statement followed by a subsequent
statement until the condition is no longer true. */

for(initial statement; condition; subsequent statement)

primary statement

6.2 Bitordering

For bit-oriented delivery, the bit order of syntax fields in the syntax tables is specified to start with the MSB

and proceeptothet55:

6.3 Spedification of syntax functions and data types

The functi
terms of th
process from the bitstream.

ns presented here are used in the syntactical description. These functions are ej

byte_aligndd() is specified as follows:

If the ¢
bit in a[byte, the return value of byte_aligned() is equal to TRUE;

Otherw

Fise, the return value of byte_aligned() is equal to FALSE.

read_bits(1) reads the next n bits from the bitstream and advances the bitstream pointer by n b

kpressed in

e value of a bitstream pointer that indicates the position of the next bit te-be read by the decoding

irrent position in the bitstream is on a byte boundary, i.e. the nnext bit in the bitstream is the first

t positions.

When n is gqual to 0, read_bits(n) is specified to return aivalue equal to 0 and to not advance thg bitstream

pointer.

decode_bit{) decodes the next bit from the bitstream using either the arithmetic decoding engine

(subclause [13.2.4) or read_bits(1), as determingd by the decoding configuration.

Size(array_pame[]) returns the number of elements contained in the array named array_name.

The following data types specify the parsing process of each syntax element:

— ae(v): gontext-adaptive arithmetic entropy-coded syntax element. The parsing process for this data type
is spec]fied in subclause 1216.2.2.

— ae(t): cpntext-adaptive arithmetic entropy-coded termination syntax. The parsing process fpr this data
type is|specified in subclause 12.6.2.5.

— f(n): fiyed-pattérn bit string using n bits written (from left to right) with the left bit first. The parsing
process for this data type is specified by the return value of the function read_bits(n).

— i(n): signedinteger using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this data type is specified by

the return value of the function read_bits(n) interpreted as a two's complement integer rep
with most significant bit written first.

process for this data type is specified in subclause 12.3.4.2.

resentation

se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing

st(v): null-terminated string encoded as universal coded character set (UCS) transmission format-8 (UTF-

8) characters as specified in ISO/IEC 10646. The parsing process is specified as follows: st(v) reads and
returns a series of bytes from the bitstream, beginning at the current position and continuing up to but
not including the next byte that is equal to 0x00, and advances the bitstream pointer by (stringLength +

1) * 8 bit positions, where stringLength is equal to the number of bytes returned.

© ISO/IEC 2024 - All rights reserved

13

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

— u(n): unsigned integer using n bits. When n s

ISO/IEC 23092-2:2024(en)

n__n

\%

in the syntax table, the number of bits varies in a manner

dependent on the value of other syntax elements. The parsing process for this data type is specified by
the return value of the function read_bits(n) interpreted as a binary representation of an unsigned
integer with most significant bit written first.

process for this data type is specified in subclause 12.3.4.

ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the left bit first. The parsing

u7(v): variable sized unsigned integer computed by iteratively reading 8 bits, where the least significant

7 bits are interpreted as a binary representation of an unsigned integer v, with the most significant bit
written first, and the 8th bit signaling if the iteration should stop. The parsing process for this data type
is specified below:

v=0

do {

C

\%

} while

c(n): s¢

6.4 Sem

Semantics

specified i1
element are
be present

7 Data ¢

7.1 General

Subclause 7}

read_bits(8);

(v<<7)] (c & 0x7f);

(c & 0x80)

quence of n ASCII characters as specified in ISO/IEC 10646.

ntics

hssociated with the syntax structures and with thé,syntax elements within each st
a clause following the clause containing the syntax structures. When the semantics
specified using a table or a set of tables, any valties that are not specified in the table
n the bitstream unless otherwise specifieddnithis document.

structures

reference s
data unixs

Subclause 7

tructure, a parameter setystructure or an access unit structure. Table 3 and Table 4
ntax and the values of associated dat unit types.

.3 specifies the structure of a raw reference.

Subclause 7}

4 specifies«the 'structure of a parameter set. A parameter set consists of a parent pa

identifier, a

Subclause

parametér set identifier and encoding parameters as specified in subclause 7.4.1.

ructure are
of a syntax
(s) shall not

.2 specifies the structure of adata unit. A data unit is a data structure used as container for a raw

specify the

rameter set

/.5 specifies the structure of an access unit. An access unit consists of an access t

followed by

Init header,

ofie,or more blocks. Table 20 in subclause 7.5.1.2 specifies the syntax for an access u1|lit header.

Each block consists of a block header, as specified in subclause 7.5.1.3.2, followed by a block payload as
specified in subclause 7.5.1.3.3.

© ISO/IEC 2024 - All rights reserved

14

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

7.2 Data unit

data_unit |
data unit ty

data_unit_|
data_unit |

ISO/IEC 23092-2:2024(en)

Table 3 — Data unit syntax

pes.

Size!

raw_referehce

Syntax Type
data unit () {
data_unit_type u(8)
if (data_unit_type == 0) {
data_unit_size u(64)
raw_reference () raw reference
}
else if (data unit type == 1) {
reserved u(10)
data_unit_size u(22)
parameter set () parameter set
}
else if (data unit type == 2){
reserved u(3)
data_unit_size u(29)
access_unit () access unit

}
else /*(data_unit type > 2)*/4

/*skip data unit*/

}

Lype specifies the type of data unitiTable 4 lists the values of data_unit_type and the

Table 4 — Values ofidata_unit_type and associated data unit types

data_unit_type Data unit type Clause
0 raw reference 7.3
1 parameter set 7.4
2 access unit 7.5

size is'the total size in bytes of the data unit including the bytes used for data_uni

associated

t_type and

parameter_set() is a parameter_set structure as specified in subclause 7.4.

access_unit() is an access_unit structure as specified in subclause 7.5.

A conformant bitstream containing at least one data unit of type access unit shall contain at least one data
unit of type parameter set.

© ISO/IEC 2024 - All rights reserved

15

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

7.3 Raw reference

7.3.1 General

This subclause specifies the data structure used to represent a raw reference. This structure shall be used to:

— deliver reference sequences to the decoder,

— return decoded reference sequences or part thereof from the decoder.

If a raw reference is required to decode access units, this raw reference shall be made available to the
decoder prior to any other data unit. Table 5 specifies the syntax and data type of row references.

7.3.2 Syntax and semantics

Table 5 — Raw reference syntax

Syntax Type
raw_reference () {
seq_count u(16)
for (i=0; i<seq count; i++) {
sequence_ID u(16)
seq_start[sequence ID] u(40)
seq_end[sequence ID] u40)

ref sequence[sequence ID]

c(seq_end - seq_start + 1)

}

seq_count

sequence_
sequence_

seq_start|;
base preseint in the ref_sequence[] array:.

seq_end|se
base present in the ref_sequence[] array.

ref_sequer

is the number of reference sequences in-the'raw reference.
D is reference sequence identifiersEach sequence_ID is unique and shall corresp
hame specified in ISO/IEC 23092-1:2020, 6.5.2.3.3.

equence_ID] is the coordinate,"on the reference sequence identified by sequence_ID

quence_ID] is the coordinate, on the reference sequence identified by sequence_ID

ce[sequence_ID}{i] is the ith base in the reference sequence identified by sequence_Il

7.4 Parameter set

7.4.1 Sylrtax and semantics

ond to one

of the first

of the last

This subclause specifies the parameter set syntax and semantics. Table 6 specifies syntax and data type of

parameter sets.

Table 6 — Parameter set syntax

Syntax Type
parameter set () {
parameter_ set ID u(g)
parent parameter_ set ID u(8)

encoding_parameters ()

© ISO/IEC 2024 - All rights reserved

16

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

parameter_set_ID is the unique identifier of the parameter set.

parent_parameter_set_ID is the unique identifier of an existing parameter set. Referencing an existing
parameter set from another parameter set enables the generation of a hierarchy of parameter sets where
the values of the encoding parameters of each element override the corresponding values of the parent node.
If equal to parameter_set_ID, the parameter set is at the top level in the hierarchy.

encoding_parameters() are the encoding parameters as specified in subclause 7.4.2.

7.4.2 Encoding parameters

7.4.2.1 General
The encodipng parameters are configuration parameters used during the decoding process are $pecified in
Table 7.
Table 7 — Encoding parameters syntax
Syntax Type
encoding parameters() {
dataset type u(4)
alphabéet ID u(8)
read_léngth u(24)
number|of template_ segments_minusl u(2)
reserved u(6)
max_aufdata unit_size u(29)
pos_40|bits_flag u(1)
qv_depth u(3)
as_depth u(3)
num_classes u(4)
This for loop specifjes the
for(3=0; j < num classes; j++) order of data classejs for the
entire syntax strucfure.
clas$_ID[]] u(4)
for(i=0; i < NUM DESCRIPTORS; i++) {
¢lass_specific_de¢ . cfg flag[i] u(1)
if (¢lass specifig_dec cfg flagli] == 0) {

escripted configuration (i)

Descriptor configuj
specified in subclay

ation, as
se 7.4.2.2,

applied to all classé]

S.

| se

for (1=0; 1< num classes ; Jj++) {

descriptor configuration (i)

Descriptor configuration, as

specified in 7.4.2.2,

the class identified by class_

ID[j].

applied to

}

num_groups u(16)
for(j=0; Jj < num groups; J++)

rgroup_ID[j] st(v)
multiple alignments flag u(1)

© ISO/IEC 2024 - All rights reserved

17

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 7 (continued)
Syntax Type
spliced_reads_flag u(1)
extended alignment info_flag u(1)
reserved u(29)
signature flag u(1)
if (signature flag != 0){
signature_constant_length_flag u(1)
if (signature_constant_length_flag != 0){
signature_length u(8)
}
}
for (c|= 0; ¢ < num classes; c++) {
qv_¢oding mode u(4)
if (¢gv_coding mode == 1) {
qvps_flag u(1)

L £ (qvps flag)

parameter set gvps(class ID[c])

See subclause 7.4.2)3.

¢lse
qvps_preset_ID u(4)
}
qv_reverse flag u(1)
}
crps_flag u(1)

if (crp _flag)

pargmeter set crps()

See subclause 7.4.2

1=

while (|!byte aligned())

nesting zero_bit

f(1)

}

dataset_ty|
content; 1 3

alphabet_

pe specifies the type of data encoded in the dataset. The possible values are: 0 = non-aligned
aligned content;2='reference.

identifies the-alphabet of symbols used for data encoded in access units referripg to these
encoding parameters~Table 35 shows the alphabets associated to each value of alphabet_ID.

read_length specifies the length in bases of sequencing reads. The value 0 indicates the presencg of variable
read lengthls orwhen there are multiple alignments with splices. Variable read lengths are signalled genomic
record as specified in subclause 10.4.9.

number_of_template_segments_minus_1 specifies the number of segments

in each sequenced

template. For single read sequencing it is set to 0, for paired-end sequencing it is set to 1. The variable

numberOfTemplateSegments is set to number_of_template_segments_minus_1 + 1.

max_au_data_unit_size is the maximum value permitted to the field data_unit_size in the data unit, when
data_unit_type is equal to 2, as specified in subclause 7.2. A value of 0 indicates an unspecified maximum
data unit size.

pos_40_bits_flag is set to 1 when the mapping positions are expressed as 40 bits integers. Otherwise all
mapping positions are expressed as 32 bits integers. In the scope of this document the value of the variable
posSize is set to 32 when pos_40_bits_flag is equal to 0 and set to 40 otherwise.

© ISO/IEC 2024 - All rights reserved

18

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

qv_depth specifies the number of quality values associated to each nucleotide. A value of 0 means that no
quality values are encoded. The maximum value shall be 2.

as_depth specifies the number of alignment scores associated to each alignment. A value of 0 means that no
alignment scores are encoded. The maximum value shall be 2.

num_classes specifies the number of data classes encoded in all access units referring to the current
Parameters Set.

class_ID is one of the data class identifiers specified in subclause 9.5. For any value of ci greater than 0 it

shall alway

s be class_ID[ci] > class_ID[ci - 1].

NUM_DESCRIPTORS is a constant counting the number of genomic descriptors specified in this document
and itis setto 18

class_spec
ID. If set to
decoder co

descriptor |

num_grou
Parameters
this param

rgroup_ID
characters

ific_dec_cfg_flag signals the presence of class-specific decoder configuration fdr a
0, only one decoder configuration is signalled for all classes. Otherwise, sepatate cl
nfigurations are signalled.

configuration(i) signals the descriptor’s decoder configuration as specified in subclau

piven desc_
hss specific

se 7.4.2.2.

ps specifies the number of read groups present in all access units referring to {
Set. If num_groups is set to 0, the rgroup descriptor shall not be.present in the AUs
pter set.

is the null-terminated string identifier of a read group:“The maximum allowed I¢
hot including the terminating character.

multiple_allignments_flag is a flag signaling the presence of multiple alignments in the access

setto 0 no

spliced_re

are present.

reserved i
signature_

signature_

multiple alignments are present.

hds_flag signals the presence of spliced reads’in the access unit. When set to 0 no s

set to 0 and reserved for future use:

flag signals the presence of signatures in the access unit. When set to 0 no signatures

signature Jlength specifies the length in bases of signatures when the signature_constant_len

setto 1.

qv_coding|
qvps_flag s
qvps_pres

parameter |

mode shall be@Setto 1, all other values are reserved.
ignals the-presence of a parameter_set_qvps(class_ID[c]) element.

pt_ID signals the ID of the quality values parameter set preset as specified in subclaus

he current
referring to

ength is 64

unit. When

liced reads

\re present.

constant_length_flag signals if all signatures in an access unit have the same constant length.

gth_flag is

e 10.4.16.

sét_qvps(class_ID[c]) is the quality values parameter set as specified in subclause 1(

4.16. If not

present, th

- 1ip 1 - —1 g 11 4 2 4 ¥ 1 111
> PAITIIU QUdlIity vdiutcs pdlidIIICiCh STUIUCIILITICTU DY PdITIHU_pPdI dIIITLCT_STLU_ID SIIdIT D

used.

qv_reverse_flag signals if the decoded qv string shall be reversed in the decoding process specified in
subclause 10.4.16.2.

crps_flags

ignals the presence of a parameter_set_crps() element.

parameter_set_crps() is the computed reference parameter set as specified in subclause 7.4.2.4. If not
present, the computed reference parameters set of the parent parameter set identified by parent_parameter_
set_ID shall be used.

nesting_zero_bit is one bit set to 0.

© ISO/IEC 2024 - All rights reserved

19

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

7.4.2.2 Descriptor configuration syntax and semantics

Table 8 — Descriptor configuration syntax

Syntax Type
descriptor configuration(desc ID) {
dec_cfg preset u(8)
if (dec_cfg preset == 0){
encoding_mode_ID u(8)
if ((desc_ID != 11 && desc_ID != 15) || (encoding mode_ID !'= 0))

ecoder configuration (encoding mode ID)

As specifiedl in 12.4.1

els¢

if (desc_ID == 11

|| desc ID == 15){

decoder c

nfiguration tokentype (encoding mode ID)

As spécifiedl in 12.4.5.

}

else({

/* resd

brved for future use */

}

dec_cfg_pr
encoding_

decoder_co
subclause 1

decoder_copfiguration_tokentype(encoding_mode_ID) signals the decoder configuration par
subclause 12.4.5.

specified in

2.4.1.

eset shall be set to 0 to signal the presence of a decodérconfiguration.
mode_ID compression algorithm value as specified/in Table 9.

hfiguration(encoding_mode_ID) signals the.decoder configuration parameters as s

Table9 — Encoding mode values

pecified in

hmeters as

encoding|mode_ID Name Description Algorithm reference
0 CABAC Context-Adaptive Binary |See subclause 12.6
Arithmetic Coding
1 LZMA Lempel-Ziv-Markov|ISO/IEC 23092-3:2022
Chain Algorithm
ZSTD Zstandard https://tools.ietf.org/html/rfc8478
BSC Block Sorting Coder |See subclause 12.8
PROCRUSTES FMindex-based com-|ISO/IEC 23092-1:2020

pressor

© ISO/IEC 2024 - All rights reserved

20

https://tools.ietf.org/html/rfc8478
https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

7.4.2.3 Quality values parameter set syntax and semantics

7.4.2.3.1 General
Table 10 — Syntax of the quality values parameter set
Syntax Type
parameter set qvps(class id) {
qv_num_codebooks_total u(4)
for (b = 0; b < gv_num codebooks total; b++) {
qv_num_codebook _entries [b] u(8)
forrte—0——= T 711u1[lﬁquUUUUJ&7'\:‘11LLJl_e:; o= 1
4v_recon[b] [e] u(8)
}
}
}
Table 10 spEcifies the syntax of the quality values parameter set.
gqv_num_cqdebooks_total is the number of quality value codebooks. When qvps_flag is equpl to 1, the

minimum 4§

1llowed value is 2 for class_id == Class_I or class_id == @lass_HM. Otherwise , th

allowed value for all other classes is 1. For class_id == Class_U, this valte shall be set to 1.

qv_num_cq
by b. The m

qv_recon|k

debook_entries[b] is the number of qv_recon elements in the quality value codeboo
inimum allowed value is 2 and the maximum allowed value is 94.

|[e] is the quality value reconstructed from a gquality value index identified by e, using

value codehook identified by b.

qvNumCod
aligned rea

bbooksAligned is the state variable indicating the number of quality value codeboo
ds computed as specified in Table 11

Table 11 — Computation of qvNumCodebooksAligned

b minimum

k identified

the quality

ks used for

Syntax

if(class

|id == Class I || class/ id == Class HM) {

/* For|classes I and HM,\\the last codebook is reserved for unaligned data */
gvNumCpdebooksAligned(=)gv_num codebooks total - 1
} else if| class id !=%Class U) { /* Classes P, N, M*/
gvNumC¢debooksAldigned = gv_num codebooks total
} else { [* Clasg Wr*/
gvNumCpdebodksAligned = 0
}
7.4.2.3.2 Quality values parameter set presets

This specification provides three quality values parameters presets, identified by qvps_preset_ID.

7.4.2.3.2.1

Support of all printable ASCII characters

This set of parameters (refer to Table 12) supports the representation of all printable ASCII characters. It is
identified by qvps_preset_ID equal to 0.

© ISO/IEC 2024 - All rights reserved

21

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 12 — Parameters for the support of all printable ASCII characters

Parameter name Value
qv_num_codebooks_total 1
gv_num_codebook_entries 94

The reconstructed quality values qv_recon[0][i] are derived from quality value indexes i, with i being an
integer number in the range 0..93, with the following expression:

qv_recon|[0][i] =i+ 33

7.4.2.3.2.2 Quantized quality values, offset 33, range 0-41

This set of parameters (Table 13) supports the representation of quantized quality values in the|range 0..41
with an off$et equal to 33. It is identified by qvps_preset_ID equal to 1.

Table 13 — Parameters for quantized quality values, offset 33, range|0-41

Parameter name Value
qv_num_codebooks_total 1
gqv_num_codebook_entries 8

Table 14 shows how the reconstructed quality values qv_recon[0][](are derived from the quality value
indexes.

Table 14 — Values of qv_recon for each value of éntry when qvps_ID is equal to 1

qv_recon
33
41
46
51
56
61
66
74

N (OO D W IN|=| O -

7.4.2.3.2.3| Quantized quality values, offset 64, range 0-40

This set of parameters_supports the representation of quantized quality values in the range 0.[40 with an
offset equa| to 64 a6 Specified in Table 15. It is identified by qvps_preset_ID equal to 2.

Table 15 — Parameters for quantized quality values, offset 64, range 0-40

Parameter name Value
gv_num_codebooks_total 1
qv_num_codebook_entries 8

Table 16 specify how the reconstructed quality values qv_recon[0][] are derived from the quality value
indexes.

© ISO/IEC 2024 - All rights reserved

22

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 16 — Values of qv_recon for each value of i when qvps_preset_ID is equal to

qv_recon|[0][i]
64
72
77
82
87
92
97
104

N O | U WIN| RO -

2

7.4.2.4 Cpmputed Reference parameter set

This subclause specifies the data structure used to carry parameters related to the reférence c
algorithmsispecified in subclause 11.3. Table 17 specifies the syntax of the computed reference paf

Table 17 — Syntax of the computed reference paraméter set

Syntax Type
parameter set crps() {
cr_alg_ID u(8)
if(cr _alg ID == 2 || cr_alg ID == 3)[f
cr_pad _size u(8)
cr_buf max size u(24)
}
}

cr_alg_ID gignals the reference computation algarithm as specified in subclause 11.3.4. The pos
for cr_alg_IP are listed in Table 18. The values'0-and 5..25 are reserved.

Taple 18 — Values of cr_alg_ID-and corresponding reference computation algorith
cr_alg_ID algorithm
0 reserved
1 RefTransform
2 Pushln
3 Local Assembly
4 Global Assembly
5..255 reserved

bmputation
ameter set.

sible values

ms

cr_pad_sizeisthemumber of bases used for padding imthe process specified imsubclause 1134

cr_buf_max_size is the maximum size in bytes of the buffer used in the decoding process as specified in

subclause 11.3.4 and subclause 11.3.5.

7.5 Access unit

An access unit (AU) is a logical data structure containing a coded representation of genomic information. It

is the smallest data structure that can be decoded.

© ISO/IEC 2024 - All rights reserved

23

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

7.5.1 Syntax and semantics

7.5.1.1 General

This subclause specifies the access unit syntax (Table 19) and semantics.

Table 19 — Access unit syntax

Syntax

Type

access unit () {

access_unit header ()

access unit header

for (i=0; i<num blocks; i++) {

access_unif

block[i] ()

block

}

access unit () {

D
V

_header() is specified in subclause 7.5.1.2.

i
O

num_blocKs specifies the number of blocks encoded in the access unit and it iﬂ;;%coded in the dccess_unit_

header as s

block[i]() i

pecified in subclause 7.5.1.2.

5 a block as specified in subclause 7.5.1.3.

7.5.1.2 Alccess unit header

This subclg
access unit

header.

O
\\(</
"o:
\
5\

use specifies the access unit header syntax ar%@gnantics. Table 20 specify the sy

ntax of the

N
Table 20 — Accesws}it header syntax
O
Syntax N - Type
access_unjt header () { ;‘\\Q)‘
access|unit ID \O u(32)
num_blécks . - u(8)
parameter set ID (‘,\\v u(8)
AU_type¢ [u(4)
reads_¢ount (\V‘ u(32)
if (AU _fype == NiTY“PQ‘I-J, || AU type == M_TYPE AU) {
mm_threshold -\ \ u(16)
mm_¢ount \O\ u(32)
} N
if(dat \ééz{ype == 2)1{
ref sequence_ID u(16)
ref_start position u(posSize)
ref _end position u(posSize)
}
if (AU Type != U TYPE AU)
{
sequence_ID u(16)
AU_start position u(posSize)
AU_end_position u(posSize)

if

(multiple alignments flag) {

Specified in subclause 7.4.2.

© ISO/IEC 2024 - All rights reserved

24

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 20 (continued)

Syntax Type
extended AU start_position u(posSize)
extended AU _end position u(posSize)

}
}
else {
if (signature flag != 0) { Specified in subclause 7.4.2.
num_signatures u(16)
for (i=0; i< num signatures; i++) {
if (signature constant length flag == 0) {
signature_length[i] u(8)
}
signature[i] u(signatireSize)
}
}
while (|!byte aligned())
nesting zero bit f(1)
}

access_unit_ID is an unambiguous identifier for each AU_type, zero-based. If AU_type is not

TYPE_AU, i
ID), i.e. itis

num_blocK

parametei] set_ID is a unique identifier of the-parameter set to be used to decode the access ur:t
unit header belongs. Decoding of\an access unit is unspecified if at least one para

this access
hierarchy d
parent_par
not availab

AU_type id
reads_cou

mm_thres
counted by

mm_count]

L is encoded with respect to each reference sequénce (identified by a specific value o
reset for the first access unit aligned on a specific reference sequence.

(s specifies the number of Blocks in the ac¢éss unit.

f parameter sets referred to by)the field parameter_set_ID of the access unit and b
hmeter_set_ID of the parameter sets in the same hierarchy, as specified in subclause
e.

entifies the type of access unit and the class of data carried therein as specified in sub
ht signals the number of genomic sequencing reads encoded in the access unit.

hold specifiesithe maximum number of substitutions a read (of class N or M) shall ca
mm_coui€. If set to 0 the feature of counting substitutions in encoded reads is disabl

specifies the number of reads encoded in the access unit containing a number of sy

which is eqtl

equal to U_
f sequence_

it to which
eter in the
y the fields
7.4.1, set is

flause 7.5.2.

ntain to be
ed.

bstitutions
et to 0 if the

alto or lower than the threshold specified by mm_threshold. mm_count shall be s¢

threshold i

o O

4 4
CCcOO°

ref_sequence_ID specifies the identifier of the reference sequence encoded in this access unit.

ref_start_position specifies the position on the reference sequence of the first base encoded in this access unit.

ref_end_position specifies the position on the reference sequence of the last nucleotide encoded in this
access unit.

sequence_ID is the identifier of the reference sequence to be used to decode this access unit as specified in
clause 10. It corresponds to a sequence_ID element in Table 5.

AU_start_position is the position of the leftmost mapped base among the first alignments of all genomic
records encoded in the access unit irrespective of the strand.

© ISO/IEC 2024 - All rights reserved

25

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

AU_end_position is the position of the rightmost mapped base among the first alignments of all genomic

records encoded in the access unit irrespective of the strand.

extended_ AU_start_position specifies the position of the leftmost mapped base among all ali
all genomic records contained in the access unit, irrespective of the strand.

gnments of

extended_AU_end_position specifies the position of the rightmost mapped base among all alignments of

all genomic records contained in the access unit, irrespective of the strand.

num_signatures specifies the number of signatures used to index unmapped reads as s
ISO/IEC 23092-1:2020.

signature_length specifies the signature length in terms of bases of a variable length signature.

pecified in

signature |s the unsigned integer representing the signature of the cluster this access unit be
specified inp ISO/IEC 23092-1:2020. The length in bits of this field, named signatureSize shall be
using the signature_length specified in Table 20 as follow:

signatyreSize = signature_length * bits_per_symbol

with bits_per_symbol corresponding to BitsPerSymbol(S,;hapet 1p) @s specifiedrin-Table 35 wit
ID as specified in subclause 7.4.2, and with signature_length corresponding either to signatur
specified inp subclause 7.4.2 when signature_constant_length_flag (as spegified in subclause 7.4
to 1 or to the signature-specific signature_length[i] specified in Table 20"when signature_const
flag (speciffed in subclause 7.4.2) is equal to 0.The j-th base in a signature is represented by the
symbol) vajue computed as follows:

signature_base[i][j] = S,jpnaber_ipl(signature[i] >> ((signature_length - j - 1) * bits_per_symbol))
& ((1 << bits_per_symbol) - 1)]

with S et 1p as specified in Table 35 with alphabet_[D’as specified in subclause 7.4.2

alphah

posSize is specified in subclause 7.4.2.
7.5.1.3 Block

7.5.1.3.1 |General

This subclause specifies the block syntax (Table 21) and semantics.

Table 21 — Block syntax

longs to, as
calculated

h alphabet_
e_length as
.2) is equal
hnt_length_
u(bits_per_

Syntax Type
block () {
block_header () block header
block payload () block payload
I

block_header is a block header structure as specified in subclause 7.5.1.3.2.

block_payload is a block payload structure as specified in subclause 7.5.1.3.3.

7.5.1.3.2 Block header

This subclause describes the block header syntax (Table 22) and semantics.

© ISO/IEC 2024 - All rights reserved

26

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 22 — Block header syntax

Syntax Type
block header () {
reserved u(1)
descriptor_ID u(7)
reserved u(3)
block payload size u(29)

}

reserved is set to 0 and used to preserve byte alignment.

descriptor] ID signals the descriptor type as specified in Table 25. Its value shall be unique amenlg all blocks
in the accegds unit.

block_payload_size specifies the size in bytes of the block payload.

7.5.1.3.3 |Block payload

This subclduse specifies the syntax (Table 23) and semantics of the block-payload structure|containing
entropy-cofled descriptors.

Table 23 — Block payload syntax

Syntax Type

block payload(descriptor ID) {

if (des¢riptor ID == 11 || descriptor ID == 15) {
encdded_tokentype () As specified in 10.4{20.2.

enc¢ded descriptor sequences (descriptor ID) As specified in 12.6.2.2.

while (|!byte aligned())

nesting zero_bit f(1)

}

encoded_tdkentype() is a-data structure specified in subclause 10.4.20.2 carrying encoded tokenized
strings.

encoded_dg¢scriptor-séquences(descriptor_ID) is a data structure specified in subclause 12.6.2.2 carrying
the encodedl genomie’descriptors for sequences and quality values specified in Clause 8.

nesting_zqro_bit is one bit set to 0.

7.5.2 Access unit types

AUs can be of different types according to the nature of the coded data. An access unit contains encoded
genomic records belonging to a single data class as shown in Table 24.

© ISO/IEC 2024 - All rights reserved

27

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

The blocks
to sequenc
access unit

AUs of any

ISO/IEC 23092-2:2024(en)

Table 24 — Class of encoded data per access unit type

Access unit type Data class
AU type name Value

P TYPE_AU 1 Class P
N_TYPE_AU 2 Class N
M_TYPE_AU 3 Class M
[_TYPE_AU 4 Class 1
HM_TYPE_AU 5 Class HM
U_TYPE_AU 6 ClassU

in subclause 9.5. Descript

ng reads belonging to one clas
type are listed in Table 25.

cessth c) -
s of data as specified ors eart]

class can be possibly associated with blocks of descriptors representing thelread na

quality valiies of the encoded sequencing reads.

8 Descrjiptors

When data
required to

Descriptor;

Descriptors
reference s

Subsequen

Table 28, T4

bet_type specified in subclause 7.4.2 is equal to 0 or 1, the only ' mandatory descriptot
represent the sequences of nucleotides, whereas read names‘and quality values are d

are the output of the decoding process specified in clanse 12.

required for the representation of sequencing redds, quality values, read names and t
bquences are reported in Table 25. Descriptors.afe specified in subclause 10.4 and its

e semantics and types for each descriptor™D of Table 25 are reported in Table 2

otresponding

ied by each

mes and/or

s are those
ptional.

ransformed
subclauses.

b, Table 27,

ble 29, Table 30, Table 31, Table 32, Tabl¢*33, Table 34.

Table 25:*< Genomic descriptors

descriptor_ID | Genomic descriptor | Number of descriptor Decoding process
nae subsequences
C)\' sequencing reads
0 pos 2 10.4.2
1 recomp 1 10.4.3
2 flags Variable, as specified in|10.4.4
subclause 10.4.4.
3 mmpos 2 10.4.5
4 mmtype 3 10.4.6
5 clips 4 10.4.7
6 ureads T 1048
7 rlen 1 10.4.9
8 pair 8 10.4.10
9 mscore 1 10.4.11
10 mmap 5 10.4.12
11 msar Variable, as specified in|10.4.13
subclause 10.4.13.
12 rtype 1 10.4.14
13 rgroup 1 10.4.15
quality values

© ISO/IEC 2024 - All rights reserved

28

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:

2024(en)

Table 25 (continued)
descriptor_ID | Genomic descriptor | Number of descriptor Decoding process
name subsequences
14 qv Variable, as specified in|10.4.16
subclause 10.4.16.
read names
15 rname Variable, as specified in|10.4.17
subclause 10.4.17.
reference sequences
16 rftp 1 10.4.18
17 rftt 1 10.4.19

Table 26 — Subsequences for descriptor_ID = 0 (pos descriptor)

subsequence_ID Semantics Type
Mapping position of the first alignment. Signed integer.
Mapping position of additional alignments. |Signed integer.

Table 27 — Subsequences for descriptor_ID = 2 (flags descriptor)

subsequence_ID

Semantics

Type

0 Read is PCR or optical duplicate. Unsigned integer with value either 0 qr 1.
1 Read fails platform/vendor quality checks. |Unsignhed integer with value either 0 dr 1.
2 Read mapped in proper pair Unsigned integer with value either 0 qr 1.
3 Not primary alignment Unsigned integer with value either 0 qr 1.
4 Supplementary alignment Unsigned integer with value either 0 qr 1.
Table 28 — Subsequences for'descriptor_ID = 3 (mmpos descriptor)
subsequence_ID Semantics Type
Terminator flag Unsigned integer with value either 0 qr 1.
Position value Unsigned integer.
Table 29 — Subsequences for descriptor_ID = 4 (mmtype descriptor)
subsequence_ID Semantics Type
Symbal type flag Unsigned integer with values either 0|1 or 2.
Substitution type Unsigned integer.

Insertions type

Unsigned integer.

Table 30 — Subsequences for descriptor ID = 5 (clips descriptor)

subsequence_ID

Semantics

Type

Record identifier

Unsigned integer.

Type/Position flag

Unsigned integer.

Nucleotides indexes with terminators

Unsigned integer.

WIN |-k | O

Hard clips length

Unsigned integer.

© ISO/IEC 2024 - All rights reserved

29

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 31 — Subsequences for descriptor_ID = 8 (pair descriptor)

subsequence_ID

Semantics

Type

0

Sequence identifying:

— thesubsequence carrying the next symbol required for the decoding
process when values range from 0 to 4. Each value i in the range 0..4
corresponds to subsequence_ID =i+ 1

— R1_unpaired decoding case as specified in 10.4.10 when the value is
equal to 5.

— R2_unpaired decoding case as specified in 10.4.10 when the value is
equal to 6.

Unsigned integer.

Same_Tec decoding case as Specified I 1049, Sequence of values con-
taining the segment ordering and the distance between the mapping
position of read 1 and the mapping position of read 2 on the reference
sequence. Encoded as '(delta << 1) | read1_first', where delta is com-
prised between 0 and 32767 and read1_firstis a 1-bit flag.

UNSIgned Mteger.

R1_split decoding case as specified in 10.4.10.
Sequence of values representing:
For classes P, N, M, |

the position of read 1 on the reference sequence. The maximGmvalue is
2possize _ 1 where posSize is specified in subclause 7.4.2.

For class U

the genomic record index of the genomic record containing read 1 in
the current AU.

Unsigned integer.

R2_split decoding case as specified in 10.4.10¢

For classes P, N, M, I the position of read 2 on'the reference
sequence. The maximum value is 2P°sSize =1 where posSize is
specified in subclause 7.4.2.

For class U the genomic record indexef the genomic record
containing read 2 in the current AU:

Unsigned integer.

R1_diff ref seq decoding casézas specified in 10.4.10.
Sequence of values representing:

for classes P, N, M, I the identifier of the reference sequence
to which read 1 is mapped. The maximum value is 216-1.

for class U the idéntifier of the AU containing the read 1.

Unsigned integer.

R2_diff ref_seq decoding case as specified in 10.4.10.

for classes BN, M, I the identifier of the reference sequence
to whiclrread 2 is mapped. The maximum value is 216-1.

for class U the identifier of the AU containing the read 2.

Unsigned integer.

Ri/diff_ref seq decoding case as specified in 10.4.10. Sequence
of'values representing the position of read 1 on the reference
sequence. The maximum value is is 2PosSize — 1 where posSize
is specified in subclause 7.4.2.

Unsigned integer.

noy J:cc £ | A410 C

INZ_UIll_1TI_STY ucuudius CastT adds bPC\.ifiCd ill 1U-T-LU. JTYHUTIHILT
of values representing the position of read 2 on the reference
sequence. The maximum value is is 2P0sSize — 1 where posSize
is specified in subclause 7.4.2.

Uuaisucd i teger.

© ISO/IEC 2024 - All rights reserved

30

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 32 — Subsequences for descriptor_ID = 10 (mmap descriptor)

subsequence_ID

Semantics

Type

Number of alignments of the leftmost and rightmost reads.

Unsigned integer

Index of right alignments.

Unsigned integer

Flag signalling the presence of more alignments in other genomic
records.

Boolean flag

3 Values representing the identifier of the reference sequence Unsigned integer
a secondary alignment of the leftmost read is mapped to. The
maximum value is 216-1.

4 Values representing a secondary alignment mapping position Unsigned integer

of the leftmost read on the reference sequence. The maximum

value 1s 1s ZPP>°>1E — T 'where posdyize 1S speciiled 1n subclause /.4.2.

Talrle 33 — Subsequences for descriptor_ID = 11 and 15 (msar and rname deScriptgrs)

subseque‘lce_lD

Semantics

Tyge

0 Output of decode_descriptor_subsequence() for Unsigned intdger
CABAC_METHOD_0 as specified in subclause 10.4.20.4.5.

1 Output of decode_descriptor_subsequence()for Unsigned intgger
CABAC_METHOD_1 as specified in subclause 10.4.20.4.6.
Table 34 — Subsequences for descriptor_ID =14 (qv descriptor)

sybsequence_ID Semantics Type

0 Quality value present flag, Boolean flag.

1 Quality value codebook-identifier. Unsigned integer.

2.(2+ Quality value index used to look up a Unsigned integer.

qv_num/|codebooks_total - 1)

reconstructed quality value in the quality
value codebook identified by
b = (subsequence_ID - 2).

9 Sequé¢ncing reads

9.1 Geng¢ral

This clausqg specifies the semantics of genomic descriptors used to represent nucleotides segments and

associated plignment information. Each template produced by a sequencing machine or alignme

generated

by an aligngr is encoded\in a genomic record by means of a subset of the genomic descriptors described in
this clause|The genoniic descriptors are extracted from a compliant bitstream according to the processes

described in subclause 12.7 and the genomic templates with the associated alignment inform

ion can be

reconstructed from the decoded genomic descriptors according to the decoding processes described in

subclause 104

9.2 Supported symbols
The supported alphabets are specified in Table 35.

Table 35 — Identifiers of alphabets supported for sequencing reads representation

alphabet_ID Salphabet_ID Size(S,iphabet 1p) | BitsPerSymbol(S,ipnapet ip)
0 So=[A,C,G,T,N] 5
1 $,=[ACGTRY,SWKM,B,DHVN,- 16
2..255 reserved

© ISO/IEC 2024 - All rights reserved

31

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Each alphabet is identified by an alphabet_ID as shown Table 35.

The notation S,j,p.pec iplindex] specifies a conversion from a numerical index to an ASCII character
corresponding to a symbol of the alphabet identified by alphabet_ID, as specified in Table 36:

Table 36 — Conversions from numerical indexes to ASCII characters corresponding to alphabet symbols

The notati

COd-ealphabe

Each alpha
Table 37.

Saiphabet 1p[index] Splindex] S;[index]
Salphabet_ID[O] So[O] =“A S,[0] = “A”
Salphabet_[D[l] So[l] =“C” Sl[l] = “c”
Salphabetf[D[Z] SO[Z] =“G” 31[2] = “G”
Saiphabet 1pl[3] Sol3]1="T" $,[3] = “T”
Saiphabet 1p[4] Sol4] =“N” S,[4] = “R”
Salphabet_ID[S] N/A S,[5] =“Y”
Salphabet_[D[6] N/A S,[6] = “S”
Salphabet_1p[7] N/A $,[7]="“W”
Salphabet_[D[S] N/A $,[8] = “K”
Salphabet_1p[%] N/A $,[9] = “M”
Salphabet_ID[lo] N/A $,[10] = “B?
Salphabet_ID[ll] N/A S,[11] #4p"
Salphabet_1p[12] N/A S,[421= “H"
Salphabet_1p[13] N/A Scfr3] = “v”
Salphabet_1p[14] N/A S,[14] = “N”
Salphabet 1p[15] N/A S,[15] = "

bn Codeyppaper ID[symbol] specifies the inversion conversion of S,
_ip[Saiphabet_p[index]] is always equal to index for any valid value oflndp

Table 37 <= Complementary alphabet symbols

habet_ID 1r1dex]
ex as specified|i

bet symbol Sym is associated with atcomplementary symbol Complement(Sym) as

such that
in Table 36.

bpecified in

So[index] So[Complément(index)] S;[index] S,[Complement(index)]
So[0] = "A” Sp[3]2XT” S,[0]="A" 5q[3]="T"
Sof1] = °C” Sol2)="6" 5,[1] = C” 5,021 = "G”
So2] ="G” Spf1] =“C” Si[2]1="G" Sy[1]1="“C”
Sol3] = Sol0] =“A” S,[3]= 5,[0] = “A”
So[4] = "N¥ Sol4] ="N" S,[4]= Sq[5]="Y"
NjA $,[5]="Y” S,[4] = “R”
NAA S[6] ="s" 5,[6] = “S”
N/ 5,[7]="W 5,[7] = "W”
N/A S,[8] = $,[9] = “M”
N/A 51091 = 5,[8] = K’
N/A S,[10] =“B” S{[13]="“Vv”
N/A S,[11] =D S,[12] = “H”
N/A S,[12] = “H” S,[11] = “D”
N/A 5,[13] =" 5,[10] = “B”
N/A 5,[14] = “N” S,[14] = “N”
N/A S,[15] =" S,[15] ="

© ISO/IEC 2024 - All rights reserved

32

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

9.3 Paired-end reads

In case reads are generated in pairs by sequencing devices, each pair can be encoded as a single logical data
structure named genomic record where the mapping position of one of the reads is represented using the
pair descriptor as specified in subclause 10.4.10. The information linking one read to its mate is referred to

as “pairing

information” in this document.

The two reads are not sequenced from the same strand, but can be aligned to the same strand. The
sequencing device determines which read in the pair is marked as read 1, whereas the other one will be read

2.An exam

ple is shown in Figure 4.
READ 1

\ 4

Figur

Positions

leftmost mapped base of the leftmost read. The rightmost read is considered to be contiguous to t

1
The calcul

The pair c
reconstruc

9.4 Reve

The revers

bases in a 1
specified aj

Revers

9.5 Data

Six data cl
encoded se

If a templat
of the read
the first ali

¢ Avdd

e 4 — Read 1 sequenced from the forward strand and read 2 from'the reverse s

mismatches with respect to the used reference sequence,shall be encoded as offs

ion of the actual position of mismatches on the rightmestread is described in subcla

trand

bt from the
he leftmost.
use 10.4.10.

hn also be split into two reads that are encodedsseparately. In this case, the pe
fed using both the pairing descriptors and the temiplate name shared by the two read

rse-complement reads

ead, the array of bases in the corresponding reverse-complement ReverseComplemse
follows:

uencing reads against one or more reference sequences.

e contains more than one read, if both reads are mapped, the genomic record belongs
with the-highest class_ID. In case of multiple aligments the genomic record belongs to
bnument in the record.

ir shall be

5.

b-complement of a read is computed bycinverting the order the read bases and repllacing each
base B with its complementary base Complement(B) as specified in subclause 9.2. If Read[] is t

he array of
ntRead[] is

eComplementRead[n] = Ceraiplement(Read[Size(Read[]) - n - 1]), for nin O .. Size(Read[]) - 1.
classes
isses are specified to classify genomic records according to the result of the mapping of the

to the class
the class of

The data classes and their descriptions are specified In 1able 56.

© ISO/IEC 2024 - All rights reserved

33

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 38 — Sequence data classes

class_ID Class Identifier Genomic record content
Class_P Only reads perfectly matching to the reference sequence.
Class_N Reads perfectly matching to the reference sequence or containing
mismatches which are unknown bases only.

3 Class_M Reads perfectly matching to the reference sequence or containing
substitutions or unknown bases, but no insertions, no deletions,
no splices and no clipped bases.

4 Class_I Reads perfectly matching to the reference sequence or containing
substitutions, unknown bases, insertions, deletions, splices or
clipped bases.

Class_HM Paired-end reads with only one mapped read.
Class_U Unmapped reads only.
When the dyntax specified in this document needs to use the maximum number of specified data classes,

this is spec

9.6 Aligned data

In the cont
external or

This subcl
subclause 7

fied by the constant NUM_CLASSES = 6.

pxt of this document, aligned genomic data are genomic segments which require th
embedded reference genome (as specified in subclause 10.6:2.,2) to be decoded.

Quse specifies the types of descriptors contained ‘it the blocks payload s
5.1.3.3. Each block contains binary coded descriptors afa single type identified by the

ID present

Once decod
Clause 13.3

n the block header as specified in subclause 7.5.1.3.2.

ed, each descriptor shall be used to initialize.one or more output record fields as
. Table 39 lists the descriptors used for aligned reads with a brief description and 1

the corresp

onding clause.

Table 39 — Descriptors used-to represent aligned sequencing reads

e use of an

becified in
descriptor_

bpecified in
eference to

descriptpr_ID descriptor Semantics subclause

0 pos Read(mapping position. 10.4.2
1 rcomp Strand information for reads in a template. 10.4.3
2 flags Additional alignment information usually produced by aligners. 10.4.4
3 mmpos Position of mismatches in reads. 10.4.5
4 mmtype Type of mismatches. 10.4.6
5 clips Information on clipped bases (i.e. Soft clips or hard clips). 10.4.7
6 ureads Unmapped reads encoded verbatim. 10.4.8
7 rlen Read lengths. 10.4.9
8 pair Represents: 10.4.10

taTheunsigheddistance fromonesegmenttothenext

OR

1.b The absolute position on a reference sequence of a seg-

ment in a template.

AND

2 Information signaling if the leftmost mapped read in the

genomic record is read 1.
9 mscore Provides a score per alignment . 10.4.11

© ISO/IEC 2024 - All rights reserved

34

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 39 (continued)
descriptor_ID descriptor Semantics subclause
10 mmap Used to represent multiple alignments. 10.4.12
11 msar Supports spliced alignments and alternative secondary align- 10.4.13
ments which do not preserve the same contiguity of mapping
of the primary alignment.
13 rgroup Identifier of the read group each genomic record belongs to. 10.4.15

9.7 Unaligned data

Unaligned reads belong to class U only. They are encoded as unmapped reads in aligned datasets. Some of

the descrip sgbclause 9.6
are used td encode unaligned reads (see Table 40). This is motivated by the fact that unalignéf reads are
encoded uging reference sequences built from the data to be encoded. The reference used)for [mapping is
computed dccording to the procedures described in subclause 11.3.
Table 40 — Descriptors used to represent raw sequencingreads
descriptior_ID Descriptor Semantics Sybclause
0 pos Read mapping position. 10.4.2
1 rcomp Strand information for reads in a template. 10.4.3
2 flags Additional alignment 10.4.4
information usually produced by-aligners.
3 mmpos Mismatch position. 10.4.5
4 mmtype Type of edit operations: 10.4.6
— substitutions;
— deletions;
— insertions:
5 clips String of nuicleotides with 10.4.7
variable\length (e.g. soft clips).
6 ureads Unniapped reads encoded verbatim. 10.4.8
7 rlen Unsigned integer representing the number of bases in the 10.4.9
read minus one.
8 pair Represents: 10.4.10
1l.a The unsigned distance from one segment to the next.
OR
1.b The absolute position on a computed reference se-
quence of a segment in a template.
AND
2 Information signaling if the first read in the genomic
record is read 1.
12 rtype This identifies the subset of descriptors needed to 10.4.11
decode the read.
13 rgroup Identifier of the read group each genomic record 10.4.15
belongs to.

10 Decoding process

10.1 General

This clause describes the decoding process to reconstruct the genomic information encoded in a bitstream
compliant with this document.

© ISO/IEC 2024 - All rights reserved

35

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

The input t

ISO/IEC 23092-2:2024(en)

o this process is one data unit. The output of this process can be:

a) araw reference as specified in subclause 7.3.

b) alist of ISO/IEC 23092 series records as specified in Clause 13.

The decoding process is specified such that all decoders that conform to this document will produce
numerically identical decoded output as either ISO/IEC 23092 series records or raw references. Any decoding
process that produces identical decoded output ISO/IEC 23092 series records or raw references to those
produced by the process described herein conforms to the decoding process requirements of this document.

10.2 dataset_type=0or1

10.2.1 Genperal

The input tp the processes described in the following clauses is decoded genomic descriptors g

output of the parsing process specified in subclause 11.3.6. The genomic descriptors @re’contd

decoded_symbols data structure specified in this subclause.

In the contg¢xt of the decoding process each decoded symbol is identified by
decoded_symbols[descriptor_ID][descriptor_subsequence_ID][jgescriptei ! descriptor_subsequen

where jgestriptor I, descriptor subsequence 1p 1S the index to read the(decoded symbols as s

subclause [[2.1. The valid values of descriptor_ID are specified in~Table 25. The values of

subsequeng
At the beg
initialized {

The output|
and the rft
structure a

The decod
identified h

If dataset_t

10.2.2 Ref

In case of A
be used du
thatisless

is shown in

e_ID are between 0 and the number of descriptor subsequences minus 1 as specified

inning of the decoding process of each AU alldndexes jyescriptor Ip, descriptor_subseq
0 0.

of this process is a sequence of output records as specified in clause 13. If cr_alg_ID i
p and rftt descriptors are present, an additional output of this process is a raw_ref
s specified in subclause 7.3.2.

ng process of each access unit refers to encoding parameters carried by the paj
y the parameter_set_ID specified in subclause 7.5.1.2.

ype is equal to 0 then only AU of type 6 (CLASS_U) shall be present in the dataset.

‘erences padding

Us of type P, N,M,.I and HM, if the raw reference structure containing the reference {
Iring the decading process specifies a seq_start that is greater than AU_start_pos o

Figure 5:

bnerated as
ined in the

e_ID]

pecified in
descriptor_
in Table 25.

uence_ID are

5 equal to 3

Prence o,

ameter set

equence to
r a seq_end

than AU_endipos, the decoder shall pad the missing portions of reference sequence with “N”. This

© ISO/IEC 2024 - All rights reserved

36

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

seq_start seq.end

reﬁnencesequence H
I Y A
TlATATGITIAlClIGIGTATTICININ

I I N I S | | |
ININININTATCTTIATAICIG T [N

raw reference
seq_start

AU_end_position

seq_end

Ik

Decoder

access unit

|

Figure 5 — Padding process for a reference sequence

AU_start_position
AU_end_position

10.2.3 Type 1 AU (Class P)

Type 1 accsg

At the begihning of the decoding process of each AU the variablé msar_k is initialized to 0.

The decodi

for all the records within the same access unit, is as follows:

a)
b)

)
d)

e)

f)
g)

D)

Set a clpssld variable equal to the value of AU_type as specified in subclause 7.5.1.2.

Decodgq the variables numbefOfRecordSegments,
numbefOfMappedRecordSegments and unpairedRead as specified in subclause 10.4.10.

ss units encode aligned sequencing reads which perfectly'match to the used referenc

numberOfAlignedRecor

£ sequence.

hg process of one record within a binary deceded access unit of type 1, which shall be repeated

dSegments,

10.4.7.

Compute the arrays keadLength[], numberOfSplicedSeg][],
splicedSegMappedLength[}]] as specified in subclause 10.4.9.

Decodgq
informption.

Decodg the pos-déscriptor as specified in subclause 10.4.2.

Decodg thé joutput variables specified in subclause 10.4.10 containing pairing and
informptign.

Compu[e the arrays softClips[][], softClipSizes[][] and hardClips[][] as specified in subclausg
ul splicedSegLengt}

the output variables specified in subclause 10.4.12 containing the alignment ar

and

—

M1

d mapping

or splicing

Decode the rcomp descriptor as specified in subclause 10.4.3.

If num_groups specified in subclause 7.4.2 is greater than 0 decode the rgroup descriptor as specified

in subclause 10.4.15.

Decode the readName variable as specified in subclause 10.4.17.

If as_depth specified in subclause 7.4.2 is greater than 0 decode the mscore descriptor as specified in

subclause 10.4.11.

If multiple_alignments_flag specified in subclause 7.4.2 is 1 decode the msar descriptor as specified in

subclause 10.4.13.

© ISO/IEC 2024 - All rights reserved

37

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

m) If prese

ISO/IEC 23092-2:2024(en)

nt, decode the following optional descriptors:

i) decode the flags descriptor as specified in subclause 10.4.4.

ii) decode the qv descriptor as specified in subclause 10.4.16.

n) Ifthisp

rocess is being applied to access units of type 1 (Class P) (i.e., if this process is not being applied to

access units of other types as specified in subclauses 10.2.4, 10.2.5 and 10.2.6), or if crps_flag specified
in Table 7 is equal to 1 and cr_alg_ID specified in Table 17 is equal to 2, 3, or 4 and the value of rtype

descrip

tor specified in Table 67 is equal to 1, decode the read sequences as specified in subclause 10.5.2.

10.2.4 Type 2 AU (Class N)

1+ £ (1 LAY | dod L £.11 3 £ | ad £ ALL £
Access units-of ty Ptz (crassTyareaetoat oy Tomowihng e processSaescrivettaTor rYoSortyP 1 (ClaSS P)

in subclauge 10.2.3, then applying the information on unknown bases (symbol N) carried by<he mmpos

descriptor
subclause 1

as specified in subclause 10.4.5, and finally decoding the read sequences(as” gpecified in
0.5.2.

Additional

— the arrpy splicedSequence[][] specified in subclause 10.5.1

— the mis

The decodd

nputs to this process are

matchOffsets[][] and numMismatches[] arrays specified in subClause 10.4.5

d splicedSequence[][] array shall be computed by replacing.each base at a position 1lepresented

by a decod¢d mmpos value in the splicedSequence[][] array obtained-as specified in subclause [10.5.2 with

the symbol

The substitjutions are applied as specified in Table 41.

‘N

Table 41 — Sequence decoding process for class N

Decoding step Descriptign

processSp}lSegN (segment, splSeg) {

for(j ¥

0; j < numMismatches[segment}y j++) {

spllcedSequence [segment] [splSeqy

mismatchOffsets|[segment}{y]] = ‘N’

10.2.5 Type 3 AU (Class M)

Access unit
subclause 1

s of type 3 f€lass M) are decoded by following the process described for AUs of type 1|(Class P) in

of mmpos
read seque

0.2.3, then applying the information on substitutions obtained by following the decodfing process
and mmtype descriptors as specified in subclauses 10.4.5 and 10.4.6, and finally d¢coding the
hcés as specified in subclause 10.5.2.

Additional inputs to this process are

— the mismatchOffsets[][], numMismatches[] arrays specified in subclause 10.4.5;

— the mismatches[][] arrays specified in subclauses 10.4.6.

The substit

utions are applied as specified in Table 42.

© ISO/IEC 2024 - All rights reserved

38

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 42 — Sequence decoding process for class M

Decoding step Description

processSplSegM (segment, splSeg) {

for(j = 0; J < numMismatches[segment]; j++) {

splicedSequence [segment] [splSeqg]
[mismatchOffsets|[segment] [j]] = mismatches[segment] []]

10.2.6 Type 4 AU (Class 1)

Access uniffs of type 4 (Class I) are decoded by following the process described for AUs of type!il|(Class P) in
subclause 10.2.3, then applying the edit operations represented by the decoded mmpos, mmtype and clips
descriptord as specified in subclauses 10.4.5, 10.4.6 and 10.4.7, and finally decoding the.Tead s¢quences as

specified in] subclause 10.5.2.

Additional |nputs to this process are:

— the migmatchOffsets[][], numMismatches[] arrays specified in subclause-1044.5;

— the migmatches[][] and mismatchTypes[][] arrays specified in subclansé 10.4.6;
— the softClips[][][], softClipsSizes[][] and hardClips[][] arrays specified in subclause 10.4.7;

— the varjiable seqld set equal to sequence_ID as specified invsubclause 7.5.1.2;

— the arrpys ref_sequence[][] and seq_start[] specified@s'in subclause 7.3.2;

— the mappingPos[0][] array specified in subclause 10:4.10;

The substitutions, insertions and deletions are applied as specified in Table 43.

Table 43 — Sequence decoding process for mismatches in classes I and HM

Decoding step Des¢ription

processSplSegl (segment, splSeqg) {

rlen =|splicedSeglLength[segment] [splSeqg]

if (spl$eg == 0) {
rlep -= softClipSizes[segment] [0]

}

if (spl$eg == numberOfSplicedSeg[segment] - 1) {
rlefp -= softClipSizes|[segment] [1]

}

indelsConnt = 0

mmStartIdx = splicedSegMismatchIdx[segment] [splSeqg]

for(j = 0; J < splicedSegMismatchNumber [segment] [splSeg]l; j++) {

if (mismatchTypes|[segment] [mmStartIdx + j] == 0) { Substitution.

splicedSequence [segment] [splSeqg]
[splicedSegMismatchOffsets[segment] [splSeg] [J]] =
mismatches[segment] [mmStartIdx + J]

} else if (mismatchTypes[segment] [mmStartIdx + j] == 1) { Insertion.

© ISO/IEC 2024 - All rights reserved

39

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 43 (continued)

Decoding step Description

for(k = rlen - 1; All symbols after

k > splicedSegMismatchOffsets[segment] [splSeqg] [j] ; k--) { the insertion are
shifted right by one

position. The last
element is there-

fore lost.
splicedSequence[segment] [splSeqg] [k] =
splicedSequence[segment] [splSeg] [k — 1]
}
slicedSequencetsegrentifoplsod]
[splicedSegMismatchOffsets[segment] [splSeg] [j]] = (]/b‘
mismatches[segment] [mmStartIdx + 7J] AQ
I ndelsCount -= 1 ".l/
} else if (mismatchTypes[segment] [mmStartIdx + j] == 2) { mq; 'Deletior,
for (k = splicedSegMismatchOffsets[segment] [splSeg][j] + 1; (bQJ All symbols after
k < rlen; k++) { q/ the delefion are
C) shifted left by one
\\Q/ position|.
. \\
splicedSequence([segment] [splSeg] [k - 1] = O
splicedSequence [segment] [splSeqg] [k] \%
S
plicedSequence[segment] [splSeg] [rlen - 1] = Q A new symbol shall
ref sequence[seqld] Q be copigd from the
[splicedSegMappingPos [segment] [spl] referende at the end
g\ of segment.
- seq start([seqld] + rlen \\'QQ)
+ indelsCount] KN
_ Lo
ndelsCount += 1 \\Q)
} else { \'9
* *
reserved */] c\}~
| &
} W
proces$Clips (segment,@&eg) Specified in
C) Table 44.
Nt
! \\
\
Information on c@g bases is applied as follows:
Soft clips <</C)
The contents of SoftCHps|] array computed as specified I subctause 10.4.7 are appiied as specified in

Table 44.

© ISO/IEC 2024 - All rights reserved

40

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 44 — Sequence decoding process for soft clips in classes and HM

Decoding step Description
processClips (segment, splSeqg) {
if (splSeg == 0) {
splicedSequence [segment] [splSeg] = strcat returns the concate-
strcat (softClips[segment] [0], nation of the two arrays of
splicedSequence[segment] [splSeqg]) _ASCH characters passed as
Input.
}
if (splSeg == numberOfSplicedSeg[segment] - 1) {
splicedSeqguence[segment] [splSeg] = strcat returns the concate-
trcat (splicedSequence[segment] [splSeg], nation of the twp arrays of
softClips[segment] [1]) ASCII chardcters passed as
input.
}
Hard clips

The hardClips[][] array is used to compute the ecigarString[] and ecigarLength[] arrays §
subclause 10.6.2.

10.2.7 Type 5 AU (Class HM)

Class HM applies only to paired-end reads. Access units of type 5 avée decoded as follows:

a) The mapped read is decoded by following the process,specified for class I in subclause 10.]

pecified in

P.6 and it is

stored ps the first record segment in the output record specified in Clause 13.

b) The unmapped read is decoded according to the process specified in subclause 10.5.3.

10.2.8 Type 6 AU (Class U)

a) Seta clpssld variable equalito the value of AU_type as specified in subclause 7.5.1.2.

b) Decod
numbeprOfMappedRecordSegments as specified in subclause 10.4.10.

c¢) Compute thel{~array readLength[], numberOfSplicedSeg[], splicedSegLength
splicedSegMappingPos[][] as specified in subclause 10.4.9.

the variables numberOfRecordSegments, numberOfAlignedRecordSegments and

[f] and

d) Decodg theoutput variables specified in subclause 10.4.12 containing the alignment ar
informbtien-

d mapping

e) Decode the output variables specified in subclause 10.4.10 containing pairing and/or splicing

information.

f) Decode the readName variable as specified in subclause 10.4.17.

g) Ifpresent, decode the following optional descriptors:

i) decode the flags descriptor as specified in subclause 10.4.4;

© ISO/IEC 2024 - All rights reserved

41

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

ii) decode the qv descriptor as specified in subclause 10.4.16.

h)

in subclause 10.4.15.

i)

Decode the read sequences as specified in subclause 10.5.3.

10.2.8.2 cr_alg ID =2

If num_groups specified in subclause 7.4.2 is greater than 0, decode the rgroup descriptor as specified

The “PushIn” computed reference algorithm specified in subclause 11.3.4 is used. In this case the genomic
sequencing reads are decoded as for other classes of data by using the rtype descriptor as specified in
subclause 10.4.14. The rtype descriptor is used to select the class of the next genomic record to be decoded.

10.2.8.3 ¢

The “Globa
genomic se
in subclaus

_alg ID =4

Assembly” computed reference algorithm specified in subclause 11.3.6 is used:.In t}
uencing reads are decoded as for other classes of data by using the rtype descriptor
P 10.4.14. The rtype descriptor is used to select the class of the next genomio record to

10.3 data

10.3.1 Gel
The input t

one AU

or

The output]
sequence,,

Subclause

an AU ¢f type 6.

Set_type = 2

heral

b this process is either

Py

of this process is a raw_reference, sy structure as specified in subclause 7.3.2. Th
outl] identifies the ref_sequence field of raw_reference

output*

.4.2 specifies that all AUs referring to a parameter set having dataset_type set t

an encode
subclause 7

| reference genome or pertions thereof. According to the value of AU_type s
.5.1.2 the decoding proeess is as specified in subclauses 10.3.2, 10.3.3, 10.3.4, 10.3.5

for classes
The elemen

seq_count
in the head

his case the
hs specified
be decoded.

of type 1, 2, 3 or 4 and a raw_reference data structure‘already initialized by a previoyis decoding
process;

b array ref_

b 2 contain
pecified in
and 10.3.6

P N, M, [and U.

ts of the raw_referenceOutput

is set to the number of different values of ref_sequence_ID, specified in subclause 7.

syntax specified in subclause 7.3.2 shall be set as followd:

b.1.2, found

ers of the AUs with dataset_type equal to 2 referring to the same parameter set.

For eachv

]

— sequenceldD in the raw_reference syntax is set to ref_sequence_ID.

ue of'ref_sequence_ID the following applies:

— seq_start shall be set to the value of ref_start_position specified in subclause 7.5.1.2.

— seq_end shall be set to the value of ref_end_position specified in subclause 7.5.1.2.

The decoding process of each access unit refers to encoding parameters carried by the parameter set
identified by the parameter_set_ID specified in subclause 7.5.1.2.

The ref_sequence element specified in subclause 7.3.2 is initialised with the output ref_sequence, of
the decoding processes specified in subclauses 10.3.2 to 10.3.6.

© ISO/IEC 2024 - All rights reserved

42

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

10.3.2 Type 1 AU

Type 1 access units used to encode a reference sequence carry portions of the reference sequence which
perfectly match to the reference sequence identified by sequence_ID, specified in subclause 7.5.1.2, used for
compression.

The decoding process of a binary decoded access unit of type 1 is as follows:

a) Setan array of ASCII characters outBuf[] equal to the empty array.

b) Decode the value readLength[0] as specified in subclause 10.4.9.

c) Decode one pos descriptor as specified in subclause 10.4.2 and set p,, equal to mappingPos[0][0] as

specifi
d) Asequ

i) TH
is

pRef;, ¥

where

ii) outSequence = ref_sequence[sequence_ID][pRef,, pRef,+ readkength[0])

where

e) The de
and std

ol
where
f) If morg

g) Thebu
array d

re
outBuf
where

seq_st
raw_rg

1 L .1 040
FU TIT SUDUIAdUST 1VU.F. 4.

ence of nucleotides outSequence is computed as follows:

computed as follows:
p, - seq_start[sequence_ID]

seq_start[sequence_ID] is specified in subclause 7.3;

ref_sequence[sequence_ID][] is specified as in subclause 7.3.

coded sequence outSequence is concatenated with/all previously decoded sequence
red in a buffer outBuf computed as

tBuf = strcat(outBuf, outSequence)

genomic records are present, then go back to step a) else go to step g).

ffer outBuf containing the concatenation of all output sequences is stored in the ref_sec
f the raw_reference, . Structure produced as output of this decoding process:

f_sequence refisequence_ID] =

output[

[0, seq_end ref_sequence_ID] - seq_start [ref_sequence_ID]],,

output[output

Art, eand seq_end,q,, correspond respectively to the seq_start and seq_end f|

ference, i, structure, and where the following condition shall always be met:

strcat returns the concatenation of the two arrays of ASCII characters passed as inpu.

e position pRefj, in the reference sequence identified by sequence_ID as specified in sybclause 7.3

b in this AU

UENCe,yepyt

ields of the

Size{outBul] > Seq_end, T €I_Sequence_ID] - Seq_Start,, [ref_sequence_ID].

10.3.3 Type 2 AU

In case of AU of type 2 the sequence obtained at step c) of subclause 10.3.2 is modified by applying the
substitutions of symbol “N” according to the process described in subclause 10.2.4.

The decoding process continues then with step e) of subclause 10.3.2.

10.3.4 Type 3 AU

In case of AU of type 3 the sequence obtained at step c) of subclause 10.3.2 is modified by applying the
substitutions according to the process described in subclause 10.2.5.

© ISO/IEC 2024 - All rights reserved

43

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

The decoding process continues then with step €) of subclause 10.3.2.

10.3.5 Type 4 AU

In case of AU of type 4 the sequence obtained at step c) of subclause 10.3.2 is modified by applying
substitutions, insertions, deletions and soft clips according to the process described in subclause 10.2.6.

The decoding process continues then with step e) of subclause 10.3.2.

10.3.6 Type 6 AU

In an AU of type 6 encoding a reference sequence, only ureads descriptors are always present, optionally
associated to rlen descriptors providing the length of each encoded segment.

The decodipg process is as follows:
a) Setan array of ASCII characters outBuf[] equal to the empty array.

b) Decodg the value readLength[0] as specified in subclause 10.4.9.

c¢) DecodgreadLength[0] bases with decodeUreads(readLength[0]) as specified ih subclause 10.4.8 and set
outSequence to decodedUreads.

d) The defoded sequence outSequence is concatenated with all previously decoded outSequende in this AU
and stdred in a buffer outBuf computed as

outBuf|= strcat(outBuf, outSequence)
where ptrcat returns the concatenation of the two array$.of ASCII characters passed as input.
e) If morg genomic records are present, then go back to-step b) else go to step f).

f) The buffer outBuf containing the concatenation efdll output sequences is stored in the ref_sequence
array df the raw_reference, ., structure preduced as output of this decoding process, according to the
proces$ specified at point g) of subclause. 10;3.2.

10.4 Geng¢mic descriptors

10.4.1 General

The inputs [to this process arefdescriptor subsequences generated at output of the parsing process specified
in subclauge 12.6. Each descriptor subsequence consists of a collection of symbols stored in the decoded_
symbols data structure specified in subclause 12.1.

For a given|descriptot<ID, subsequenceN identifies the array decoded_symbols[descriptor_ID][N].

The input fo the,decoding process of a descriptor sequence identified by descriptor_ID are K| descriptor
subsequengeSsSubsequence0 .. subsequenceK-1, with K equal to the number of descriptor subsg¢quences as
specified inrTabte25:

The values of subsequenceN are read by means of indexes jy y where M = descriptor_ID and N = descriptor_
subsequence_ID.

Additional inputs are state variables computed during the decoding process described in this clause or other
subclauses.

Some state variables listed among the outputs of the decoding processes described in this subclause shall
be computed even if the corresponding descriptor is not present in the access unit. The listed inputs of each
subclause are not always required; the decoding process described in each subclause specifies which inputs
are required and which outputs are generated.

© ISO/IEC 2024 - All rights reserved

44

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

10.4.2 pos

The input to this process (see Table 45) is the array decoded_symbols[descriptor_ID][0] array specified in
subclause 12.1 when descriptor_IDisequalto 0 and the currentvalue ofj ,, the variable previousMappingPos0
produced by the previous iteration of this same process, and the array numberOfSegmentMappings]]
calculated as specified in subclause 10.4.12.

The output of this process is an array mappingPos[][0] and the variable previousMappingPos0.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N
(i.e. subsequenceN = decoded_symbols[0][N]).

Table 45 — Decoding process of the pos descriptor

Decoding step Description
if (39,0 > P) 1
mappingPos[0] [0] =
preyiousMappingPosO + subsequenceO[j,]
}
else{
if (AU_type == 6) { Unapped content using domputed
reference
mappingPos[0] [0] = subsequenceOl[J,]
} elsel{
mappingPos[0] [0] = AU_start_position is specjfied in
AU_start position + subsequence0[j, ;] subclause 7.5.1.2.
}
}
previousM@ppingPos0 = mappingPos[0] [0]
for(i = 1} i < numberOfSegmentMappings[0];vi++) { numberOfSegmentMappinigs[0] is
specified in subclause 10.4.12.
mappingPos[i] [0] =
mappingPos[i-1] [0] +subsequengel[j0,1]
30, 1++
}
o, 0t
10.4.3 rcagmp
The inputs fo this process are:
— thearrpy decoded_symbols[descriptor_ID][0] specified in subclause 12.1 when descriptor_II) is equal to
1 and theearrent value of j; o;

— the value of numberOfTemplateSegments as specified in subclause 7.4.2;

— the array numberOfSegmentMappings[] calculated as specified in subclause 10.4.12;

— the variable numberOfMappedRecordSegments calculated as specified in subclause 10.4.10;

— the array splitMate as specified in subclause 10.4.10;

— the array numberOfSplicedSeg|[] specified in subclause 10.4.9;
— the variable extended_alignment_info_flag specified in subclause 7.4.2.

The output of this process is the array reverseComp[][][].

© ISO/IEC 2024 - All rights reserved

45

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[1][N]).

Each decoded rcomp descriptor conveys information about the strandedness of each segment of an alignment.

When no splices are present in the genomic record, each bit of a decoded rcomp descriptor is a flag indicating
if the read is on the forward (bit set to 0) or reverse (bit set to 1) strand. Table 46 specifies the computation
of reverseComp[][][] values.

Table 46 — Determination of the reverseComp values

Decoding step

for(i = 0; 1 < numberOfMappedRecordSegments; i++) {

for(j # 0; J < numberOfSegmentMappings([i]; Jj++) {
if (¢plitMate[j][1] == 0) {

[£(§ == 0) {
for(k = 0; k < numberOfSplicedSeg[i]; k++)

reverseComp[k] [J] [1] = subsequenceO[jl,0++]

else {

reverseComp[0] [J] [1] = subsequenceO[jl,0++]

for| (k=1; k< numberOfTemplateSegments; k++) {
if (splitMate[j] [k] == 1 && extended alignment ihfo flag) {

reverseComp[0] [J] [k] = subsequenceO[]jl, 0€#]

}

When splides are present each decoded rcomp-descriptor consists in a flag conveying informpation about
the strandddness of each spliced segment of an-alignment. It is set to 0 when the spliced segmept is on the
forward strand and it is set to 1 when the spliced segment is on the reverse strand.

10.4.4 flag

LA

S
The input tp this process are:
— the dedqoded_symbols[descriptor_ID] array specified in subclause 12.1 when descriptor_ID i$ equal to 2;

— the varjiable extended_alignment_info_flag specified in subclause 7.4.2;

— the arrpy nuniberOfSegmentMappings[] calculated as specified in subclause 10.4.12;

— the varjiable humberOfMappedRecordSegments calculated as specified in subclause 10.4.10;

— the currentvalues of j, o, j; 1, j2 2, j2,3 and j, 4 as defined in subclause 10.4.

The descriptor_subsequence_ID are equal to 0, 1 and 2 as specified in Table 27 when extended_alignment_
info_flag is set to 0, othewrwise the descriptor_subsequence_ID are equal to 0, 1, 2, 3 and 4; The output of
this process is the array decodedFlags[][].

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[2][N]).

The flag syntax element carries additional alignment information usually produced by aligners as specified
in Table 27.

The flags value shall be calculated according to the process specified in Table 47.

© ISO/IEC 2024 - All rights reserved

46

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 47 — Decoding process of the flags descriptor

Decoding step Description
decodedFlags[0] [0] = 0
decodedFlags([0] [0] = subsequenceO[jzlo] << 0
decodedFlags([0] [0] |= subsequencel[j, ;] << 1
decodedFlags[0] [0] |= subsequence2[], ,] << 2
Jo,0tts Jo,1tts Jo,0tt
} else {
for(i = 0; 1 < numberOfMappedRecordSegments; i++) {
for(j = 0; j < numberOfSegmentMappings[i]; j++) {
ecodedFlags[j][i] = 0 b‘
7
L f (splitMate[]j] [i] == 0) { ,"Q
decodedFlags[j] [1] |= subsequenceO[j2,O] << 0 (-’,V
A . /7
- <<
decodedFlags([j][1] | subsequenceO[h,l] 1 Q‘()]/
decodedFlags[j][i] |= subsequenceO[j2,2] << 2 OJQ
decodedFlags[j][i] |= subsequence0[], ;] << 3
decodedFlags[j][1i] |= subsequenceO[j2,4] << 4 (/C)
Jo,0tts Jo,atty Jo,otte Jo,3tts Jg, 41t r‘\\\v
\J
S
| S
} X
for (i ¥ numberOfMappedRecordSegments; Q\)
i numberOfRecordSegments; i++) { \\\
decddedFlags[i] [0] = O BN
o
dec¢pdedFlags[i] [0] |= subsequenceO[jz,QQ‘ﬁQ 0
dec¢dedFlags[1i] [0] |= subsequencel[j&] << 1
- £,
dec¢dedFlags[i] [0] |= subsequenc@fz,ﬂ << 2
Jo,of tr J2,2tts Jo, ottt \O
! \\\C\Jb
} @)
10.4.5 mmpos &
The inputs fto this proc@are:
— two subsequ@gs decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in
subclayise hen descriptor_ID is equal to 3 and descriptor_subsequence_ID are equal tp 0 and 1 as
specifigd.i ble 28;

The output

of this process are:

the current values of j; ;. and j; ; as defined in subclause T10.4;

the numberOfMappedRecordSegments variable specified in subclause 10.4.10;

the classld variable specified in subclause 10.2.3;

the softClipSizes[][] array specified in subclause 10.4.7.

the arrays numberOfSplicedSeg[] and splicedSegLength[][] specified in subclause 10.4.9;

— the array mismatchOffsets[][Jcontaining offsets of the mismatches in the sequencing read or read pair;

© ISO/IEC 2024 - All rights reserved

47

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

— the array numMismatches|[] containing the number of elements in the array mismatchOffsets[][];

— the array splicedSegMismatchOffsets[][][] containing the offsets of mismatches within each spliced
segment;

— the array splicedSegMismatchldx[][] containing the positions, within the mismatchOffsets[][],

mismatchTypes[][] and mismatches[][] arrays computed as specified in

mismatches of each spliced segment;

subclause 10.4.6, of the

— the array splicedSegMismatchNumber[][] containing the number of mismatches for each spliced
segment.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.

subsequen

The overall

eN = decoded_symbols[3][N])

Table 48 — Determination of the offset of mismatches

decoding process for the output variables specified in this subclause is specifiedin Thble 48:

Decoding step

Description

decodeMmp

s ()

As specifiéd jn Table 49.

if (classI

== Class I || classId == Class HM) {

mismat¢hOffsetCorrectionByType () As.specified in Table 51.
}
decodeSplicedSegMismatchOffsets () As specified in Table 50.
The mismagch offsets for each aligned segment shall be comptited as specified in Table 49.

Fable 49 — Determination of the offset of mismatches within genomic segments

Decoding step

Description

decodeMmp

s() {

for(i ¥

0; i < numberOfMappedRecordSedrents;

i++)

{

prej
j =

FiousOffset = 0
0

for

k = 0; k < numberOfSpNcedSeg([i]; k ++)

{

plicedSegMismatchNumber[i] [k] = 0

plicedSegMismateR®Pdx[1] [k] =

)

]
Jhile(subsequenceO[j&O++] == 0) {

Loop on subsequence0 until a
terminator 1 is found.

mismaedhOffsets[i] [j] =
SubSequencel[j; ;] + previousOffset

previousOffset = mismatchOffsets[i][]]

PreviousOffset += 1

Adjacent mismatch positigns are

strictly incremental to prevent over-
lapping mismatches.

Exceptions to this requirement

are specified in Table 51.

splicedSegMismatchNumber[i] [k]++

33,1ttt

Increment read and write pointers.

© ISO/IEC 2024 - All rights reserved

48

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 49 (continued)

Decoding step Description

numMismatches[1i] = 7]

}

The mapping from splice mismatch indexes to genomic segment mismatch indexes shall be computed as
specified in Table 50.

Table 50 — Determination of the offset of mismatches within spliced segments

Decodinastan
0 5ote

L

decodeSpllcedSegMismatchOffsets () {
for(i # 0; 1 < numberOfAlignedRecordSegments; i++) {
spljcedSegStartOffset = 0
splicedSegEndOffset = splicedSegStartOffset +
plicedSeglength[i] [0] - softClipSizes[i][0]
1 =|0
forfk = 0; k < numberOfSplicedSeg[i]; k ++) {
for(j = 0; j < splicedSegMismatchNumber[i] [k]; Jj++)~{
splicedSegMismatchOffsets[i] [k][]] =
mismatchOffsets[i] [1l] - splicedSegStartOffset
1++
| £ (k < numberOfSplicedSeg[i] - 1) {
splicedSegStartOffset = splicedSegBndOffset
splicedSegEndOffset = splicedSegStartOffset +
splicedSegLength[i] [k + 1]
}
}
}
10.4.6 mmtype
The inputs fo this process are:
— three |subsequenicés decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in

subclayse 12.1\when descriptor_ID is equal to 4 and descriptor_subsequence_ID are equal

as sped
shall b

ified in'Table 29. The decoding process specified in subclause 12.6.2.3 for decoded_sy|

o0 0,1 and 2
mbols[4][1]

e pérformed after the decoding process specified in Table 52;

— the array with the number of mismatches numMismatches[], and the offset array mismatchOffsets[][]
calculated for the current genomic record as specified in subclause 10.4.5;

— the arrays splicedSegMismatchNumber[][] and splicedSegMismatchOffsets[][][] as specified in
subclause 10.4.5 the current values of j, ¢, j4 1 and j, , as defined in subclause 10.4;

— thearray S,j,papec_pl] as specified in subclause 9.2, for the value of alphabet_ID specified in subclause 9.2;

— the arrays mappingPos[][] and splicedSegMappingPos[][] as specified in subclauses 10.4.2 and 10.4.10;

— the classld variable specified in subclause 10.2.3;

— the numberOfMappedRecordSegments variable specified in subclause 10.4.10;

© ISO/IEC 2024 - All rights reserved

49

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

the variable seqld set equal to sequence_ID as specified in subclause 7.5.1.2. If crps_flag specified in

Table 7 is equal to 1 and cr_alg_ID specified in Table 17 is equal to 2, 3 or 4, seqld is not used;

the variable seqStart equal to 0 if crps_flag specified in Table 7 is equal to 1 and cr_alg_ID specified in

Table 17 is equal to 2, 3 or 4, else seqStart is set equal to seq_start[seqld] with seq_start[] as specified
in subclause 7.3;

the array splicedSegMappedLength[][] computed as specified in subclause 10.4.9.

The outputs of this process are arrays containing values identifying the type of edit operations to be
performed on the sequencing read or read pair computed as specified in subclause 10.4.20 when classld,
specified in subclause 10.2.3, is equal to Class_M, Class_I or Class_HM:

the mo

inserti

the ar

sequen|

the mo

In this deg
subsequend

If classld i

subclause]

the arr

the arr]

ified mismatchOffsets[][] array;

bns and 2 signals deletions;
hy mismatches[][] contains the symbols to be used for substitutions and insértions;

fay substMappingOffsets[][] containing the offsets of the mismatches within th
ce the segment is mapped to;

dified splicedSegMappedLength[][] array.
cription, subsequenceN is the subsequence identified by-descriptor_subsequence_

eN = decoded_symbols[4][N]).

0.4.5 shall be modified, before any possible useyaccording to the decoding process

hy mismatchTypes[][] contains values for the type of mismatch. 0 signals substitutior

5 equal either to Class_I or to Class_HM, the output mismatchOffsets[][] array s

s, 1 signals

b reference

D = N (ie.

pecified in
specified in

Table 51.
Table 51 — Updating mismatchOffsets[][] array based on mismatch types
Decoding step Description
mismatchOffsetCorrectionByType () {
k = j4]o
for(i # 0; 1 < numberOfMappedRegordSegments; i++) {
numPfDeletions = 0
forfj = 0; j < numMismatches[i]; Jj++) {
MmismatchOffsets{i] [j] —-= numOfDeletions Deletions can occur at the same
position of the next migmatch.
Therefore, the extra +1|offset to
prevent overlapping mismatches,
as specified in Table 91} does not

apply to deletions.

| £ (Gubsequencel [k]) Deletion.

numOfDeletions += 1

k++

}

The arrays substMappingOffsets[] and splicedSegMappedLength[][] shall be, respectively, calculated and

modified fo

llowing the process described in Table 52.

© ISO/IEC 2024 - All rights reserved

50

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 52 — Determination of the substMappingOffsets[] arrays.

Decoding step Description
k = 34,0
for(i = 0; 1 < numberOfMappedRecordSegments; i++) {
1 =0
substMappingOffsets[i] = {} Empty array.
if (numberOfSplicedSeg[i] == 1) { Case of no splices.
mappedMmpos = mappingPos[0] [i] - segStart
previousOffset = 0
for(j = 0; j < numMismatches[i]; j++) {
thappedMmpos += b‘
mismatchOffsets[i] []j] - previousOffset (\(]/

previousOffset = mismatchOffsets[i][]]

‘ 4
o l’

| f (subsequence0[k] == 0) { Substitut’i\@;’ v
substMappingOffsets[i] [1] = mappedMmpos AQU.)V
1++ a°

else if (subsequencel[k] == 1) { ¢Lﬁsértion.

mappedMmpos -= 1

O\\~ nsertions increase mnjpos de-

scriptor value but, sincg¢ they do
not represent an actual base on
the reference sequence| they shall
not increase the mappgd position,
as specified in Table 91

else if (subsequencel[k] == 2) {

Deletion.

mappedMmpos += 1

Deletions do not increase mmpos
descriptor value but, sihce they
represent an actual bage on the
reference sequence, they shall

A‘\Q) increase the mapped p¢sition, as
A specified in Table 91.
\V
-+ AN
} o ™
} else|{ r'\@ Case of splices.

pre

YiousOffset = (U)\J

pre

¥i 14 ff =
FiousSp 1&@\10 set 0

for

s = O;(s\'\<<"numberOfSplicedSeg[i]; s++) |

"4
happ os = splicedSegMappingPos[i][s] -
(; tart

%%ous@ffset =0

for(j = 0;

J++) |

j < splicedSegMismatchNumber([i] [s];

mappedMmpos +=

splicedSegMismatchOffsets[i] [s][]j] -
previousOffset

previousOffset =
splicedSegMismatchOffsets[i][s][]]

if (subsequenceO[k] == 0) {

Substitution.

substMappingOffsets[i] [1] = mappedMmpos

1++

© ISO/IEC 2024 - All rights reserved

51

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 52 (continued)

Decoding step Description
} else if (subsequenceO[k] == 1) { Insertion.
mappedMmpos -= 1 Insertions increase mmpos de-
scriptor value but, since they do
not represent an actual base on
the reference sequence, they shall
not increase the mapped position,
as specified in Table 91.
splicedSegMappedLength[i] [s] -= 1

} else if (subsequencel[k] == 2) { Deletion.

Mappeormpos. T — T peletions ao notincrease mmpos
descriptor value byl-t(‘ nce they
represent an ac}ﬁj ade on the
reference sequence, they shall
increase t (ﬁapped position, as
specifiedin/¥able 91.

splicedSegMappedLength[i] [s] += 1 \)J

a2
k++ \\<</
QY
} 2

} , O
} e
The remaining output of mmtype descriptor decoding:process shall be calculated following the process
described fn Table 53, after having decoded subseqiéncel according to the decoding procegs specified
in Table 125 using, if required by the said decodi rocess specified in Table 125 and by following the
decoding pfocess specified in subclause 12.6.2.3, the array substMappingOffsets[] decoded as specified in
Table 52.) Qﬁ‘

\)
3
Table 53 — Determination@ the mismatchTypes[] and mismatches[] arrays
N
Decoqi.liés‘tep Description

for(s = 0} s < numberOfMapped,Ré-c’ordSegments; s++) |

-~

while (] < numMismatfh%e)[s]) {

1f(ize(subse(@n;eO[]) > 0) {

hismatc s [s] 5]

subsequence0[j4,0]

 se ,{_év

ni%&?chTypeS[S] [3]1 =0 Default to substitution if
AN subsequence0 is empty.
}
if (mismatchTypes[s][j] == 0) Substitution.
mismatches([s] []j] =
S.iphavet 1plsubsequencel[j, ;1]
Iy, 1t
} else if (mismatchTypes[s][j] == 1) { Insertion.
mismatches[s] [j] =
Saiphapet 1plsubsequence2[j, ;1]
3y, 0t
} else if (mismatchTypes[s][j] == 2) { Deletion.

© ISO/IEC 2024 - All rights reserved

52

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 53 (continued)

Decoding step Description

/* nothing needs to be done */

for any decoding process.

The value of mismatches[j] is
undefined, as it is not relevant

Jg, 0Tt JHt

10.4.7 clips

four
subcla

the var
initiali

the cur
thearr

the va

subclause 7.4.2;

the var

the cla

The four subsequences are identified by subsequences_ID from 0 to 3 as specified in Table 30.

The output|
specified in

The decodi

ubsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID})" .as sj
se 12.1 when descriptor_ID is equal to 5;

iable currentRecordCount is the number of processed genomic records.in the current
ved to 0 at the beginning of current AU decoding process;

rent values of js , js 1, j5 » and js 3 as defined in subclause 10.4;

subclause 9.2, for the value of alphabet_ID specified in sub;

hy Salphabet_m[] asspecifiedin

ue Size(Syphabet 1p) @s specified in subclause 9.2, for the value of alphabet_ID §

iable numberOfMappedRecordSegments calculated as specified in subclause 10.4.10;

bsld variable specified in subclause 10.2.3,

of this process is an array softClips{][][], an array softClipSizes[][] and an array hard
Table 55.

hg process of the clips deseriptor is provided in Table 55 where:

SO

las

enceN is the subsequence identified by descriptor_subsequence_ID = N;

tClips{0][0] and softClips[1][0] contain strings of characters representing soft clips pr

ecified in

AU and it is

flause 7.4.2;

pecified in

Clips[][] as

eceding the

htmost read respectivel

ed base of the leftmost read and ri

t mapped base of the leftmost read and rightmost read respectively,

base of the leftmost read and rightmost read respectively,

of the leftmost read and rightmost read respectively;

the semantics of subsequencel are as shown in Table 54.

© ISO/IEC 2024 - All rights reserved

53

softClips[0][1] and softClips[1][1] contain strings of characters representing soft clips following the

softClipSizes[i][j] contain the number of charcters in the strings in softClips[i][j] respectively,

hardClips[0][0] and hardClips[1][0] contain the number of hard clips preceding the first mapped

hardClips[0][1] and hardClips[1][1] contain the number of hard clips following the last mapped base

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 54 — Values and semantics for subsequencel

subsequencel values semantics
0 Soft clips before the start of leftmost read. Shall not be
used if 4 is present for the same genomic record.
1 Soft clips after the end of leftmost read Shall not be used
if 5 is present for the same genomic record.
2 Soft clips before the start of rightmost read. Shall not be
used if 6 is present for the same genomic record.
3 Soft clips after the end of rightmost read. Shall not be
used if 7 is present for the same genomic record.
4 Hard clips before the start of leftmost read. Shall not be
used 1T U Is present for the same genomic record.
5 Hard clips after the end of leftmost read. Shall not be
used if 1 is present for the same genomic record.
6 Hard clips before start of rightmost read. Shall not be
used if 2 is present for the same genomic record:
7 Hard clips after end of rightmost read. Shallmebt be used
if 3 is present for the same genomic record.
8 End-of-clips terminator.
For a decoded genomic record each value of subsequencel as specified in Table 54 shall not belused more
than once.
Table 55 — Decoding process of the clips descriptor
Decoding process Descriptlion
for(i = 0} 1 < numberOfMappedRecordSegments; i+)
for(j # 0; 3 < 2; j++) {
soffClips[i] [j] = Empty string.
soffClipSizes[i] [j] = O
hardiClips[i] [j] = O
}
}
if (classIq@l == Class I || classId == Class HM) {
1f(Js, o < Size (subsequente0)
&& ¢urrentRecord@ournt == subsequencel[Jjs o]) {
end|= 0
do{
L £ (sulssequencel [J5 ;] < 3) { Soft clips.
559
grentlad——-aubsequencet{5—r] +
leftRightIdx = subsequencel[js ;] & 1
do{

softClips[segmentIdx] [leftRightIdx] [j] =
SalpmmetID[subsequenceZ[j5,2]J

j5,2++

Increment pointer for
subsequence2.

J++

© ISO/IEC 2024 - All rights reserved

54

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 55 (continued)
Decoding process Description
} while (subsequenceZ2[Js ;] != Size(S,ipnaper 10)) Continue reading symbols
of clipped bases until the
end-of-soft-clips terminator
is reached.
Js,2t+ Increment pointer for
subsequence2.
softClipSizes[segmentIdx] [leftRightIdx] = j Store soft clips size.
}
else if (subsequencel[Js 4] < 7| Hard clips.
segmentIdx = (subsequencel[j5,l] - 4) >> 1 -
leftRightIdx = (subsequencel[j5,1] - 4) & 1 ({l/v
hardClips|[segmentIdx] [leftRightIdx] = Store t }r;L{r;ber of hard
subsequence3 (], ;] Clipsn ’
Js, 3t I@gent pointef for
Subsequence3.
C
¢lse if (subsequencel[js ;] == 8){ \\{(/ End-of-clips termjfinator.
end = 1 \
C
N7
5,17 F o Increment pointef for
Q subsequencel.
} while(end == 0) Qv Continue decodinjg soft and
§ hard clips until tHe end of
As\ clips terminator is detected.
Js,of * \"Q Increment pointef for
o subsequence0.
N
} R
-~
currenfRecordCount++ (o)
X\'
) e
>
10.4.8 ur¢ads ..
The inputs fo this process s@%ble 56) are:
— thearrpy decoded@m ols[descriptor_ID][0] structure as specified in subclause 12.1 when descriptor_
ID is equal to 6; Q~
— the curren@%e of jg,0;
— thearr W&Dhabet ipllasspecifiedinsubclause 9.2, for the value of alphabet_ID specified insubglause 7.4.2.

The output of this process is a string decodedUreads.

© ISO/IEC 2024 - All rights reserved

55

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 56 — Decoding process of the ureads descriptor

Decoding process Description
decodeUreads (length) {
decodedUreads = “” Empty string.
for(j = 0; j < length; j++) {
decodedUreads = strcat (decodedUreads, strcat returns the concatenation of the
Salphabet 1pldecoded_symbols[6]1[0] [Jg,0]] two arrays of ASCII characters passed as
- input.
e, ot
}
}
10.4.9 rlep

The rlen dgscriptor is present when read_length is equal to 0 in the parameter set or when there 3
alignments|with splices.

The inputs

to this process are:

the array decoded_symbols[descriptor_ID][0] as specified in subclduse 12.1 when descr
equal tp 7;

the valpie read_length as specified in subclause 7.4.2;

the varjiable classld computed in subclause 10.2.3;

the vaifiables numberOfRecordSegments and numberOfAlignedRecordSegments computed
in subdlause 10.4.10;

ifclass

re multiple

iptor_ID is

is specified

disequalto Class_I or Class_HM, the array~hardClips[][] computed as specified in subclause 10.4.7;

the spliced_reads_flag syntax element specified in subclause 7.4.2;

the soffClipSizes[][] array specified in@ubclause 10.4.7;

the current value of j; .

The outputp of this process are:

The decodi

the arrpy readLength[];

the arrpy numberQfSplicedSeg|[];

the arrpy splicédSegLength[][];

the arrpy splicedSegMappedLength[][].

ng process of the rlen descriptor 1s speciiied In I1able 5/. In this description, subsequenceN is the

subsequence identified by descriptor_subsequence_ID = N (i.e. subsequenceN = decoded_symbols[7][N]).

Table 57 — Decoding process of the rlen descriptor

Decoding step Description
if (read length == 0) {
for(i = 0; 1 < numberOfRecordSegments; i++) {
readLength[i] = subsequenceO[j%O++] + 1
}
telse(

© ISO/IEC 2024 - All rights reserved

56

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 57 (continued)

Decoding step Description

for(i = 0; 1 < numberOfRecordSegments; i++) {

if (classId == Class I){
readLength[i] = read length
- hardClips[i][0] - hardClips([i][1]
}
else if(classId == Class HM && i == 0) {
readLength[i] = read length

- hardClips[0] [0] - hardClips[0][1]

els¢ >3

readLength[i] = read length

} ({b"

for(i = 0} i1 < numberOfRecordSegments; i++) { 'C) v

numberPfSplicedSeg[i] =1 \QO

splicedlSeglLength[i] [0] = readLength[i]

splicedlSegMappedLength[i] [0] = readLength[i] g\\c)
} < O
if (spliced reads flag && O\
(cl@ssId == Class I || classId == Class_HM)&Q
for(i # 0; 1 < numberOfAlignedRecordSegments5\ \jr){

rem@ininglen = readLength[i] ‘\Q‘

1 =[° xQO
oo >

plicelen = subsequenfew 7,0t+]

Femaininglen -= sp&i’c‘e‘fen
plicedSegLengt?{w‘[j] = splicelen
pllcedSegMap@Length[l] [7] = splicelen
™
\0
++ 1%

} whlle(re\@ungLen > 0)

num erO@icedSeg[i] =

) 4 K
spl ,@BegMappedLength[l] [0] —-=
OICCIIpSizZes 1] 1]

splicedSegMappedLength[i] [j-1] -=
softClipSizes[i] [1]

10.4.10pair

Table 58 lists the possible decoding cases for the pair descriptor with the associated description for the first
alignment and class U.

© ISO/IEC 2024 - All rights reserved

57

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 58 — Specification of the decoding cases for the pair descriptor for primary alignments

and class U
Decoding case Description
ClassesP,N,M, I | Class HM Class U
same_rec Read 1 and read 2 are encoded in the same genomic record.
R1_split Read 1 in pair is on the same N/A Read 1 paired with mate in
reference sequence but coded the same AU.
separately.
R2_split Read 2 in pair is on the same N/A Read 2 paired with mate in
reference sequence but coded the same AU.
separately.
R1_diff refseq Read 1 is on a different reference |[N/A Read 1 paired with mate in a
sequence. different AU.
R2_diff_ref]seq Read 2 is on a different reference |N/A Read 2 paired-with mate in a
sequence. different AU.
R1_unpairefd Read 1 is unpaired. N/A Readyl|unpaired.
R2_unpairefd Read 2 is unpaired. N/A Read 2 unpaired.
Table 59 lists the possible decoding cases for the pair descriptor with (the associated des¢ription for
alignments|after the first one.
When the two ends of a paired-end read are coded in two different genomic records, they are pdrt of a split
alignment.
Table 59 — Specification of the decoding cases for the pair descriptor for alignments after the first one
. Description
D¢coding case
Classes P,N, M, I
same| rec_short Read 1 and read 2 are enceded in the same genomic record and the absolute|pair-
ing distance is smaller.than or equal to 32767.
same| rec_long Read 1 and read 2 are-eéncoded in the same genomic record and the absolute|pair-
ing distance is greater than 32767.
R2_d|ff_ref_seq Read 2 is on adifferent reference sequence.
Table 60 lists the possible decoding c¢ases for the pair descriptor with the associated description for spliced reads.
Table 60 — Specification of the decoding cases for the pair descriptor for spliced regads
. Description
D¢coding case
Classes I, HM
same| rec_short The next splice is in the same genomic record as current splice, and the spliding
distance is smaller than or equal to 65535.
same| rec”long The next splice is in the same genomic record as current splice, and the spliding
distance is greater than 65535.
splice_diff ref seq |The next splice is on a different reference sequence than the current splice.

The inputs to this process are:

— the value of numberOfTemplateSegments as specified in subclause 7.4.2;

eight subsequences decoded_symbols[descriptor_ID][descriptor_subsequence_ID]

as specified

in

subclause 12.1 when descriptor_ID is equal to 8. The description of each subsequence is provided in
Table 31;

the current values of jg o, jg 1, g 2 ig 3 Jg.4 J8,5 Jg,6a0d Jg 73

© ISO/IEC 2024 - All rights reserved

58

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

The outputp of this process are:

ISO/IEC 23092-2:2024(en)

the array mappingPos[][0] computed as specified subclause 10.4.2;

the classld variable specified in subclause 10.2.3;

a seqld variable set to sequence_ID as specified in subclause 7.5.1.2;

the array alignPtr[][] specified in subclause 10.4.12;

the variable numberOfAlignments and the array numberOfSegmentAlignments[] specified in
subclause 10.4.12;

the arrays numberOfSplicedSeg[] and splicedSegLength[][] specified in subclause 10.4.9;

the crps_flag value specified in subclause 7.4.2 and the cr_alg_ID value specified in subclause 7.4.2.4;

a variaple numberOfRecordSegments calculated as follows:

— ifjumberOfTemplateSegments is equal to 1 then numberOfRecordSegments is set to 1,
— elsgifclassld is equal to Class_HM as specified in Table 38 then number@fRécordSegments is set to 2,
— elsp if subsequenceO[;g o] is equal to 0 then numberOfRecordSegments is set to 2,
— else numberOfRecordSegments is set to 1;

a variaple numberOfAlignedRecordSegments calculated as follows:

— ifclassld is equal to Class_HM as specified in Table 38 thettnumberOfAlignedRecordSegmenits issetto 1,

— elsg if classld is equal to Class_U as specified in Table 38 then numberOfAlignedRecord$egments is
setto 0,

— else numberOfAlignedRecordSegments is:set to the value of numberOfRecordSegments;
a variaple numberOfMappedRecordSegmefits calculated as follows:

— if dlassld is equal to Class_U as spé€cified in Table 38, and crps_flag is not equal to 0 and ¢r_alg_ID is
equal to 2 or 4 as specified in subclause 7.4.2, then numberOfMappedRecordSegments |s set to the
value of numberOfRecordSegients,

— else numberOfMappedRecordSegments is set to the value of numberOfAlignedRecordSegments,
a variaple unpairedRead-ealculated as follows:
— if dlassld is egutal to Class_HM as specified in Table 38 then unpairedRead is set to 0,

— elsp if numberOfTemplateSegments is equal to 1 or subsequenceO[;g o] is equal to 3 or 6 then
unpairédRead is setto 1,

J— elc unnairedReoad ic cotta Q-
Se-thpatHeanedaisSsetto-v

one flag read1First, whose value follows the same semantics of read_1_first output syntax element
specified in subclause 13.2.8;

the arrays splitMate[][i] for i from 1 to numberOfTemplateSegments, where the value of each element
follows the same semantics of split_alignment output syntax element specified in subclause 13.2.23;

the arrays splicedSegMappingPos[i][] for i from 0 to numberOfRecordSegments.

When classld is equal to Class_P, Class_N, Class_M or Class_I, additional output of this process is:

the arrays mappingPos[][i] for i from 1 to numberOfTemplateSegments;

© ISO/IEC 2024 - All rights reserved

59

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

— the arrays mateSeqld[][i] for i from 1 to numberOfTemplateSegments.

When classld is equal to Class_U, additional output of this process is:

— the arrays pairingMate[i] from 1 to numberOfTemplateSegments. A -1 value in an array element is used

as reserved value;

In the following descriptions of the decoding process subsequenceN indicates the subsequence identified by

descriptor_subsequence_ID equal to N.

The decoding process of the pair descriptor is carried out by applying the decoding processes specified in

Table 61, Table 62, and Table 63, in this exact order.

The decoding process of the pair descriptor for the first alignment and for class U is specified in Table 60.

™
Table 6]l — Decoding process of the pair descriptor subsequences for the first ali@%&nt in the

record or class U

.

0.,
Decoding step r\q,‘i)‘zascrlpti bn
splitMate[0][0] = 0 O\QVJ
readlFirst = 1 vV’
if (classI¢ == Class HM) { D
readlF{rst = (subsequencel[Jjg ;++] & 0x0001) 2 0 : 1 O\ same_rec - in recorfls of class

HM, the paired segments are

always in the same

record.

splitMgte[0][1] = O < (@)

} else { /\0\

for(i # 1; 1 < numberOfTemplateSegments; i++) K\\(

if (pubsequencel[jg o] == 0){ ‘\\)‘ same_rec
plitMate[0] [i] = O \4
R
| £ (classId != Class U $
Il (crps_flag != 0 && Q‘\Q
(cr_alg ID == 2 || er alg ID == 4))) {

readlFirst = (subsequqlgg[j&l] & 0x0001) 2 O : 1

delta = subsequenc;;@{l] >> 1

0 < delta < 32767

mappingPos[0] [1] .2\1{apping}?os[0] [0] + delta
[N ry

if (classId !=Slass U) |

mateSeq@)ﬁﬁ [i] = seqId

‘< pairingMate[i] = -1

a
o~

e
X1
- -

2 c
ISESSISEENY

readlFirst = 1

pairingMate[i] = -1
}
}
else if (subsequenceO[Jg o] == 1){ R1_split
splitMate[0][i] =1

readlFirst = 0

if (classId != Class U) {

© ISO/IEC 2024 - All rights reserved

60

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 61 (continued)

Decoding step

Description

mappingPos[0] [1] = subsequence?2 [jg,z]

Absolute mapping position of
read 1 on the same reference
sequence. The maximum value
is 2posSize — 1 where posSize is
specified in subclause 7.4.2.

mateSeqId[0] [1] = seqld

} else {
pairingMate[i] = -1
}
g, 2t N
) AV
els¢ if (subsequenceOl[jg o] == 2){ R2_split (\".l/v
plitMate[0][i] = 1 Aqle

readlFirst = 1

°

| f (classId != Class U) { (1/3
mappingPos[0] [1] = subsequence3[jg ;] Q}.)Absolute mapping position
\\ of the read 2 on the|same
O reference sequence) The
\% maximum value is 4posSize — 1
‘\ where posSize is specified in
O subclause 7.4.2.
mateSeqId[0] [1] = seqgld AO\
else { \\‘(
pairingMate[i] = -1 ‘\0‘
<
N\
g, 3Tt ‘$
) £\

els¢ if (subsequence0[jg (] ==@{

R1_diff ref_seq

plitMate[0][i] = 1 | (.\)l:

FeadlFirst = 0 C)\\

| f (classId != CLAS&’U.){

mateSeqgId[0] @= subsequence4 [js,zﬂ

RN

Identifier of the refgrence
sequence to which fjead 1 is
mapped.

mappgém\s[o] [1] = subsequence6(Jg,q]

Absolute mapping position
of read 1 on the refgrence
sequence identified|by
mateSeqld[0][i]. The

maximum value ig AposSize _ 1

1

where posSize is specified in
subclause 7.4.2.1.

lelse{

pairingMate[i] = -1

}

Jg,att, Jg, 6t

}

else if (subsequenceO[jg o] == 4){

R2_diff_ref_seq

splitMate[0][i] =1

readlFirst = 1

© ISO/IEC 2024 - All rights reserved

61

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 61 (continued)

Decoding step

Description

if (classId != CLASS U) {

mateSeqId[0] [1] = subsequenceb[Jg, 5]

Identifier of the reference
sequence to which read 2 is
mapped.

mappingPos[0] [1] = subsequence7[j&7]

Absolute mapping position of
the read 2 on the reference
sequence identified by
mateSeqld[0][i]. The
maximum value is 2PosSize — 1
where posSize is specified

in subclause 74.2.1)

else(

A

pairingMate[i] = -1

N4
.

g, 5T+, Jg, 77T,

els¢ 1f (subsequenceO[jg o] == 5){

Ri_unpaired

plitMate[0][i] = 2

readlFirst = 1

| £ (classId == CLASS U) {

pairingMate[i] = -1

els¢ 1f (subsequenceO[j&O] ==

R2_unpaired

plitMate[0] [1] = 2

readlFirst = 0

| £ (classId == CLASS U) {

pairingMate[i] = -1

j8,0++

) s\'

The decodipg procﬁ'grf the pair descriptor for the alignments after the first one is specified in Table 62.

Table 62
after the first one

—\Q/géoding process of the pair descriptor subsequences for the alignments in the record

Decoding step

Description

for(i = 1; 1 < numberOfSegmentAlignments[0]; i++) {

splitMate[1] [0] = O

}

if((classId == Class P ||
|| class ID == Class M ||
&& 'unpairedRead) {

classId == Class N
classId == Class 1)

for(j = 1; J < numberOfTemplateSegments; j++) {

currAlignIdx = 0

© ISO/IEC 2024 - All rights reserved

62

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 62 (continued)

Decoding step

Description

for(i = 1; 1 < numberOfAlignments; i++) {

alignIdx alignPtr[i] []]

if(alignIdx > currAlignIdx) {

currAlignIdx alignIdx

if(subsequenceO[jS,O] == 0) {

same_rec_short

0

splitMate[alignIdx] []]

delta

subsequencel[j8,1] >> 1;

0 < delta < 32767

if (subsequencel [jg,lJ & 0x0001)

read sign bit

delta - delta

mappingPos[alignIdx] []]

mappingPos[alignPtr[i] [0]][0]

De
R

.

+ delta = f]/
mateSeqld[alignIdx] [j] = seqld A(Sl/
Js, 1t n(b\)
v
| C
¢lse if (subsequenceO[Jjg o] == 2){ \\:same_rec_long
splitMate[alignIdx] [j] = O ,-O\
mappingPos[alignIdx] [j] = 5\\‘:) For classes P, N, M, I
subsequence3[Jg, ;] (@) Absolute mapping position
Q ofread 2 on the same
QQ reference sequence. THe
N\ maxi_mum value is
g\Q\ 2posSize — 1 where posSjze is speci-
0, fied in subclause 7.4.2.]..
mateSeqgIld[alignIdx] [j] = seqgIld \\\\
Jg,3tt N O)Q‘
4‘\

¢lse if (subsequenceO[jg,Qr%\—) 4) {

R2_diff_ref_seq

splitMate [alignIde{j@)\= 1

mateSeqId[alignIdx)]
subsequence‘i‘l\\js” 5]

Identifier of the refere
quence to which read 2

hce se-
is mapped.

mappingPos @nldx] [31]

subse§. e’ [j8,7]
OQ‘

D
&

For classes P, N, M, |

Absolute mapping pos
2 on the reference seq
tified by subsequence§
maximum value is
2posSize — 1 where posSjze is

specified in subclause [/.4.2.1.

tion of read
ence iden-
[ig s]- The

N

_]8’5-r-r, _j8,7-r-r,

}

else {

/* other subsequenceO[jgro] values */

reserved

}

j8,0++

}

© ISO/IEC 2024 - All rights reserved

63

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

The decoding process of the pair descriptor for spliced reads is specified in Table 63.

Table 63 — Decoding process of the pair descriptor subsequences for spliced reads

Decoding step Description
for(i = 0; 1 < numberOfMappedRecordSegments; i++) {
splicedSegMappingPos[1i] [0] = mappingPos[0] [i]
}
if (classId == Class I || classId == Class_ HM) {
for(i = 0; 1 < numberOfAlignedRecordSegments;
i++) {
forfi—1t7 TTumoerotSptTcedSegt T N
prevSpliceMappingEnd = (]/V‘
splicedSegMappingPos[i] []J - 1] (]9
+ splicedSegLength[i][j - 1] d
L (subsequencel[jg o] == 0) { same@‘@l}‘_short
delta = subsequencel[jg ;] >> 1 &@{3532767
O
if (subsequencel[jg ;] & 0x0001) Cre’ddsignbit
delta = - delta 0 Y
‘\vl
splicedSegMappingPos[i] [J] = O\
prevSpliceMappingEnd + delta \Q)
X N\
Jo, 1t S
A4
~
¢lse if (subsequence0l[jg o] == 2){ O\) same_rec_long
-
splicedSegMappingPos[i] [] = $\\§\ Absolute mapping ppsition
subsequence3[jg, ;] of the splice on the Jame
\06 reference sequence ps
b\ the previous splice. [The
®$ maximum value is 2JposSize — 1
Q\ where posSize is spé¢cified in
\'Q subclause 7.4.2.1.
Je, 3t N
\J
N
¢lse .
[N S
/* other sub?@nceO[j&o] values */ reserved
O~
++ :
8,0 A@
: o
I PSS
! \\Q/

10.4.11mscore

The mscore descriptor provides a score per segment in each alignment. Some information on how to use the
mscore descriptor to express the mapping quality is provided in Annex B.

The inputs to this process are:
— the decoded_symbols[descriptor_ID] array specified in subclause 12.1 when descriptor_ID is equal to 9;
— the current value of jg o;

— the value of syntax element as_depth specified in subclause 7.4.2;

© ISO/IEC 2024 - All rights reserved

64

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

— the variable extended_alignment_info_flag specified in subclause 7.4.2;

— the array numberOfSegmentAlignments[] calculated as specified in subclause 10.4.12;

— the variable numberOfAlignedRecordSegments calculated as specified in subclause 10.4.10;

— the array splitMate as specified in subclause 10.4.10.

The output of this process is the three-dimensional mappingScores[][][]array.

The decoding process of the mscore descriptor is specified in Table 64. In this description, subsequenceN is
the subsequence identified by descriptor_subsequence_ID = N (i.e. subsequenceN = decoded_symbols[9][N]).

Table 64 — Decoding process for the mscore descriptor

Decoding step Deéscription
for(i = 0} i < as depth; i++) {

for(j # 0; 7 < numberOfAlignedRecordSegments; Jj++) {

forfk = 0; k < numberOfSegmentAlignments[j]; k++) {

| f (splitMate[k] [J] == 0) {

mappingScores[k] [J][1] = subsequencel[Jg, ot++];

for| (h=1;h< numberOfTemplateSegments;h++) {
if (splitMate[]j] [h] == 1 && extended alignment imfio flag) {

mappingScores[h] [J][1] = subsequencel[]q gt

10.4.12mmap

10.4.12.1 General

The mmap| descriptor is used to signal on how many positions the read or the leftmost read of a pair has
been aligndd. A genomic recerd-containing multiple alignments is associated with one mmap degcriptor.

The inputs fo this process are:

— the variables ~npairedRead, numberOfAlignedRecordSegments and numberOfRecordSegments
computed instbclause 10.4.10;

— the syibséquences decoded_symbols[descriptor_ID][descriptor_subsequence_ID] as specified in
subclause-t2-twhendescriptorID s equal to- 0 The descriptiomof eachsubsequence s provided in

Table 32;

— the current values of jy(¢, j10,1, j10,2 10,3 J10,4

— the classld variable specified in subclause 10.2.3;

— the value of multiple_alignments_flag specified in subclause 7.4.2;

— the crps_flag value specified in subclause 7.4.2 and the cr_alg_ID value specified in subclause 7.4.2.4.

The outputs of this process are:

— the variable numberOfAlignments containing the total number of alignments;

© ISO/IEC 2024 - All rights reserved

65

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

— the array numberOfSegmentAlignments[] containing the total number of segment-specific alignments;

— the array numberOfAlignmentsPairs[] containing the number of alignments of the rightmost read
associated to each alignment of the leftmost read;

— the bi-dimensional array alignPtr[][] containing unsigned integer values representing, for each
alignment, the indexes of the corresponding segment-specific alignments;

— the variable moreAlignments;
— the variable moreAlignmentsNextPos;

— the variable moreAlignmentsNextSeqld;

— the varffable numberOfSegmentMappings| | calculated as follows:

— if dlassld is equal to Class_U as specified in Table 38, and crps_flag is not equal td.0 ‘and cr_alg_ID
is ¢qual to 2, 3 or 4 as specified in subclause 7.4.2, then the elements numberOfSegmentMappings|i]
ar¢ set 1 for all values of i from 0 to numberOfRecordSegments - 1,

— else numberOfSegmentMappings[] is set equal to numberOfSegmentAlighments|].

In the folloywing clauses, subsequence0 is the array decoded_symbols[10][0] specified in subclauge 12.1.

The decodipg process shown in Table 65 applies.

Table 65 — Decoding process of mmap

Decoding step Description
if (classIql != Class U) {
if (multiple alignment flag == 0) {
numperOfSegmentAlignments[0] = 1 Total number of aligniments of the
leftmost read.
} elsel{
numperOfSegmentAlignments [0] = sulSequencel[Jg, ot+]
}
} else {
numberPfSegmentAlignments [0y _= O
}
moreAlignfents = 0
if (unpairedRead || classId == Class HM) {
numberPfAlignmefits' = numberOfSegmentAlignments[0]

for(i # 0; 1i&~numberOfAlignments; i++) {

ali¢gnbte i) [0] = i

}
} else if(classId == Class U) {

if (numberOfRecordSegments > 1)

numberOfSegmentAlignments[1] = 0

numberOfAlignments = 0

} else {

numberOfSegmentAlignments[1l] = 0
k=0, 1 =0

while (i < numberOfSegmentAlignments[0]) {

if (multiple alignments flag == 0) {

© ISO/IEC 2024 - All rights reserved

66

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 65 (continued)

Decoding step Description
numberOfAlignmentsPairs[i] = 1 numberOfAlignmentsPairs[i] is
the number of alignments of the
rightmost read associated to the
ith alignments of the
leftmost read.
} else {
numberOfAlignmentsPairs[i] = subsequencel[] 10,o++]
}
j =0
while (j < numberOfAlignmentsPairs[i]) { N
£ 1= 0)¢ Skip this for firstaligment.
ptr = sequencel [j10,1++] n‘(l/‘-'
else { 4
V-l V4
ptr = 0 AQ\'{)
VvV
lignPtr[k] [1] = Qb
numberOfSegmentAlignments[1l] - ptr A\\/
lignPtr (k] [0] = i O
2
| £ (ptr == 0) ,.i\
numberOfSegmentAlignments[1]++ Q V
-
++, kt++ OQ
N\
} N
i++ \\J’
<
: R\
numberPfAlignments = k @$
} W
if (multiple alignments flag == 1 \O More alignments on apother ref-
&& ¢lassId != Class U . c\}‘ erence sequence.
&& $ubsequence?2 [j10,2++])({' ‘\
moreAljgnments = 1 -
(\\ :
moreAl]gnmentsNextSeq N Identifier of the refergnce
subgequence3[J o {F sequence an additiondl
@. alignment of read 1 is
Q‘ mapped to in case of multiple
alignments.
moreAl ,gn@extPos = Absolute mapping posjition
sub e% ced[F1g 4++] of an additional alignrhent
AN of read 1 on the reference
sequence identified by
moreAlignmentsNextSeqld.
}
10.4.12.2 Multiple alignments on different sequences

[t can happen that the alignment process finds alternative mappings to another reference sequence than the
one where the first mapping is positioned.

For read pairs that are uniquely aligned, the mmap descriptor shall be used to represent the absolute read
positions when there is for example a chimeric alignment with the mate on another chromosome (more
alignments on another reference sequence case in Table 65). The mmap descriptor shall be used to signal

© ISO/IEC 2024 - All rights reserved

67

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

the reference and the position of the next record containing further alignments for the same template. The
last record (e.g. the third if alternative mappings are coded in three different access units) shall contain the
reference and position of the first record.

10.4.13msar

The msar (multiple segments alignment record) descriptor supports spliced reads and alternative
alignments that contain indels or soft clips in case of class I data. It shall be present in a compliant bitstream
when multiple_alignments_flag specified in subclause 7.4.2 is set to 1 or when extended_alignment_
info_flag specified in subclause 7.4.2 is set to 1.

msar is intended to convey information related to secondary aligments on:

a mapg
— adiffer
Each msar

The syntax
specified in

€d segment length,
ent mapping contiguity (i.e. e-cigar string) for additional alignment and/or spli¢edre]
descriptor is an array of ASCII characters following the syntax specified in subclause

semantics and decoding process for msar descriptors are those for the‘tokentype
subclause 10.4.20 when encodingMode_ID is set to 0 as specified innTable 8. The msa

is the one defined in subclause 10.2.3.

ads.
10.6.

descriptors
"k variable

The output of the decoding process of the msar descriptor is the array decodedStrings[] gpecified in
subclause 10.4.20.5, when descriptor_ID is equal to 12.
Table 66 shiows how the array of strings decodedMsar[][] is computed using the following additipnal input:
— the arrpy numberOfSegmentAlignments[] calculated as-Specified in subclause 10.4.12;
— the valpe of numberOfTemplateSegments as specifiediin subclause 7.4.2;
— the varjiable numberOfAlignedRecordSegments-calculated as specified in subclause 10.4.10;
— the arrpy splitMate as specified in subclause't0.4.10.
For each genomic record the maximal number of encoded msar strings is equal to (numberOfAlignments - 1
+ extended alignment info flag) * numberOfRecordSegments.
Table 66 — Computation of decodedMsar
Decoding step Description
for(i = 0} 1 < numbexOfAlignedRecordSegments; i++) {
decodediMsar [] [4) = {} Empty array.
for(j ¥ 0;
J <|nuhberOfSegmentAlignments[i]-1;j++) {
if (dpMtMate 41041 == Q) |

decodedMsar[j][1]

decodedStrings[msar k++]

for

(k=1;k< numberOfTemplateSegments;k++) {

if (splitMate[j] [k] == 1 && extended alignment info flag) {

decodedMsar[j] [k] decodedStrings [msar k++]

© ISO/IEC 2024 - All rights reserved

68

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 66 (continued)

Decoding step

Description

10.4.14rtype

10.4.14.1

General

The rtype descriptor is used to signal the subset of descriptors used to decode one unmapped read (class

HM and cla

The rtype
dataset. In
set of descr
reference, ¥

The input {
descriptor

The output
the approp

5s U) or read pair (Class U) in a genomic record as shown in Table 67.

descriptor also enables mixing reference-based and reference-less compression i
this scenario rtype = 0 signals reference-based encoded records, while rtype > 0
iptors to be used for reference-less compression (in this case descriptorsreéfer to th
vhen needed).

o this process is the decoded_symbols[descriptor_ID] array specified in subclause
LID is equal to 12 and the current value of j;, .

of this process is the decoded_symbols[descriptor_ID] array jtself used by the decod
iate descriptors for further decoding the genomic record.

h the same
signals the
e computed

12.1 when

er to select

© ISO/IEC 2024 - All rights reserved

69

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 67 — Semantics of the rtype descriptor

rtype cr_alg_ID type of encoded reads description

not used 1 Aligned reads with reference The entire dataset is encoded using reference based
based compression only. compression for mapped reads.

0 3 Aligned reads with both The dataset contains both read (pairs) encoded using
reference-based compression reference based compression and reference less com-
and reference-less compression. |pression. The decoding process for this Record uses

the external or embedded reference according to the
Class of the AU as specified in subclause 10.2.

1.4 2,4 Unmapped reads only. 1 = the decoding process is obtained by applying
the decoding process specified in subclause 10.2.3,
but without applying the steps specific to clips
(subclause 10.4.7), mscore (subclause 10.4.11), msar
(subclause 10.4.13) and rgroup
(subclause 10.4.15) descriptors.
2 =the decoding process is obtaified by applying
the decoding process specified)ifi subclausg 10.2.4,
but without applying the steps Specific to dlips
(subclause 10.4.7), mscore,(subclause 10.4.11), msar
(subclause 10.4.13) and rgroup
(subclause 10.4.15) descriptors.
3 = the decoding'process is obtained by applying
the decoding prorcess specified in subclausg 10.2.5,
but without.applying the steps specific to mscore
(subclausef10.4.11), msar (subclause 10.4.13) and
rgroup (subclause 10.4.15) descriptors.
4 =thedecoding process is obtained by applying
the'decoding process specified in subclause 10.2.6,
but without applying the steps specific to glips
(subclause 10.4.7), mscore (subclause 10.4.11), msar
(subclause 10.4.13) and rgroup
(subclause 10.4.15) descriptors.

1,2,3,4, 3 Unmapped reads or aligned with |1 = apply the decoding process specified in

56 reference less subclause 10.2.3.
compression only. 2 = apply the decoding process specified in

subclause 10.2.4.
3 = apply the decoding process specified in
subclause 10.2.5.
4 = apply the decoding process specified in
subclause 10.2.6.
5 = apply the decoding process specified in
subclause 10.2.8.
6 = apply the decoding process specified in
subclause 10.2.7.

5 2 Unmapped reads only. The decoding process is specified in
subclause 10.2.8.

5 4 Unmapped reads. The decoding process is specified in
subclause 10.2.8 where the U reads representing the
reference sequence are used for compression but do
not generate output records as specified in
subclause 11.3.6.

In case of class HM, the mapped read is decoded by following the process for the mapped read of class HM
specified in subclause 10.2, and the unmapped read is decoded following the decoding process specified in
this subclause.

© ISO/IEC 2024 - All rights reserved

70

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

10.4.14.2

ISO/IEC 23092-2:2024(en)

PushiIn

When class U data are compressed using the “Pushln” computed reference algorithm specified in
subclause 11.3.4, the decoding process shall follow the one described for classes P, N, M, I in subclauses 10.2.3

to 10.2.6 (for rtype values 1 to 4 respectively), or by ureads as described in subclause 10.2.8 (rtype equal to
5). The process to be followed is indicated by the descriptor rtype as specified in subclause 10.4.14.

Table 68 provides a description on the use of the pos and pair descriptors in this decoding process.

Table 68 — Semantics of the pos and pair descriptors for the Pushln algorithm

descriptor semantics
pos Matching position of the read on the PushIn computed reference, with coordinate as
described in subclause 11.3.4.
pair Used only for paired end reads. It associates a decoded read with its mate.

10.4.15rgiroup

The rgroup

The input
subclause 1

descriptor identifies the read group the genomic record belongs to.

The output

of this process is the variable readGroupld.

Table 69 — Determination of the readGroupld value

to this process (see Table 69) is the decoded_symbols[descriptor_ID] array s
2.1 when descriptor_ID is equal to 13 and the current value ofyjz .

pecified in

Decoding step

Description

rea

GroupId = subsequenceO[j13,O++]

10.4.16qv

10.4.16.1

The qv des

The procegs for decoding qualityvalues at a genomic position can be summarized informat
feps:

General

riptor carries information to reconstruct the quality values.

ine the quality value indexes at the genomic position.

ine the quality value codebook identifier at this genomic position.

vely in the

quality(value codebook identifier to select the quality value codebook for the genomic position.

the\guiality value indexes by lookup in the quality value codebook.

following s
a) Deter
b) Deter:[
c) Use thg
d. Decods
10.4.16.2

Decoding process of the quality values of a genomic record

The inputs to this process are:

the qv_depth value specified in subclause 7.4.2;

the qv_reverse_flag value specified in subclause 7.4.2;

the numberOfRecordSegments value computed in subclause 10.4.10;

the current value of jy4 o;

equal to 14;

© ISO/IEC 2024 - All rights reserved

71

the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2 when descriptor_ID is

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

— the qvCodebookIndexesLoadFlag set to 1 at the beginning of each AU decoding process;

— the reverseComp array computed as specified in subclause 10.4.3.

The outputs of this process are the quality values of each nucleotide for each segment of the current genomic
record and the value of qvCodebookIndexesLoadFlag.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N (i.e.
subsequenceN = decoded_symbols[14][N]).

The decoding process for one genomic record is specified in Table 70:

Table 70 — Decoding process of the quality values of a genomic record

Decoding step Description
decode quality values() { an/

if (qvCpdebookIndexesLoadFlag == 1) { "]".V

decpde gv codebook indexes|()

(]/"Ks specified in
O.) Table 71.

gvfodebookIndexesLoadFlag = 0 q/
} /,C)
for (tS¢g = 0; tSeg <
nuthberOfRecordSegments; tSeg++) { C-Q
for(gs = 0; gs < gv_depth; gs++) { g\\J

if(j14,0 < Size (subsequenceO[])) { </ ()

gvPresentFlag = subsequencel[J4,] AO\

J1g,0tt ‘\\“(
} else { $\\)
\ Y]
A\
) D

if (gvPresentFlag == 1) { A‘\U

Il
i

gvPresentFlag

decode gvs () \O As specified in
,SJ; Table 72.
gvString = “~ (-}\ Empty strfing.
Nt
len = 0 ‘\”
for (i=0; i ?-@‘nberOfSplicedSeg[tSeg]; i++) |

revComejvreverseComp[i] [0] [tSeq]

qvsstite =

qualityValues|[tS gs] [len, lentsplicedSeglLength[tSeg] [1]-1]
féﬁqv_reverse_flag && revComp) {

gvString = strcat (gqvString,
reverseSt % Splice))

}

else({

gvString = strcat (gqvString, gvSplice)

}
qualityValues[tSeq] [gs] = gvString

} else {

qualityValues[tSeg][gs] = “~ Empty string.

© ISO/IEC 2024 - All rights reserved

72

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 70 (continued)

Decoding step

Description

}

reverseStr(str) returns the reverse of the input string str where the nth element of the reversed string
reversedStr is computed as

reversedStr[n] = str[Size(str[]) - n- 1], for nin 0 .. Size(str[]) - 1.

10.4.16.3 ofq segment

The inputs o these processes are:

— the defoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2 wheén,‘descrfptor_ID is
equal to 14;

— the qvnum_codebooks_total and qvNumCodebooksAligned values specified in subclause 7.4.2.3.1;

— the curfrent values of j,, ; for the qvCodebooklIds subsequence;

— the cufrent values of j;4 y,, with N ranging from 0 to qv_num_codebooks_total - 1 for the qv_num_
codebdoks_total subsequences for quality value indexes;

— the numnBases variable equal to number of nucleotide of the segment for which the quality values shall be
decoded;

— the bagePos array containing the mapping positions:telative to the AU_start_position of eadh nuclotide
in the degment for which quality values shall be decoded, as specified in subclause 10.4.2;

— the classld variable specified in subclause 10.2.3;

— the value tSeg identifying the segment within the ISO/IEC 23092 series record for which |the quality
values ghall be decoded;

— the valpe gs identifying the gsth quality value string for the tSegth segment within the ISOfIEC 23092

series 1

In this des|
subsequenc

The output
nucleotide

In the case
the quality
to reconstn

ecord for which the quality values shall be decoded.

cription, subsequent¢eN is the subsequence identified by descriptor_subsequence_
eN = decoded_sympols[14][N]).

of this procéss is the array of strings qualityValues[][], containing the quality val
n the segment for which the quality values shall be decoded.

that guNumCodebooksAligned is larger than 1, the value of subsequencel shall be usec
valuecodebook for a genomic position of each aligned base. This quality value codeb

D = N (ie.

ues of each

| to identify
ook is used

uctvall quality values at that genomic position. Multiple quality value codebooks can

be used in

one access unit. The variable qvCodeBooklds contains the indexes of the quality value codebooks associated
to a given mapping position relative to AU_start_position as specified in subclause 9.6. The decoding process

of qvCodeB

ooklds variable is specified in Table 71.

© ISO/IEC 2024 - All rights reserved

73

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 71 — Decoding of quality value codebook indexes

Decoding step Description

decode gv_codebook indexes() {

if (gvNumCodebooksAligned > 1) {

pos = 0
for(jis,; = 07 Ji4,1 < Size(subsequencel[]); Ji4,++) {
gvCodeBookIds[pos] = subsequencel[]] The values qvCodeBooklIds[pos]
shall be in the range 0..
(qvNumCodebooksAligned - 1).
pos++

}

The decodipg process of the quality values is specified in Table 72.

Table 72 — Decoding process of quality values

Decoding step Descriptiop
decode gv$ () {
for (bag(eldx = 0; baseldx < numBases; baselIdx++) {
if (fclassId == CLASS I || classId == CLASS HM) Classes I and HM contjin
& ! isAligned(baseIdx)) { bases that are not aligped to

the reference sequencg, for
which the last quality [values
codebook identifier rejserved
for unaligned data shdll be
used, as specified in
subclause 7.4.2.3.

ivCodeBookId = gv_num codebooksgfotal - 1

} else if(classId == CLASS U) {

vCodeBookId = 0 For records belonging|to Class U,
only one codebook
shall be used, as specified in
subclause 7.4.2.3.

} else if (gvNumCodeb@eksAligned > 1) {

ivCodeBookId ¥ ¢vCodeBookIds[basePos|[baseldx]]

} else {

ivCodeBoolld = 0

}
qvC¢pdé€BovkSubSeq = gvCodeBookId + 2 See subclause 7.4.2.3.

J =Tt gvtodeBookSubbSeEg

314, gvCodeBookSubSeqg++

gvIndex =
decoded symbols[14] [gvCodeBookSubSeq] []]

qualityValues[tSeq] [gs] [baseIldx] =
qv_recon[gvCodeBookId] [gvIndex]

}

isAligned(baseldx) returns 1 if the nucleotide at baseldx is aligned to the reference sequence, otherwise 0.
This means that isAligned(baseldx) returns 0 for every nucleotide corresponding to a soft clip or to an
insertion, or for nucleotides in the second segment of a genomic record in class HM.

© ISO/IEC 2024 - All rights reserved

74

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Subclause 10.4.2 specifies how to calculate the absolute mapping position of the leftmost mapped base in each
read, and thus every quality value, in a read. Figure 6 shows how quality value codebook identifiers relate to
sequencing reads, quality values, reconstructed quality values, and genomic positions. The top third of the
figure shows how nucleotides of four reads, including quality values, are mapped to genomic positions. The
center of the figure shows how each genomic position is associated to a quality value codebook. According
to the corresponding quality value index the reconstructed quality value is derived using the associated
quality value codebook. The reconstructed quality values are shown in the bottom third of the figure.

j genomic position

»

— AR R R T H S E O H S e T e)

sequence readf and
(original ty values
Vv

2N ERD N SEREE SRR B O @ S q/
\AAAAAAAA40024022240224840444/ ality value cddebook
8F53622222222242222222222778 identifiers
»>BFJJJIJIITIITIIITITIITIIIITITJ Q/
l») Ess5 ! 1 g 333333 ;:;TITITL \\ reconstructed duality
—> JJJJJJJJJJJJOJJJJJJJJJJJ& values
»52 ! JJJJJJIJJIJJJIITIJIJIITIJIJIJITIBEE
qy_coding_mode == 1 Q O
Figure 6/— Relationship between sequencing rea gallty values, reconstructed quality values
and genomlc\<lons
¥
10.4.17rngme @

Sequencing read identifiers are encodedﬁ‘} sequence of rname descriptors (descriptor_ID equal to 15).
Each rnamp descriptor is composed by\i~ ns which have a type and possibly one or more paraineters.

The syntax} semantics and decodlrﬁ}}&écess for rname descriptors are those for the tokentype descriptors
specified in} subclause 10.4.20 when“encodingMode_ID is set to 0 as described in Table 8. The ofitput of the
decoding process of the rnam%ie’scrlptor for a ith record in the access unit is the string variabl¢ readName
equal to ddcodedStrings| @ g the array decodedStrings[] is spec1f1ed in subclause 10.4.20.5. If rname
descriptor s not presen dName is set to the empty string “”

An examplg of rea&@e t1f1ers tokenization required when encodingMode_ID is set to 0 is provided in

Annex A.
el S
Q/C)

10.4.18rftp

The rftp descriptor

— shall be present only in access units of type 3 (class M) when cr_alg_ID specified in subclause 7.4.2 is setto 1;
— may be present when cr_alg_ID specified in subclause 7.4.2 is set to 3.
It shall not be present in any other case.

The inputs to this process are:

— the decoded_symbols[descriptor_ID] array specified in subclause 12.6.2.2 when descriptor_ID is equal
to 16 and the current value of j;¢ o;

© ISO/IEC 2024 - All rights reserved

75

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

— the value AU_start_position as specified in subclause 7.5.1.2;

— the value seq_start as specified in subclause 7.3.2.

The output of this process is an array refTransfPos[] containing the positions of the transformations to
be applied to a decoded raw reference as specified in subclause 11.3.3. The decoding process for rftp is
specified in Table 73 for an entire access unit.

In this description, subsequenceN is the subsequence identified by descriptor_subsequence_ID = N
(i.e. subsequenceN = decoded_symbols[16][N]).
Table 73 — Decoding process of the rftp descriptor
o cltan Doccrintion
————————Decodingstep Deseription
refTransfPos[0] = subsequencel([jq ot+] + Position of the first reference
AU staft position - seq_ start transformation in the current
ref_sequence as specified’in
subclause 7.3.2.
for(i = 1} i < Size(subsequence0); i++) {
refTrapsfPos[i] = refTransfPos[i - 1] +
subsequence0 [¢ ot++]
}
10.4.19rftt
The rftt depcriptor
— shall bg present only in access units of type 3 (class M) when'cr_alg_ID specified in subclause 7.4]2 is set to 1;
— may bg present when cr_alg_ID specified in subclatise 7.4.2 is set to 3.
It shall not pe present in any other case.
The inputs ffo this process are:
— the defoded_symbols[descriptor_ID} array specified in subclause 12.6.2.2 when descrfptor_ID is
equal to 17;
— the curfrent value of j, ;.
The output|of this process is-one array refTransfSubs[]containing the type of transformations t@ be applied
to a decoded raw referencé as’specified in subclause 11.3.3.
In this deskcription, subSequenceN is the subsequence identified by descriptor_subsequence_|[D = N (i.e.
subsequengeN = decoded_symbols[17][N]).
The output of. the rftt descriptor decoding process shall be calculated following the process described in
Table 74, aftet/having decoded subsequence0 according to the decoding process specified ir} Table 125

using, if required by the said decoding process specified in Table 125 and by following the decoding process
specified in subclause 12.6.2.3, the array refTransfPos[] decoded as specified in Table 73.

Table 74 — Decoding process of the rftt descriptor

Decoding step

Description

for(i = 0; 1 < Size(subsequence0); i++){

refTransfSubs[i]

= S.iphabet 1plSubsequencel[j,; ¢++]]

© ISO/IEC 2024 - All rights reserved

76

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

10.4.20tokentype descriptors

10.4.20.1

General

The msar and rname share the same syntax, semantics and the decoding process specified in this subclause
for the generic tokentype descriptor when the encodingMode_ID specified in Table 8 is set to 0. The
tokentype descriptor is not a genomic descriptor identified by a descriptor_ID, but a simple alias for rname
and msar in the syntax, semantics and decoding process specified in this subclause.

tokentype descriptors can be of three types:

strings,

— digits,

— single ¢haracters.

Both a read identifier and an e-cigar string are represented as set of differences and matc¢hes wit

N respect to

one of the previously decoded reads identifiers or e-cigar strings, respectively. The-first identifier coded in

an access upit always starts with a DIFF token followed by the value 0.

A tokentype descriptor can take the values listed in the Table 75. The tokentype descriptors d

an possibly

be followed by one or more parameters.
Table 75 — The tokentype values and related semantics.
tokentype Token Parameters Semantics
value name
0 DUP unsigned integer Indicates that the current descriptor is an exact
DISTANCE ranging from 0 |duplicate of the descriptor DISTANCE records ago, with
to 232-1 “1"being the previously decoded descriptor and counting
backwards in the list of previously decoded desfriptors.
The value of DISTANCE shall always refer to a descriptor
coded in the current access unit. If a DUP token s found no
further tokens are required to decode the desctfiptor. DUP
can only occur at the first token position.
1 DIFF unsigned integer Indicates which descriptor this token is being c¢mpared
DISTANCE ranging from 0 |against, usually “1” to indicate the previous desgriptor.
to 23241 DIFF can only occur at the first token position.
The first descriptor of a coded access units alwgys starts
with “DIFF 0”.
2 STRING st(V) This is an arbitrary run of ASCII characters (as $pecified
in ISO/IEC 10646) and need not be purely alphapetical.
STRING is always null-terminated.
3 CHAR c(1) ASCII character as specified in ISO/IEC 10646.
4 DIGITS unsigned integer ranging |Numerical value no more than 9 digits long andfnot start-
from 0 to 232-1 ing with a leading zero.
5 DELTA unsigned integer ranging |Numerical delta to a previous DIGITS value, between 0 and
from 0 to 28-1 255.
6 DIGITSO an 8-bitlength and a Fixed-width numerical value no more than 8 digits long,
32-bit unsigned integer possibly starting with a leading zero.
7 DELTAO 8-bit unsigned integer Numerical delta to a previous DIGITSO value. The same
fixed length is assumed.

© ISO/IEC 2024 - All rights reserved

77

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 75 (continued)

tokentype
value

Token
name

Parameters Semantics

MATCH

The next token value is identical to the token at the same
position in the descriptor the currently decoded
descriptor is compared against (regardless of token type).

none

DZLEN Used internally by DIGITSO to code length.

unsigned integer
DISTANCE ranging

from 0 to 28-1

10

Marker indicating the termination of the curren
tokentype descriptor sequence.

END none

t

10.4.20.2

The input t
11 or descy
encoded_t
of tokenty

D

The outpuf
sequences,
the msar dg

10.4.20.3

The syntax

iptor_ID equal to 15, which corresponds to the msar and rname descriptors'respe
pkentype() structure of this block payload internally contains alist of compressed rep
be descriptor sequences.

which serve as input to the assembly process (specified in subclause 10.4.20.5) to
scriptors or read identifiers respectively.

of encoded_tokentype() is specified in Table 76.

Decoding process

this process is the block payload (as specified in subclause 7.5.1.3.3) for des¢riptor]

of this process is the list of decompressed representation of tHese tokentype

Syntax and semantics

Table 76 — Syntax of encoded_tokentype()

ID equal to
ctively. The
resentation

descriptor
feconstruct

Syntax Typ

™

foded tokentype () {

num_output descriptors

u(32)

num_tokentype sequences

u(16)

for(i = 0;

i < num tokentype sequences; i++) {

encoded tokentype/sequence (1)

}

num_outpuit_descriptors-specifies the number of descriptors (msar or read identifiers) enc
ck payload,

current blo

num_tokentypessequences specifies the number of tokentype descriptor sequences in the cu

payload.

ded in the

rrent block

encoded_toRentype_sequence(1) speciiies the data structure containing the byte-aligned compressed
representation of the ith tokentype descriptor sequence. Its syntax is specified in Table 77.

Table 77 — Syntax of encoded_tokentype_sequence()

Syntax Type
encoded tokentype sequence (i) {
type_ ID u(4)
method_ID u(4)
if (method ID == 0) {
ref type ID u(16)

© ISO/IEC 2024 - All rights reserved

78

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 77 (continued)
Syntax Type
COP (1)
}
else {
num output_symbols u7(v)

decode tokentype sequence (i, method ID,
num_output symbols)

}

type_ID sp
variable ty

for every tpkentype descriptor sequence with type_ID = 0. The current values of state variab

and type_l

pcifies the type of the ith tokentype descriptor sequence. This process internally maing

D are then used to generate a “mapped” value of type_ID as specified in Table/78.

Table 78 — Computation of mappedTypeld

ains a state

beNum, which is initialized with -1 for every block payload of the descriptor andhis ificremented

e typeNum

if (type ID == 0)
typeNup++
mappedTyp¢ld = (typeNum<<4) | (type ID & 0xf)
Every decofled tokentype descriptor for which ref_type_ID is equalito a previously calculated mappedTypeld

shall be identical to the previously decoded tokentype descriptor.

method_ID specifies the compression method (among thdse listed in Table 79) used for the ith{tokentype

descriptor $equence.

Table 79 — Description of compression methods for the tokentype descriptor sequé¢nce
method_|[D Description

0 Ccop The current tokentype descriptor sequence is an exact duplicate|of a previ-
ouslyudecoded tokentype descriptor sequence for which mapped[lypeld is
equal to the current ref_type_ID as specified in
subclause 10.4.20.4.2.

1 CAT The null coding, ideal for small data. Its syntax is specified in
subclause 10.4.20.4.3.

2 RLE Run length coding, ideal for long list of repeated symbols. Its syntax is spec-
ified in subclause 10.4.20.4.4.

3 CABACLMETHOD_0 |The CABAC method 0 as specified in subclause 10.4.20.4.5. The sjgnaling of
its configuration parameters are specified in subclause 12.3.5.

4 CABAC_METHOD_1 |The CABAC method 0 as specified in subclause 10.4.20.4.5. The s|gnaling of
its configuration parameters are specified in
subclanuse 12 3 85

5 X4 Arecursive decorrelation method to split a tokentype_sequence into four
equisized interleaved subsequences (wWhenever size is divisible by 4), each of
them being coded with one of the above methods except method_ID 0x0. Its
syntax is specified in subclause 10.4.20.4.7.

0x6 .. 0xf reserved

ref_type_ID is the mappedTypeld of a previously decoded tokentype descriptor sequence of which payload
of current tokentype descriptor sequence is an exact duplicate.

num_output_symbols signals the number of symbols to be reconstructed from the compressed payload of
the ith tokentype descriptor sequence.

© ISO/IEC 2024 - All rights reserved

79

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

decode_tokentype_sequence(i, method_ID, numOutputSymbols) specifies the syntax for decoding the
ith tokentype descriptor sequence (of size numOutputSymbols) using the decoding method indicated by

method_ID.

Its syntax is specified in Table 80.

Table 80 — Syntax of decode_tokentype_sequence()

Syntax
decode tokentype sequence (i, methodID, numOutputSymbols) ({

if (methodID == 1)

CAT (i, numOutputSymbols)
else if (methodID == 2)

RLE (1, numOutputSymbols)
else 1if (methodID == 3)

CABAC METHOD 0 (i, numOutputSymbols)
else if (methodID == 4)

CABAC METHOD 1(i, numOutputSymbols)
else 1if (methodID == 5)

X4 (1, numOutputSymbols)
else
/* res¢rved for future use */

10.4.20.4

10.4.20.4.1

The input

compressedl representation of the ith tokentype descriptor sequence, which is decoded with|

compressio

The output

10.4.20.4.7

The input

mappedTypeld of a previously decoded tokentype descriptor sequence as specified in Table 78.

The output
reference t

10.4.20.4.3

Decoding process for compressed tokens

General

o this process is the data structure encoded, tokentype_sequence() specifying the b
n methods listed in Table 79 and specifiéd in this subclause.

of this process is the decompressedrépresentation of the ith tokentype descriptor sd

cop

to this process is ref-type_ID, which shall be equal to a previously computg

of this process is a'tokentype descriptor sequence, obtained by copying the alrea
bkentype descriptor sequence uniquely identified by ref_type_ID.

CAT,

This subcl

is a reconstiructed tokentype descriptor sequence of size numQOutputSymbols.

b

se Specifies the decoding process for the method CAT (see Table 81). The output of t

yte-aligned
one of the

quence.

bd variable

dy decoded

his process

Table 81 — Decoding process for the method CAT

Decoding process Type
CAT (1, numOutputSymbols) {
for (j=0; j<numOutputSymbols; j++) {
decoded_tokens[i] []] u(g)

}

decoded_tokens]i][j] specifies the jth token in the ith decompressed tokentype descriptor sequence.

© ISO/IEC 2024 - All rights reserved

80

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

10.4.20.4.4 RLE

This subclause specifies the decoding process for the method RLE (see Table 82). The output of this process
is areconstructed tokentype descriptor sequence of size numQutputSymbols.

Table 82 — Decoding process for the method RLE

Decoding process Type
RLE (1, numOutputSymbols) {
for (3j=0; j< numOutputSymbols ;) {
tmp_value u(8)
if (tmp value == rle guard tokentype) {
fle_len u7(v)
| f (rle len == 0)
decoded tokens[i] [j++] = rle guard tokentype
¢lse |
tmp_value u(8)
for (r=0; r< rle len ; r++) {
decoded_tokens[i][j++] = tmp value
}
} else
ecoded tokens[i] [j++] = tmp value

}

rle_guard_fokentype specifies the guard value signalled in decoder configuration for sequences of tokentype
descriptord (see 12.3.5).

decoded_tdkens[i][j] specifies the jth token in'the ith decompressed tokentype descriptor sequerjce.

10.4.20.4.3 CABAC_METHOD_0

This subclquse specifies the decoding process for the method CABAC_METHOD_O used to defompress a
tokentype|descriptor sequence.(see Table 83). The output of this process is a reconstructed [tokentype
descriptor sequence.

Table 83 — Decoding process for the method CABAC_METHOD_0

Decoding process Type
CABAC METHOD, 0 (i, numOutputSymbols) ({
decodedl symbols[descriptor ID][0] = decode descriptor As specified in
subsequence (descriptor ID, 0, numOutputSymbols, remainingPayloadSize) subclause 12.6.2.2.
decoded token[i][] = decoded symbols[descriptor ID][0][]

}

decode_descriptor_subsequence(descriptor_ID, 0, numOutputSymbols, remainingPayloadSize) specifies the
decoding process for the 0th descriptor subsequence (of size numOutputSymbols) of the descriptor identified
by descriptor_ID. For the CABAC_METHOD_0, the descriptor_ID is equal to 11 or 15.

decoded_symbols[descriptor_ID][0][] specifies the list of symbols decoded by decode_descriptor_
subsequence(descriptor_ID, 0, numOutputSymbols).

remainingPayloadSize is the number of bytes remaining in the current block payload.

© ISO/IEC 2024 - All rights reserved

81

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

decoded_tokens][i] specifies the list of tokens in the ith decompressed tokentype descriptor sequence.

10.4.20.4.6

CABAC_METHOD_1

This subclause specifies the decoding process for the method CABAC_METHOD_1 (see Table 84). The output

of this proc

ess is a reconstructed tokentype descriptor sequence of size numOutputSymbols.

Table 84 — Decoding process for the method CABAC_METHOD_1

Decoding process Type

CABAC METHOD 1 (i, numOutputSymbols) {

decoded symbols[descriptor ID][1] = decode descriptor As Specifiedin
subsequen ge+te ipter—I bR umo et pu S ymbeta—remeirrgRayroadSieey) subctamse 12.6.2.2.

decodedl token[i][] = decoded symbols[descriptor ID][1][]
}
decode_deqcriptor_subsequence(descriptor_ID, 1, numOutputSymbols, remainingPayloadSize) specifies the
decoding process for the 15t descriptor subsequence (of size numOutputSymbols) efthe descriptdr identified
by descriptpr_ID. For the CABAC_METHOD_1, the descriptor_ID is equal to 11 ory15.
decoded_symbols[descriptor_ID][1][] specifies the list of symbols decoded by decode|descriptor_
subsequenge(descriptor_ID, 1, numOutputSymbols).
remainingfayloadSize is the number of bytes remaining in the currentblock payload.
decoded_tdkens[i][] specifies the list of tokens in the ith decompressed tokentype descriptor sequence.
10.4.204.7 X4
This subclaquse specifies the decoding process for the method X4, which is be used to degompress a
tokentype|descriptor sequence (see Table 85). Thie*output of this process is a reconstructed [tokentype
descriptor sequence of size numOQOutputSymbols,

Table 85 — Decoding process for the method X4
Decoding process Type

X4 (i, numPutputSymbols) {

x4 _method IDs u(16)

for (s#0; s<4; s++) {

methodID = (x4_method_IDs >> (12 - (s*4))) & Oxf
dec¢ded tokefis-x4[s] [] = decode tokentype sequence (s, methodID, As specified|in
pumOutplt$ymbols/4) subclause 1().4.20.3.
}
/* Multiplexing of interleaved subsequences */

for (j=0, j< numOutputSymbols ; j += 4) {

for

(s=0, s<4; s++) {

decoded tokens[i] [j+s]

decoded tokens x4[s] [j>>2]

}

x4_method_IDs specifies the four compression methods (among those listed in Table 79 except method_ID
= 0) used to decompress the four interleaved subsequences, where the method_ID for the sth subsequence
can be derived as method_ID = (x4_method_IDs >>(12 - (s*4))) & Oxf.

© ISO/IEC 2024 - All rights reserved

82

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

decode_tokentype_sequence(s, method_ID, numOutputSymbols/4) decodes the sth interleaved subsequence
(of size numOutputSymbols/4) as a tokentype descriptor sequence using the decoding method indicated by
method_ID.

decoded_tokens_x4[s][j] specifies the jth byte token in the sth decompressed interleaved subsequence.
decoded_tokens][i][j] specifies the jth byte token in the ith decompressed tokentype descriptor sequence.
10.4.20.5 Assembly of tokens

The input to this process (see Table 86) is the bi-dimensional array decoded_tokens[][], which is the

decompressed representation of encoded_tokentype() specified in subclause 10.4.20.3, containing a list of
num_tokentype_sequences decompressed tokentype descriptor sequences.

The output|of this process is the data structure decodedStrings[] containing a list of either msardescriptors
(when desdriptor_ID is equal to 11) or read identifiers (when descriptor_ID is equal to 15) as'strings.

Table 86 — Decoding process of tokentype descriptors into strings representing either msar
descriptors or read identifiers

Decoding process Type

cIdx = 0

refldx =

decodedSttings|[] = {“"}
do {

t =20

tokTyp¢ = get tok type(decoded tokens[t<<4])

distan¢e = get tok int (decoded tokens[t<<4 | tokType])

refIdx|= cIdx - distance

if (tokType == 0) /* Token: DUP */
str¢py (decodedStrings [cIdx], decegdedStrings [refldx])
else { /* Token: DIFF */

for| (t=1; t< num tokentype sgquences; t++) {

okType = get tok typefdecoded tokens[t<<4])

| £ (tokType == 10) /* Token: END */
break

LokStr = extraCtt—tok value (decoded tokens, tokType, t, refldx)

trcat (decodedStrings[cIdx], tokStr)

}

} while (cJd¥,<“num output descriptors && strlen(decodedStrings[cIdx++]) > 0)

num_output_descriptors specifies the number of descriptors (msar or read identifiers) encoded in the
current block payload. It is specified in 10.4.20.3.

get_tok_type(decoded_tokens[]) pops and returns one byte from data structure decoded_tokens]].

get_tok_int(decoded_tokens|]) pops four bytes from data structure decoded_tokens|] and decodes them as
a 32-bit integer as specified in subclause 6.2.

strcpy(dst, src) specifies the string copying operation from the source string to the destination string.
strcat(dst, src) specifies the string concatenation operation of source string to the destination string.

strlen(str) returns the length of the input string.

© ISO/IEC 2024 - All rights reserved

83

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

extract_tok_value() pops and returns token value based on its type (as listed in Table 75) and the co-located
tokens in the reference descriptor (msar or read identifier). The syntax of extract_tok_value() is described

in Table 87.

Table 87 — Decoding process associated to a call to extract_tok_value()

Decoding process

Type

extract tok value(decoded tokens[][], tokType, t, refIdx) {

tokIdx (t << 4) |

tokType

if (tokType == 2) /* Token: STRING */

tmp str = get tok string(decoded tokens[tokIdx])

else if (tokType 3) /* Token: CHAR */

tmp|str = get tok char (decoded tokens[tokIdx])

else if (tokType == 4) /* Token: DIGITS */

tmp|str = get tok digits(decoded tokens[tokIdx])

else if (tokType == 5) /* Token: DELTA */

tmp|str = get tok delta(decoded tokens[tokIdx], refldx)

else 1if (tokType 6) /* Token: DIGITSO */

tmp|str = get tok digitsO (decoded tokens[tokIdx])

else if (tokType == 7) /* Token: DELTAO */

tmp|str = get tok deltal(decoded tokens[tokIdx], refIdx)

else if (tokType == 8) /* Token: MATCH */

tmp|str = get tok match (reflIdx)

return|tmp str

}

ing(decoded_tokens][]) pops and returns a null terminated string from data structur
described for token STRING in Table 75.

get_tok_str
tokens|] as

get_tok_chj
] as describ

ir(decoded_tokens[]) pops and returns one ASCII character from data structure decoc
ed for token CHAR in Table 75.

get_tok_dig
a 32-bitint
with the bi

bger as specified in subclausé.6.2, as described for token DIGITS in Table 75, and retu
b-endian decimal representation of said integer.

get_tok_delta(decoded_tokens[, refldx) pops a one byte delta value from data structure encode
as described for token DELTA-*Table 75, sums said delta value and the digit value of the co-loc3
token in th¢ reference descriptor (msar or read identifier) identified by refldx, and returns a stri
big-endian decimal représentation of the result of said sum.

get_tok_digitsO(decoded_tokens[]) pops a one byte length value as DZLEN token_and a four Y

e decoded_

led_tokens[

its(decoded_tokens][]) pops foub bytes from data structure decoded_tokens][], decodles them as

rns a string

d_tokens]]
ited DIGITS

Ing with the

ytes value,

decoded ag a 32<bit integer as specified in subclause 6.2, as described for token DIGITSO in Table 75, and

returns a sfring.with the big-endian zero-padded fixed-width decimal representation of said intg

ger.

get_tok_deltaU{decoded_toKkens[|, refldx]) pops a one byte delta value from data structure decoded_tokens] |
as described for token DELTA in Table 75, sums said delta value and the digit value of the co-located DIGITSO

token in the reference descriptor (msar or read identifier) identified by refldx, and returns. a stri
big-endian zero-padded fixed-width decimal representation of the result of said sum.

get_tok_match(refldx) returns the token value of the co-located token in the reference descript
read identifier) identified by refldx as described for token MATCH in Table 75.

© ISO/IEC 2024 - All rights reserved

84

ng with the

or (msar or

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

10.5 sequence

10.5.1 General

This subclause specifies how sequences of nucleotides are computed by a conformant decoder. For class
HM, the mapped read is computed as specified in subclause 10.5.2 while the unmapped read as specified in
subclause 10.5.3.

TheinputstothisprocessarethevariablesnumberOfRecordSegmentsand numberOfMappedRecordSegments
calculated as specified in subclause 10.4.10.

The output of this process is the array splicedSequence[i][] (with 0 < i < numberOfRecordSegments).

10.5.2 Ali
Additional
— thearr
the arr
the arr
the arr
the var
The va
The ari

If crps_flag
decoding p
specified in

The decodi

bned reads (Classes P, N, M, I, HM)
nput to this process are:
ny mappingPos[0][] is computed as specified in subclause 10.2.3;

hys numberOfSplicedSeg|[], and splicedSegLength[][] computed as specified in subcla

lse 10.4.9;

ny splicedSegMappingPos[][] computed as specified in subclause(10.4.10;

hy softClipSizes[][] computed as specified in subclause 10.4./7;

iable classld is computed as specified in subclause 10.23;
iable seqld set equal to sequence_ID as specified ifixsubclause 7.5.1.2;
ays ref_sequence[][] and seq_start[] as specified in subclause 7.3.

 specified in Table 7 is equal to 1 and cr_alg>ID specified in Table 17 to is equal to 2, 3
Focess specified in Table 88, seqld is setequal to 0, ref_sequence[seqld][] is set equal
subclauses 11.3.4, 11.3.5, 11.3.6, respectively, and seq_start[seqld] is set equal to 0.

hg process specified in Table 88 shall be applied:

Table 88 — Decoding-process of sequence[] array for aligned reads

or 4, in the
to refBuf(]

Decoding step Descriptipn
for(i = 0} 1 < numberOfMapp&dRecordSegments; i++) {
for(j # 0; J < numbexQfSplicedSeg[i]; j++) {
pRef = splicedSegMappingPos[i][]] -
seq start[seqld]
mappedLlength)/= splicedSeglLength[i] []]
if (¢lasId == Class I || classId == Class HM) {
LE(57== 0) {
mappedlLength -= softClipSizes([i] [0]
}
if (3 == numberOfSplicedSeg[i] - 1) {
mappedLength -= softClipSizes([i][1]

}

splicedSequence[i] [J]

ref sequence[seqld] [pRef,

pRef + mappedLength - 1]

if (classId == Class N)

{

© ISO/IEC 2024 - All rights reserved

85

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 88 (continued)
Decoding step Description

processSplSegN (i, J) Specified in subclause 10.2.4.
} else if(classId == Class M) {

processSplSegM(i, 7J) Specified in subclause 10.2.5.
} else if(classId == Class I

|| classId == Class HM) ({

processSplSegI(i, j) Specified in subclause 10.2.6.

}
}
}

10.5.3 Unmapped reads (Class HM, U)

The decodipg process specified in Tables 89 and 90 shall be applied:

Table 89 — Decoding process of sequence[] array for unmapped reads

Decoding step Description

for (i = ngmberOfAlignedRecordSegments;
i < nupberOfRecordSegments; i++) {

if (crpg flag == 0){
dec¢deUreads (splicedSegLength[i] [0]) Specified in subclauge 10.4.8.
splicedSequence[1i] [0] = decodedUreads decodedUreads as specified in.

subclause 10.4.8

}else 1f(crps flag == 1 && cr alg ID == 2){

decode ac¢ording to the process specified inN&ubclause 11.3.4

telse 1f(crps flag == 1 && cr_alg ID ==%4) {

decode ac¢ording to the process specified”in subclause 11.3.6

}

Table 90 — Sequence decoding processes corresponding to crps_flag and cr_alg_ID

crps’flag cr_alg_ID sequence decoded as
specified in subclause

0 — 10.4.8

2 11.3.4

11.3.6

10.6 e-cigar

10.6.1 Syntax

This subclause specifies an extended CIGAR (E-CIGAR) syntax for strings to be computed from sequences
and related mismatches, indels, clipped bases and information on multiple alignments and spliced reads.

Alignments are described as a sequence of consecutive edit operations between the reference sequence and
a sequence mapped onto the reference sequence.

Edit operations might involve skipping or replacing part of the sequence of either reference or read; due to
this reason one has to keep track of a pointer R to the current position within the reference, and a pointer r

© ISO/IEC 2024 - All rights reserved

86

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

to the current position within the read. They are both set to 0 at the beginning of the alignment process, the
0 of the reference being the position of the match.

Edit operations specified in this document are listed in Table 91.

Table 91 — Syntax of the ISO/IEC 23092 series E-CIGAR string

Operation Semantics E-CIGAR Equivalent SAM CIGAR
representation representation

Increment both pointer-to- n matching bases n= nM in older versions
reference R and pointer-to-read (not equivalent),
r by n positions (match). = in recent versions
Replace nucleotide in the read substitution of character b Jo) Min older versions,
with base b[from the reference, (b is presentin the read and ¥ in recent vebsfons
increment fointer-to-reference R and |not in the reference) where (not equivalent]
pointer-to-flead r by 1. b is one of the symbols of

the alphabets defined in
subclause 9.2.

Increment gointer-to-read r by n n bases are inserted in the n+ e
positions (insert from the read). read (not present in the refer-

ence)
Increment gointer-to-reference Rby |n bases are deleted in the read |n- nD
n positions [deletion of sequence S in |(but present in the reference).
the read).
Increment pointer-to- read r by n n soft clips (19 ns

positions (ipsertion in the read). Can
only occur 3t beginning or end of
read.

Hard trim. an only occur at n hard clips [n] nH
beginning or end of read.

Increment pointer-to-reference R An undirected splice of n nx nN
by n positiops, splice consensus ob- |bases.
served (splice in the read).

Increment gointer-to-reference R A forwarxd splice of n bases. n/ Not existing.
by n positiops, splice consensus
observed on the forward strand (for-
ward splice[in the read).

o

Increment pointer-to-reference R A reverse splice of n bases. n
by n positiops, splice consensus8b-
served on the reverse strand<reverse
splice in thg read).

Not existing.

The generall framewotK is illustrated in Table 92 shows an example of alignment with soft clipfs, deletions
and substitutions.

Table 92 — Example of e-cigar string

0000000000111111111122222222223333333 Position in the reference
0123456789012345678901234567890123456

ACAGATATATCAGAGACCATACAGGAACATAACAGAC Reference

AAAGATCTAT+++++++++++CAGGTACATA Read
0000000000 1111111111 Position in the read
0123456789 0123456789

E-CIGAR= (2) 4=C3=11+4=Tb=

© ISO/IEC 2024 - All rights reserved

87

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

10.6.2 Decoding process for the first alignment

10.6.2.1 General

The inputs to this process are:

— readLength[] array computed as specified in subclause 10.2.3;

— the classld variable specified in subclause 10.2.3;

— the numberOfAlignedRecordSegments variable specified in subclause 10.4.10.

For classld

equal to Class_N, Class_M, Class_I, and Class_HM:

— the migmatchOffsets[][] array computed as specified in subclause 10.4.5;

— the numMismatches[] array computed as specified in subclause 10.4.5.

If cr_alg_I

specified in subclause 11.3 is set to 1, for classld equal to Class_M mismatchOffg

numMismalches[] are pre-processed as per subclause 10.6.4 prior to being decdded as speci

subclause.
For classld
the mis

If cr_alg_Il
processed :
For classld
the mis

the sof

equal to Class_M, Class_I, and Class_HM:

matches[][] arrays computed as specified in subclause 10.4¢6:

D specified in subclause 11.3 is set to 1, for classld equal to Class_M mismatches
s per subclause 10.6.4 prior to being decoded as specified in this subclause.

equal to Class_I and Class_HM:

matchTypes[] array computed as per subclause 10.4.6;

Clips[][][] arrays, the softClipSizes[][] array, and the hardClips[][] array computed as

subclayse 10.4.7.

The output]
lengths eci

In this sub
universal ¢
of a given I

In this subg

of this process is the array of strirngs ecigarString[], and the array of the correspon
barLengthl[].

clause, the decoding process uses strings, where strings are sequences of a give
bded character set (UCS)transmission format-8 (UTF-8) characters as specified in ISO
ngth.

lause the following strings operators are defined:

ets[][] and
fied in this

[[] is pre-

specified in

ding string

h length of
IEC 10646

arraytostr(a, 1) returns a string of length 1 created by copying the first1 characters from arrfay a, where
ais a one-dimensional array of characters

strtoc(s) returns all characters in string s in a sequence compliant with c(n)|data type
specified in subclause 6.3, where n corresponds to the length of string s

‘L returns a string composed by the characters between the quotes

inttostr(i) returns a string containing the base-10 representation of the integer

strcat(sl, ..., sN) returns the concatenation of the strings from s1 to sN. If any of the input strings s1 through
sN is a single character, it is considered a string of length 1

strlen(s) returns the length of string s

© ISO/IEC 2024 - All rights reserved

88

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

10.6.2.2 Decoding process without spliced reads

When the spliced_reads_flag syntax element specified in subclause 7.4.2 is equal to 0, the decoding process
of e-cigar strings is specified in Table 93. Table 94 reports the decoding process for the mismatches within
one e-cigar string.

Table 93 — Decoding process for the e-cigar strings of a genomic record without spliced reads

Decoding step Description
for(s = 0; s < numberOfAlignedRecordSegments; s++) {
if (classId == Class P){ Class P.
mmOffsets = {} Empty array.
mms [= {} Empty ar
Py armgy
mmTypes = {} Empt)y@(l;ﬁy
)] .
de¢odeECigarMismatches (classId, readLengthls], As(slggltlfled in Table 94.
0, mmOffsets, mms, mmTypes)
ecigar = decodedEcigar Qbilgcoded]acigar
5~'| computed as|specified
_ V" |inTable 94.
\J
! \Qv/
else if(classId == Class N) { m\\ Class N.
mms | = {}) \G) Empty arrayj
_ A\
mmTypes {} e Empty arrayj
decpdeECigarMismatches (classId, readLength[s], Y As specified [in Table 94.
mumMismatches[s], mismatchOffsets[s], mms,Q&ypes)
ecigar = decodedEcigar \§\ . decodedEcigar
‘\ computed as|specified
R % in Table 94.
} QS
else if(classId == Class_ M) { ‘\\Q)‘ Class M.
‘N
mmTypes = {} Empty array)
decpdeECigarMismatches (clas@d readLength [s], As specified [in Table 94.
mumMismatches[s], mis \\: Offsets|[s],
mismatches|[s] mmTypeg
eci¢gar = decodedEci decodedEcigar
computed as|specified
N C) in Table 94.
N
) AN
else 1 '(clasi@—= Class I || classId == Class HM) { Classes I or HM.
lef _Sof@i‘ps =
tostr(softClips[s][0][],
softCtipStzesTsTToh
rightSoftClips =
arraytostr (softClips[s] [1][],
softClipSizes([s][1])
leftHardClips = hardClips([s] [0]
rightHardClips = hardClips([s][1]
mappedLength = readLength[s]
- strlen(leftSoftClips) - strlen(rightSoftClips)
decodeECigarMismatches (classId, mappedLength, As specified in Table 94.
numMismatches[s], mismatchOffsets[s],
mismatches[s], mismatchTypes[s])

© ISO/IEC 2024 - All rights reserved

89

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 93 (continued)

Decoding step Description
ecigar = decodedEcigar decodedEcigar
computed as specified
in Table 94.
if (strlen(leftSoftClips) != 0) {
ecigar = strcat(Soft clips are present
‘ (Y, inttostr(strlen(leftSoftClips)), ’)’, before the leftmost
ecigar) mapped base.
}
else if (leftHardClips != 0) {
¢cigar = strcat(Hard clips|aile present
‘[', inttostr(leftHardClips), '1', before eftmost
ecigar) Ineg aseg.
) a’Y”
. - - ~ \V
if(¢trlen(rightSoftClips) != 0) { N
(2 B
¢cigar = strcat (ecigar, (]/b Soft clips ard present
‘(', inttostr(strlen(rightSoftClips)), ’)’) C) after the rightmost
& mapped basg.
}
els¢ if (rightHardClips != 0) {) \(O'
¢cigar = strcat (ecigar, CS\ Hard clips aife present
‘[', inttostr(rightHardClips), ’']1') <Z after the rightmost
OQ mapped basg.
N
/ A\
} hS\\)
ecigar$tring([s] = strtoc(ecigar) QQ&J
ecigarlength[s] = strlen(ecigar) QS
N2
} 4\
xO
Table 94 — Decoding‘;ebcess for the mismatches within one e-cigar string
22N\
-
. bécoding step Description
decodeECigarMismatches (cl &, len,
mmNfmber, mmOffsg;é:)nms, mmTypes) {
ecigar|= “~ \U Empty string.
if (cla$sId == Cras8 P)({ Class P.
Cé‘}‘ _
ecigar = séé}at(inttostr(len), ="
X
) O
else 1 "N\séssld == Class_N) { Class N.

previousOffset =0

i=0

while (1 < mmNumber) {

delta = mmOffsets[i] - previousOffset

previousOffset = mmOffsets[i] + 1

if (delta == 0) {
ecigar = strcat(ecigar, ‘N’)

} else {
ecigar = strcat(ecigar, inttostr(delta), ‘=')
ecigar = strcat(ecigar, ‘N’)

© ISO/IEC 2024 - All rights reserved

90

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 94 (continued)
Decoding step Description
}
i++
}
delta = len - previousOffset
if (delta > 0) {
ecigar = strcat(ecigar, inttostr(delta), ‘'=')
}
}
else if(classId == Class M) { Class M'Ab(
preyiousOffset = 0 Q‘l/v
VoY
i =|o a’ Vv
. . |74
while (1 < mmNumber) { ’
. . Qv
elta = mmOffsets[i] - previousOffset O‘Q
previousOffset = mmOffsets[i] + 1 (1/‘)
P
I elta ==
£ (del) { (,U
; ; ; \\Z
ecigar = strcat(ecigar, mms[i])) (-\\
\"4
else { N\
ecigar = strcat(ecigar, inttostr(delta), ‘=’)(§\‘
ecigar = strcat(ecigar, mms[i]) {\<<
ad
N
| ++ ({\\}
} Q)\
. oS
delfa = len - previousOffset \\,
if (flelta > 0) { . N
N
¢cigar = strcat (ecigar, inttg@ér(delta), ‘="
Y
} <3
i AN
else if(classId == Class T \H) classId == Class HM)) { Classes I or HM.
preyiousOffset = O()@
i =]|0 ("
et

while (i < mqu@er) {

Fount =KO\Q‘\

eltae=nMmOffsets[i] - previousOffset
7

}{@%@MsOffset = mmOffsets[i]

‘FWQ11—: Q) ¢

=)

ecigar = strcat(ecigar, inttostr(delta),

delta = 0
}
if (mmTypes[i] == 0) { Substitution.
ecigar = strcat(ecigar, mms[i]))
previousOffset = mmOffsets[i] + 1
i++
}
else if (mmTypes[i] == 1) { Insertion.

© ISO/IEC 2024 - All rights reserved

91

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 94 (continued)
Decoding step Description

while (i < mmNumber

&& mmTypes[i] ==

&& mmOffsets[i] - previousOffset

== 0) {

previousOffset = mmOffsets([i] 1

count++, i++
}
ecigar = strcat(ecigar, inttostr (count))

e r——atreattectgar—+ N

Q>
¢lse if (mmTypes[i] == 2) { Dele:(i]))x).

while (1 < mmNumber
&& mmTypes[i] ==

&& mmOffsets[i] - previousOffset
== 0) { _
previousOffset = mmOffsets[i] 0\)
, \N\d
count++, i++ \\
: —
. . . \\
ecigar = strcat(ecigar, inttostr (count)) (%\
: — : \N_7
ecigar = strcat(ecigar,) /\Q
QV
N
) R
delta = len - previousOffset Q)\
if (flelta > 0) { R\
L _ . A
¢cigar strcat (ecigar, tostr (d\@) ,)
} A}
<O
} c\)l\‘
decodedlEcigar = ecigar AN

10.6.2.3 Decoding proceé)Qith spliced reads

When the gpliced_
are decodefl as foll

Additional this process are:

np

re;t@flag syntax element specified in subclause 7.4.2 is equal to 1, the e-clgar strings

For classld

}lnnl to Class N Class M _Class I _and Class HM:

— the numberOfSplicedSeg[], splicedSegMappedLength[][] and splicedSegLength[][] arrays computed as

specified in subclause 10.4.9;

— the splicedSegMismatchOffsets[][][], splicedSegMismatchNumber[][] and splicedSegMismatchldx[][]
arrays computed as specified in subclause 10.4.5;

— the array splicedSegMappingPos[][] computed as specified in subclause 10.4.10;

— the array reverseComp[][][] computed as specified in subclause 10.4.3

The decoding process is specified in Table 95.

© ISO/IEC 2024 - All rights reserved

92

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 95 — Decoding process for the e-cigar strings of a genomic record with spliced reads.

Decoding step Description
for(s = 0; s < numberOfAlignedRecordSegments; s++) {
if (classId == Class P){ Class P.
mmOffsets = {} Empty array.
mms = {} Empty array.
mmTypes = {} Empty array.

decodeECigarMismatches (classId, readLengthl[s],

0, mmOffsets, mms, mmTypes)

As specified in
Table 94.

ecigar = decodedEcigar

decodedEcigar

tomputed as

sp 'Bed in
Qst@ .
vV

-

else if(classId == Class_N) { ~ Class N
mms |= {} A\ N Empty array.
mnTypes = {} _ q/J Empty array.
dec¢deECigarMismatches (classId, readLength[s], Q/\) As specjified in
fhumMismatches[s], mismatchOffsets[s], mms, mmTypes) f'\\\ Table 94.
ecigar = decodedEcigar %\J decodeglEcigar
g\\ computed as
@) specifidd in
R Table 94.
) QY
else if(classId == Class M) { (,\\\\.\ Class M|
mmTypes = {} Q Empty array.
dec¢deECigarMismatches (classId, readLe \th [s], As spediified in
pumMismatches[s], mismatchOffngSéé], Table 94.
mismatches[s], mmTypes) A\
eci¢ar = decodedEcigar \O decodeg@lEcigar
N~ computed as
\\Q specifidd in
iS) Table 0.
) .
else if(classId == C(l{s}_l | | classId == Class_ HM) { Classes|I or HM.
lef§{SoftClips = *J
hrraytost ftClips[s][0][],
sofR@pSizes [s][01)
rightSo@Elips =

1\ tostr(softClips[s][1]1[],

SoftCiTpStzesTsTTTh

leftHardClips = hardClips([s] [0]

rightHardClips = hardClips[s][1]

ecigar =

N4

Empty string.

for(i = 0; 1 < numberOfSplicedSegl[s]; i++) {

length = splicedSegLength[s] [1]

if(i == 0) {
length -= softClipSizes([s][0]
}
if (1 == (numberOfSplicedSeg[s] - 1)) {

© ISO/IEC 2024 - All rights reserved

93

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 95 (continued)

Decoding step

Description

length -= softClipSizes([s][1l]

}

if(i > 0) |

spliceOffset = splicedSegMappingPos([s] [1]
- splicedSegMappingPos[s][1 - 1]
- splicedSegMappedLength[s] [1 - 1]

ecigar = strcat(ecigar, inttostr(spliceOffset))
if (reverseComp[i] [s][0] == 0) {

SCTgaTr = StrTatteCIoaT; Y rorw&rdsplice.
} else if(reverseComp[i][s][0] == 1) r\q/\)‘

ecigar = strcat(ecigar, “%”) @;gerse splice.
} else if(reverseComp[i][s][0] == 2) (\; r

ecigar = strcat(ecigar, “*”) (\QV Undireqted splice.
} else { ({bv

/* reserved */ /O v
} A\

(@)
mmStartIdx = splicedSegMismatchIdx[s][1] ’&@

hmEndIdx = mmStartIdx + splicedSegMismatchNum@r\f%] [i1 - 1

Y
ecodeECigarMismatches (classId, length, Q

As spediified in

splicedSegMismatchNumber([s] [1], \ Table 94.

splicedSegMismatchOffsets[s] [1i], 5\0

mismatches[s] [mmStartIdx, mmEndI

mismatchTypes[s] [mmStartIdx, mn@ﬁdx])

¢cigar = strcat (ecigar, decoded@%ar) decodeglEcigar
K\ computed as
\O specifidd in
A~ Table 94.
: Y

1F(trlen(leftSoftCligs)\./= 0) {

¢cigar = strcat $\
‘(', intto strlen(leftSoftClips)), ")’,

Soft clips are
present] before the
leftmosjt mapped
base.

ecigar) @
JoOX
N

AN

els¢ if((-‘E}tHardcnps 1= 0) {

) 4
¢ r = strcat(Hard cllps are
[, inttostr(leftHardClips), "1, present before the
ecigar) leftmost mapped
base.
}
if(strlen(rightSoftClips) != 0) {

ecigar = strcat (ecigar,
‘(', inttostr(strlen(rightSoftClips)), ')’)

Soft clips are
present after the
rightmost mapped
base.

}

else if (rightHardClips != 0) {

© ISO/IEC 2024 - All rights reserved

94

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 95 (continued)

Decoding step Description
ecigar = strcat (ecigar, Hard clips are
‘[', inttostr(rightHardClips), '1') present after the
rightmost mapped

base.

}

ecigarString([s]

strtoc (ecigar)

ecigarlLength[s]

strlen (ecigar)

10.6.3 De

coding process for other alignments

For all alignments other than the first one, the e-cigar strings are decoded as specified in.subclayse 10.4.13.

10.6.4 Ref

When cr_a

arrays mismatchOffsets[][], mismatches[][], and numMismatches|[] specified’'in subclauses 10.4.]

shall be prég
subclause 1

Additional

the arr

the ary

sequence_ID as specified in subclause 7.5.1;

the arr]

the readLen[] array computed as specified in subclause 10.4.9;

erence transformation

g_ID specified in subclause 11.3 is set to 1, for records belonging to class Class_M

-processed according to the process described in Table 96 prior to being decoded as
0.6.2.

nput to the process is:

ny mappingPos[][] computed as specified in sub€lauses 10.4.2 and 10.4.10;

ay refSequence equal to ref_sequencefi} specified in subclause 7.4.2 where i is ec

py refTransfOrigSymbols computed in subclause 11.3.3;

[, the input
b and 10.4.6
specified in

jual to ref_

— the varjiables numberOfRecordSegments computed as specified in subclause 10.4.10.
The outpyt of the process ake) the modified arrays mismatchOffsets[][], mismatches[][], and
numMismalches][].
Table©96 — Pre-processing process when cr_alg_ID is equal to 1
Processing step Description
for(s = 0} s < numberOfRecordSegments; s++) {
mPos =|mappigigPos[0] [s] - seq_start
newMishatehOffsets[] = {} Empty arrays.
newMismatches[] = {}
i=0,3=0, k=0
while (i < Size(refTransfPos) && Search for the transformations
refTransfPos[i] < mPos) i++ in the leftmost read range.
while (i < Size(refTransfPos) &&
refTransfPos[i] < mPos + readLength[s]) {
if (j 2 numMismatches[s] || One ref transformation found
refTransfPos[i] - mPos < before the next mismatch
mismatchOffsets([s][J]) { position.
newMismatchOffsets[k] =
refTransfPos[i] - mPos

© ISO/IEC 2024 - All rights reserved

95

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 96 (continued)

Processing step

Description

newMismatches[k] = refSequence[refTransfPos[i]] Read the base in the ref se-
quence.
it++, kt++
}
else if (refTransfPos[i] - mPos == One substitution in the read

mismatchOffsets[s][]]) {

found at the same place as the
reference transformation.

if (mismatches([s][j] !=
refTransfOrigSymbols[i]) {

Store it only if different from
the original reference.

newMismatchOffsets[k] = mismatchOffsets([s] [j]

newMismatches[k] = mismatches[s][]]

k++

[++, J++

} else {

fthile (j < numMismatches([s] &&
refTransfPos[i] - mPos >
mismatchOffsets[s][J]) {

Copy all mismatchgs until the
next reference
transformation.

newMismatchOffsets[k] =
mismatchOffsets[s] [J]

newMismatches[k] = mismatches([s][7]

kt++, J++

}

while (] < numMismatches([s]) {

Copy the remaining
mismatches if any.

newlflismatchOffsets[k] = mismatchOffsets[s][]]

newlflismatches[k] = mismatches[s][]]
k++] j++
}
mismat¢hOffsets([s] F newMismatchOffsets
numMisipatches [s] «=\k
mismatg¢hes[s] ,=¥newMismatches

11 Representation of reference sequences

The reference sequence is usually part of an available reference genome (split into chromosomes and other
sequences), but can in principle have any origin. With respect to a bitstream compliant with ISO/IEC 23092-1,

the following types of reference sequences are supported:

— External Reference: the reference sequence is coded as an independent resource either locally or

remotely and shall be retrieved to enable the decoding of the bitstream.

— Embedded Reference: the reference sequence is coded within the bitstream as dataset.

— Computed Reference: the reference sequence can be computed using the information contained in the

sequencing reads coded in the bitstream.

© ISO/IEC 2024 - All rights reserved

96

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

In the scope of this document embedded and computed references are referred to as internal references.

11.1 External reference

The reference used for compression is not included in the bitstream. A mechanism for unique identification

is specified

in ISO/IEC 23092-1.

11.2 Embedded reference

The reference is stored in the bitstream as dataset as specified in ISO/IEC 23092-1.

11.3 Computed reference

11.3.1 General

A computed reference is used:

to im
sequen|

to encg
to encd

In case of 4
the referen

This appro
reference-h

classificatiln in P, N, M, I and HM classes shall be preserved.

When seq
in subclaus

ove compression efficiency by modifying an available external refebence befor
ce data, or

de aligned sequencing reads without using the reference sequences used for alignme
de raw (unmapped) reads.

ligned reads it can be beneficial to support encoding and decoding without requiriy
Ce sequences used for alignment.

hch uses the sequencing reads to be encoded 0 'build a local consensus assembly
ased encoding. In this case all reads shallibé encoded using class U descripto

ncing reads are encoded using a computed reference, the rtype descriptor current
£ 10.4.4 shall be used as specified in Table 97 to:

a)
b)

signal {

signal
curren

11.3.2 Supported Algorithms

Table 97 sp

he set of descriptors needed to decode the current record,

the type of reference (embedded reference or computed reference) needed to
t record.

bcifies the supperted reference computation algorithms. cr_alg_ID is specified in subcl

e decoding

nt, or

g access to

to perform
rs, but the

y specified

decode the

huse 7.4.2.4.

© ISO/IEC 2024 - All rights reserved

97

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 97 — Supported reference computation algorithms

cr_alg_ID Name Description

reserved

1 RefTransform To improve compression efficiency, an available external
reference is modified before decoding sequence data. This
algorithm applies only to aligned data as described in

subclause 11.3.3.

The reference is created by simple concatenation of already
decoded reads, with padding. This is described in
subclause 11.3.4.

The reference is created by performing a local assembly. This

Alaarithia annlicoc anlvuta Alignad data ac daceribhad i
alogrithmapolesonh o aloned dataas deseribodin
subclause 11.3.5.

The reference used to perform reference based decoding'is
encoded in each AU as sequence of ureads descriptors¢This is
described in subclause 11.3.6.

2 PushIn

3 Local assembly

4 Global assembly

5..255 reserved

11.3.3 Reference transformation

The input Yo this process is the ref_sequence[seqld] array specified in\stibclause 7.3.2, with $eqld equal
to ref_seqpence_ID as specified in subclause 7.5.2, and the arrays-refTransfPos[],and refTransSubs|]
computed gs specified in subclauses 10.4.18 and 10.4.19 respectively:

The output of this process is the modified ref_sequence[seqld] array computed by applying the decoding
process shgwn in Table 98 and a refTransfOrigSymbols[] array containing the substituted syngibols in the

original reference.
Table 98 — Reference transformation process
Transformation step Description
len = Siz¢ (refTransfPos][])
refTransfQrigSymbols|[] = {} Empty array.
for (1 = ¢; 1 < len; i++){
refTrafpsfOrigSymbols[i] = Save the symbol in the reference befpre
ref|sequence[seqId] [refTransfPos[i]] transformation.
ref sequence([seqld] [réffransfPos[i]] = Substitution.
refTransSubs[i]
}
When cr_alg_ID issequal to 1 the decoder shall first apply the reference transformation described in Table 98

to the raw 1
subclause 1

0%

eference structure received as input and then use it for reference-based decoding as

specified in

11.3.4 Pushin

11.3.41 G

eneral

The reference is created by pushing into a reference buffer refBuf[] of size crBufSize, i.e. concatenating,
already decoded reads. In this subclause reads are specified as the sequences computed as output of the
process described in Table 67 for cr_alg_ID equal to 2. The reference is built from crBufNumReads decoded
reads, each composed by a sequence of symbols from one of the alphabets as specified in subclause 9.2.

A decoded read is pushed in front of the computed reference buffer only if it is different from the previous
one. The computed reference obtained in this way is padded at its beginning and its end.

© ISO/IEC 2024 - All rights reserved

98

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

11.3.4.2 Process for the construction of the reference

The inputs to this process are:

cr_buf_

cr_pad_

max_size as specified in subclause 7.4.2.4;

size as specified in subclause 7.4.2.4;

specified in subclause 7.5.1.2;

11.3.4.3 Initialization of the reference

the buffer refBuf[] of size crBufSize specified in subclause 11.3.4.3 which contains crBufNumReads;

signature_flag, num_signatures, signature_length[] and signature][] fields in the access unit header as

At the startpfthe decoding process of an AU set crBufSize equal to 2*cr_pad_size and crBufNumRead

If signaturg_flag is equal to 1 and num_signatures is bigger than 0:

a)

by1la
b) for ead
greatel
decren
size + {
signatuy
the cur

11.3.4.4 Update of the reference

The output

This proces
refBuf[] in

rtype y

— crBufNumReads is greater than0

— lengths
This proces

a) If (crBy
out of

read u

Decrement{cyBufNumReads by the number of reads pushed out of the refBuf[].

insert the contents of signature[0] to the refBuf[] (at position cr_pad_size), inérement crBu

d increment crBufSize by signature_length[0];

than cr_buf_max_size, oldest signatures are pushed out of\the’ buffer refBuf[] an
ented of the length in nucleotides of each pushed out sighature until (crBufSize +
he size of the current signature) is smaller than or equal®o cr_buf max_size. Push
re in front of the previous signature and increment crBufSize with the length in nu
rent signature.

of this process is the updated buffer refBuf[| and the updated variable crBufSize.

s is skipped when the last decoded réad perfectly matches the previously pushed re
the sense that all the following conditions are all satisfied:

alue of the last decoded read is‘smaller or equal to 2

of both reads are equal
s consists of the following steps:

fSize + the size of the last decoded read) is greater than cr_buf_max_size, oldest read
the buffer tefBuf[] and crBufSize decremented of the length in nucleotides of each
ntil (crBufSize + the size of the last decoded read) is smaller than or equal to cr_bu

s equal to 0.

FNumReads

h remaining signature, if (crBufSize + 2* cr_pad_size + the size of the previous signature) is

1 crBufSize
2* cr_pad_
the current
cleotides of

ad into the

5 are pulled
pushed out
f max_size.

)

is pushed

b) If readS-arepresentinthe bufferthe-whele bufferexceptiheleftmosterpad—size positions
back until the leftmost base of the oldest read is at cr_pad_size position.

c¢) The last decoded read, decoded as described in Table 67 for cr_alg_ID equal to 2, is pushed in the
refBuf[] after the last decoded read already in the refBuf[], crBufNumReads is incremented by 1 and
crBufSize is incremented of the length in nucleotides of the pushed in read.

d. cr_pad_size rightmost remaining positions of refBuf[] are padded with the rightmost base of the newly
inserted read.

e. cr_pad_size leftmost positions of refBuf[] are padded with the leftmost base of the oldest read remaining

in refBuf[].

© ISO/IEC 2024 - All rights reserved

99

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

The leftmost position in the buffer shall have position 0; by consequence the leftmost base of the oldest read
shall have position cr_pad_size.

The output of the computation process described above is a reference sequence contained in the array
refBuf[] which shall be used to decode the next genomic records contained in the current AU corresponding
to values of rtype not equal to 5 as specified in subclause 10.4.14.

The refBuf[] shall be deleted at the end of the decoding process of each AU.

If the reverseComp[][][] flag (as specified in subclause 10.4.3) corresponding o the last decoded read is 1,
output the read as reverse-complemented as specified in subclause 9.4 after that this has been pushed to the
computed reference.

11.3.5 Loc¢atassembly

11.3.5.1

The refere
equivalent
a unique g
In this sub
subclause 1

eneral

ce is created by computing a local sliding consensus reference sequence.”This can
to performing a local assembly. A local assembly is created by collecting all bases
enomic position and by deriving the consensus base at that positigmthrough a ma
clause reads are specified as the sequences computed as output of the process d
0.5.2 This algorithm applies only to aligned data as described ifi.subclause 11.3.5.2.

An array cy
and are sto
in the vari
crBufSize.

If the optio
reference|
specific to

11.3.5.2 P

The inputs
equal to cq
crBufNumj

This proces

a) If the ¥

cr_buf |

the alr
b) The las
11.3.5.3 P

Buf[][] is built during the decoding process. A number of alceady decoded reads may
red in the array crBuf[][]. The number of decoded reads.stored in the array crBuf][]
hble crBufNumReads. The current size in bytes of thearray crBuf[][] is stored in t

hal rftp and rftt descriptors are present, an additional output of this decoding proce
tput Structure (specified in subclause 7.3.2) containing the computed Local Assemb]
urrent Access Unit, as specified in point 6-9f subclause 11.3.5.3 and in subclause 11.3

be seen as
mapping to
jority vote.
escribed in

 be needed
[] is stored
he variable

SS is a raw_
y reference
5.4.

rocess for adding a decoded aligned read to the list crBuf

to this process is an array crBuf[][] which contains crBufNumReads reads of si
BufSize.The output of this _process is the updated array crBuf[][] and the update
Yeads and crBufSize.

s consists of the following steps:

ariable crBufSizé plus the length in bases of the already decoded aligned read is g
max_size, the dldest reads are removed from the array crBuf[][] until crBufSize plus
pady decodedialigned read is smaller than or equal to cr_buf_max_size.

t decodéd)read is added to the array crBuf[][] as newest read.

rocess for the construction of the reference

ve in bytes
d variables

reater than
the size of

The input to this process is an array crBuf[][] containing at least one aligned read and the position on the
reference sequence of each nucleotide.

The output

of this process is an array refBuf[] containing a sequence of consensus symbols.

For each position covered by aligned reads in the array crBuf[][], the consensus symbol is derived as follows:

a) Collect
b)

9

all bases mapping to the current position.

Count the occurrences of each symbol.

maximum number of occurrences, then select s; as consensus symbol.

© ISO/IEC 2024 - All rights reserved

100

If two symbols s; s; (with i <j indexes of one of the alphabets specified in subclause 9.2) have the same

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

d)
e)
f)

If the optional rftp and rftt descriptors are present, copyrefBuf[] into ref_sequence
raw_reference

ISO/IEC 23092-2:2024(en)

Append the consensus symbol to the array refBuf[].

outputlS

output Structure (specified in subclause 7.3.2) according to the mapping positio

Otherwise, select the symbol with the maximum number of occurrences as consensus symbol.

eqld][] in a

n.

The result of the decoding process described above is a reference sequence contained in the array refBuf][]
which shall be used to decode the genomic records contained in the current AU corresponding to values of
rtype not equal to 0 or 5 as specified in subclause 10.4.14.

11.3.5.4 Decoding process for rftp and rftt

When cr_a
shall be us
Access Unit
constructe
reference s
with the sy

11.3.6 Gldg

S_ID ;D C\iua} tU 3, lf thc UlJtlUlla} dco\,l ;}JtUlD lft}l Cllld lftt dl' T l.}l CDCllt ;ll thc bltD
bd to reconstruct the original reference used for sequence alignment for the recends
. The decoder shall apply a transformation to the reference sequence ref_sequericey
 according to the process described in subclause 11.3.5.3 by replacing the symbels pr
pquence ref_sequence,,[seqld][] at the absolute position represented by each rftp
mbols conveyed by each corresponding rftt; descriptor.

bal assembly

When cr_alg_ID is equal to 4, the the reference sequence and the genomic records are decodedas

each AU of

[ype 6 (Class U) or of type 5 (class HM):
y refBuf[] is set equal to the empty array.

one rtype descriptor as specified in subclause 10.4,14.

nlue of the decoded rtype descriptor is equal £0.5 then go to step d) else go to step h).

one rlen descriptor as specified in subclause 10.4.9.

the ureads descriptor with decodeUreads(rlen) as specified in subclause 10.4.8, w
1e from rlen descriptor decoded atptevious step d).

enate the array refBuf[]with the‘output of step e).

the next sequence as specified in subclause 10.4.14 according to the value of the rtypg

ch sequencetvdecoded at the previous step whose reverseComp[][][] flag (as s

q

subclayise 10.4.3))is"'1, replace the sequence with its reverse-complement sequence as
subcla$

se 9.4, dnd'set the reverseComp[][][] flag to 0.

rtype descriptors are present go to step b).

ream, they
in current

bt [seqld](]
esent in the

descriptor

follows for

here rlen is

descriptor

pecified in
pecified in

a) Anarrz:

b) Decode

c) Iftheyv

d) Decodsg

e) Decodsg
the val

f) Concat

g) Gotostepb).

h) Decode
decoded at step b).

i) For ea

j) Ifmore

The result

fthedecoding processspecifiedabove st areference sequernce contaimed i thear

ay refBuf[],

and 2) the genomic records contained in the current AU corresponding to values of rtype not equal to 5 (as
specified in subclause 10.4.14) and decoded using the reference sequence in refBuf[].

12 Block payload parsing process

12.1 General

This clause describes the parsing process of encoded_descriptor_sequences carried by a block payload as
specified in subclause 7.5.1.3.3 when encodingMode_ID is not set to 0 as specified in Table 8.

The input to this process is the block payload.

© ISO/IEC 2024 - All rights reserved

101

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

The outputs of this process are decoded symbols of all descriptor subsequences populated into the decoded_
symbols[][][] data structure, as specified in subclause 12.7.2.

A graphical representation of the parsing process is show in Figure 7.

12.2 Encoding Mode 0

This clause describes the parsing process of encoded_descriptor_sequences and encoded_tokentype
carried by a block payload as specified in subclause 7.5.1.3.3 when encodingMode_ID is set to 0 as specified

in Table 8.

The input to this process is the block payload.

The outputp of this processdare tdecoded b_ymbula ofattdescr ipLUl bubbcqucuucb pupuldwd irto-th
[] data structure, as specified in subclause 12.7.2.

symbols[][
A graphical

Block
Payload

representation of the parsing process is show in Figure 7 and Figure 8.

Deq
Ger
Des

e decoded_

oded
Jomic
Criptor

/ \ Descriptor é N
Descriptor Subsequence
Sub- Decoded Symbol | [] ||
sequence
Decoder \
Split on eco Decoded Symbol]
boundaries S e Genomic
» of Descriptor Descriptor
- < Decoder
Sub seriptor
sequences Descriptor X bsequence
Sub- \.Decoded Symbol || 1 |
sequence
Decoder Decoded Symbol
- / —— N /

Figure 7 == Block payload parsing process

>

© ISO/IEC 2024 - All rights reserved

102

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

=== I
I D B
g (\ v [LUTs = Transformed)
v £ 5 PP Decoding | O wn Subsequence
8 u 3= | | T T T 7T 8o
55 g S, - = SHe= Transformed
© 52 N Transformed 2 E Decoded v g AN
é ; L% 8 H—> E 8 Subsymbol £ 8 Subsymbol a %’ SymbOI g)
© @ - “— © o 2 7 & quD'D =) S =
£28 S S =R/ Qs [= 5
822 o g 9 Transformed & &| | Decoded L@ Transformed S| g8
S =5 L o 5 %l Subsymbol = H %) S O
S g = 9 ymbo Subsymbol L) Symbol S 32
3 T n E A s
- : & = &
LI p— Bel 2
ER- I L z g
= g v |f LUTs | (| Transformed = 5
o o — —Decoding ’g . Subseateree o
2 e e < 35 i @
a2 E . = S 2 Q
NS Z' 8|, | Transformed 'S E|,| Decoded o g Transformed 7
& H> 2 8[| Subsymbol £ S["| Subsymbol a > Symbol =
o SZ) (<5} a
g Transformed a e Decoded § «» Transformed ||/
L) S | Subsymbol Subsymbol _’\ JT| Symbol J
oo
—= Present only when lut_transform is used.
Figure 8 — Decoding process for descriptor subsequences
12.3 Inverse binarizations
12.3.1 Genperal
The proces} of inverse binarization converts the decaoded binary symbols (binVals) into a non-binary-valued
symbol (symVal). The following subclauses describe the decoding process for the different biparizations
adopted in this document.
The following variables are specified:
— binVal|is the binary value returned/by the decoded_bit().
— symVal is the non-binary reconstructed value yielded by the inverse binarization procgss. In this
subclayse, it is also referred as decodedCabacSubsym.
— cmax is the largest possible binarized value. Larger values are truncated.
Annex C prpvides exaniples of inverse binarizations.
12.3.2 Binary (BD
The inputs fo.this process are bits from the block payload.

The output

of this process is the variable symVal.

The parameter cLength computed in subclause 12.4.6.2 indicates the length in bits of the binarized symVal.

The decodi

ng process is described in Table 99.

© ISO/IEC 2024 - All rights reserved

103

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 99 — BI decoding process

Decoding process Description
symVal = 0
for (i=0; i<cLength; i++) {
symVal = (symVal<<l) | decode bit()
}

12.3.3 Truncated unary (TU)

The inputs to this process are bits from the block payload.

The outputfof This process is the variable symval.

The paramg¢ter cmax indicates the maximum value of symVal. The decoding process is described ih Table 100.

Table 100 — TU decoding process

Decoding process Deéscription
symVal=0;
while (symfal < cmax && decode bit() == 1) {
symValt+
}

12.3.4 Exponential golomb (EG)

12.3.4.1 General
The inputs fo this process are bits from the block payldad.
The output|of this process is the variable symVal

The decodipg process is described in Table<101.

Table 101 — EG decoding process

Decoding process Description

leadingZefoBits= -1

for(b = ¢; !b; leadingZéroBits++) {

(
b = deg¢ode bit()

}
symVal =

for(i = ;< leadingZeroBits; i++) {

symVal = (symVal << 1) + decode bit ()

}
symVal += 2leadingZeroBits - 1

12.3.4.2 Signed exponential golomb (SEG) binarization

The inputto this process is the output of an exponential golomb binarization as specified in subclause 12.3.4.1.

The output of this process is the variable symVal.

a) Perform the Exponential Golomb decoding process specified in subclause 12.3.4.1.
b) Ifthe output of step 1 is not equal to 0, decode a one-bit sign flag.
© ISO/IEC 2024 - All rights reserved

104

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

c¢) Iftheo

ISO/IEC 23092-2:2024(en)

utput of step 2 is 1, symVal= -1*symVal

12.3.5 Truncated exponential golomb (TEG)

The inputs

The output

to this process are bits from the block payload.

of this process is the variable symVal.

Truncated exponential golomb is a concatenation of a truncated unary binarization (with cmax equal to
cmax_teg signalled in subclause 12.4.3.2) and an exponential golomb binarization. The parsing process for
these syntax elements are processed as follows:

a) Perform the truncated unary decoding process with cmax equal to cmax_teg (see 12.3.3).

If the o
i)

symVal is e

b)
Pe

12.3.6 Sig
The inputs
The output

Signed tru
equal to cn
binarizatio

btput of step a) is equal to cmax_teg:

form the exponential golomb decoding process specified in subclause 12.3.4.

qual to the sum of step a) and step b)i).

ned truncated exponential golomb (STEG)
to this process are bits from the block payload.
of this process is the variable symVal.

hcated exponential golomb is a concatenation of a truncated unary binarization
ax_teg signalled in subclause 12.4.3.2), an exponential golomb representation and a
h (flag). The decoding process for these syntax eléments is as follows:

Perfor

a)
b) Ifthe
i)
If the s
i)
symVal is e
-T*symVal.

Pe

De

12.3.7 Split unit-wise truncated unary (SUTU)

The inputs
— split_u

output

I

the truncated unary decoding process with-¢cinax equal to cmax_teg (see 12.4.3).
tput of step a) is equal to cmax_teg:

form the exponential golomb decoding process specified in subclause 12.4.4.

im of the outputs of step a) and-step b) is not equal to O:
code a one-bit sign flag.

qual to the sum of the output values of step a) and step b)i). If the output of step c)i) is

to this process are bits from the block payload and:

hit_size specified in subclause 12.4.3.2;

[with cmax
|-bit binary

1, symVal=

syinhbol_size specified in subclause 12.4.2

where split_unit_size < output_symbol_size.

The output

of this process is the variable symVal.

The SUTU binary string is a concatenation of n TU binarizations (subclause 12.3.3), where n = Ceil(output_

symbol_siz

The decodi

e / split_unit_size).

ng process for SUTU binarization is described in Table 102

© ISO/IEC 2024 - All rights reserved

105

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 102 — SUTU decoding process

Decoding process

Description

symVal=0

for (i=0; i<output symbol size; i+=split unit size) {

unitval = 0

cmax = (1 == 0 && (output symbol size % split unit size) != 0) ?

(1<<(output symbol size % split unit size))-1

(1<<split unit size)-1

while (unitVal < cmax && decode bit() == 1) ({
unitval++

}

symVal|= (symVal<<split unit size) | unitval

12.3.8 Signed split unit-wise truncated unary (SSUTU)

The inputs
— split_u

output

to this process are bits from the block payload and:

hit_size specified in subclause 12.4.3.2,

| symbol_size specified in subclause 12.4.2,

where split]_unit_size < (output_symbol_size-1) and output_symbagl) size has one bit reserved for

The output

The SSUTU
a separate

a) The SUTU binarization produces the absolute value of symVal (of size output_symbol_size-1).

b) Iftheo

of this process is the variable symVal.

bin string is extension of the SUTU binarizatioh (subclause 12.3.7) with sign of sym}
lag. The decoding process for this binarization is as follows:

utput of step a) is not equal to 0, decode a one-bit sign flag.

If the outpyt of step b) is 1, symVal= -1*symVal.

12.3.9 Do

The inputs

ible truncated unary (DTU)

to this process (seeTable 103) are bits from the block payload and:

— cmax_dtu, split_unit, size (specified in 12.4.3.2),

output

| symbol,sizeé (specified in 12.4.2),

where LogZ(cmax:dtu) < split_unit_size and split_unit_size < output_symbol_size.

The output

of\this processis the variable symVal

the sign.

al coded as

The DTU binary string is a concatenation of two binarizations, a TU binarization (subclause 12.3.3) and a
SUTU binarization (subclause 12.3.7). The parameter cmax_dtu is used for the TU binarization with cmax
equal to cmax_dtu, and the parameters split_unit_size and output_symbol_size are used for the SUTU
binarization (where cmax is computed internally).

© ISO/IEC 2024 - All rights reserved

106

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 103 — DTU decoding process

Decoding process Description
symVal = decode_cabac_TU(cmax_dtu) decoding process specified in
subclause 12.3.3
if (symval 2 cmax_dtu) {

symVal += decode cabac SUTU(split unit size, output symbol
size)

subclause 12.3.7

decoding process specified in

}

decode_cabac_TU() specifies the decoding process specified in subclause 12.3.3.

decode_cahac-SL

12.3.10Signed double truncated unary (SDTU)

The inputs fo this process are bits from the block payload and:

cmax_dltu and split_unit_size specified in subclause 12.4.3.2,

output| symbol_size specified in subclause 12.3.2,

where Log!
has one bit

P (cmax_dtu) < split_unit_size, split_unit_size < (output_symbol size-1) and output_s
reserved for the sign.
The output|of this process is the variable symVal.

The SDTU k
as follows:

in string is an extension of the DTU binarization with sign of symVal coded as a flag. It

a) The DT
b)

U binarization produces the absolute value of symVal (of size output_symbol_size-1).
If the output of step a) is not equal to 0, decodea one-bit sign flag.

If the outpyt of step b) is equal to 1 then symValis set to -1 * symVal.

12.4 Decqder configuration

This subclause provides syntax and semantics to convey information related to the decoder conf
the paramdter set specified in subelause 7.4.

12.4.1 Sequences and quality values

The decoddr configuration syntax is specified in Table 104.

Table 104 — Decoder configuration syntax

ymbol_size

is obtained

guration in

T

Qynfav

De

decoder configuration (encodingModelID) {

if (encodingModeID == 0){ /* CABAC */

As specified in Table 9

num_descriptor_ subsequence_cfgs minusl u(8)
for(i = 0;
i £ num descriptor subsequence cfgs minusl;
i++) {
descriptor_subsequence_ ID u(10)

1

transformSubsegCounter

transform subseq parameters ()

As specified in 12.4.4.

for (j = 0; j < transformSubseqgCounter ; j++) {

© ISO/IEC 2024 - All rights reserved

107

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 104 (continued)

Syntax

Type

transform ID_ subsym u(3)

support values ()

As specified in 12.4.2.

cabac binarization ()

As specified in 12.4.3.

}

} else if(encodingModeID < 5) {

output_symbol_size u(6)
} else {

/* teserved for future use */

}

num_desc]
descriptor
subsequend

descriptor
configurati
1 as specifi
ID shall be

transform_|
specified in

transform

subclause 1

support_va

is specified

cabac_bina

transforme

iptor_subsequence_cfgs_minusl1 plus 1 specifies the number of subsequences t
for which configurations are being signalled in this syntax. The’ number of
es for each genomic descriptor are specified in Table 25.

| subsequence_ID identifies the descriptor subsequence td/ which the curre
pn is applied. Its value is comprised between 0 and the numbey‘of descriptor subsequd
bd in Table 25. Within the same descriptor_configuration(Jfio value of descriptor_suk
used more than once.

subclause 12.4.4.

| ID_subsym specifies the subsymbol transfdri to be applied. Allowed values are sp
2.4.4.

lues() specifies a set of configuration'parameters used to parse the transformed sub
in subclause 12.4.2.

Fization() specifies information about the binarization used for the CABAC deco
d subsequence. It is specified'in subclause 12.4.3.

output_symbol_size signals the size“in bits of each symbol of the subsequence to be output by t}

process.

12.4.2 Support values

Table 105 — Support values data structure

e genomic
descriptor

nt decoder
nces minus
sequence_

subseq_parameters() signals the parsing of paramneters for transformed subsequences. It is

bcified in in

bequence. [t

ling of the

le decoding

Syntax Type
support valhes () {
output_symbol size u(6)
coding_subsym size u(6)
coding_order u(2)
if (coding subsym size < output symbol size && coding order > 0) {
if (transform ID subsym == 1)
share subsym lut flag u(1)
share_subsym prv_flag u(1)
}
}

© ISO/IEC 2024 - All rights reserved

108

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 105 reports the syntax of the data structure of support_values.

output_symbol_size signals the size in bits of each transformed symbol of the transformed subsequence to
be output by the decoding process. For unsigned binarizations the minium value of output_symbol_size is
1, while for signed binarizations the minimum value of output_symbol_size is 2. For signed values one bit
is used for the sign.

coding_subsym_size signals the size in bits of the transformed subsymbol, which serve as the atomic
unit of coding. The value of coding_subsym_size shall be a factor (exact divisor) of output_symbol_size.
It yields X = output_symbol_size / coding_subsym_size atomic subsymbol slots. These X transformed
subsymbols shall be independently decoded with CABAC, go through subsymbol transformations (if any)
to yield decoded subsymbols, which shall be combined to output a transformed symbol (of size output_
symbol_size). If LUTs subsymbol transformation (subclause 12.4.4) is used, the maximum allowed value for

coding_suF@mmW
coding_order signals the number of previously decoded symbols internally maintained ds\staf

and is used|

share_sub

to decode the next subsymbol. The maximum allowed value is 2.

sym_lut_flag if set to 1 only one look-up-table is signalled (subclausey12.7.2.5) to

e variables

be shared
be 12.7.2.8).

among all transformed subsymbols to perform inverse LUT subsymbol transformlation (subclau
Otherwise,|for each transformed subsymbol their own look-up-table is signalled-and used for i
subsymbol|transformation. The default value is 1.

share_subsym_prv_flag if set to 0 a separate copy of the the previously~decoded subsymbols (g
subclause 12.7.2.2) is maintained to decode transformed subsymbolfer'each subsymbol slot.
single copy|of previously decoded subsymbols is circularly shared‘to‘decode transformed subsy
subsymbol|slots. The default value is 1.

12.4.3 CABAC binarizations

12.4.3.1 General

Table 106 — CABA€ binarization data structure

nverse LUT

rvValues in
therwise, a
mbols at all

Syntax Type

cabac binarization () {

binarization_ID u(5)

bypass_flag u(1)

cabac binarization parameters (binarization ID) 12.4.3.2

if (!bypassi fillag) {

caba@-context parameters () 12.4.3.3

}

}

Table 106 r

pports the syntax of the CABAC binarization data structure.

binarization_ID indicates the binarization method to be used for CABAC decoding. The list of binarizations
is shown in Table 107. The signed binarizations identified by binarization_ID = {3, 5, 7, 9} are only allowed
when coding_subsym_size is equal to output_symbol_size.

bypass_flag if equal to 1, all bins of the binarization are decoded using the CABAC bypass mode. It can only
be set to 1 with coding_order equal to 0.

© ISO/IEC 2024 - All rights reserved

109

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 107 — Values of binarization_ID and associated binarizations

binarization_ID

Type of binarization

0

Binary coding as specified in subclause 12.3.2.

Truncated unary as specified in subclause 12.3.3.

Exponential golomb as specified in subclause 12.3.4.

Signed exponential golomb as specified in subclause 12.3.4.2.

Truncated exponential golomb as specified in subclause 12.3.5.

Signed truncated exponential golomb as specified in subclause 12.3.6.

Split unit-wise truncated unary as specified in subclause 12.3.7.

Signed split unit-wise truncated unary as specified in subclause 12.3.8.

Double truncated unary as specified in subclause in 12.3.9.

O | 0N [([|u|H|[W [N

Signed double truncated unary as specified in subclause in 12.3.10.

10..31

Reserved for future use.

12.4.3.2 CABAC binarizations parameters

The cabac_binarization_parameters data structure is specified in Table 108 arid contains the b
for the transformed subsequence. binarization_ID is specifiediirsubclause 12.4.3.

parameters

Table 108 — CABAC binarization parameters

inarization

Syntax Type
cgbac binarization parameters(binarization IDY
if(binarization ID ==) |
cmax u(8)
} else if (binarization ID==4 ||
binarization ID==5) {
cmax_teg u(8)
} else if (binarization ID=s8" ||
binarization ID==9) ({
cmax_dtu u(8)
}
if (binarization \MD==6 || binarization ID==7 ||
binarization)ID==8 || binarization ID==9) ({
split_unit“size u(4)
}
}

cmax is sp¢cified in subclause 12.3.3. The maximum allowed value is 255 and shall always be les

coding_su

cym_ciwn) It shall be greater than zerao

s than (1<<

cmax_teg is specified in subclauses 12.3.5 and 12.3.6. The maximum allowed value is 255 and shall always
be less than (1<< coding_subsym_size) and greater than 0.

cmax_dtu is specified in clauses 12.3.9 and 12.3.10. The maximum allowed value is 255 and shall always be
smaller than (1<<split_unit_size) and greater than 0.

split_unit_size is specified in subclause 12.3.7. The maximum allowed value is 8 and shall always be greater

than 0 and smaller than

output_symbol_size specified in subclause 12.4.2.

The binarizations SUTU (subclause 12.3.7), SSUTU (subclause 12.3.8), DTU (subclause 12.3.9) and SDTU
(subclause 12.3.9) shall only be used when coding_order is equal to 0 and output_symbol_size is equal to
coding_subsym_size, while the internal subsymbol size is signalled by the parameter split_unit_size.

© ISO/IEC 2024 - All rights reserved

110

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

12.4.3.3 CABAC context parameters

The cabac_context_parameters data structure signals the parameters used for the initialization and
adaptation of the ctxTable[] (specified in 12.5) for the transformed subsequence (see Table 109).

Table 109 — Syntax of the cabac_context_parameters data structure

Syntax Type
cabac context parameters () {
adaptive mode flag u(1)
num_contexts u(16)
for (i=0; i<num contexts; 1i++){
context_initialization_value[i] u(7)
}
if (coding subsym size < output symbol size) {
share_subsym ctx flag u(l)
}
}

adaptive_thode_flag if set to 1 signals that the arithmetic decoding enginéspecified in subclaude 12.6 uses
context adgptation, otherwise contexts adaptation is disabled.

num_contexts signals the size of the table ctxTable[] (initialized*as'defined in 12.5) containing the list of
context varfiables needed for the decoding of the LUTs and the transformed subsequence.

When num| contexts is signalled as 0:
— the prdcess defined in 12.4.6.6 shall be used to caléulate the state variable numCtxTotal;
— theprocessdefinedin12.5initializesthe contextsin ctxTable[] withinitState equalto 64 (equigrobability).

Otherwise

the sta

fe variable numCtxTotal is sett6.the signalled value of num_contexts;

— the prd
initial

cess defined in 12.5 initializes the contexts in ctxTable[] with the values signalled
zation_values]].

context_i
value can ringe between Q-and 127, with value 64 representing the equiprobable state value.

coding_subsym_size-is:specified in subclause 12.4.2.

output_symbol_size'is specified in subclause 12.4.2.

share_subsym_ctx_flag if set to 1, all transformed subsymbols are decoded on the same set
Otherwise, e-Se e—initigh : :
default value is 0.

© ISO/IEC 2024 - All rights reserved

111

tialization_value${i] specifies the initialization state value for the ith context variabl

n context_

le. The state

bf contexts.
ymbol. The

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

12.4.4 Transformation parameters

Table 110 — Data structure for transformation parameters

Syntax Type
transform subseq parameters () {
transform ID_ subseq u(8)
if (transform ID subseq == equality coding) {

transformSubsegCounter += 1

} else if (transform ID subseq == match coding) {

match_coding buffer_size u(16)

transformSubseqCounter += 2

} else if(transform ID subseqg == rle coding) {

rle_coding_guard u(8)

transformSubsegCounter += 1

} else if (transform ID subseg == merge coding)

merge coding_subseq_count u(4)

transformSubseqgCounter = merge coding subseq count

for (i=0; i<merge coding subseq count; i++)

merge _coding shift sizel[i] u(5)

}

Table 110 specifies the data structure for transformation-parameters.

transform| ID_subseq signals the applied subsequencetransformation according to Table 111.

Table 111 — Values of transforim_ID_subseq and transform_ID_subsym

Sub-sequence transformations

transform_ID_subseq name Remarks
0 no_transform No transform is applied.
1 equality_coding As specified in 12.7.2.10.2.
2 match_coding As specified in 12.7.2.10.3.
3 rle_coding As specified in 12.7.2.10.4.
4 merge_coding As specified in 12.7.2.10.5.
5..255 Reserved for future use.

Subsymbol transformations

transform_ID_subsym name Remarks

0 nn_francf'nrm No transformation is npp]ind

1 lut_transform It can only be used when coding_
order > 0.

2 diff_coding It can only be used when coding_

order is equal to 0.

3.7 Reserved for future use.

transform_ID_subsym specified in subclause 12.4.1 signals the applied subsymbol transformation
according to Table 111. The value transform_ID_subsym equal to 1 is not allowed whenever either of the
following is true: coding_order is equal to 0, coding_subsym_size is greater than 8, or binarization_ID is
equal to one of the values {3, 5, 6, 7, 8, 9}.

transformSubseqCounter is a state variable defined in subclause 12.4.1.

© ISO/IEC 2024 - All rights reserved

112

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

match_coding_buffer_size signals the size of the internal fifo buffer used in match coding transformation
(subclause 12.7.2.10.3).

rle_coding_guard is the guard value used in run-length coding transform (subclause 12.7.2.10.4).

merge_coding_subseq_count signals the number of transform subsequences to be merged by the merge
subsequence transformation (subclause 12.7.2.10.5). The minimum allowed value is 2.

merge_coding_shift_size[i] signals the number of bits to be shifted in the transformed symbols of each
transformed subsequence while applying the merge subsequence transformation (subclause 12.7.2.10.5).

The merge subsequence transformation shall adhere to the following restrictions:

also be

The su
shall n

12.4.5 Ms

The decod
in subclaug

All tralllsformed subsequences shall have exactly the same number of transformed symbols;

equal to the number of symbols encoded in the descriptor subsequence.

m of the sizes of transformed symbols (output_symbol_size) for all transfermed su
bt be greater than 32.

ar descriptor and read identifiers

br configuration syntax for the msar descriptor and read\idéntifiers (decoded a
e 10.4.20) is specified in Table 112. The decoder configuration syntax for CABAC

tokentype glescriptors is specified in Table 113.

Table 112 — Decoder configuration syntaxfor msar and read identifiers

For each transformed subsequence, coding_subsym_size shall be equal to output symbol_size.

which shall

bsequences

s specified
lecoding of

Syntax

Type

decoder c

nfiguration tokentype (encodingModeID) {

if (en

odingModeID == 0) {

/*

onfiguration for RLE specified im\subclause 10.4.19.3.3 */

rle|

| guard_tokentype

u(8)

/*

tonfiguration for CABAC METHOD O specified in subclause 10.4.19.3.4 */

dec

der configuration tokengype cabac(0)

/*

onfiguration for CABAC*METHOD 1 specified in subclause 10.4.19.3.5 */

dec

der configurationgtokentype cabac(1l)

} else

>

if (encodingModéID 1) {

/*

Feserved for, future use */

}

rle_guard

Table 79 and'specified in subclause 10.4.20.4.4) for the decoding of tokentype descriptor sequen

tokentype represents the guard value used in the decoding process of RLE metho

d (listed in

ces.

Table 113 — Decoder configuration syntax for CABAC decoding of tokentype descriptors

Syntax Type

decoder configuration tokentype cabac()

{

1

transformSubsegCounter

transform subseq parameters ()

As specified in 12.4.4.

for (j = 0; j < transformSubsegCounter; j++) {

transform ID subsym u(3)

As specified in 12.4.2

support values ()

© ISO/IEC 2024 - All rights reserved

113

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 113 (continued)

Syntax Type

As specified in 12.4.3.

cabac binarization()

}

transform_subseq_parameters() signals the parameters for transformed subsequences. It is specified in

subclause 12.4.4.

transform_ID_subsym signals the subsymbol transformion to be applied. Allowed values are as specified

in12.4.4.

support_values() signals a set of configuration parameters used to parse the transformed sub;
is specified|in subclause 12.4.2.

cabac_bingrization() signals information about the binarization used for the CABACYdeco
transformed subsequence. It is specified in subclause 12.4.3.

12.4.6 State variables

This subclause specifies how to calculate state variables used during the décoding process.

12.4.6.1 Number of alphabet symbols

The numbe} of alphabet symbols for each subsymbol shall be calctilated as numAlphaSubsym = 1
subsym_size. However, for some descriptor subsequences, this{calculation produces larger alp
needed. Ta
calculated

s numAlphaSubsym = 1 << coding_subsym_size.

Table 114 — Special casesfor numAlphaSubsym values.

descriptor_ID subséquence_ID numAlphaSubsym

3

Size(Saiphabet_1p)
Size(salphabet_lD)

9

Size(Saiphabet 1p) + 1
Size(S,iphabet_1p)

6

Size(salphabet D)

OO | N[N O

The numbe} of subsymbols shall be calculated as numSubsyms = output_symbol_size / coding_su

equence. It

ling of the

<< coding_
bets than

a
le 114 lists these special cases and the value of nimAlphaSubsym when numAlphaSu}Lsym is not

bsym_size.

12.4.6.2 N

1 £ 4 1 1 1
uinnpct Ul LUlltUAtD PCT SUUSYIIIUUI

When bypass mode is not used (as signalled in subclause 12.4.3), the cabac decoding of the transformed

subsymbol uses a number of contexts (as specified in subclause 12.6.2). Table 115 lists the
contexts needed to decode each transformed subsymbol with all binarizations.

© ISO/IEC 2024 - All rights reserved

114

number of

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 115 — Calculation of numCtxSubsym

binarization_ID numCtxSubsym

coding subsym size

cmax

Floor (Log2 (numAlphaSubsym + 1)) + 1

Floor (Log2 (numAlphaSubsym + 1)) + 2

cmax teg + Floor (Log2 (numAlphaSubsym + 1)) + 1

cmax teg + Floor (Log2 (numAlphaSubsym + 1)) + 2

(output symbol size / split unit size) * ((1<< split unit size) - 1) +
((1<<(outputSymSize % split unit size)) - 1)

S | WIN|-R|O

7 (oUtpot SymooT STzZe prrt ot SsTze (T SprIt Ut STze) 1) +

((1<<(outputSymSize % split unit size)) - 1) + 1

cmax dtu +
8 (output symbol size / split unit size) * ((1<< split unif’size) |- 1) +
((1<<(outputSymSize % split unit size)) - 1)

cmax dtu +
9 (output symbol size / split unit size) * ((1<< split unit size) |- 1) +
((1<< (output symbol size % split unit size)) - 1) {1

coding_subsym_size is specified in subclause 12.4.2.

output_symbol_size is specified in subclause 12.4.2.

cLength isspecified as a parameter to Bl binarization (subclause 12.3.2) and it is set to coding_sybsym_size.

cmax is sp¢cified as a parameter to TU (subclause 12.3.3) and.signalled in 12.4.3.2.

cmax_teg |is specified as a parameter to the TEG.(subclause 12.3.5) and STEG (subclayise 12.3.5)
binarizatiops, and signalled in 12.4.3.2.

split_unit_fsize is specified as a parameter to the SUTU (subclause 12.3.7), SSUTU (subclause 12.3.8), DTU
(subclause [12.3.9) and SDTU (subclause 12.3.9)/binarizations, and signalled in 12.4.3.2.

cmax_dtu |is specified as a parameter(fo the DTU (subclause 12.3.9) and SDTU (subclapse 12.3.9)
binarizatiohs, and signalled in 12.3.4.2;

12.4.6.3 Cpding order context offset

The decoding process of a subymbol can depend on a number of previously decoded subsymbpols (at the
same bit pgsitions) by signaling coding_order > 0 as specified in subclause 12.4.2.

The process of context’selection (subclause 12.7.2.6) requires the context offsets corresponding t¢ the coding
order to correctlycalculate the starting ctxIdx in the ctxTable[|, where each subsymbol is to be ¢lecoded.

Table 116 dpecifies how the list codingOrderCtxOffset[] containing these offsets for each coding order is
calculated.[If'bypass flagis equalto 1 (as signalled in subclause 12.4.3), all elements of codingOrderCtxOffset
are setto 0.

Table 116 — Calculation of codingOrderCtxOffset]]

coding_order State variable Value
0 codingOrderCtxOffset[0] 0
codingOrderCtxOffset[1] numCtxSubsym
codingOrderCtxOffset[2] numCtxSubsym *
numAlphaSubsym

© ISO/IEC 2024 - All rights reserved

115

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

12.4.6.4 Coding size context offset

The state variable codingSizeCtxOffset specifies the number of contexts needed to decode each transformed

subsymbol.

This state variable is used in the contexts selection process (subclause 12.7.2.6) to correctly calculate the
starting ctxIdx in the ctxTable[| where each transformed subsymbol is to be decoded. It is computed as
specified in Table 117. If bypass_flagis equal to 1 (as signalled in subclause 12.4.3), this state variable is set to 0.

Table 117 — Calculation of codingSizeCtxOffset

Decoding process

Description

if (share subsym ctx flag) {

coding$izeCtxOffset = 0
} else iffcoding order == 0) {
coding$izeCtxOffset = numCtxSubsym
} else {
coding$izeCtxOffset = codingOrderCtxOffset[coding order] * numAlphaSubsSym

12.4.6.5 Number of contexts for LUTs

The state Y

using the §
outputSym
bypass_flag

ris equal to 1 (as signalled in subclause 12.4.3);.this state variable is set to 0.

Table 118 — Calculation of numCtxLuts

hariable numCtxLuts specifies the number of contexts ‘needed to decode the LUT:
the decoding process for LUTs (specified in subclause 12.7.2.5), where each LUT symbol shall
UTU binarization (binarization_ID equal to 6) with parameters splitUnitSize equ
Size = coding_subsym_size. The value of numCtxLuts is computed as specified in T

5 using the

be decoded
h] to 2 and
able 118. If

Decoding process Desfcription
numCtxLut$ = 0
if (transf¢rm ID subsym == 1) {
numCtxLut$ = (coding subsym size {;2) * ((1<< 2) - 1) + Compute accord-
((1<<(coding pubsym size % 2)) - 1) ing to Table 115
for SUTU binari-
zation

12.4.6.6 Tptal number of contexts

The state ¥
subsequeng

rariable"numCtxTotal specifies the total number of contexts needed to decode a t
e,«which includes all the contexts needed for decoding of LUTs (subclause 12.7.2.5) a

(subclause

12.7.2.7) and shall be calculated as specified in Table 119. If bypass flagis equal to 1 (;

ransformed
nd symbols

hs signalled

in subclause 12.4.3), this state variable is set to 0.

© ISO/IEC 2024 - All rights reserved

116

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 119 — Calculation of numCtxTotal

Decoding process Des

cription

if (num_contexts

'=0) |

numCtxTotal = num contexts
} else {
numCtxTotal = numCtxLuts
numCtxTotal += ((share subsym ctx flag) ? 1 : numSubsyms) *
((coding order > 0) 2 codingOrderCtxOffset [coding
order] *

numAlphaSubsym : numCtxSubsymbol)

}

num_contexts is signalled in 12.4.3.3 along with the list of specific context_initialization_values

12.5 Initi

ctxTable[]1
Each eleme
and valMps
the value o

The inputs
ctxTab

the ctx

The output

The state ¥
initState as

hlization process for context variables

s the data structure containingall context variables needed to decode gtransformed su
nt of the ctxTable[] represents one context variable and consists of two'state variable
. The variable pStateldx represents a probability state index and(the variable valMps
[the most probable symbol as further described in subclause $2¢6.2.

to this process are:

e[] specified in subclause 12.7.2.4;

[dx and initState variables specified in 12.7.2.4.
of this process is an initialized context variable'in the ctxTable array at index ctxIdx

rariables pStateldx and valMps corresponding to index ctxldx are initialized basec
described in Table 120.

Table 120— Calculation of ctxTable

[]-

bsequence.
5: pStateldx
represents

| on a 7-bit

Decading process Des

cription

context if

hitialize state(ctxTaplel], ctxIdx, initState) {

ctxTab

e [ctxIdx].valMps (initState < 63) 2 0 : 1

ctxTab

)
)

le [ctxIdx] .pStateldx
(initState)- 64
(63 —«knitState

ctxTable[ctxIdx] .valMps

?

}

where

ctxTable[ct

hdex ctxIdx

ctxTable[ctxIdx].pStateldx represents the variable pStateldx associated to the element in ctxTable at index ctxIdx

12.6 Arithmetic decoding engine

12.6.1 Initialization

The outputs of this process are the initialized decoding engine registers iviCurrRange and ivlOffset both in
16 bit register precision.

The status of the arithmetic decoding engine is represented by the variables ivlCurrRange and ivlOffset.
In the initialization procedure of the arithmetic decoding process, ivlCurrRange is set equal to 510 and

© ISO/IEC 2024 - All rights reserved

117

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

ivlOffset is set equal to the value returned from read_bits(9) interpreted as a 9 bit binary representation of
an unsigned integer with the most significant bit written first.

The bitstream shall not contain data that result in a value of ivlOffset being equal to 510 or 511.

NOTE The description of the arithmetic decoding engine in this Specification utilizes 16 bit register precision.
However, a minimum register precision of 9 bits is required for storing the values of the variables ivlCurrRange
and ivlOffset after invocation of the arithmetic decoding process (DecodeBin) as specified in subclause 12.6.2. The
arithmetic decoding process for a binary decision (DecodeDecision) as specified in subclause 12.6.2.2 and the decoding
process for a binary decision before termination (DecodeTerminate) as specified in subclause 12.6.2.5 require a
minimum register precision of 9 bits for the variables ivlCurrRange and ivlOffset. The bypass decoding process for
binary decisions (DecodeBypass) as specified in subclause 12.6.2.4 requires a minimum register precision of 10 bits
for the variable ivlOffset and a minimum register precision of 9 bits for the variable iviCurrRange.

12.6.2 Arijthmetic decoding process

12.6.2.1 General

The inputs|to this process are ctxTable, ctxIdx, and bypass_flag, as specified in subclduse 12.7.P.7, and the
state variables ivlCurrRange and ivlOffset of the arithmetic decoding engine.

The output|of this process is the value of the bin.

Figure 9 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of
a bin, the [context index table ctxTable and the ctxldx are passed-to’ the arithmetic decoding process
DecodeBin(ctxTable, ctxldx), which is specified as follows:

— IfbypapsFlagis equal to 1, DecodeBypass() as specified in'subclause 12.6.2.4 is invoked.

— Otherwise, if bypassFlag is equal to 0, ctxTable is equal to 0, and ctxIdx is equal to 0, DecodeTerminate()
as spedified in subclause 12.6.2.5 is invoked.

— Otherwise (bypassFlag is equal to 0 and ctxTable is not equal to 0), DecodeDecision() as $pecified in
subclalise 12.6.2.2 is invoked.

C DecodeBin(ctxTable, ctxldx, bypass_flag))

Yes

Yes

DecodeBypass

ctxTable==0
&& ctxldx ==07?

DecodeTerminate

DecodeDecision(ctxTable, ctxldx, bypass_flag)

{ Done)

Figure 9 — Overview of the arithmetic decoding process for a single bin

© ISO/IEC 2024 - All rights reserved

118

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

NOTE Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation
p(0)andp(1)=1-p(0)ofabinarydecision (0, 1), an initially given code sub-interval with the range ivlCurrRange
will be subdivided into two sub-intervals having range p(0) * ivlCurrRange and ivlCurrRange - p(0) * ivlCurrRange,
respectively. Depending on the decision, which has been observed, the corresponding sub-interval will be chosen as
the new code interval, and a binary code string pointing into that interval will represent the sequence of observed
binary decisions. It is useful to distinguish between the most probable symbol (MPS) and the least probable symbol
(LPS), so that binary decisions have to be identified as either MPS or LPS, rather than 0 or 1. Given this terminology,
each context is specified by the probability p; ps of the LPS and the value of MPS (valMps), which is either 0 or 1. The

arithmetic c

ore engine in this document has three distinct properties:

— The probability estimation is performed by means of a finite-state machine with a table-based transition process
between 64 different representative probability states { p;ps(pStateldx) | 0 < pStateldx < 64 } for the LPS
probability p;ps. The numbering of the states is arranged in such a way that the probability state with index
pStateldx = 0 corresponds to an LPS probability value of 0.5, with decreasing LPS probability towards higher state

indices.

— The rarlge ivlCurrRange representing the state of the coding engine is quantized to a small set{Q;,
set quaptization values prior to the calculation of the new interval range. Storing a table.'contain
pre-computed product values of Q; * p; ps(pStateldx) allows a multiplication-free approximation of
ivlCurrRange * p; p(pStateldx).

— For synfax elements or parts thereof for which an approximately uniform probability distribution is
be given a separate simplified encoding and decoding bypass process is used.

12.6.2.2 Arithmetic decoding process for a binary decision

12.6.2.2.1 |General

The inputs fo this process are the variables ctxTable, ctxIdx, iviCurrRange, and ivlOffset.

The outpufs of this process are the decoded value binVal, and the updated variables ivlCurt
ivlOffset.

Figure 10 shows the flowchart for decoding a single decision (DecodeDecision):

a) The value of the variable iviLpsRange is derived as follows:

— Giyen the current value of ivlCurrRange, the variable qRangeldx is derived as follows:

gRhngeldx =(iviCurrRange>>6) & 3

— Givyen gRangeldx and {pStateldx associated with ctxTable and ctxIdx, the value of t
rangeTabLps as spegified in Table 122 is assigned to ivlLpsRange:

ivl
b) Theva

— Ifi
ivl

. psRange = rangeTabLps[pStateldx][qRangeldx]
riable ivl€lirrRange is set equal to ivlCurrRange - ivlLpsRange and the following appl

pl0ffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to-
Dffset is decremented by ivlCurrRange, and iviCurrRange is set equal to ivlLpsRange.

..,Q4} of pre-
ing all 64x4
the product

assumed to

'Range and

he variable

es:

1 — valMps,

— Otherwise, the variable binVal is set equal to valMps.

Given the value of binVal, the state transition is performed as specified in subclause 12.6.2.2.2. Depending
on the current value of ivlCurrRange, renormalization is performed as specified in subclause 12.6.2.3.

© ISO/IEC 2024 - All rights reserved

119

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

CDecodeDecision(cthable, ctxldx) >
v

gRangeldx= (ivlCurrRange>> 6) & 3
ivlLpsRange= rangeTabLps[pStateldx][qRangeldx]
ivlCurrRange = ivlCurrRange - ivlLpsRange

Yes ivlOffset> No
¥ ivlCurrRange?]

binVal= IvalMps
ivlOffset= ivlOffset-ivlCurrRange
ivlCurrRange = ivlLpsRange

binVal= valMps
pStateldx = transldxMps[pStateldx]

Yes

pStateldx == 0?

|

valMps =1 - valMps

pStateldx = transldxLps[pStateldx]

:

RenormD

Figure 10 — Flowchart for decoding a decision

12.6.2.2.2 |State transition process

The inputs|to this process are thé_current pStateldx, the decoded value binVal and valMps values of the
context varfiable associated with ctxTable and ctxIdx.

The outputs of this processare-the updated pStateldx and valMps of the context variable associated Wwith ctxIdx.

Depending|on the decgded value binVal, the update of the two variables pStateldx and valMpg associated
with ctxIdy is derived‘as specified in Table 121.

Table 121 — Update of the two variables pStateldx and valMps

Decoding process Description

if (adaptive mode flag) {

if(binval = = valMps) {

pStateldx = transIdxMps(pStateldx)

} else {

if(pStateldx = = 0){

valMps = 1 - valMps

© ISO/IEC 2024 - All rights reserved

120

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 121 (continued)

Decoding process Description
pStateldx = transIdxLps(pStateldx)

}

Table 123 specifies the transition rules transldxMps() and transldxLps() after decoding the value of valMps
and 1 - valMps, respectively. The specification of rangeTabLps according to the values of pStateldx and
gRangeldx is reported in Table 122. The corresponding state transition table is specified in table 123.

Table 122 — Specification of rangeTabLps depending on the values of pStateldx and gqRangeldx

pStateldx 0 lqRangeIdxz 3 pStateldx 0 ;]Ranggql;b(3
far)

0 128 176 208 240 32 27 33| 39 45
1 128 167 197 227 33 26 8y 37 43
2 128 158 187 216 34 24 Q30 35 41
3 123 150 178 205 35 237 28 33 39
4 116 142 169 195 36 < 27 32 37
5 111 135 160 185 37 N2t 26 30 35
6 105 128 152 175 38 C1 20 24 29 33
7 100 122 144 166 39 19 23 27 31
8 95 116 137 158 {40 18 22 26 30
9 90 110 130 150) 41 17 21 25 28
10 85 104 123 142 2\ 42 16 20 23 27
11 81 99 117 1357 43 15 19 22 25
12 77 94 111 (178 44 14 18 21 24
13 73 89 105 |\ 122 45 14 17 20 23
14 69 85 100 07 116 46 13 16 19 22
15 66 80 B 110 47 12 15 18 21
16 62 76 | =90 104 48 12 14 17 20
17 59 72 86 99 49 11 14 16 19
18 56 69", 81 94 50 11 13 15 18
19 53 65 77 89 51 10 12 15 17
20 51)62 73 85 52 10 12 14 16
21 8\ 59 69 80 53 9 11 13 15
22 56 66 76 54 9 11 12 14
23 NS 53 63 72 55 8 10 12 14
24 | Y u 50 59 69 56 8 9 11 13
25 L~ 39 48 56 65 57 7 9 1 12
26 37 45 54 62 58 7 9 10 12
27 35 43 51 59 59 7 8 10 11
28 33 41 48 56 60 6 8 9 11
29 32 39 46 53 61 6 7 9 10
30 30 37 43 50 62 6 7 8 9
31 29 35 41 48 63 2 2 2

© ISO/IEC 2024 - All rights reserved

121

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 123 — State transition table

pStateldx 0 2 5 6 7 8 9 10 11 12 13 14 15
transldxLps 0 0 2 4 4 5 6 7 8 9 9 11 11 12
transldxMps |1 3 6 7 8 9 10 11 12 13 14 15 16
pStateldx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
transldxLps 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24
transldxMps |17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
pStateldx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
transldxLps |24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33
transldxMps |33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
pStateldx [338 79 50 5T 52 53 5% 55 56 57 58 59 60 (o) 8 2 63
transldepJ 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63
transldxMp$ |49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63

12.6.2.3 Renormalization process in the arithmetic decoding engine

The inputs fo this process are bits from block payload data and the variables iviCurrRange and iy

The outputp of this process are the updated variables ivlCurrRange and ivlOffset.

A flowchart

— IfivlCurrRange is greater than or equal to 256, no renormalization is needed and the Renor

is finish

r10ffset.

of the renormalization is shown in Figure 11. The currentxzalue of ivlCurrRange is firgt compared
to 256 and then the following applies:

ed;

mD process

— Otherwise (ivlCurrRange is less than 256), the renormalization loop is entered. Within thfis loop, the
value df ivlCurrRange is doubled, i.e., left-shifted-by 1 and a single bit is shifted into ivlOffdet by using

read_bjts(1).

The bitstrgam shall not contain data that result in a value of ivlOffset being greater than

ivlCurrRange upon completion of this process.

ivlCurrRange < 2567

No

Yes

ivlCurrRange= ivlCurrRange<< 1
ivlOffset= ivlOffset<< 1
ivlOffset = ivlOffset | read_bits(1)

br equal to

Done

Figure 11 — Flowchart of renormalization

© ISO/IEC 2024 - All rights reserved

122

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

12.6.2.4 Bypass decoding process for binary decisions
The inputs to this process are bits from block payload data and the variables ivlICurrRange and ivlOffset.
The outputs of this process are the updated variable ivlOffset and the decoded value binVal.

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 12 shows a flowchart of the
corresponding process.

First, the value of ivlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into ivlOffset by using
read_bits(1). Then, the value of ivlOffset is compared to the value of iviICurrRange and then the following
applies:

— If ivlOffset is greater than or equal to ivlCurrRange, the variable binVal is set equal to 1 and ivlOffset is
decrenjented by ivlCurrRange.

— Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0.

The bitstrgam shall not contain data that result in a value of ivlOffset being greatefr than pr equal to

ivlCurrRanpe upon completion of this process.
‘ DecodeBypass)

ivlOffset= ivlOffset<< 1
ivlOffset = ivlOffset | read_bits(1)

ivlOffset = ivlCurrRange?

binVal=1

ivlOffset = ivlOffset - iviICurrRange binVal = 0

Figure 12 — Flowchart of bypass decoding process

12.6.2.5 Decoding process for binary decisions before termination

The inputs to this process are bits from block payload data and the variables ivlCurrRange and ivlOffset.
The outputs of this process are the updated variables ivlCurrRange and ivlOffset, and the decoded value binVal.

This decoding process applies to decoding of end_of_descriptor_subsequence_terminate corresponding to
ctxTable equal to 0 and ctxIdx equal to 0. Figure 13 shows the flowchart of the corresponding decoding
process, which is specified as follows:

First, the value of ivICurrRange is decremented by 2. Then, the value of ivlOffset is compared to the value of
ivlCurrRange and then the following applies:

— IfivlOffsetis greater than or equal to iviCurrRange, the variable binVal is setequal to 1, no renormalization
is carried out, and CABAC decoding is terminated. The last bit inserted in register ivlOffset is equal to 1.

© ISO/IEC 2024 - All rights reserved

123

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)
When decoding end_of_descriptor_subsequence_terminate, this last bit inserted in register ivlOffset is
interpreted as the stop bit for the decoding of descriptor subsequence.

— Otherwise (ivlOffset is less than ivlCurrRange), the variable binVal is set equal to 0 and renormalization
is performed as specified in subclause 12.6.2.3.

This procedure may also be implemented using DecodeDecision(ctxTable, ctxldx, bypassFlag) with
ctxTable = 0, ctxldx = 0 and bypassFlag = 0. In the case where the decoded value is equal to 1, seven more
bits would be read by DecodeDecision(ctxTable, ctxldx, bypassFlag) and a decoding process would have to
adjust its bitstream pointer accordingly to properly decode following syntax elements.

CDecodeTerminate)

ivlCurrRange = ivlCurrRange - 2

'

Yes
ivlOffset = ivlCurrRange?

binVal = 1 binVal = 0

RenormD

Done

Figure 13 — Flowchart of decoding a decision before termination

12.6.2.6 Alignment process prior to aligned bypass decoding
The input tp this precess is the variable ivICurrRange.

The output|ofthis process is the updated variable iviCurrRange.

ivlCurrRange is set equal to 256.

NOTE When ivlCurrRange is 256, ivlOffset and the bit-stream can be considered as a shift register, and binVal as
the register's second most significant bit (the most significant bit is always 0 due to the restriction of ivlOffset being
less than ivlCurrRange).

12.7 Decoding process for sequence descriptors

This subclause describes the decoding process for descriptors specified in subclauses 9.6 and 9.7.

© ISO/IEC 2024 - All rights reserved

124

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

12.7.1 General

The inputs to this process are all bin strings of the binarization of the requested syntax element as specified

el2.3.

in subclaus

The output

of this process is a decoded descriptor stream.

This process specifies how each bin of a bin string is parsed for each syntax element. After parsing each
bin, the resulting bin string is compared to all bin strings of the binarization of the syntax element and the

following a

size, th

For oth
syntax

Otherw

While pars

the first bin.

The parsin

a) Theco

b) The arfthmetic decoding process as specified in subclause 12.6.2:T is invoked with ctxTable,

bypass

The decod
subsequeng
hierarchy d
parent_par;

12.7.2 Blg

12.7.21 G
The inputs
— ablock

the sta

adecod
by a de

The output

pplies:

e corresponding value of the syntax element is the output.

If the bin string is binarized using binary binarization and the bin string is of length coding_subsym_

er binarizations, if the bin string is equal to one of the bin strings, the corresponding
element is the output.

fise (the bin string is not equal to one of the bin strings), the next bit is parsed.

ng each bin, the variable binldx is incremented by 1 starting with binld¥’béing set eq

b of each bin is specified by the following two ordered steps:

1text selection process as specified in subclause 12.7.2.6.

Flag as inputs and the value of the bin as output.

ing process is unspecified if the corresponding configuration(s) for descrip

e_ID, as specified in subclauses 7.4.2.2 and 12.4, are not available in any paramete|
f parameter sets referred to by the field parameter_set_ID of the access unit and b
hmeter_set_ID of the parameter sets in thé’same hierarchy, as specified in subclause 7
ck payload decoding process

eneral

to this process are

payload as specifiedin'subclause 7.5.1.3.3;

Le variables specified in subclause 12.4;

er configusation (as specified in subclauses 7.4.2.2 and 12.4) for the genomic descripta
scriptor_ID specified in the block header (subclause 7.5.1.3.2).

of this process is the array decoded_symbols[descriptor_ID][][] (the reconstruct

descriptors

value of the

ual to O for

ctxIldx, and

tor_ID and
I set in the
y the fields
4.1

r identified

bd genomic

oftype descriptor_ID).

12.7.2.2 G

eneral decoding process for descriptors

A block payload of encoded descriptors is decoded as follows:

For each de

scriptor subsequence associated to the current descriptor_ID:

— Extract the portion of the byte stream corresponding to the current descriptor subsequence.

Parse t

For eac

he number of symbols encoded in the current descriptor subsequence.

h transformed subsequence associated to the current descriptor subsequence:

— Extract the portion of the byte stream corresponding to the current transformed subsequence.

© ISO/IEC 2024 - All rights reserved

125

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

— Compute the number of transformed symbols encoded for the current transformed subsequence.

— Initialize an array prvValues[][] and set all values to 0.

— Initialize ctxTable[] as specified in subclause 12.7.2.4.

— Retrieve the Look-Up Tables lutValues[][][] as specified in subclause 12.7.2.5.

— For each transformed symbol in the current transformed subsequence:

With N=output_symbol_size/coding_subsym_size, perform N times the following steps:

— Look up dependencies (if any) and update the prvValues[] based on the dependencies as

specified in 12.6.2.3.

— Decode decodedCabacSubsym as specified in 12.7.2.7.

— Select the starting context index ctxIdx as specified in subclause 12.7.2.6.

— Calculate invTransfSubsym as specified in subclause 12.7.2.8.

size[i]) | invTransfSubsym

— Update the state variables as specified in 12.7.2.9.

— Update the jth transformed symbol of the ith transformed subsequeénce as:

transform_subseq_symbols[i][j]=(transform_subseq_symbols[i][j]<<coding_subsym_

— If equallity_coding is present for the current descriptor subsequence, apply the equality syibsequence
transfdrmation as specified in 12.7.2.10.2.

— Else if

transfdqrmation as specified in 12.7.2.10.3.

— Else if

transfdrmation as specified in 12.7.2.10.4.

— Else if

transfdrmation as specified in 12.7.2.10.5.

The general decoding process for deseriptors is shown in Table 124.

Tablé:124 — General decoding process for descriptors

match_coding is present for the current desctiptor subsequence, apply the match syibsequence

rle_coding is present for the current>descriptor subsequence, apply the RLE syibsequence

merge_coding is present for the current descriptor subsequence, apply the merge sfibsequence

Decoding process

encoded d

¢scriptor seguences (descriptor ID) {

/* Initializations */
decodedl symbols[descriptor ID][][] = {{0}}
remainingPdyloadSize = block payload size

block_payloaql_size

as speciiied In
subclause 7.5.1.3.2.

for (k

=0; k < numDescriptorSubsequences; k++) {

numDescriptorSubse-
quences corresponds
to the value in column
'Number of descrip-
tor subsequences' of
Table 25.

if

(k < numDescriptorSubsequences - 1) {

subsequence_payload size[k]

u(32)

subsequencePayloadSize = subsequence payload size[k]

remainingPayloadSize -= (subsequencePayloadSize + 4)

© ISO/IEC 2024 - All rights reserved

126

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

ISO/IEC 23092-2:2024(en)

Table 124 (continued)
Decoding process
} else {
subsequencePayloadSize = remainingPayloadSize

}

if (subsequencePayloadSize > 0) {

num encoded symbols[k]

u(32)

if (encoding mode ID == 0) {

As specified in
subclause 7.4.2.2

decoded symbols[descriptor ID][k][] =

aecode_desSCrilptor subsequence(descriptor 1D, K,

num_encod¢d symbols[k],
subsequen¢ePayloadSize)

}|else if (encoding mode ID < 5) {

As specified i
stibclause 7.4,

decoded symbols[descriptor ID][k][] = decode
subsequeng¢e (encoding mode ID, num encoded symbols[k],
subsequen¢ePayloadSize)

}lelse {

/* reserved for future use */

}/*|if subsequencePayloadSize > 0 */

}

decoded_symbols[descriptor_ID][][] contains the list-of output symbols decoded for all

subsequenges of the descriptor identified by descriptor_ID.

subsequerlce_payload_size[k] specifies the payload size of the kth descriptor subsequence,

descriptor

where the

kth subseqiience payload corresponds to the\part of the block payload (as specified in subclauge 7.5.1.3.3)

required by this decoding process to decoda the kth descriptor subsequence.

num_encoded_symbols[k] specifies:.the number of output symbols encoded for the kth

subsequenge.

descriptor

decode_ subsequence() is the decoding process corresponding to encoding_mode_ID as specified in Table 9.
The output|of this process,is.composed of symbols whose size in bits is specified by output_symbol_size in

Table 104.

The decod|ng process for the kth descriptor subsequence (of size num_symbols[k]) of the

identified By descriptor_ID is shown in Table 125.

descriptor

Table 125 — Decoding process of a descriptor subsequence

Decoding process

decode descriptor subsequence (descriptor ID, k, numEncodedSymbols,
availablePayloadSize) {

/* Initializations */

decoded symbols[descriptor ID][k][] = {0}

transform subseq symbols[][] = {{0}}

© ISO/IEC 2024 - All rights reserved

127

https://iecnorm.com/api/?name=7312d6fe72bf905e41c8b3011645ccea

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviated terms
	5 Conventions
	5.1 General
	5.2 Arithmetic operators
	5.3 Logical operators
	5.4 Relational operators
	5.5 Bit-wise operators
	5.6 Assignment operators
	5.7 Range notation
	5.8 Mathematical functions
	5.9 Order of operation precedence
	5.10 Variables, syntax elements and tables
	5.11 Text description of logical operators
	5.12 Processes

	6 Syntax and semantics
	6.1 Method of specifying syntax in tabular form
	6.2 Bit ordering
	6.3 Specification of syntax functions and data types
	6.4 Semantics

	7 Data structures
	7.1 General
	7.2 Data unit
	7.3 Raw reference
	7.3.1 General
	7.3.2 Syntax and semantics

	7.4 Parameter set
	7.4.1 Syntax and semantics
	7.4.2 Encoding parameters

	7.5 Access unit
	7.5.1 Syntax and semantics
	7.5.2 Access unit types

	8 Descriptors
	9 Sequencing reads
	9.1 General
	9.2 Supported symbols
	9.3 Paired-end reads
	9.4 Reverse-complement reads
	9.5 Data classes
	9.6 Aligned data
	9.7 Unaligned data

	10 Decoding process
	10.1 General
	10.2 dataset_type = 0 or 1
	10.2.1 General
	10.2.2 References padding
	10.2.3 Type 1 AU (Class P)
	10.2.4 Type 2 AU (Class N)
	10.2.5 Type 3 AU (Class M)
	10.2.6 Type 4 AU (Class I)
	10.2.7 Type 5 AU (Class HM)
	10.2.8 Type 6 AU (Class U)

	10.3 dataset_type = 2
	10.3.1 General
	10.3.2 Type 1 AU
	10.3.3 Type 2 AU
	10.3.4 Type 3 AU
	10.3.5 Type 4 AU
	10.3.6 Type 6 AU

	10.4 Genomic descriptors
	10.4.1 General
	10.4.2 pos
	10.4.3 rcomp
	10.4.4 flags
	10.4.5 mmpos
	10.4.6 mmtype
	10.4.7 clips
	10.4.8 ureads
	10.4.9 rlen
	10.4.10 pair
	10.4.11 mscore
	10.4.12 mmap
	10.4.13 msar
	10.4.14 rtype
	10.4.15 rgroup
	10.4.16 qv
	10.4.17 rname
	10.4.18 rftp
	10.4.19 rftt
	10.4.20 tokentype descriptors

	10.5 sequence
	10.5.1 General
	10.5.2 Aligned reads (Classes P, N, M, I, HM)
	10.5.3 Unmapped reads (Class HM, U)

	10.6 e-cigar
	10.6.1 Syntax
	10.6.2 Decoding process for the first alignment
	10.6.3 Decoding process for other alignments
	10.6.4 Reference transformation

	11 Representation of reference sequences
	11.1 External reference
	11.2 Embedded reference
	11.3 Computed reference
	11.3.1 General
	11.3.2 Supported Algorithms
	11.3.3 Reference transformation
	11.3.4 PushIn
	11.3.5 Local assembly
	11.3.6 Global assembly

	12 Block payload parsing process
	12.1 General
	12.2 Encoding Mode 0
	12.3 Inverse binarizations
	12.3.1 General
	12.3.2 Binary (BI)
	12.3.3 Truncated unary (TU)
	12.3.4 Exponential golomb (EG)
	12.3.5 Truncated exponential golomb (TEG)
	12.3.6 Signed truncated exponential golomb (STEG)
	12.3.7 Split unit-wise truncated unary (SUTU)
	12.3.8 Signed split unit-wise truncated unary (SSUTU)
	12.3.9 Double truncated unary (DTU)
	12.3.10 Signed double truncated unary (SDTU)

	12.4 Decoder configuration
	12.4.1 Sequences and quality values
	12.4.2 Support values
	12.4.3 CABAC binarizations
	12.4.4 Transformation parameters
	12.4.5 Msar descriptor and read identifiers
	12.4.6 State variables

	12.5 Initialization process for context variables
	12.6 Arithmetic decoding engine
	12.6.1 Initialization
	12.6.2 Arithmetic decoding process

	12.7 Decoding process for sequence descriptors
	12.7.1 General
	12.7.2 Block payload decoding process

	12.8 BSC decoding process
	12.8.1 decoding process

	13 Output format
	13.1 General
	13.2 MPEG-G record
	13.2.1 General
	13.2.2 number_of_template_segments
	13.2.3 number_of_record_segments
	13.2.4 number_of_alignments
	13.2.5 class_ID
	13.2.6 read_group_len
	13.2.7 reserved
	13.2.8 read_1_first
	13.2.9 seq_ID
	13.2.10 as_depth
	13.2.11 read_len
	13.2.12 qv_depth
	13.2.13 read_name_len
	13.2.14 read_name
	13.2.15 read_group
	13.2.16 sequence
	13.2.17 quality_values
	13.2.18 mapping_pos
	13.2.19 ecigar_len
	13.2.20 ecigar_string
	13.2.21 reverse_comp
	13.2.22 mapping_score
	13.2.23 split_alignment
	13.2.24 delta
	13.2.25 split_pos
	13.2.26 split_seq_ID
	13.2.27 flags
	13.2.28 more_alignments
	13.2.29 next_pos
	13.2.30 next_seq_ID

	13.3 Initialization process

	Annex A (informative) Tokenization of reads identifiers
	Annex B (informative) Mapping quality
	Annex C (informative) Inverse binarization examples
	Annex D Block Sorting, Lossless Data Compression

