
Information technology — Redfish
scalable platforms management API
specification
Technologies de l'information — Spécification API (interface de
programmation d'applications) relative à la gestion des plates-formes
évolutives Redfish

INTERNATIONAL
STANDARD

ISO/IEC
30115

Reference number
ISO/IEC 30115:2018(E)

First edition
2018-03

© ISO/IEC 2018

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

ISO/IEC 30115:2018(E)
﻿

ii� © ISO/IEC 2018 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2018
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

Published in Switzerland

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

ISO/IEC 30115:2018(E)

© ISO/IEC 2018 – All rights reserved� iii

Foreword

ISO	 (the	 International	 Organization	 for	 Standardization)	 and	 IEC	 (the	 International	 Electrotechnical	
Commission)	 form	 the	 specialized	 system	 for	 worldwide	 standardization.	 National	 bodies	 that	 are 	
members	 of	 ISO	 or	 IEC	 participate	 in	 the	 development	 of	 International	 Standards	 through	 technical	
committees	established	by	the	respective	organization	to	deal	with	particular	fields	of	technical	activity.	
ISO	 and	 IEC	 technical	 committees	 collaborate	 in	 fields	 of	 mutual	 interest.	 Other	 international	
organizations,	 governmental	 and	 non‐governmental,	 in	 liaison	with 	 ISO	 and	 IEC,	 also	 take	 part	 in	 the 	
work.	 In	the	field	of	 information	technology,	 ISO	and	IEC	have	established	a	 joint	technical	committee,	
ISO/IEC	JTC	1.s	

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	 maintenance	 are 	
described	 in	 the	 ISO/IEC	Directives,	Part	1.	 In	particular	 the	different	approval	criteria	needed	 for	 the	
different	types	of	document	should	be	noted	(see	www.iso.org/directives).	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	 rights.	 ISO	 and	 IEC	 shall	 not	 be	 held	 responsible	 for	 identifying	 any	 or	 all	 such	 patent	 rights.	
Details	 of	 any	 patent	 rights	 identified	 during	 the	 development	 of	 the	 document	 will	 be	 in	 the
Introduction	and/or	on	the	ISO	list	of	patent	declarations	received	(see	www.iso.org/patents).		

Any	trade	name	used	in	this 	document	is 	information	given	for 	the	convenience	of	users	and	does	not	
constitute	an	endorsement.	

For	 an	 explanation	 on	 the	 voluntary	 nature	 of	 standards,	 the	 meaning	 of	 ISO	 specific	 terms	 and
expressions	related	to	conformity	assessment,	as	well	as	information	about	ISO's	adherence	to	the	World	
Trade	 Organization	 (WTO)	 principles	 in	 the	 Technical	 Barriers	 to	 Trade	 (TBT)	 see	 the	 following	
URL:	www.iso.org/iso/foreword.html.	

This	document	was	prepared	by	the	Distributed	Management	Task	Force,	Inc.	(DMTF)	(as	DSP0266)	and	
drafted	 in	accordance	with	 its	editorial	 rules.	 It	was	adopted,	under	 the	 JTC	1	PAS	procedure,	by	 Joint 	
Technical	Committee	ISO/IEC	JTC	1,	Information technology.	

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266

Version 1.2.0 Published 3

Redfish Scalable Platforms Management API Specification

CONTENTS

1. Abstract ... 8
2. Normative references .. 8
3. Terms and definitions .. 9
4. Symbols and abbreviated terms .. 12
5. Overview ... 12

5.1. Scope ... 13
5.2. Goals ... 13
5.3. Design tenets ... 14
5.4. Limitations .. 14
5.5. Additional design background and rationale.. 15

5.5.1. REST-based ... 15
5.5.2. Follow OData conventions ... 15
5.5.3. Model-oriented ... 16
5.5.4. Separation of protocol from data model ... 16
5.5.5. Hypermedia API service endpoint .. 16

5.6. Service elements ... 16
5.6.1. Synchronous and asynchronous operation support... 16
5.6.2. Eventing mechanism .. 17
5.6.3. Actions.. 17
5.6.4. Service entry point discovery ... 17
5.6.5. Remote access support ... 18

5.7. Security .. 18
6. Protocol details .. 18

6.1. Use of HTTP .. 19
6.1.1. URIs ... 19
6.1.2. HTTP methods ... 20
6.1.3. HTTP redirect ... 21
6.1.4. Media types .. 21
6.1.5. ETags ... 21

6.2. Protocol version ... 22
6.3. Redfish-defined URIs and relative URI rules ... 23
6.4. Requests .. 24

6.4.1. Request headers .. 24
6.4.2. Read requests (GET) ... 26
6.4.3. HEAD ... 28
6.4.4. Data modification requests ... 29

6.5. Responses ... 32
6.5.1. Response headers ... 33
6.5.2. Status codes .. 35
6.5.3. Metadata responses ... 38
6.5.4. Resource responses .. 41

iv

ISO/IEC 30115:2018(E)

© ISO/IEC 2018 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

4 Published Version 1.2.0

6.5.5. Resource Collection responses ... 49
6.5.6. Error responses .. 50

7. Data model and Schema ... 53
7.1. Schema repository ... 53

7.1.1. Programmatic access to schema files ... 53
7.2. Type identifiers ... 54

7.2.1. Type identifiers in JSON ... 54
7.3. Common naming conventions ... 54
7.4. Localization considerations ... 55
7.5. Schema definition .. 55

7.5.1. Common annotations ... 55
7.5.2. Schema documents ... 56
7.5.3. Resource type definitions ... 58
7.5.4. Resource properties ... 58
7.5.5. Reference properties .. 62
7.5.6. Resource actions ... 64
7.5.7. Resource extensibility .. 65
7.5.8. Oem property examples ... 67

7.6. Common Redfish resource properties ... 69
7.6.1. Id .. 69
7.6.2. Name .. 69
7.6.3. Description ... 55
7.6.4. Status ... 70
7.6.5. Links ... 70
7.6.6. Members .. 70
7.6.7. RelatedItem .. 70
7.6.8. Actions.. 17
7.6.9. OEM ... 70

7.7. Redfish resources .. 71
7.7.1. Current configuration .. 71
7.7.2. Settings .. 71
7.7.3. Services ... 71
7.7.4. Registry .. 72

7.8. Special resource situations .. 72
7.8.1. Absent resources ... 72
7.8.2. Schema variations .. 72

8. Service details ... 73
8.1. Eventing ... 73

8.1.1. Event message subscription .. 74
8.1.2. Event message objects .. 74
8.1.3. Subscription cleanup .. 75

8.2. Asynchronous operations .. 75
8.3. Resource tree stability ... 76

© ISO/IEC 2018 – All rights reserved v

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 5

8.4. Discovery ... 77
8.4.1. UPnP compatibility ... 77
8.4.2. USN format... 77
8.4.3. M-SEARCH response .. 77
8.4.4. Notify, alive, and shutdown messages ... 78

9. Security ... 18
9.1. Protocols .. 78

9.1.1. TLS ... 78
9.1.2. Cipher suites .. 78
9.1.3. Certificates ... 79

9.2. Authentication .. 79
9.2.1. HTTP header security .. 79
9.2.2. Extended error handling ... 80
9.2.3. HTTP header authentication .. 80
9.2.4. Session Management .. 80
9.2.5. AccountService .. 83
9.2.6. Async tasks .. 83
9.2.7. Event subscriptions .. 83
9.2.8. Privilege model/Authorization .. 83
9.2.9. Redfish Service Operation to Privilege Mapping ... 84

10. Redfish Host Interface ... 92
11. Redfish Composability ... 92

11.1. Composition Requests ... 92
11.1.1. Specific Composition .. 92

12. ANNEX A (informative) ... 93
12.1. Change log .. 93

ISO/IEC 30115:2018(E)

vi © ISO/IEC 2018 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

6 Published Version 1.2.0

Foreword

The Redfish Scalable Platforms Management API ("Redfish") was prepared by the Scalable Platforms
Management Forum of the DMTF.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. For information about the DMTF, see http://www.dmtf.org.

ISO/IEC 30115:2018(E)

© ISO/IEC 2018 – All rights reserved vii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 7

Acknowledgments

The DMTF acknowledges the following individuals for their contributions to this document:

• Jeff Autor - Hewlett Packard Enterprise
• Patrick Boyd - Dell Inc.
• David Brockhaus - Emerson Network Power
• Richard Brunner - VMware Inc.
• Lee Calcote - Seagate Technology
• P Chandrasekhar - Dell Inc.
• Chris Davenport - Hewlett Packard Enterprise
• Gamma Dean - Emerson Network Power
• Daniel Dufresne - EMC
• Samer El-Haj-Mahmoud - Lenovo, Hewlett Packard Enterprise
• George Ericson - EMC
• Wassim Fayed - Microsoft Corporation
• Mike Garrett - Hewlett Packard Enterprise
• Steve Geffin - Emerson Network Power
• Joe Handzik - Hewlett Packard Enterprise
• Jon Hass - Dell Inc.
• Jeff Hilland - Hewlett Packard Enterprise
• Chris Hoffman - Emerson Network Power
• Steven Krig - Intel Corporation
• John Leung - Intel Corporation
• Jagan Molleti - Dell Inc.
• Milena Natanov - Microsoft Corporation
• Michael Pizzo - Microsoft Corporation
• Chris Poblete - Dell Inc.
• Michael Raineri - EMC
• Irina Salvan - Microsoft Corporation
• Hemal Shah - Broadcom Limited
• Jim Shelton - Emerson Network Power
• Tom Slaight - Intel Corporation
• Donnie Sturgeon - Emerson Network Power
• Pawel Szymanski - Intel Corporation
• Paul Vancil - Dell Inc.
• Linda Wu - Super Micro Computer, Inc.

ISO/IEC 30115:2018(E)

viii © ISO/IEC 2018 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

8 Published Version 1.2.0

1. Abstract

The Redfish Scalable Platforms Management API ("Redfish") is a new specification that uses RESTful
interface semantics to access data defined in model format to perform out-of-band systems management.
It is suitable for a wide range of servers, from stand-alone servers to rack mount and bladed
environments but scales equally well for large scale cloud environments.

There are several out-of-band systems management standards (defacto and de jour) available in the
industry. They all either vary widely in implementation, were developed for single server embedded
environments or have their roots in antiquated software modeling constructs. There is no single industry
standard that is simple to use, based on emerging programming standards, embedded friendly and
capable of meeting large scale data center & cloud needs.

2. Normative references

The following referenced documents are indispensable for the application of this document. For dated or
versioned references, only the edition cited (including any corrigenda or DMTF update versions) applies.
For references without a date or version, the latest published edition of the referenced document
(including any corrigenda or DMTF update versions) applies.

• IETF RFC 3986 T. Berners-Lee et al, Uniform Resource Identifier (URI): Generic Syntax,
http://www.ietf.org/rfc/rfc3986.txt

• IETF RFC 4627, D. Crockford, The application/json Media Type for JavaScript Object Notation
(JSON), http://www.ietf.org/rfc/rfc4627.txt

• IETF RFC 5789, L. Dusseault et al, PATCH method for HTTP, http://www.ietf.org/rfc/rfc5789.txt
• IETF RFC 5280, D. Cooper et al, Web linking, http://www.ietf.org/rfc/rfc5280.txt
• IETF RFC 5988, M. Nottingham, Web linking, http://www.ietf.org/rfc/rfc5988.txt
• IETF RFC 6901, P. Bryan, Ed. et al, JavaScript Object Notation (JSON) Pointer,

http://www.ietf.org/rfc/rfc6901.txt
• IETF RFC 6906, E. Wilde, The 'profile' Link Relation Type, http://www.ietf.org/rfc/rfc6906.txt
• IETF RFC 7230, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and

Routing, http://www.ietf.org/rfc/rfc7230.txt
• IETF RFC 7231, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Semantics and

Content, http://www.ietf.org/rfc/rfc7231.txt
• IETF RFC 7232, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Conditional

Requests, http://www.ietf.org/rfc/rfc7232.txt
• IETF RFC 7234, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Caching,

http://www.ietf.org/rfc/rfc7234.txt
• IETF RFC 7235, R. Fielding et al., Hypertext Transfer Protocol (HTTP/1.1): Authentication,

http://www.ietf.org/rfc/rfc7235.txt

© ISO/IEC 2018 – All rights reserved 1

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc5789.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc5988.txt
http://www.ietf.org/rfc/rfc6901.txt
http://www.ietf.org/rfc/rfc6906.txt
http://www.ietf.org/rfc/rfc7230.txt
http://www.ietf.org/rfc/rfc7231.txt
http://www.ietf.org/rfc/rfc7232.txt
http://www.ietf.org/rfc/rfc7234.txt
http://www.ietf.org/rfc/rfc7235.txt
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 9

• ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards,
http://isotc.iso.org/livelink/
livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtypeH

• JSON Schema, Core Definitions and Terminology, Draft 4 http://tools.ietf.org/html/draft-zyp-json-
schema-04.txt

• JSON Schema, Interactive and Non-Interactive Validation, Draft 4 http://tools.ietf.org/html/draft-
fge-json-schema-validation-00.txt

• OData Version 4.0 Part 1: Protocol. 24 February 2014. http://docs.oasis-open.org/odata/odata/
v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html

• OData Version 4.0 Part 2: URL Conventions. 24 February 2014. http://docs.oasis-open.org/
odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html

• OData Version 4.0 Part 3: Common Schema Definition Language (CSDL). 24 February 2014.
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html

• OData Version 4.0: Core Vocabulary. 24 February 2014. http://docs.oasis-open.org/odata/odata/
v4.0/os/vocabularies/Org.OData.Core.V1.xml

• OData Version 4.0 JSON Format. 24 February 2014. http://docs.oasis-open.org/odata/odata-
json-format/v4.0/os/odata-json-format-v4.0-os.html

• OData Version 4.0: Units of Measure Vocabulary. 24 February 2014. http://docs.oasis-open.org/
odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml

• Simple Service Discovery Protocol/1.0. 28 October 1999. http://tools.ietf.org/html/draft-cai-ssdp-
v1-03

• The Unified Code for Units of Measure. http://www.unitsofmeasure.org/ucum.html
• W3C Recommendation of Cross-Origin Resource Sharing. 16 January 2014. http://www.w3.org/

TR/cors/
• SNIA TLS Specification for Storage Systems. 20 November 2014. http://www.snia.org/tls/
• DMTF DSP0270 Redfish Host Interface Specification, http://www.dmtf.org/sites/default/files/

standards/documents/DSP0270_1.0.pdf

3. Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. Those terms
are defined in this clause.

The terms "shall" ("required"), "shall not", "should" ("recommended"), "should not" ("not recommended"),
"may", "need not" ("not required"), "can" and "cannot" in this document are to be interpreted as described
in ISO/IEC Directives, Part 2, Annex H. The terms in parenthesis are alternatives for the preceding term,
for use in exceptional cases when the preceding term cannot be used for linguistic reasons. Note that
ISO/IEC Directives, Part 2, Annex H specifies additional alternatives. Occurrences of such additional
alternatives shall be interpreted in their normal English meaning.

The terms "clause", "subclause", "paragraph", and "annex" in this document are to be interpreted as
described in ISO/IEC Directives, Part 2, Clause 5.

2 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtypeH
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtypeH
http://isotc.iso.org/livelink/livelink.exe?func=ll&objId=4230456&objAction=browse&sort=subtypeH
http://tools.ietf.org/html/draft-zyp-json-schema-04.txt
http://tools.ietf.org/html/draft-zyp-json-schema-04.txt
http://tools.ietf.org/html/draft-zyp-json-schema-04.txt
http://tools.ietf.org/html/draft-fge-json-schema-validation-00.txt
http://tools.ietf.org/html/draft-fge-json-schema-validation-00.txt
http://tools.ietf.org/html/draft-fge-json-schema-validation-00.txt
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part1-protocol/odata-v4.0-os-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part2-url-conventions/odata-v4.0-os-part2-url-conventions.html
http://docs.oasis-open.org/odata/odata/v4.0/os/part3-csdl/odata-v4.0-os-part3-csdl.html
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
http://docs.oasis-open.org/odata/odata-json-format/v4.0/os/odata-json-format-v4.0-os.html
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml
http://tools.ietf.org/html/draft-cai-ssdp-v1-03
http://tools.ietf.org/html/draft-cai-ssdp-v1-03
http://tools.ietf.org/html/draft-cai-ssdp-v1-03
http://www.unitsofmeasure.org/ucum.html
http://www.w3.org/TR/cors
http://www.w3.org/TR/cors
http://www.w3.org/TR/cors
http://www.snia.org/tls/
http://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0270_1.0.pdf
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

10 Published Version 1.2.0

The terms "normative" and "informative" in this document are to be interpreted as described in ISO/IEC
Directives, Part 2, Clause 3. In this document, clauses, subclauses, or annexes labeled "(informative)" do
not contain normative content. Notes and examples are always informative elements.

The following additional terms are used in this document.

Term Definition

Baseboard
Management
Controller

An embedded device or service, typically an independent microprocessor or
System-on-Chip with associated firmware, within a Computer System used to
perform systems monitoring and management-related tasks, which are commonly
performed out-of-band.

Collection See Resource Collection.

CRUD Basic intrinsic operations used by any interface: Create, Read, Update and Delete.

Event A record that corresponds to an individual alert.

Managed
System

In the context of this specification, a managed system is a system that provides
information or status, or is controllable, via a Redfish-defined interface.

Member A Member is a single resource instance contained in a Resource Collection

Message
A complete request or response, formatted in HTTP/HTTPS. The protocol, based
on REST, is a request/response protocol where every Request should result in a
Response.

Operation
The HTTP request methods that map generic CRUD operations. These are POST,
GET, PUT/PATCH, HEAD and DELETE.

OData The Open Data Protocol, as defined in OData-Protocol.

OData
Service
Document

The name for a resource that provides information about the Service Root. The
Service Document provides a standard format for enumerating the resources
exposed by the service that enables generic hypermedia-driven OData clients to
navigate to the resources of the Redfish Service.

Redfish Alert
Receiver

The name for the functionality that receives alerts from a Redfish Service. This
functionality is typically software running on a remote system that is separate from
the managed system.

Redfish
Client

Name for the functionality that communicates with a Redfish Service and accesses
one or more resources or functions of the Service.

Redfish
Protocol

The set of protocols that are used to discover, connect to, and inter-communicate
with a Redfish Service.

© ISO/IEC 2018 – All rights reserved 3

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 11

Term Definition

Redfish
Schema

The Schema definitions for Redfish resources. It is defined according to OData
Schema representation that can be directly translated to a JSON Schema
representation.

Redfish
Service

Also referred to as the "Service". The set of functionality that implements the
protocols, resources, and functions that deliver the interface defined by this
specification and its associated behaviors for one or more managed systems.

Redfish
Service
Entry Point

Also referred to as "Service Entry Point". The interface through which a particular
instance of a Redfish Service is accessed. A Redfish Service may have more than
one Service Entry Point.

Request
A message from a Client to a Server. It consists of a request line (which includes
the Operation), request headers, an empty line and an optional message body.

Resource
A Resource is addressable by a URI and is able to receive and process messages.
A Resource can be either an individual entity, or a Collection that acts as a
container for several other entities.

Resource
Collection

A Resource Collection is a Resource that acts as a container of other Resources.
The Members of a Resource Collection usually have similar characteristics. The
container processes messages sent to the container. The Members of the
container process messages sent only to that Member without affecting other
Members of the container.

Resource
Tree

A Resource Tree is a tree structure of JSON encoded resources accessible via a
well-known starting URI. A client may discover the resources available on a
Redfish Service by following the resource links from the base of the tree.
NOTE for Redfish client implementation: Although the resources are a tree, the
references between resources may result in graph instead of a tree. Clients
traversing the resource tree must contain logic to avoid infinite loops.

Response
A message from a Server to a Client in response to a request message. It consists
of a status line, response headers, an empty line and an optional message body.

Service Root

The term Service Root is used to refer to a particular resource that is directly
accessed via the service entry point. This resource serves as the starting point for
locating and accessing the other resources and associated metadata that together
make up an instance of a Redfish Service.

Subscription The act of registering a destination for the reception of events.

4 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

12 Published Version 1.2.0

4. Symbols and abbreviated terms

The following additional abbreviations are used in this document.

Term Definition

BMC Baseboard Management Controller

CRUD Create, Replace, Update and Delete

CSRF Cross-Site Request Forgery

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol over TLS

IP Internet Protocol

IPMI Intelligent Platform Management Interface

JSON JavaScript Object Notation

KVM-IP Keyboard, Video, Mouse redirection over IP

NIC Network Interface Card

PCI Peripheral Component Interconnect

PCIe PCI Express

TCP Transmission Control Protocol

XSS Cross-Site Scripting

5. Overview

The Redfish Scalable Platforms Management API ("Redfish") is a management standard using a data
model representation inside of a hypermedia RESTful interface. Because it is based on REST, Redfish is
easier to use and implement than many other solutions. Since it is model oriented, it is capable of
expressing the relationships between components in modern systems as well as the semantics of the
services and components within them. It is also easily extensible. By using a hypermedia approach to
REST, Redfish can express a large variety of systems from multiple vendors. By requiring JSON
representation, a wide variety of resources can be created in a denormalized fashion not only to improve
scalability, but the payload can be easily interpreted by most programming environments as well as being
relatively intuitive for a human examining the data. The model is exposed in terms of an interoperable

© ISO/IEC 2018 – All rights reserved 5

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 13

Redfish Schema, expressed in an OData Schema representation with translations to a JSON Schema
representation, with the payload of the messages being expressed in a JSON following OData JSON
conventions. The ability to externally host the Redfish Schema definition of the resources in a machine-
readable format allows the meta data to be associated with the data without encumbering Redfish
Services with the meta data, thus enabling more advanced client scenarios as found in many data center
and cloud environments.

5.1. Scope

The scope of this specification is to define the protocols, data model, and behaviors, as well as other
architectural components needed for an inter-operable, cross-vendor, remote and out-of-band capable
interface that meets the expectations of Cloud and Web-based IT professionals for scalable platform
management. While large scale systems are the primary focus, the specifications are also capable of
being used for more traditional system platform management implementations.

The specifications define elements that are mandatory for all Redfish implementations as well as optional
elements that can be chosen by system vendor or manufacturer. The specifications also define points at
which OEM (system vendor) -specific extensions can be provided by a given implementation.

The specifications set normative requirements for Redfish Services and associated materials, such as
Redfish Schema files. In general, the specifications do not set requirements for Redfish clients, but will
indicate what a Redfish client should do in order to access and utilize a Redfish Service successfully and
effectively.

The specifications do not set requirements that particular hardware or firmware must be used to
implement the Redfish interfaces and functions.

5.2. Goals

There are many objectives and goals of Redfish as an architecture, as a data representation, and of the
definition of the protocols that are used to access and interact with a Redfish Service. Redfish seeks to
provide specifications that meet the following goals:

• Scalable – To support stand-alone machines to racks of equipment found in cloud service
environments.

• Flexible – To support a wide variety of systems found in service today.
• Extensible – To support new and vendor-specific capabilities cleanly within the framework of the

data model.
• Backward Compatible - To enable new capabilities to be added while preserving investments in

earlier versions of the specifications.
• Interoperable – To provide a useful, required baseline that ensures common level of functionality

and implementation consistency across multiple vendors.
• System-Focused – To efficiently support the most commonly required platform hardware

6 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

14 Published Version 1.2.0

management capabilities that are used in scalable environments, while also being capable of
managing current server environments.

• Standards based – To leverage protocols and standards that are widely accepted and used in
environments today - in particular, programming environments that are being widely adopted for
developing web-based clients today.

• Simple – To be directly usable by software developers without requiring highly specialized
programming skills or systems knowledge.

• Lightweight – To reduce the complexity and cost of implementing and validating Redfish
Services on managed systems.

5.3. Design tenets

The following design tenets and technologies are used to help deliver the previously stated goals and
characteristics:

• Provide a RESTful interface using a JSON payload and an Entity Data Model
• Separate protocol from data model, allowing them to be revised independently
• Specify versioning rules for protocols and schema
• Leverage strength of internet protocol standards where it meets architectural requirements, such

as JSON, HTTP, OData, and the RFCs referenced by this document.
• Focus on out-of-band access -- implementable on existing BMC and firmware products
• Organize the schema to present value-add features alongside standardized items
• Make data definitions as obvious in context as possible
• Maintain implementation flexibility. Do not tie the interface to any particular underlying

implementation architecture. "Standardize the interface, not the implementation."
• Focus on most widely used 'common denominator' capabilities. Avoid adding complexity to

address functions that are only valued by a small percentage of users.
• Avoid placing complexity on the management controller to support operations that can be better

done at the client.

5.4. Limitations

Redfish does not guarantee that client software will never need to be updated. Examples that may require
updates include accommodation of new types of systems or their components, data model updates, and
so on. System optimization for an application will always require architectural oversight. However, Redfish
does attempt to minimize instances of forced upgrades to clients using Schemas, strict versioning and
forward compatibility rules and through separation of the protocols from the data model.

Inter-operable does not mean identical. A Redfish client may need to adapt to the optional elements that
are provided by different vendors. Implementation and configurations of a particular product from a given
vendor can also vary.

For example, Redfish does not enable a client to read a Resource Tree and write it to another Redfish

© ISO/IEC 2018 – All rights reserved 7

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 15

Service. This is not possible as it is a hypermedia API. Only the root object has a well known URI. The
resource topology reflects the topology of the system and devices it represents. Consequently, different
server or device types will result in differently shaped resource trees, potentially even for identical
systems from the same manufacturer.

Additionally, not all Redfish resources are simple read/write resources. Implementations may follow other
interaction patterns discussed later. As an example, user credentials or certificates cannot simply be read
from one service and transplanted to another. Another example is the use of Setting Data instead of
writing to the same resource that was read from.

Lastly, the value of links between resources and other elements can vary across implementations. Clients
should not assume that links can be reused across different instantiations of a Redfish Service.

5.5. Additional design background and rationale

5.5.1. REST-based

This document defines a RESTful interface. Many service applications are exposed as RESTful
interfaces.

There are several reasons to define a RESTful interface:

• It enables a lightweight implementation, where economy is a necessity (smaller data transmitted
than SOAP, fewer layers to the protocol than WS-Man).

• It is a prevalent access method in the industry.
• It is easy to learn and easy to document.
• There are a number of toolkits & development environments that can be used for REST.
• It supports data model semantics and maps easily to the common CRUD operations.
• It fits with our design principle of simplicity.
• It is equally applicable to software application space as it is for embedded environments thus

enabling convergence and sharing of code of components within the management ecosystem.
• It is schema agnostic so adapts well to any modeling language.
• By using it, Redfish can leverage existing security & discovery mechanisms in the industry.

5.5.2. Follow OData conventions

With the popularity of RESTful APIs, there are nearly as many RESTful interfaces as there are
applications. While following REST patterns helps promote good practices, due to design differences
between the many RESTful APIs there is no interoperability between them.

OData defines a set of common RESTful conventions and markup which, if adopted, provides for
interoperability between APIs.

Adopting OData conventions for describing Redfish Schema, URL conventions, and naming and structure

8 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

16 Published Version 1.2.0

of common properties in a JSON payload, not only encapsulate best practices for RESTful APIs but
further enables Redfish Services to be consumed by a growing ecosystem of generic client libraries,
applications, and tools.

5.5.3. Model-oriented

The Redfish model is built for managing systems. All resources are defined in OData Schema
representation and translated to JSON Schema representation. OData is an industry standard that
encapsulates best practices for RESTful services and provides interoperability across services of different
types. JSON is being widely adopted in multiple disciplines and has a large number of tools and
programming languages that accelerate development when adopting these approaches.

5.5.4. Separation of protocol from data model

The protocol operations are specified independently of the data model. The protocols are also versioned
independently of the data model. The expectation is that the protocol version changes extremely
infrequently, while the data model version is allowed to change as needed. This implies that innovation
should happen primarily in the data model, not the protocols. It allows the data model to be extended and
changed as needed without requiring the protocols or API version to change. Conversely, separating the
protocols from the data model allows for changes to occur in the protocols without causing significant
changes to the data model.

5.5.5. Hypermedia API service endpoint

Like other hypermedia APIs, Redfish has a single service endpoint URI and all other resources are
accessible via opaque URIs referenced from the root. Any resource discovered through links found by
accessing the root service or any service or resource referenced using references from the root service
will conform to the same versions of the protocols supported by the root service.

5.6. Service elements

5.6.1. Synchronous and asynchronous operation support

While the majority of operations in this architecture are synchronous in nature, some operations can take
a long time to execute, more time than a client typically wants to wait. For this reason, some operations
can be asynchronous at the discretion of the service. The request portion of an asynchronous operation is
no different from the request portion of a synchronous operation.

The use of HTTP Response codes enable a client to determine if the operation was completed
synchronously or asynchronously. For more information, see the clause on Tasks.

© ISO/IEC 2018 – All rights reserved 9

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 17

5.6.2. Eventing mechanism

In some situations it is useful for a service to provide messages to clients that fall outside the normal
request/response paradigm. These messages, called events, are used by the service to asynchronously
notify the client of some significant state change or error condition, usually of a time critical nature.

Only one style of eventing is currently defined by this specification - push style eventing. In push style
eventing, when the server detects the need to send an event, it uses an HTTP POST to push the event
message to the client. Clients can enable reception of events by creating a subscription entry in the Event
Service, or an administrator can create subscriptions as part of the Redfish Service configuration. All
subscriptions are persistent configuration settings.

The clause on Eventing further in this specification discusses the details of the eventing mechanism.

5.6.3. Actions

Operations can be divided into two sets: intrinsic and extrinsic. Intrinsic operations, often referred to as
CRUD, are mapped to HTTP methods. The protocol also has the ability to support extrinsic operations --
those operations that do not map easily to CRUD. Examples of extrinsic would be items that collectively
would be better performed if done as a set (for scalability, ease of interface, server side semantic
preservation or similar reasons) or operations that have no natural mapping to CRUD operations. One
examples is system reset. It is possible to combine multiple operations into a single action. A system
reset could be modeled as an update to state, but semantically the client is actually requesting a state
change and not simply changing the value in the state.

In Redfish, these extrinsic operations are called actions and are discussed in detail in different parts of
this specification.

The Redfish Schema defines certain standard actions associated with common Redfish resources. For
these standard actions, the Redfish Schema contains the normative language on the behavior of the
action. OEM extensions are also allowed to the Redfish schema, including defining actions for existing
resources.

5.6.4. Service entry point discovery

While the service itself is at a well-known URI, the service host must be discovered. Redfish, like UPnP,
uses SSDP for discovery. SSDP is supported in a wide variety of devices, such as printers. It is simple,
lightweight, IPv6 capable and suitable for implementation in embedded environments. Redfish is
investigating additional service entry point discovery (e.g., DHCP-based) approaches.

For more information, see the clause on Discovery

10 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

18 Published Version 1.2.0

5.6.5. Remote access support

A wide variety of remote access and redirection services are supported in this architecture. Critical to out-
of-band environments are mechanisms to support Serial Console access, Keyboard Video and Mouse re-
direction (KVM-IP), Command Shell (i.e., Command Line interface) and remote Virtual Media. Support for
Serial Console, Command Shell, KVM-IP and Virtual Media are all encompassed in this standard and are
expressed in the Redfish Schema. This standard does not define the protocols or access mechanisms for
accessing those devices and services. The Redfish Schema provides for the representation and
configuration of those services, establishment of connections to enable those services and the
operational status of those services. However, the specification of the protocols themselves are outside
the scope of this specification.

5.7. Security

The challenge with security in a remote interface that is programmatic is to ensure both the interfaces
used to interact with Redfish and the data being exchanged are secured. This means designing the
proper security control mechanisms around the interfaces and securing the channels used to exchange
the data. As part of this, specific behaviors are to be put in place including defining and using minimum
levels of encryption for communication channels etc.

6. Protocol details

The Redfish Scalable Platform Management API is based on REST and follows OData conventions for
interoperability, as defined in OData-Protocol, JSON payloads, as defined in OData-JSON, and a
machine-readable representation of schema, as defined in OData-Schema. The OData Schema
representations include annotations to enable direct translation to JSON Schema representations for
validation and consumption by tools supporting JSON Schema. Following these common standards and
conventions increases interoperability and enables leveraging of existing tool chains.

Redfish follows the OData minimal conformance level for clients consuming minimal metadata.

Throughout this document, we refer to Redfish as having a protocol mapped to a data model. More
accurately, HTTP is the application protocol that will be used to transport the messages and TCP/IP is the
transport protocol. The RESTful interface is a mapping to the message protocol. For simplicity though, we
will refer to the RESTful mapping to HTTP, TCP/IP and other protocol, transport and messaging layer
aspects as the Redfish protocol.

The Redfish protocol is designed around a web service based interface model, and designed for network
and interaction efficiency for both user interface (UI) and automation usage. The interface is specifically
designed around the REST pattern semantics.

HTTP methods are used by the Redfish protocol for common CRUD operations and to retrieve header

© ISO/IEC 2018 – All rights reserved 11

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 19

information.

Actions are used for expanding operations beyond CRUD type operations, but should be limited in use.

Media types are used to negotiate the type of data that is being sent in the body of a message.

HTTP status codes are used to indicate the server's attempt at processing the request. Extended error
handling is used to return more information than the HTTP error code provides.

The ability to send secure messages is important; the Security clause of this document describes specific
TLS requirements.

Some operations may take longer than required for synchronous return semantics. Consequently,
deterministic asynchronous semantic are included in the architecture.

6.1. Use of HTTP

HTTP is ideally suited to a RESTful interface. This clause describes how HTTP is used in the Redfish
interface and what constraints are added on top of HTTP to assure interoperability of Redfish compliant
implementations.

• A Redfish interface shall be exposed through a web service endpoint implemented using
Hypertext Transfer Protocols, version 1.1 (RFC7230, RFC7231, RFC7232).

6.1.1. URIs

A URI is used to identify a resource, including the base service and all Redfish resources.

• Each unique instance of a resource shall be identified by a URI.
• A URI shall be treated by the client as opaque, and thus should not be attempted to be

understood or deconstructed by the client outside of applying standard reference resolution rules
as defined in clause 5, Reference Resolution, of RFC3986.

To begin operations, a client must know a URI for a resource.

• Performing a GET operation yields a representation of the resource containing properties and
links to associated resources.

The base resource URI is well known and is based on the protocol version. Discovering the URIs to
additional resources is done through observing the associated resource links returned in previous
responses. This type of API that is consumed by navigating URIs returned by the service is known as a
Hypermedia API.

Redfish considers three parts of the URI as described in RFC3986.

12 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

20 Published Version 1.2.0

The first part includes the scheme and authority portions of the URI. The second part includes the root
service and version. The third part is a unique resource identifier.

For example, in the following URL:

• The first part is the scheme and authority portion (https://mgmt.vendor.com).
• The second part is the root service and version (/redfish/v1/).
• The third part is the unique resource path (Systems/1).

The scheme and authority part of the URI shall not be considered part of the unique identifier of the
resource. This is due to redirection capabilities and local operations which may result in the variability of
the connection portion. The remainder of the URI (the service and resource paths) is what uniquely
identifies the resource, and this is what is returned in all Redfish payloads.

• The unique identifier part of a URI shall be unique within the implementation.

For example, a POST may return the following URI in the Location header of the response (indicating the
new resource created by the POST):

Assuming the client is connecting through an appliance named "mgmt.vendor.com", the full URI needed
to access this new resource is https://mgmt.vendor.com/redfish/v1/Systems/2.

URIs, as described in RFC3986, may also contain a query (?query) and a frag (#frag) components.
Queries are addressed in the clause Query Parameters. Fragments (frag) shall be ignored by the server
when used as the URI for submitting an operation.

6.1.2. HTTP methods

An attractive feature of the RESTful interface is the very limited number of operations which are
supported. The following table describes the general mapping of operations to HTTP methods. If the
value in the column entitled "required" has the value "yes" then the HTTP method shall be supported by a
Redfish interface.

HTTP Method Interface Semantic Required

POST Object create, Object action, Eventing Yes

GET Object retrieval Yes

Example: https://mgmt.vendor.com/redfish/v1/Systems/1

Example: /redfish/v1/Systems/2

© ISO/IEC 2018 – All rights reserved 13

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 21

HTTP Method Interface Semantic Required

PUT Object replace No

PATCH Object update Yes

DELETE Object delete Yes

HEAD Object header retrieval No

OPTIONS Header retrieval, CORs preflight No

Other HTTP methods are not allowed and shall receive a 405 response.

6.1.3. HTTP redirect

HTTP redirect allows a service to redirect a request to another URL. Among other things, this enables
Redfish resources to alias areas of the data model.

• All Redfish Clients shall correctly handle HTTP redirect.

NOTE: Refer to the Security clause for security implications of HTTP Redirect

6.1.4. Media types

Some resources may be available in more than one type of representation. The type of representation is
indicated by the media type.

In HTTP messages the media type is specified in the Content-Type header. A client can tell a service that
it wants the response to be sent using certain media types by setting the HTTP Accept header to a list of
the acceptable media types.

• All resources shall be made available using the JSON media type "application/json".
• Redfish Services shall make every resource available in a representation based on JSON, as

specified in RFC4627. Receivers shall not reject a message because it is encoded in JSON, and
shall offer at least one response representation based on JSON. An implementation may offer
additional representations using non-JSON media types.

Clients may request compression by specifying an Accept-Encoding header in the request.

• Services should support gzip compression when requested by the client.

6.1.5. ETags

In order to reduce the cases of unnecessary RESTful accesses to resources, the Redfish Service should

14 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

22 Published Version 1.2.0

support associating a separate ETag with each resource.

• Implementations should support returning ETag properties for each resource.
• Implementations should support returning ETag headers for each response that represents a

single resource.
• Implementations shall support returning ETag headers for GET requests of ManagerAccount

resources.

The ETag is generated and provided as part of the resource payload because the service is in the best
position to know if the new version of the object is different enough to be considered substantial. There
are two types of ETags: weak and strong.

• Weak model -- only "important" portions of the object are included in formulation of the ETag. For
instance, meta-data such as a last modified time should not be included in the ETag generation.
The "important" properties that determine ETag change include writable settings and changeable
attributes such as UUID, FRU data, serial numbers, etc.

• Strong model -- all portions of the object are included in the formulation of the ETag.

This specification does not mandate a particular algorithm for creating the ETag, but ETags should be
highly collision-free. An ETag could be a hash, a generation ID, a time stamp or some other value that
changes when the underlying object changes.

If a client PUTs or PATCHes a resource, it should include an ETag in the HTTP If-Match/If-None-Match
header from a previous GET.

In addition to returning the ETag property on each resource,

• A Redfish Service should return the ETag header on client PUT/POST/PATCH
• A Redfish Service should return the ETag header on a GET of an individual resource

The format of the ETag header is:

6.2. Protocol version

The protocol version is separate from the version of the resources or the version of the Redfish Schema
supported by them.

Each version of the Redfish protocol is strongly typed. This is accomplished using the URI of the Redfish
Service in combination with the resource obtained at that URI, called the ServiceRoot.

The root URI for this version of the Redfish protocol shall be "/redfish/v1/".

ETag: W/"<string>"

© ISO/IEC 2018 – All rights reserved 15

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 23

While the major version of the protocol is represented in the URI, the major version, minor version and
errata version of the protocol are represented in the Version property of the ServiceRoot resource, as
defined in the Redfish Schema for that resource. The protocol version is a string of the form:

MajorVersion.MinorVersion.Errata

where

• MajorVersion = integer: something in the class changed in a backward incompatible way.
• MinorVersion = integer: a minor update. New functionality may have been added but nothing

removed. Compatibility will be preserved with previous minorversions.
• Errata = integer: something in the prior version was broken and needed to be fixed.

Any resource discovered through links found by accessing the root service or any service or resource
referenced using references from the root service shall conform to the same version of the protocol
supported by the root service.

A GET on the resource "/redfish" shall return the following body:

6.3. Redfish-defined URIs and relative URI rules

Redfish is a hypermedia API with a small set of defined URIs. All other resources are accessible via
opaque URIs referenced from the root service. The following Redfish-defined URIs shall be supported by
a Redfish Service:

URI Description

/redfish The URI that is used to return the version

/redfish/v1/ The URI for the Redfish Service Root

/redfish/v1/odata The URI for the Redfish OData Service Document

/redfish/v1/$metadata The URI for the Redfish Metadata Document

In addition, the following URI without a trailing slash shall be either Redirected to the Associated Redfish-
defined URI shown in the table below or treated by the service as the equivalent URI to the associated
Redfish-defined URI:

{

"v1": "/redfish/v1/"

}

16 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

24 Published Version 1.2.0

URI Associated Redfish-Defined URI

/redfish/v1 /redfish/v1/

All relative URIs used by the service shall start with a double forward slash ("//") and include the authority
(e.g., //mgmt.vendor.com/redfish/v1/Systems) or a single forward slash ("/") and include the absolute-path
(e.g., /redfish/v1/Systems).

6.4. Requests

This clause describes the requests that can be sent to Redfish Services.

6.4.1. Request headers

HTTP defines headers that can be used in request messages. The following table defines those headers
and their requirements for Redfish Services. Note that these are requirements for the Redfish Services,
and not the clients sending the HTTP requests.

• Redfish Services shall understand and be able to process the headers in the following table as
defined by the HTTP 1.1 specification if the value in the Required column is set to "Yes".

• Redfish Services shall understand and be able to process the headers in the following table as
defined by the HTTP 1.1 specification if the value in the Required column is set to "Conditional"
under the conditions noted in the description.

• Redfish Services should understand and be able to process the headers in the following tables
as defined by the HTTP 1.1 specification if the value in the Required column is set to "No".

Header Required Supported
Values Description

Accept Yes RFC 7231

Indicates to the server what media type(s) this
client is prepared to accept. Services shall support
requests for resources with an Accept header
including application/json or application/
json;charset=utf-8. Services shall support
requests for metadata with an Accept header
including application/xml or application/
xml;charset=utf-8.

Accept-
Encoding

No RFC 7231

Indicates if gzip encoding can be handled by the
client. If an Accept-Encoding header is present in a
request and the service cannot send a response
which is acceptable according to the Accept-
Encoding header, then the service should respond

© ISO/IEC 2018 – All rights reserved 17

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 25

Header Required Supported
Values Description

with status code 406. Services should not return
responses gzip encoded if the Accept-Encoding
header is not present in the request.

Accept-
Language

No RFC 7231
This header is used to indicate the language(s)
requested in the response. If this header is not
specified, the appliance default locale will be used.

Content-
Type

Conditional RFC 7231

Describes the type of representation used in the
message body. Content-Type shall be required in
requests that include a request body. Services shall
accept Content-Type values of application/
json or application/json;charset=utf-8.

Content-
Length

No RFC 7231

Describes the size of the message body. An
optional means of indicating size of the body uses
Transfer-Encoding: chunked, which does not use
the Content-Length header. If a service does not
support Transfer-Encoding and needs Content-
Length instead, the service will respond with status
code 411.

OData-
MaxVersion

No 4.0
Indicates the maximum version of OData that an
odata-aware client understands

OData-
Version

Yes 4.0

Services shall reject requests which specify an
unsupported OData version. If a service
encounters a version that it does not support, the
service should reject the request with status code
[412] (#status-412). If client does not specify an
Odata-Version header, the client is outside the
boundaries of this specification.

Authorization Conditional
RFC 7235,
Section
4.2

Required for Basic Authentication

User-Agent Yes RFC 7231
Required for tracing product tokens and their
version. Multiple product tokens may be listed.

Host Yes RFC 7230
Required to allow support of multiple origin hosts at
a single IP address.

18 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

26 Published Version 1.2.0

Header Required Supported
Values Description

Origin Yes

W3C
CORS,
Section
5.7

Used to allow web applications to consume
Redfish Service while preventing CSRF attacks.

Via No RFC 7230
Indicates network hierarchy and recognizes
message loops. Each pass inserts its own VIA.

Max-
Forwards

No RFC 7231
Limits gateway and proxy hops. Prevents
messages from remaining in the network
indefinitely.

If-Match Conditional RFC 7232

If-Match shall be supported on PUT and PATCH
requests for resources for which the service returns
ETags, to ensure clients are updating the resource
from a known state.

If-None-
Match

No RFC 7232

If this HTTP header is present, the service will only
return the requested resource if the current ETag of
that resource does not match the ETag sent in this
header. If the ETag specified in this header
matches the resource's current ETag, the status
code returned from the GET will be 304.

• Redfish Services shall understand and be able to process the headers in the following table as
defined by this specification if the value in the Required column is set to "yes" .

Header Required Supported
Values Description

X-Auth-
Token

Yes
Opaque
encoded octet
strings

Used for authentication of user sessions. The token
value shall be indistinguishable from random.

6.4.2. Read requests (GET)

The GET method is used to retrieve a representation of a resource. The service will return the
representation using one of the media types specified in the Accept header, subject to requirements in the
Media Types clause Media Types. If the Accept header is not present, the service will return the
resources representations as application/json.

© ISO/IEC 2018 – All rights reserved 19

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 27

• The HTTP GET method shall be used to retrieve a resource without causing any side effects.
• The service shall ignore the content of the body on a GET.
• The GET operation shall be idempotent in the absence of outside changes to the resource.

6.4.2.1. Service root request

The root URL for Redfish version 1 services shall be "/redfish/v1/".

The root URL for the Service returns a ServiceRoot resource as defined by this specification.

Services shall not require authentication in order to retrieve the service root and "/redfish" documents.

6.4.2.2. Metadata document request

Redfish Services shall expose a metadata document describing the service at the "/redfish/v1/$metadata"
resource. This metadata document describes the resources available at the root, and references
additional metadata documents describing the full set of resource types exposed by the service.

Services shall not require authentication in order to retrieve the metadata document.

6.4.2.3. OData service document request

Redfish Services shall expose an OData Service Document, at the "/redfish/v1/odata" resource. This
service document provides a standard format for enumerating the resources exposed by the service,
enabling generic hypermedia-driven OData clients to navigate to the resources of the service.

Services shall not require authentication in order to retrieve the service document.

6.4.2.4. Resource retrieval requests

Clients request resources by issuing GET requests to the URI for the individual resource. The URI for a
resource may be obtained from a resource identifier property returned in a previous request (for example,
within the links clause of a previously returned resource). Services may, but are not required to, support
the convention of retrieving individual properties of a Resource by appending a segment containing the
property name to the URI of the resource.

6.4.2.4.1. Query parameters

When the resource addressed is a Resource Collection, the client may use the following paging query
options to specify that a subset of the Members of that Resource Collection be returned. These paging
query options apply specifically to the "Members" array property within a Resource Collection.

Attribute Description Example

$skip Integer indicating the number of http://resourcecollection?$skip=5

20 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://resourcecollection/?%24skip=5
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

28 Published Version 1.2.0

Attribute Description Example

Members in the Resource Collection
to skip before retrieving the first
resource.

$top

Integer indicating the number of
Members to include in the response.
The minimum value for this
parameter is 1. The default behavior
is to return all Members.

http://resourcecollection?$top=30

• Services should support the $top and $skip query parameters.
• Implementation shall return the 501, Not Implemented, status code for any query parameters

starting with "$" that are not supported, and should return an extended error indicating the
requested query parameter(s) not supported for this resource.

• Implementations shall ignore unknown or unsupported query parameters that do not begin with
"$".

6.4.2.4.2. Retrieving Resource Collections

Retrieving a Resource Collection is done by sending the HTTP GET method to the URI for that resource.
The response includes properties of the Resource Collection including an array of its Members. A subset
of the Members can be returned using client paging query parameters.

No requirements are placed on implementations to return a consistent set of Members when a series of
requests using paging query parameters are made over time to obtain the entire set of members. It is
possible that this could result in missed or duplicate elements being retrieved if multiple GETs are used to
retrieve the Members array instances using paging.

• Clients shall not make assumptions about the URIs for the Members of a Resource Collection.
• Retrieved Resource Collections shall always include the count property to specify the total

number of entries in its "Members" array.
• Regardless of paging, see partial results, the total number of resources referenced by the

Members array shall be returned in the count property.

6.4.3. HEAD

The HEAD method differs from the GET method in that it MUST NOT return message body information.
However, all of the same meta information and status codes in the HTTP headers will be returned as
though a GET method were processed, including authorization checks.

• Services may support the HEAD method in order to return meta information in the form of HTTP
response headers.

© ISO/IEC 2018 – All rights reserved 21

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://resourcecollection/?%24top=30
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 29

• Services may support the HEAD method in order to verify link validity.
• Services may support the HEAD method in order to verify resource accessibility
• Services shall not support any other use of the HEAD method.
• The HEAD method shall be idempotent in the absence of outside changes to the resource.

6.4.4. Data modification requests

Clients create, modify, and delete resources by issuing the appropriate Create, Update, Replace or Delete
operation, or by invoking an Action on the resource. Services return a status code 405 if the specified
resource exists but does not support the requested operation. If a client (4xx) or service (5xx) status code
is returned, the resource shall not be modified as a result of the operation.

6.4.4.1. Update (PATCH)

The PATCH method is the preferred method used to perform updates on pre-existing resources. Changes
to the resource are sent in the request body. Properties not specified in the request body are not directly
changed by the PATCH request. The response is either empty or a representation of the resource after
the update was done. The implementation may reject the update operation on certain fields based on its
own policies and, if so, shall not apply any of the update requested.

• Services shall support the PATCH method to update a resource. If the resource can never be
updated, status code 405 shall be returned.

• Services may return a representation of the resource after any server-side transformations in the
body of the response.

• If a property in the request can never be updated, such as when a property is read only, a status
code of 200 shall be returned along with a representation of the resource containing an
annotation specifying the non-updatable property. In this success case, other properties may be
updated in the resource.

• Services should return status code 405 if the client specifies a PATCH request against a
Resource Collection.

• The PATCH operation should be idempotent in the absence of outside changes to the resource,
though the original ETag value may no longer match.

Services may have null entries for properties that are JSON arrays to show the number of entries a client
is allowed to use in a PATCH request. Within a PATCH request, unchanged members within a JSON
array may be specified as empty JSON objects, and clearing members within a JSON array may be
specified with null.

OData markup (resource identifiers, type, etag and links) are ignored on Update.

6.4.4.2. Replace (PUT)

The PUT method is used to completely replace a resource. Properties omitted from the request body are
reset to their default value.

22 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

30 Published Version 1.2.0

• Services may support the PUT method to replace a resource in whole. If a service does not
implement this method, status code 405 shall be returned.

• Services may return a representation of the resource after any server-side transformations in the
body of the response.

• Services should return status code 405 if the client specifies a PUT request against a Resource
Collection.

• The PUT operation should be idempotent in the absence of outside changes to the resource,
with the possible exception that ETAG values may change as the result of this operation.

6.4.4.3. Create (POST)

The POST method is used to create a new resource. The POST request is submitted to the Resource
Collection in which the new resource is to belong.

Submitting a POST request to a Resource Collection is equivalent to submitting the same request to the
Members property of that Resource Collection. Services that support adding Members to a Resource
Collection shall support both forms.

• Services shall support the POST method for creating resources. If the resource does not offer
anything to be created, a status code 405 shall be returned.

• Services shall support POST operations on a URL that references a Resource Collection
instance.

• Services shall support POST operations on a URL that references an Action (see Actions
(POST)).

• The POST operation shall not be idempotent.

The body of the create request contains a representation of the object to be created. The service may
ignore any service controlled attributes (e.g., id), forcing those attributes to be overridden by the service.
The service shall set the Location header to the URI of the newly created resource. The response to a
successful create request should be 201 (Created) and may include a response body containing a
representation of the newly created resource conforming to the schema of the created resource.

6.4.4.4. Delete (DELETE)

The DELETE method is used to remove a resource.

• Services shall support the DELETE method for resources that can be deleted. If the resource
can never be deleted, status code 405 shall be returned.

• Services may return a representation of the just deleted resource in the response body.
• Services should return status code 405 if the client specifies a DELETE request against a

Resource Collection.

Services may return status code 404 or a success code if the resource has already been deleted.

© ISO/IEC 2018 – All rights reserved 23

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 31

6.4.4.5. Actions (POST)

The POST method is used to initiate operations on the object (such as Actions).

• Services shall support the POST method for sending actions.
• The POST operation may not be idempotent.

Custom actions are requested on a resource by sending the HTTP POST method to the URI of the
action. If the actions property within a resource does not specify a target property, then the URI of an
action shall be of the form:

ResourceUri/Actions/QualifiedActionName

where

• ResourceUri is the URI of the resource which supports invoking the action.
• "Actions" is the name of the property containing the actions for a resource, as defined by this

specification.
• QualifiedActionName is the namespace or alias qualified name of the action.

The first parameter of a bound function is the resource on which the action is being invoked. The
remaining parameters are represented as name/value pairs in the body of the request.

Clients can query a resource directly to determine the actions that are available as well as valid
parameter values for those actions. Some parameter information may require the client to examine the
Redfish Schema corresponding to the resource.

For instance, if a Redfish Schema document http://redfish.dmtf.org/schemas/v1/
ComputerSystem_v1.xml defines a Reset action in the ComputerSystem namespace, bound to the
ComputerSystem.v1_0_0.Actions type, such as this example:

And a computer system resource contains an Actions property such as this:

<Schema Name="ComputerSystem">

...

<Action Name="Reset" IsBound="true">

<Parameter Name="Resource" Type="ComputerSystem.v1_0_0.Actions"/>

<Parameter Name="ResetType" Type="Resource.ResetType"/>

</Action>

...
</Schema>

{

24 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://redfish.dmtf.org/schemas/v1/
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

32 Published Version 1.2.0

Then the following would represent a possible request for the Action:

6.5. Responses

Redfish defines four types of responses:

• Metadata Responses - Describe the resources and types exposed by the service to generic
clients.

• Resource Responses - JSON representation of an individual resource.
• Resource Collection Responses - JSON representation of a resource that represents a

Resource Collection.
• Error Responses - Top level JSON response providing additional information in the case of an

HTTP error.

"Actions": {

"#ComputerSystem.Reset": {

"target":"/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

"ResetType@Redfish.AllowableValues": [

"On",

"ForceOff",

"GracefulRestart",

"GracefulShutdown",

"ForceRestart",

"Nmi",

"ForceOn",

"PushPowerButton"

]

}

},
...

}

POST /redfish/v1/Systems/1/Actions/ComputerSystem.Reset HTTP/1.1
Content-Type: application/json;charset=utf-8

Content-Length: <computed length>

OData-Version: 4.0

{

"ResetType": "On"
}

© ISO/IEC 2018 – All rights reserved 25

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

mailto:ResetType@Redfish.AllowableValues
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 33

6.5.1. Response headers

HTTP defines headers that can be used in response messages. The following table defines those
headers and their requirements for Redfish Services.

• Redfish Services shall be able to return the headers in the following table as defined by the
HTTP 1.1 specification if the value in the Required column is set to "yes" .

• Redfish Services should be able to return the headers in the following tables as defined by the
HTTP 1.1 specification if the value in the Required column is set to "no".

• Redfish clients shall be able to understand and be able to process all of the headers in the
following table as defined by the HTTP 1.1. specification.

Header Required Supported
Values Description

OData-
Version

Yes 4.0
Describes the OData version of the payload that the
response conforms to.

Content-
Type

Yes RFC 7231

Describes the type of representation used in the
message body. Services shall specify a Content-
Type of application/json when returning
resources as JSON, and application/xml when
returning metadata as XML. ;charset=utf-8
shall be appended to the Content-Type if specified
in the chosen media-type in the Accept header for
the request.

Content-
Encoding

No RFC 7231
Describes the encoding that has been performed on
the media type

Content-
Length

No RFC 7231

Describes the size of the message body. An
optional means of indicating size of the body uses
Transfer-Encoding: chunked, which does not use
the Content-Length header. If a service does not
support Transfer-Encoding and needs Content-
Length instead, the service will respond with status
code 411.

ETag Conditional RFC 7232
An identifier for a specific version of a resource,
often a message digest. Etags shall be included on
responses to GETs of ManagerAccount objects.

Server Yes RFC 7231
Required to describe a product token and its
version. Multiple product tokens may be listed.

26 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

34 Published Version 1.2.0

Header Required Supported
Values Description

Link Yes
See Link
Header

Link headers shall be returned as described in the
clause on Link Headers.

Location Conditional RFC 7231

Indicates a URI that can be used to request a
representation of the resource. Shall be returned if
a new resource was created. Location and X-Auth-
Token shall be included on responses which create
user sessions.

Cache-
Control

Yes RFC 7234
This header shall be supported and is meant to
indicate whether a response can be cached or not.

Via No RFC 7230
Indicates network hierarchy and recognizes
message loops. Each pass inserts its own VIA.

Max-
Forwards

No RFC 7231
Limits gateway and proxy hops. Prevents
messages from remaining in the network
indefinitely.

Access-
Control-
Allow-Origin

Yes

W3C
CORS,
Section
5.1

Prevents or allows requests based on originating
domain. Used to prevent CSRF attacks.

Allow Yes

POST,
PUT,
PATCH,
DELETE,
GET,
HEAD

Shall be returned with a 405 (Method Not Allowed)
response to indicate the valid methods for the
specified Request URI. Should be returned with any
GET or HEAD operation to indicate the other
allowable operations for this resource.

WWW-
Authenticate

Yes
RFC 7235,
Section
4.1

Required for Basic and other optional authentication
mechanisms. See the Security clause for details.

X-Auth-
Token

Yes

Opaque
encoded
octet
strings

Used for authentication of user sessions. The token
value shall be indistinguishable from random.

Retry-After No
RFC 7231,
Section

Used to inform a client how long to wait before
requesting the Task information again.

© ISO/IEC 2018 – All rights reserved 27

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 35

Header Required Supported
Values Description

7.1.3

6.5.1.1. Link header

The Link header provides metadata information on the accessed resource in response to a HEAD or GET
operation. In addition to links from the resource, the URL of the JSON Schema for the resource shall be
returned with a rel=describedby. URLs of the JSON Schema for an annotation should be returned
without a rel=describedby. If the referenced JSON Schema is a versioned schema, it shall match the
version contained in the value of the @odata.id property returned in this resource.

Below is an example of the link headers of a ManagerAccount with a role of Administrator that has a
Settings Annotation.

• The first header is an example of a link that comes from the resource. It describes links within
the resource. This type of header is outside the scope of this specification.

• The second link header is an example of an Annotation link header as it references the JSON
Schema that describes the annotation and does not have rel=describedby. This example
references the public copy of the annotation on the DMTF's Redfish Schema repository.

• The third link header is an example for the JSON Schema that describes the actual resource.
• Note that the URL can reference an unversioned JSON Schema (since the @odata.type in the

resource will indicate the appropriate version) or reference the versioned JSON Schema (which
according to previous normative statements would need to match the version specified in the
@odata.type property of the resource).

Link header(s) shall be returned on HEAD and a Link header satisfying rel=describedby shall be
returned on GET and HEAD and a Link header satisfying Annotations should be returned on GET and
HEAD.

6.5.2. Status codes

HTTP defines status codes that can be returned in response messages.

Where the HTTP status code indicates a failure, the response body contains an extended error resource
to provide the client more meaningful and deterministic error semantics.

• Services should return the extended error resource as described in this specification in the

Link: </redfish/v1/AccountService/Roles/Administrator>; path=/Links/Role

Link: <http://redfish.dmtf.org/schemas/Settings.json>
Link: </redfish/v1/JsonSchemas/ManagerAccount.v1_0_2.json>; rel=describedby

28 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://redfish.dmtf.org/schemas/Settings.json
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

36 Published Version 1.2.0

response body when a status code 400 or greater is returned. Services may return the extended
error resource as described in this specification in the response body when other status codes
are returned for those codes and operations that allow a response body.

• Extended error messages MUST NOT provide privileged info when authentication failures occur

NOTE: Refer to the Security clause for security implications of extended errors

The following table lists some of the common HTTP status codes. Other codes may be returned by the
service as appropriate. See the Description column for a description of the status code and additional
requirements imposed by this specification.

• Clients shall understand and be able to process the status codes in the following table as
defined by the HTTP 1.1 specification and constrained by additional requirements defined by this
specification.

• Services shall respond with these status codes as appropriate.
• Exceptions from operations shall be mapped to HTTP status codes.
• Redfish Services should not return the status code 100. Using the HTTP protocol for a multi-

pass data transfer should be avoided, except upload of extremely large data.

HTTP Status
Code Description

200 OK The request was successfully completed and includes a representation in its body.

201 Created

A request that created a new resource completed successfully. The Location
header shall be set to the canonical URI for the newly created resource. A
representation of the newly created resource may be included in the response
body.

202
Accepted

The request has been accepted for processing, but the processing has not been
completed. The Location header shall be set to the URI of a Task resource that
can later be queried to determine the status of the operation. A representation of
the Task resource may be included in the response body.

204 No
Content

The request succeeded, but no content is being returned in the body of the
response.

301 Moved
Permanently

The requested resource resides under a different URI

302 Found The requested resource resides temporarily under a different URI.

304 Not
Modified

The service has performed a conditional GET request where access is allowed,
but the resource content has not changed. Conditional requests are initiated using
the headers If-Modified-Since and/or If-None-Match (see HTTP 1.1, sections 14.25

© ISO/IEC 2018 – All rights reserved 29

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 37

HTTP Status
Code Description

and 14.26) to save network bandwidth if there is no change.

400 Bad
Request

The request could not be processed because it contains missing or invalid
information (such as validation error on an input field, a missing required value,
and so on). An extended error shall be returned in the response body, as defined
in clause Error Responses.

401
Unauthorized

The authentication credentials included with this request are missing or invalid.

403
Forbidden

The server recognized the credentials in the request, but those credentials do not
possess authorization to perform this request.

404 Not
Found

The request specified a URI of a resource that does not exist.

405 Method
Not Allowed

The HTTP verb specified in the request (e.g., DELETE, GET, HEAD, POST, PUT,
PATCH) is not supported for this request URI. The response shall include an Allow
header which provides a list of methods that are supported by the resource
identified by the Request-URI.

406 Not
Acceptable

The Accept header was specified in the request and the resource identified by this
request is not capable of generating a representation corresponding to one of the
media types in the Accept header.

409 Conflict

A creation or update request could not be completed, because it would cause a
conflict in the current state of the resources supported by the platform (for
example, an attempt to set multiple attributes that work in a linked manner using
incompatible values).

410 Gone

The requested resource is no longer available at the server and no forwarding
address is known. This condition is expected to be considered permanent. Clients
with link editing capabilities SHOULD delete references to the Request-URI after
user approval. If the server does not know, or has no facility to determine, whether
or not the condition is permanent, the status code 404 (Not Found) SHOULD be
used instead. This response is cacheable unless indicated otherwise.

411 Length
Required

The request did not specify the length of its content using the Content-Length
header (perhaps Transfer-Encoding: chunked was used instead). The addressed
resource requires the Content-Length header.

412
Precondition

Precondition (such as OData-Version, If Match or If Not Modified headers) check
failed.

30 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

38 Published Version 1.2.0

HTTP Status
Code Description

Failed

415
Unsupported
Media Type

The request specifies a Content-Type for the body that is not supported.

500 Internal
Server Error

The server encountered an unexpected condition that prevented it from fulfilling
the request. An extended error shall be returned in the response body, as defined
in clause Error Responses.

501 Not
Implemented

The server does not (currently) support the functionality required to fulfill the
request. This is the appropriate response when the server does not recognize the
request method and is not capable of supporting the method for any resource.

503 Service
Unavailable

The server is currently unable to handle the request due to temporary overloading
or maintenance of the server.

6.5.3. Metadata responses

Metadata describes resources, Resource Collections, capabilities and service-dependent behavior to
generic consumers, including OData client tools and applications with no specific understanding of this
specification. Clients are not required to request metadata if they already have sufficient understanding of
the target service; for example, to request and interpret a JSON representation of a resource defined in
this specification.

6.5.3.1. Service metadata

The service metadata describes top-level resources and resource types of the service according to
OData-Schema. The Redfish Service Metadata is represented as an XML document with a root element
named "Edmx", defined in the http://docs.oasis-open.org/odata/ns/edmx" namespace, and with an OData
Version attribute equal to "4.0".

6.5.3.1.1. Referencing other schemas

The service metadata shall include the namespaces for each of the Redfish resource types, along with
the "RedfishExtensions.v1_0_0" namespace. These references may use the standard URI for the hosted
Redfish Schema definitions (i.e., on http://redfish.dmtf.org/schemas) or a URI to a local version of the

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

<!-- edmx:Reference and edmx:Schema elements go here -->
</edmx:Edmx>

© ISO/IEC 2018 – All rights reserved 31

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://docs.oasis-open.org/odata/ns/edmx
http://redfish.dmtf.org/schemas
http://docs.oasis-open.org/odata/ns/edmx
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 39

Redfish Schema that shall be identical to the hosted version.

The service's Metadata Document shall include an EntityContainer that defines the top level resources
and Resource Collections. An implementation may extend the ServiceContainer defined in the
ServiceRoot schema for the implementation's OData Service Document.

6.5.3.1.2. Referencing OEM extensions

The metadata document may reference additional schema documents describing OEM-specific
extensions used by the service, for example custom types for additional Resource Collections.

6.5.3.1.3. Annotations

The service can annotate sets, types, actions and parameters with Redfish-defined or custom annotation

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/AccountService_v1.xml">

<edmx:Include Namespace="AccountService"/>

<edmx:Include Namespace="AccountService.v1_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/ServiceRoot_v1.xml">

<edmx:Include Namespace="ServiceRoot"/>

<edmx:Include Namespace="ServiceRoot.v1_0_0"/>

</edmx:Reference>

...

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/VirtualMedia_v1.xml">

<edmx:Include Namespace="VirtualMedia"/>

<edmx:Include Namespace="VirtualMedia.v1_0_0"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>
</edmx:Reference>

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="Service">

<EntityContainer Name="Service" Extends="ServiceRoot.v1_0_0.ServiceContainer"/>

</Schema>
</edmx:DataServices>

<edmx:Reference Uri="http://contoso.org/Schema/CustomTypes">

<edmx:Include Namespace="CustomTypes"/>
</edmx:Reference>

32 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://redfish.dmtf.org/schemas/v1/AccountService_v1.xml
http://redfish.dmtf.org/schemas/v1/ServiceRoot_v1.xml
http://redfish.dmtf.org/schemas/v1/VirtualMedia_v1.xml
http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
http://docs.oasis-open.org/odata/ns/edm
http://contoso.org/Schema/CustomTypes
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

40 Published Version 1.2.0

terms. These annotations are typically in a separate Annotations file referenced from the service
metadata document using the IncludeAnnotations directive.

The annotation file itself specifies the Target Redfish Schema element being annotated, the Term being
applied, and the value of the term:

6.5.3.2. OData Service Document

The OData Service Document serves as a top-level entry point for generic OData clients.

<edmx:Reference Uri="http://service/metadata/Service.Annotations">

<edmx:IncludeAnnotations TermNamespace="Annotations.v1_0_0"/>
</edmx:Reference>

<Annotations Target="ComputerSystem.Reset/ResetType">

<Annotation Term="Annotation.AdditionalValues">

<Collection>

<String>Update and Restart</String>

<String>Update and PowerOff</String>

</Collection>

</Annotation>
</Annotations>

{

"@odata.context": "/redfish/v1/$metadata",

"value": [
{

"name": "Service",

"kind": "Singleton",

"url": "/redfish/v1/"

},

{

"name": "Systems",

"kind": "Singleton",

"url": "/redfish/v1/Systems"

},

{

"name": "Chassis",

"kind": "Singleton",

"url": "/redfish/v1/Chassis"

},

{

"name": "Managers",

© ISO/IEC 2018 – All rights reserved 33

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://service/metadata/Service.Annotations
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 41

The OData Service Document shall be returned as a JSON object, using the MIME type application/
json.

The JSON object shall contain a context property named "@odata.context" with a value of "/redfish/
v1/$metadata". This context tells a generic OData client how to find the service metadata describing the
types exposed by the service.

The JSON object shall include a property named "value" whose value is a JSON array containing an entry
for the service root and each resource that is a direct child of the service root.

Each entry shall be represented as a JSON object and shall include a "name" property whose value is a
user-friendly name of the resource, a "kind" property whose value is "Singleton" for individual resources
(including Resource Collections) or "EntitySet" for top-level Resource Collections, and a "url" property
whose value is the relative URL for the top-level resource.

6.5.4. Resource responses

Resources are returned as JSON payloads, using the MIME type application/json. Resource
property names match the case specified in the Schema.

See also Resource Collection responses.

6.5.4.1. Context property

Responses that represent a single resource shall contain a context property named "@odata.context"
describing the source of the payload. The value of the context property shall be the context URL that
describes the resource according to OData-Protocol.

The context URL for a resource is of one of the following two forms:

MetadataUrl#ResourceType[(Selectlist)] MetadataUrl#ResourcePath[(Selectlist)]/$entity

where

• MetadataUrl = the metadata url of the service (/redfish/v1/$metadata)
• ResourceType = the fully qualified name of the unversioned resource type
• ResourcePath = the path from the service root to the singleton or Resource Collection containing

"kind": "Singleton",

"url": "/redfish/v1/Managers"

},

...

]

}

34 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

42 Published Version 1.2.0

the resource
• Selectlist = comma-separated list of properties included in the response if the response includes

a subset of properties defined for the represented resources.
• $entity = a designator that the response is a single resource from either an entity set or specified

by a navigation property.

6.5.4.1.1. Select list

If a response contains a subset of the properties defined in the Redfish Schema for a type, then the
context URL shall specify the subset of properties included. An asterix (*) can be used to specify "all
structural properties" for a given resource.

Expanded reference properties shall be included in the select list if the result includes a subset of the
properties defined for the expanded resource.

For example, the following context URL specifies that the result contains a single ComputerSystem
resource:

6.5.4.2. Resource identifier property

Resources in a response shall include a unique identifier property named "@odata.id". The value of the
identifier property shall be the unique identifier for the resource.

Resources identifiers shall be represented in JSON payloads as strings that conform to the rules for URI
paths as defined in Section 3.3, Path of RFC3986. Resources within the same authority as the request
URI shall be represented according to the rules of path-absolute defined by that specification. That is,
they shall always start with a single forward slash ("/"). Resources within a different authority as the
request URI shall start with a double-slash ("//") followed by the authority and path to the resource.

The resource identifier is the canonical URL for the resource and can be used to retrieve or edit the
resource, as appropriate.

6.5.4.3. Type property

All resources in a response shall include a type property named "@odata.type". All embedded objects in
a response should include a type property named "@odata.type." The value of the type property shall be
a URL fragment that specifies the type of the resource as defined within, or referenced by, the metadata
document and shall be of the form:

{

"@odata.context":"/redfish/v1/$metadata#ComputerSystem.ComputerSystem",

...

}

© ISO/IEC 2018 – All rights reserved 35

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 43

#Namespace.TypeName

where

• Namespace = The full namespace name of the Redfish Schema in which the type is defined. For
Redfish resources this will be the versioned namespace name.

• TypeName = The name of the type of the resource.

6.5.4.4. ETag property

ETags provide the ability to conditionally retrieve or update a resource. Resources should include an
ETag property named "@odata.etag". The value of the ETag property is the Etag for a resource.

6.5.4.5. Primitive properties

Primitive properties shall be returned as JSON values according to the following table.

Type JSON Representation

Edm.Boolean Boolean

Edm.DateTimeOffset String, formatted as specified in DateTime Values

Edm.Decimal Number, optionally containing a decimal point

Edm.Double
Number, optionally containing a decimal point and optionally containing an
exponent

Edm.Guid
String, matching the pattern ([0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-
[0-9a-f]{12})

Edm.Int64 Number with no decimal point

Edm.String String

When receiving values from the client, services should support other valid representations of the data
within the specified JSON type. In particular, services should support valid integer and decimal values
written in exponential notation and integer values containing a decimal point with no non-zero trailing
digits.

6.5.4.5.1. DateTime values

DateTime values shall be returned as JSON strings according to the ISO 8601 "extended" format, with
time offset or UTC suffix included, of the form:

YYYY-*MM*-*DD* T *hh*:*mm*:*ss*[.*SSS*] (Z | (+ | -) *hh*:*mm*)

36 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

44 Published Version 1.2.0

where:

• SSS = one or more digits representing a decimal fraction of a second, with the number of digits
implying precision.

• The 'T' separator and 'Z' suffix shall be capitals.

6.5.4.6. Structured properties

Structured properties, defined as complex types or expanded resource types, are returned as JSON
objects. The type of the JSON object is specified in the Redfish Schema definition of the property
containing the structured value.

6.5.4.7. Actions property

Available actions for a resource are represented as individual properties nested under a single structured
property on the resource named "Actions".

6.5.4.7.1. Action representation

Actions are represented by a property nested under "Actions" whose name is the unique URI that
identifies the action. This URI shall be of the form:

#Namespace.ActionName

where

• Namespace = The namespace used in the reference to the Redfish Schema in which the action
is defined. For Redfish resources this shall be the version-independent namespace.

• ActionName = The name of the action

The client may use this fragment to identify the action definition within the referenced Redfish Schema
document associated with the specified namespace.

The value of the property is a JSON object containing a property named "target" whose value is a relative
or absolute URL used to invoke the action.

The property representing the available action may be annotated with the AllowableValues annotation in
order to specify the list of allowable values for a particular parameter.

For example, the following property represents the Reset action, defined in the ComputerSystem
namespace:

{

"#ComputerSystem.Reset": {

"target":"/redfish/v1/Systems/1/Actions/ComputerSystem.Reset",

© ISO/IEC 2018 – All rights reserved 37

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 45

Given this, the client could invoke a POST request to /redfish/v1/Systems/1/Actions/
ComputerSystem.Reset with the following body:

6.5.4.7.2. Allowable values

The property representing the action may be annotated with the "AllowableValues" annotation in order to
specify the list of allowable values for a particular parameter.

The set of allowable values is specified by including a property whose name is the name of the parameter
followed by "@Redfish.AllowableValues", and whose value is a JSON array of strings representing the
allowable values for the parameter.

6.5.4.8. Links property

References to other resources are represented by the links property on the resource.

The links property shall be named "Links" and shall contain a property for each non-contained reference
property defined in the Redfish Schema for that type. For single-valued reference properties, the value of
the property shall be the single related resource id. For collection-valued reference properties, the value
of the property shall be the array of related resource ids.

The links property shall also include an OEM property for navigating vendor-specific links.

6.5.4.8.1. Reference to a single related resource

A reference to a single resource is returned as a JSON object containing a single resource-identifier-

"ResetType@Redfish.AllowableValues": [

"On",

"ForceOff",

"GracefulRestart",

"GracefulShutdown",

"ForceRestart",

"Nmi",

"ForceOn",

"PushPowerButton"
]

},

...

}

{

"ResetType": "On"

}

38 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

mailto:ResetType@Redfish.AllowableValues
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

46 Published Version 1.2.0

property whose name is the name of the relationship and whose value is the uri of the referenced
resource.

6.5.4.8.2. Array of references to related resources

A reference to a set of zero or more related resources is returned as an array of JSON objects whose
name is the name of the relationship. Each member of the array is a JSON object containing a single
resource-identifier-property whose value is the uri of the referenced resource.

6.5.4.9. OEM property

OEM-specific properties are nested under an OEM property.

6.5.4.10. Partial resource results

Responses representing a single resource shall not be broken into multiple results.

6.5.4.11. Extended information

Response objects may include extended information, for example information about properties that are
not able to be updated. This information is represented as an annotation applied to a specific property of
the JSON response or an entire JSON object.

{

"Links" : {

"ManagedBy": {

"@odata.id":"/redfish/v1/Chassis/Encl1"

}

}

}

{

"Links" : {

"Contains" : [

{

"@odata.id":"/redfish/v1/Chassis/1"

},

{

"@odata.id":"/redfish/v1/Chassis/Encl1"

}

]
}

}

© ISO/IEC 2018 – All rights reserved 39

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 47

6.5.4.11.1. Extended object information

A JSON object can be annotated with "@Message.ExtendedInfo" in order to specify object-level status
information.

The value of the property is an array of message objects.

6.5.4.11.2. Extended property information

An individual property within a JSON object can be annotated with extended information using
"@Message.ExtendedInfo", prepended with the name of the property.

{

"@odata.context": "/redfish/v1/$metadata#SerialInterface.SerialInterface",

"@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",

"@odata.type": "#SerialInterface.v1_0_0.SerialInterface",

"Name": "Managed Serial Interface 1",

"Description": "Management for Serial Interface",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"InterfaceEnabled": true,

"SignalType": "Rs232",

"BitRate": "115200",
"Parity": "None",

"DataBits": "8",

"StopBits": "1",

"FlowControl": "None",

"ConnectorType": "RJ45",

"PinOut": "Cyclades",

"@Message.ExtendedInfo" : [

{

"MessageId": "Base.1.0.PropertyDuplicate",

"Message": "The property InterfaceEnabled was duplicated in the request.",

"RelatedProperties": [

"#/InterfaceEnabled"

],

"Severity": "Warning",

"Resolution": "Remove the duplicate property from the request body and

resubmit the request if the operation failed."

}

]
}

40 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

48 Published Version 1.2.0

{

"@odata.context": "/redfish/v1/$metadata#SerialInterface.SerialInterface",

"@odata.id": "/redfish/v1/Managers/1/SerialInterfaces/1",

"@odata.type": "#SerialInterface.v1_0_0.SerialInterface",

"Name": "Managed Serial Interface 1",

"Description": "Management for Serial Interface",

"Status": {

"State": "Enabled",

"Health": "OK"

},

"InterfaceEnabled": true,

"SignalType": "Rs232",

"BitRate": 115200,

"Parity": "None",

"DataBits": 8,

"StopBits": 1,

"FlowControl": "None",

"ConnectorType": "RJ45",

"PinOut": "Cyclades",
"PinOut@Message.ExtendedInfo" : [

{

"MessageId": "Base.1.0.PropertyValueNotInList",

"Message": "The value Contoso for the property PinOut is not in the list

of acceptable values.",

"Severity": "Warning",

"Resolution": "Choose a value from the enumeration list that the

implementation can support and resubmit the request if the operation failed."

}

]

}

The value of the property is an array of message objects.

6.5.4.12. Additional annotations

A resource representation in JSON may include additional annotations represented as properties whose
name is of the form:

[PropertyName]@Namespace.TermName

where

• PropertyName = the name of the property being annotated. If omitted, the annotation applies to
the entire resource.

• Namespace = the name of the namespace where the annotation term is defined. This
namespace must be referenced by the metadata document specified in the context url of the

© ISO/IEC 2018 – All rights reserved 41

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

mailto:PinOut@Message.ExtendedInfo
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 49

request.
• TermName = the name of the annotation term being applied to the resource or property of the

resource.

The client can get the definition of the annotation from the service metadata, or may ignore the annotation
entirely, but should not fail reading the resource due to unrecognized annotations, including new
annotations defined within the Redfish namespace.

6.5.5. Resource Collection responses

Resource Collections are returned as a JSON object. The JSON object shall include a context, resource
count, and array of Members, and may include a next link for partial results.

6.5.5.1. Context property

Responses shall contain a context property named "@odata.context" describing the source of the
payload. The value of the context property shall be the context URL that describes the Resource
Collection according to OData-Protocol.

The context URL for a Resource Collection is of one of the following two forms:

MetadataUrl.#CollectionResourceType MetadataUrl.#CollectionResourcePath

where

• MetadataUrl = the metadata url of the service (/redfish/v1/$metadata)
• CollectionResourceType = the fully qualified name of the unversioned type of resources within

the Resource Collection.
• CollectionResourcePath = the path from the service root to the Resource Collection.

6.5.5.2. Count property

The total number of resources (members) available in the Resource Collection is represented through the
count property. The count property shall be named "Members@odata.count" and its value shall be the
total number of members available in the Resource Collection. This count is not affected by the $top or
$skip query parameters.

6.5.5.3. Members property

The Members of the Resource Collection of resources are returned as a JSON array, where each
element of the array is a JSON object whose type is specified in the Redfish Schema document
describing the containing type. The name of the property representing the members of the collection shall
be "Members". The Members property shall not be null. Empty collections shall be returned in JSON as
an empty array.

42 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

mailto:Members@odata.count
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

50 Published Version 1.2.0

6.5.5.4. NextLink property and partial results

Responses may contain a subset of the members of the full Resource Collection. For partial Resource
Collections the response includes a next link property named "Members@odata.nextLink". The value of
the next link property shall be an opaque URL to a resource, with the same @odata.type, containing the
next set of partial members. The next link property shall only be present if the number of Members in the
Resource Collection is greater than the number of members returned.

The value of the count property represents the total number of resources available if the client
enumerates all pages of the Resource Collection.

6.5.5.5. Additional annotations

A JSON object representing a Resource Collection may include additional annotations represented as
properties whose name is of the form:

@Namespace.TermName

where

• Namespace = the name of the namespace where the annotation term is defined. This
namespace shall be referenced by the metadata document specified in the context url of the
request.

• TermName = the name of the annotation term being applied to the Resource Collection.

The client can get the definition of the annotation from the service metadata, or may ignore the annotation
entirely, but should not fail reading the response due to unrecognized annotations, including new
annotations defined within the Redfish namespace.

6.5.6. Error responses

HTTP response status codes alone often do not provide enough information to enable deterministic error
semantics. For example, if a client does a PATCH and some of the properties do not match while others
are not supported, simply returning an HTTP status code of 400 does not tell the client which values were
in error. Error responses provide the client more meaningful and deterministic error semantics.

A Redfish Service may provide multiple error responses in the HTTP response in order to provide the
client with as much information about the error situation as it can. Additionally, the service may provide
Redfish standardized errors, OEM defined errors or both depending on the implementation's ablity to
convey the most useful information about the underlying error.

Error responses are defined by an extended error resource, represented as a single JSON object with a
property named "error" with the following properties.

© ISO/IEC 2018 – All rights reserved 43

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

mailto:Members@odata.nextLink
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 51

Property Description

code
A string indicating a specific MessageId from the message registry.
"Base.1.0.GeneralError" should be used only if there is no better
message.

message
A human readable error message corresponding to the message in the
message registry.

@Message.ExtendedInfo An array of message objects describing one or more error message(s).

{

"error": {

"code": "Base.1.0.GeneralError",

"message": "A general error has occurred. See ExtendedInfo for more

information.",

"@Message.ExtendedInfo": [

{

"@odata.type" : "#Message.v1_0_0.Message",

"MessageId": "Base.1.0.PropertyValueNotInList",

"RelatedProperties": [

"#/IndicatorLED"

],

"Message": "The value Red for the property IndicatorLED is not in the

list of acceptable values",

"MessageArgs": [

"RED",

"IndicatorLED"

],

"Severity": "Warning",

"Resolution": "Remove the property from the request body and resubmit

the request if the operation failed"
},

{

"@odata.type" : "#Message.v1_0_0.Message",

"MessageId": "Base.1.0.PropertyNotWriteable",

"RelatedProperties": [

"#/SKU"

],

"Message": "The property SKU is a read only property and cannot be

assigned a value",

"MessageArgs": [

"SKU"

],

"Severity": "Warning",
"Resolution": "Remove the property from the request body and resubmit

44 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

52 Published Version 1.2.0

6.5.6.1. Message object

Message Objects provide additional information about an object, property, or error response.

Messages are represented as a JSON object with the following properties:

Property Description

MessageId
String indicating a specific error or message (not to be confused with the
HTTP status code). This code can be used to access a detailed message
from a message registry.

Message
A human readable error message indicating the semantics associated with the
error. This shall be the complete message, and not rely on substitution
variables.

RelatedProperties
An optional array of JSON Pointers defining the specific properties within a
JSON payload described by the message.

MessageArgs
An optional array of strings representing the substitution parameter values for
the message. This shall be included in the response if a MessageId is
specified for a parameterized message.

Severity An optional string representing the severity of the error.

Resolution
An optional string describing recommended action(s) to take to resolve the
error.

Each instance of a Message object shall contain at least a MessageId, together with any applicable
MessageArgs, or a Message property specifying the complete human-readable error message.

MessageIds identify specific messages defined in a message registry.

The value of the MessageId property shall be of the form

RegistryName.MajorVersion.MinorVersion.MessageKey

where

the request if the operation failed"

}

]

}
}

© ISO/IEC 2018 – All rights reserved 45

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 53

• RegistryName is the name of the registry. The registry name shall be Pascal-cased.
• MajorVersion is a positive integer representing the major version of the registry
• MinorVersion is a positive integer representing the minor version of the registry
• MessageKey is a human-readable key into the registry. The message key shall be Pascal-cased

and shall not include spaces, periods or special chars.

The client can use the MessageId to search the message registry for the corresponding message.

The message registry approach has advantages for internationalization (since the registry can be
translated easily) and light weight implementation (since large strings need not be included with the
implementation).

7. Data model and Schema

One of the key tenets of the Redfish interface is the separation of protocol and data model. This clause
describes common data model, resource, and Redfish Schema requirements.

• Each resource shall be strongly typed according to a resource type definition. The type shall be
defined in a Redfish schema document and identified by a unique type identifier.

7.1. Schema repository

All Redfish schemas produced, approved and published by the SPMF are available from the DMTF
website at http://redfish.dmtf.org/schemas for download. Each folder in the Repository contains both
CSDL and JSON Schema formats. The schema files are organized on the site in the following manner:

URL Folder contents

redfish.dmtf.org/schemas Current (most recent minor or errata) release of each schema file.

redfish.dmtf.org/schemas/v1
All v1.xx schema files. Every v1.xx minor or errata release of each
schema file.

redfish.dmtf.org/schemas/
archive

Sub-folders contain schema files specific to a particular version
release.

7.1.1. Programmatic access to schema files

Programs may access the Schema Repository using the redfish.dmtf.org/schemas/v1 durable URL, as
this folder will contain each released version of each schema. Programs incorporating schema usage
should implement a local schema cache to reduce latency, program requirements for Internet access and
undue traffic burden on the DMTF website.

46 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://redfish.dmtf.org/schemas
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

54 Published Version 1.2.0

7.2. Type identifiers

Types are identified by a Type URI. The URI for a type is of the form:

#Namespace.TypeName

where

• Namespace = the name of the namespace in which the type is defined
• TypeName = the name of the type

The namespace for types defined by this specification is of the form:

ResourceTypeName.vMajorVersion_MinorVersion_Errata

where

• ResourceTypeName = the name of the resource type. For structured (complex) types,
enumerations, and actions, this is generally the name of the containing resource type.

• MajorVersion = integer: something in the class changed in a backward incompatible way.
• MinorVersion = integer: a minor update. New properties may have been added but nothing

removed. Compatibility will be preserved with previous minorversions.
• Errata = integer: something in the prior version was broken and needed to be fixed.

An example of a valid type namespace might be "ComputerSystem.v1_0_0".

7.2.1. Type identifiers in JSON

Types used within a JSON payload shall be defined in, or referenced by, the service metadata.

Resource types defined by this specification shall be referenced in JSON documents using the full
(versioned) namespace name.

NOTE: Refer to the Security clause for security implications of Data Model & Schema

7.3. Common naming conventions

The Redfish interface is intended to be easily readable and intuitive. Thus, consistency helps the
consumer who is unfamiliar with a newly discovered property understand its use. While this is no
substitute for the normative information in the Redfish Specification and Redfish Schema, the following
rules help with readability and client usage.

Resource Name, Property Names, and constants such as Enumerations shall be Pascal-cased

• The first letter of each word shall be upper case with spaces between words shall be removed

© ISO/IEC 2018 – All rights reserved 47

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 55

(eg PowerState, SerialNumber.)
• No underscores are used.
• Both characters are capitalized for two-character acronyms (eg IPAddress, RemoteIP)
• Only the first character of acronyms with three or more characters is capitalized, except the first

word of a Pascal-cased identifier (eg Wwn, VirtualWwn)

Exceptions are allowed for the following cases:

• Well-known technology names like "iSCSI"
• Product names like "iLO"
• Well-known abbreviations or acronyms

For attributes that have units, or other special meaning, the unit identifier should be appended to the
name. The current list includes:

• Bandwidth (Mbps), (eg PortSpeedMbps)
• CPU speed (Mhz), (eg ProcessorSpeedMhz)
• Memory size (MegaBytes, MB), (eg MemoryMB)
• Counts of items (Count), (eg ProcessorCount, FanCount)
• The State of a resource (State) (eg PowerState.)
• State values where "work" is being done end in (ing) (eg Applying, Clearing)

7.4. Localization considerations

Localization and translation of data or meta data is outside of the scope of version 1.0 of the Redfish
Specification. Property names are never localized.

7.5. Schema definition

Individual resources and their dependent types and actions are defined within a Redfish schema
document.

7.5.1. Common annotations

All Redfish types and properties shall include description and long description annotations.

7.5.1.1. Description

The Description annotation can be applied to any type, property, action or parameter in order to provide a
human-readable description of the Redfish Schema element.

The Description annotation is defined in http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/
Org.OData.Core.V1.xml.

48 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

56 Published Version 1.2.0

7.5.1.2. Long description

The LongDescription annotation term can be applied to any type, property, action or parameter in order to
provide a formal, normative specification of the schema element. Where the LongDescriptions in the
Redfish schema files contain "shall" references, the service shall be required to conform with the
statement.

The LongDescription annotation term is defined in http://docs.oasis-open.org/odata/odata/v4.0/os/
vocabularies/Org.OData.Core.V1.xml.

7.5.2. Schema documents

Individual resources are defined as entity types within an OData Schema representation of the Redfish
Schema according to OData-Schema. The representation may include annotations to facilitate automatic
generation of JSON Schema representation of the Redfish Schema capable of validating JSON payloads.

7.5.2.1. Schema Modification Rules

Schema referenced from the implementation, either from the OData Service Document or the JSON
Schema File representations, may vary from the canonical definitions of those Schema defined by the
Redfish Schema or other entities, provided they adhere to the rules in the list below. Clients should take
this into consideration when attempting operations on the resources defined by schema.

• Modified schema may constrain a read/write property to be read only.
• Modified schema may remove properties.
• Modified schema may change any "Reference Uri" to point to Schema that adheres to the

modification rules.
• Other modifications to the Schema shall not be allowed.

7.5.2.2. Schema Version Requirements

The outer element of the OData Schema representation document shall be the Edmx element, and shall
have a Version attribute with a value of "4.0".

7.5.2.3. Referencing other schemas

Redfish Schemas may reference types defined in other schema documents. In the OData Schema
representation, this is done by including a Reference element. In the JSON Schema representation, this
is done with a $ref property.

<edmx:Edmx xmlns:edmx="http://docs.oasis-open.org/odata/ns/edmx" Version="4.0">

<!-- edmx:Reference and edmx:DataService elements go here -->
</edmx:Edmx>

© ISO/IEC 2018 – All rights reserved 49

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/ns/edmx
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 57

The reference element specifies the Uri of the OData schema representation document describing the
referenced type and has one or more child Include elements that specify the Namespace attribute
containing the types to be referenced, along with an optional Alias attribute for that namespace.

Type definitions generally reference the OData and Redfish namespaces for common type annotation
terms, and resource type definitions reference the Redfish Resource.v1_0_0 namespace for base types.
Redfish OData Schema representations that include measures such as temperature, speed, or
dimensions generally include the OData Measures namespace.

7.5.2.4. Namespace definitions

Resource types are defined within a namespace in the OData Schema representations. The namespace
is defined through a Schema element that contains attributes for declaring the Namespace and local
Alias for the schema.

The OData Schema element is a child of the DataServices element, which is a child of the Edmx
element.

<edmx:Reference Uri="http://docs.oasis-open.org/odata/odata/v4.0/cs01/vocabularies/

Org.OData.Core.V1.xml">
<edmx:Include Namespace="Org.OData.Core.V1" Alias="OData"/>

</edmx:Reference>

<edmx:Reference

Uri="http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/

Org.OData.Measures.V1.xml">

<edmx:Include Namespace="Org.OData.Measures.V1" Alias="Measures"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml">

<edmx:Include Namespace="RedfishExtensions.v1_0_0" Alias="Redfish"/>

</edmx:Reference>

<edmx:Reference Uri="http://redfish.dmtf.org/schemas/v1/Resource_v1.xml">

<edmx:Include Namespace="Resource"/>

<edmx:Include Namespace="Resource.v1_0_0"/>
</edmx:Reference>

<edmx:DataServices>

<Schema xmlns="http://docs.oasis-open.org/odata/ns/edm" Namespace="MyTypes.v1_0_0">

<!-- Type definitions go here -->

</Schema>
</edmx:DataServices>

50 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://docs.oasis-open.org/odata/odata/v4.0/cs01/vocabularies/
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/
http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
http://redfish.dmtf.org/schemas/v1/Resource_v1.xml
http://docs.oasis-open.org/odata/ns/edm
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

58 Published Version 1.2.0

7.5.3. Resource type definitions

Resource types are defined within a namespace using EntityType elements. The Name attribute
specifies the name of the resource and the BaseType specifies the base type, if any.

Redfish resources derive from a common resource base type named "Resource" in the Resource.v1_0_0
namespace.

The EntityType contains the property and reference property elements that define the resource, as well as
annotations describing the resource.

All resources shall include Description and LongDescription annotations.

7.5.4. Resource properties

Structural properties of the resource are defined using the Property element. The Name attribute
specifies the name of the property, and the Type its type.

Property names in the Request and Response JSON Payload shall match the casing of the value of the
Name attribute.

Properties that must have a non-nullable value include the nullable attribute with a value of "false".

All properties shall include Description and LongDescription annotations.

<EntityType Name="TypeA" BaseType="Resource.v1_0_0.Resource">

<Annotation Term="OData.Description" String="This is the description of TypeA."/>

<Annotation Term="OData.LongDescription" String="This is the specification of

TypeA."/>

<!-- Property and Reference Property definitions go here -->

</EntityType>

<Property Name="Property1" Type="Edm.String" Nullable="false">

<Annotation Term="OData.Description" String="This is a property of TypeA."/>

<Annotation Term="OData.LongDescription" String="This is the specification of

Property1."/>

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

<Annotation Term="Redfish.Required"/>

<Annotation Term="Measures.Unit" String="Watts"/>
</Property>

© ISO/IEC 2018 – All rights reserved 51

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 59

Properties that are read-only are annotated with the Permissions annotation with a value of
ODataPermission/Read.

Properties that are required to be implemented by all services are annotated with the required annotation.

Properties that have units associated with them can be annotated with the units annotation

7.5.4.1. Property types

Type of a property is specified by the Type attribute. The value of the type attribute may be a primitive
type, a structured type, an enumeration type or a collection of primitive, structured or enumeration types.

7.5.4.1.1. Primitive types

Primitive types are prefixed with the "Edm" namespace prefix.

Redfish Services may use any of the following primitive types:

Type Meaning

Edm.Boolean True or False

Edm.DateTimeOffset Date and time with a time-zone

Edm.Decimal Numeric values with fixed precision and scale

Edm.Double IEEE 754 binary64 floating-point number (15-17 decimal digits)

Edm.Guid A globally unique identifier

Edm.Int64 Signed 64-bit integer

Edm.String Sequence of UTF-8 characters

7.5.4.1.2. Structured types

Structured types are defined within a namespace using ComplexType elements. The Name attribute of
the complex type specifies the name of the structured type. Complex types can include a BaseType
attribute to specifies the base type, if any.

Structured types may be reused across different properties of different resource types.

<ComplexType Name="PropertyTypeA">

<Annotation Term="OData.Description" String="This is type used to describe a
structured property."/>

52 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

60 Published Version 1.2.0

Structured types can contain properties, reference properties and annotations.

Structured types shall include Description and LongDescription annotations.

7.5.4.1.3. Enums

Enumeration types are defined within a namespace using EnumType elements. The Name attribute of the
enumeration type specifies the name of the enumeration type.

Enumeration types may be reused across different properties of different resource types.

EnumType elements contain Member elements that define the members of the enumeration. The Member
elements contain a Name attribute that specifies the string value of the member name.

Enumeration Types shall include Description and LongDescription annotations.

Enumeration Members shall include Description annotations.

7.5.4.1.4. Collections

The type attribute may specify a collection of primitive, structured or enumeration types.

The value of the type attribute for a collection-valued property is of the form:

Collection(NamespaceQualifiedTypeName)

<Annotation Term="OData.LongDescription" String="This is the specification of the

type."/>

<!-- Property and Reference Property definitions go here -->

</ComplexType>

<EnumType Name="EnumTypeA">

<Annotation Term="OData.Description" String="This is the EnumTypeA enumeration."/>

<Annotation Term="OData.LongDescription" String="This is used to describe the

EnumTypeA enumeration."/>

<Member Name="MemberA">

<Annotation Term="OData.Description" String="Description of MemberA"/>

</Member>

<Member Name="MemberB">

<Annotation Term="OData.Description" String="Description of MemberB"/>

</Member>
</EnumType>

© ISO/IEC 2018 – All rights reserved 53

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 61

where NamespaceQualifiedTypeName is the namespace qualified name of the primitive, structured, or
enumeration type.

7.5.4.2. Additional properties

The AdditionalProperties annotation term is used to specify whether a type can contain additional
properties outside of those defined. Types annotated with the AdditionalProperties annotation with a value
of "False", shall not contain additional properties.

The AdditionalProperties annotation term is defined in https://tools.oasis-open.org/version-control/
browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml.

7.5.4.3. Non-nullable properties

Properties may include the Nullable attribute with a value of false to specify that the property cannot
contain null values. A property with a nullable attribute with a value of "true", or no nullable attribute,
can accept null values.

7.5.4.4. Read-only properties

The Permissions annotation term can be applied to a property with the value of OData.Permission/
Read in order to specify that it is read-only.

The Permissions annotation term is defined in http://docs.oasis-open.org/odata/odata/v4.0/os/
vocabularies/Org.OData.Core.V1.xml.

7.5.4.5. Required properties

The Required annotation is used to specify that a property is required to be supported by services.
Required properties shall be annotated with the Required annotation. All other properties are optional.

If an implementation supports a property, it shall always provide a value for that property. If a value is
unknown, then null is an acceptable values in most cases. Properties not returned from a GET operation
shall indicate that the property is not currently supported by the implementation.

<Annotation Term="OData.AdditionalProperties"/>

<Property Name="Property1" Type="Edm.String" Nullable="false">

<Annotation Term="OData.Permissions" EnumMember="OData.Permission/Read"/>

54 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml
https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Core.V1.xml
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

62 Published Version 1.2.0

The Required annotation term is defined in http://redfish.dmtf.org/schemas/v1/
RedfishExtensions_v1.xml.

7.5.4.6. Required properties on create

The RequiredOnCreate annotation term is used to specify that a property is required to be specified on
creation of the resource. Properties not annotated with the RequiredOnCreate annotation, or annotated
with a Boolean attribute with a value of "false", are not required on create.

The RequiredOnCreate annotation term is defined in http://redfish.dmtf.org/schemas/v1/
RedfishExtensions_v1.xml.

7.5.4.7. Units of measure

In addition to following naming conventions, properties representing units of measure shall be annotated
with the Units annotation term in order to specify the units of measurement for the property.

The value of the annotation should be a string which contains the case-sensitive "(c/s)" symbol of the unit
of measure as listed in the Unified Code for Units of Measure (UCUM), unless the symbolic
representation does not reflect common usage (e.g., "RPM" is commonly used to report fan speeds in
revolutions-per-minute, but has no simple UCUM representation). For units with prefixes (e.g., Mebibyte
(1024^2 bytes), which has the UCUM prefix "Mi" and symbol "By"), the case-sensitive "(c/s)" symbol for
the prefix as listed in UCUM should be prepended to the unit symbol. For values which also include rate
information (e.g., megabits per second), the rate unit's symbol should be appended and use a "/" slash
character as a separator (e.g., "Mbit/s").

The Unit annotation term is defined in http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/
Org.OData.Measures.V1.xml.

7.5.5. Reference properties

Properties that reference other resources are represented as reference properties using the
NavigationProperty element. The NavigationProperty element specifies the Name and
namespace qualified Type of the related resource(s).

<Annotation Term="Redfish.Required"/>

<Annotation Term="Redfish.RequiredOnCreate"/>

<Annotation Term="Measures.Unit" String="MiBy"/>

© ISO/IEC 2018 – All rights reserved 55

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
http://redfish.dmtf.org/schemas/v1/RedfishExtensions_v1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml
http://docs.oasis-open.org/odata/odata/v4.0/os/vocabularies/Org.OData.Measures.V1.xml
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 63

If the property references a single type, the value of the type attribute is the namespace qualified name of
the related resource type.

If the property references a collection of resources, the value of the type attribute is of the form:

Collection(NamespaceQualifiedTypeName)

where NamespaceQualifiedTypeName is the namespace qualified name of the type of related resources.

All reference properties shall include Description and LongDescription annotations.

7.5.5.1. Contained resources

Reference properties whose members are contained by the referencing resource are specified with the
ContainsTarget attribute with a value of true.

For example, to specify that a Chassis resource contains a Power resource, you would specify
ContainsTarget=true on the resource property representing the Power Resource within the Chassis
type definition.

<NavigationProperty Name="RelatedType" Type="MyTypes.TypeB">

<Annotation Term="OData.Description" String="This property references a related

resource."/>

<Annotation Term="OData.LongDescription" String="This is the specification of the

related property."/>
<Annotation Term="OData.AutoExpandReferences"/>

</NavigationProperty>

<NavigationProperty Name="RelatedTypes" Type="Collection(MyTypes.TypeB)">

<Annotation Term="OData.Description" String="This property represents a collection

of related resources."/>

<Annotation Term="OData.LongDescription" String="This is the specification of the

related property."/>

<Annotation Term="OData.AutoExpandReferences"/>
</NavigationProperty>

<NavigationProperty Name="Power" Type="Power.Power" ContainsTarget="true">

<Annotation Term="OData.Description" String="A reference to the power properties

(power supplies, power policies, sensors) for this chassis."/>

<Annotation Term="OData.LongDescription" String="The value of this property shall

be a reference to the resource that represents the power characteristics of this
chassis and shall be of type Power."/>

56 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

64 Published Version 1.2.0

7.5.5.2. Expanded references

Reference properties in a Redfish JSON payload are expanded to include the related resource id or
collection of related resource ids. This behavior is expressed using the AutoExpandReferences
annotation.

The AutoExpandReferences annotation term is defined in https://tools.oasis-open.org/version-control/
browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml.

7.5.5.3. Expanded resources

This term can be applied to a reference property in order to specify that the default behavior for the
service is to expand the related resource or Resource Collection in responses.

The AutoExpand annotation term is defined in https://tools.oasis-open.org/version-control/browse/wsvn/
odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml.

7.5.6. Resource actions

Actions are grouped under a property named "Actions".

The type of the Actions property is a structured type with a single OEM property whose type is a
structured type with no defined properties.

<Annotation Term="OData.AutoExpandReferences"/>
</NavigationProperty>

<Annotation Term="OData.AutoExpandReferences"/>

<Annotation Term="OData.AutoExpand"/>

<Property Name="Actions" Type="MyType.Actions">

<ComplexType Name="Actions">

<Property Name="OEM" Type="MyType.OEMActions"/>

</ComplexType>

<ComplexType Name="OEMActions"/>

© ISO/IEC 2018 – All rights reserved 57

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml
https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml
https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml
https://tools.oasis-open.org/version-control/browse/wsvn/odata/trunk/spec/vocabularies/Org.OData.Core.V1.xml
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 65

Individual actions are defined within a namespace using Action elements. The Name attribute of the
action specifies the name of the action. The IsBound attribute specifies that the action is bound to
(appears as a member of) a resource or structured type.

The Action element contains one or more Parameter elements that specify the Name and Type of each
parameter.

The first parameter is called the "binding parameter" and specifies the resource or structured type that the
action appears as a member of (the type of the Actions property on the resource). The remaining
Parameter elements describe additional parameters to be passed to the action.

7.5.7. Resource extensibility

Companies, OEMs, and other organizations can define additional properties, links, and actions for
common Redfish resources using the Oem property on resources, links, and actions.

While the information and semantics of these extensions are outside of the standard, the schema
representing the data, the resource itself, and the semantics around the protocol shall conform to the
requirements in this specification.

7.5.7.1. Oem property

In the context of this clause, the term OEM refers to any company, manufacturer, or organization that is
providing or defining an extension to the DMTF-published schema and functionality for Redfish. The base
schema for Redfish-specified resources include an empty complex type property called "Oem" whose
value can be used to encapsulate one or more OEM-specified complex properties. The Oem property in
the standard Redfish schema is thus a predefined placeholder that is available for OEM-specific property
definitions.

Correct use of the Oem property requires defining the metadata for an OEM-specified complex type that
can be referenced within the Oem property. The following fragment is an example of an XML schema that
defines a pair of OEM-specific properties under the complex type "AnvilType1". (Other schema elements
that would typically be present, such as XML and OData schema description identifiers, are not shown in
order to simplify the example).

<Action Name="MyAction" IsBound="true">

<Parameter Name="Thing" Type="MyType.Actions"/>

<Parameter Name="Parameter1" Type="Edm.Boolean"/>
</Action>

<Schema Name="Contoso.v1_2_0">
...

58 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

66 Published Version 1.2.0

The next fragment shows an example of how the previous schema and the "AnvilType1" property type
might appear in the instantiation of an Oem property as the result of a GET on a resource. The example
shows two required elements in the use of the Oem property: A name for the object and a type property
for the object. Detailed requirements for these elements are provided in the following clauses.

7.5.7.2. Oem property format and content

OEM-specified objects that are contained within the Oem property shall be valid JSON objects that follow
the format of a Redfish complex type. The name of the object (property) shall uniquely identify the OEM
or organization that manages the top of the namespace under which the property is defined. This is
described in more detail in the following clause. The OEM-specified property shall also include a type
property that provides the location of the schema and the type definition for the property within that
schema. The Oem property can simultaneously hold multiple OEM-specified objects, including objects for
more than one company or organization.

The definition of any other properties that are contained within the OEM-specific complex type, along with
the functional specifications, validation, or other requirements for that content is OEM-specific and outside
the scope of this specification. While there are no Redfish-specified limits on the size or complexity of the
OEM-specified elements within an OEM-specified JSON object, it is intended that OEM properties will
typically only be used for a small number of simple properties that augment the Redfish resource. If a
large number of objects or a large quantity of data (compared to the size of the Redfish resource) is to be
supported, the OEM should consider having the OEM-specified object point to a separate resource for
their extensions.

<ComplexType Name="AnvilType1">

<Property Name="slogan" Type="Edm.String"/>

<Property Name="disclaimer" Type="Edm.String"/>

</ComplexType>

...
</Schema>

{

"Oem": {

"Contoso": {

"@odata.type": "#Contoso.v1_2_0.AnvilType1",

"slogan": "Contoso anvils never fail",

"disclaimer": "* Most of the time"

}

},
...

}

© ISO/IEC 2018 – All rights reserved 59

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 67

7.5.7.3. Oem property naming

The OEM-specified objects within the Oem property are named using a unique OEM identifier for the top
of the namespace under which the property is defined. There are two specified forms for the identifier.
The identifier shall be either an ICANN-recognized domain name (including the top-level domain suffix),
with all dot '.' separators replaced with underscores '', or an IANA-assigned Enterprise Number prefaced
with "EID". DEPRECATED: The identifier shall be either an ICANN-recognized domain name (including
the top-level domain suffix), or an IANA-assigned Enterprise Number prefaced with "EID:".

Organizations using '.com' domain names may omit the '.com' suffix (e.g., Contoso.com may use
'Contoso', but Contoso.org must use 'Contoso_org' as their OEM property name). The domain name
portion of an OEM identifier shall be considered to be case independent. That is, the text "Contoso_biz",
"contoso_BIZ", "conTOso_biZ", and so on, all identify the same OEM and top level namespace.

The OEM identifier portion of the property name may be followed by an underscore and any additional
string to allow further namespacing of OEM-specified objects as desired by the OEM. E.g.
"Contoso_xxxx" or "EID_412_xxxx". The form and meaning of any text that follows the trailing underscore
is completely OEM-specific. OEM-specified extension suffixes may be case sensitive, depending on the
OEM. Generic client software should treat such extensions, if present, as opaque and not attempt to
parse nor interpret the content.

There are many ways this suffix could be used, depending on OEM need. For example, the Contoso
company may have a sub-organization "Research", in which case the OEM-specified property name
might be extended to be "Contoso_Research". Alternatively, it could be used to identify a namespace for
a functional area, geography, subsidiary, and so on.

The OEM identifier portion of the name will typically identify the company or organization that created and
maintains the schema for the property. However, this is not a requirement. The identifier is only required
to uniquely identify the party that is the top-level manager of a namespace to prevent collisions between
OEM property definitions from different vendors or organizations. Consequently, the organization for the
top of the namespace may be different than the organization that provides the definition of the OEM-
specified property. For example, Contoso may allow one of their customers, e.g., "CustomerA", to extend
a Contoso product with certain CustomerA proprietary properties. In this case, although Contoso
allocated the name "Contoso_customers_CustomerA" it could be CustomerA that defines the content and
functionality under that namespace. In all cases, OEM identifiers should not be used except with
permission or as specified by the identified company or organization.

7.5.8. Oem property examples

The following fragment presents some examples of naming and use of the Oem property as it might
appear when accessing a resource. The example shows that the OEM identifiers can be of different
forms, that OEM-specified content can be simple or complex, and that the format and usage of
extensions of the OEM identifier is OEM-specific.

60 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

68 Published Version 1.2.0

7.5.8.1. Custom actions

OEM-specific actions can be defined by defining actions bound to the OEM property of the resource's
Actions property type.

Such bound actions appear in the JSON payload as properties of the Oem type, nested under an Actions
property.

{

"Oem": {

"Contoso": {

"@odata.type": "#Contoso.v1_2_1.AnvilTypes1",

"slogan": "Contoso anvils never fail",

"disclaimer": "* Most of the time"
},

"Contoso_biz": {

"@odata.type": "#ContosoBiz.v1_1.RelatedSpeed",

"speed" : "ludicrous"

},

"EID_412_ASB_123": {

"@odata.type": "#OtherSchema.v1_0_1.powerInfoExt",

"readingInfo": {

"readingAccuracy": "5",

"readingInterval": "20"

}

},

"Contoso_customers_customerA": {

"@odata.type" : "#ContosoCustomer.v2015.slingPower",

"AvailableTargets" : ["rabbit", "duck", "runner"],

"launchPowerOptions" : ["low", "medium", "eliminate"],

"powerSetting" : "eliminate",
"targetSetting" : "rabbit"

}

},
...

}

<Action Name="Ping" IsBound="true">

<Parameter Name="ContosoType" Type="MyType.OEMActions"/>
</Action>

{

"Actions": {

© ISO/IEC 2018 – All rights reserved 61

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 69

7.5.8.2. Custom annotations

This specification defines a set of common annotations for extending the definition of resource types used
by Redfish. In addition, services may define custom annotations.

Services may apply annotations to resources in order to provide service-specific information about the
type, such as whether the service supports modifications of particular properties.

Services can apply annotations to existing resources where those resources don't already define a value
for the annotation. Services cannot change the value of an annotation applied as part of the resource
definition.

Because service annotations may be applied to existing resource definitions, they are generally specified
in a service-specific metadata document referenced by the service metadata.

7.6. Common Redfish resource properties

This clause contains a set of common properties across all Redfish resources. The property names in this
clause shall not be used for any other purpose, even if they are not implemented in a particular resource.

Common properties are defined in the base "Resource" Redfish Schema. For OData Schema
Representations, this is in Resource_v1.xml and for JSON Schema Representations, this is in
Resource.v1_0_0.json.

7.6.1. Id

The Id property of a resource uniquely identifies the resource within the Resource Collection that contains
it. The value of Id shall be unique across a Resource Collection.

7.6.2. Name

The Name property is used to convey a human readable moniker for a resource. The type of the Name
property shall be string. The value of Name is NOT required to be unique across resource instances
within a Resource Collection.

"OEM": {

"Contoso.vx_x_x#Contoso.Ping": {

"target":"/redfish/v1/Systems/1/Actions/OEM/Contoso.Ping"

}

}

},

...

}

62 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

70 Published Version 1.2.0

7.6.3. Description

The Description property is used to convey a human readable description of the resource. The type of the
Description property shall be string.

7.6.4. Status

The Status property represents the status of a resource.

The value of the status property is a common status object type as defined by this specification. By
having a common representation of status, clients can depend on consistent semantics. The Status
object is capable of indicating the current intended state, the state the resource has been requested to
change to, the current actual state and any problem affecting the current state of the resource.

7.6.5. Links

The Links property represents the links associated with the resource, as defined by that resources
schema definition. All associated reference properties defined for a resource shall be nested under the
links property. All directly (subordinate) referenced properties defined for a resource shall be in the root of
the resource.

7.6.6. Members

The Members property of a Resource Collection identifies the members of the collection.

7.6.7. RelatedItem

The RelatedItem property represents links to a resource (or part of a resource) as defined by that
resources schema definition. This is not intended to be a strong linking methodology like other
references. Instead it is used to show a relationship between elements or sub-elements in disparate parts
of the service. For example, since Fans may be in one area of the implementation and processors in
another, RelatedItem can be used to inform the client that one is related to the other (in this case, the Fan
is cooling the processor).

7.6.8. Actions

The Actions property contains the actions supported by a resource.

7.6.9. OEM

The OEM property is used for OEM extensions as defined in Schema Extensibility.

© ISO/IEC 2018 – All rights reserved 63

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 71

7.7. Redfish resources

Collectively known as the Redfish Schema, the set of resource descriptions contains normative
requirements on implementations conforming to this specification.

Redfish Resources are one of several general kinds:

• Root Service Resource
◦ Contains the mapping of a particular service instance to applicable subtending

resources.
◦ Contains the UUID of a service instance. This UUID would be the same UUID returned

via SSDP discovery.
• Current Configuration Resources, contain a mixture of:

◦ Inventory (static and read-only)
◦ Health Telemetry (dynamic and read-only)
◦ Current Configuration Settings (dynamic and read/write)
◦ Current Metric values

• Setting Resources
◦ Dynamic, Read/Write Pending Configuration Settings

• Services
◦ Common services like Eventing, Tasks, Sessions

• Registry Resources
◦ Static, Read-Only JSON encoded information for Event and Message Registries

7.7.1. Current configuration

Current Configuration resources represent the service's knowledge of the current state and configuration
of the resource. This may be directly updatable with a PATCH or it may be read-only by the client and the
client must PATCH to a separate Setting resource.

7.7.2. Settings

Setting resources represent the future state and configuration of the resource. This property is always
associated with a resource through the Redfish.Settings annotation. Where the resource represents the
current state, the settings resource represents the future intended state. The state of the resource is
changed either directly, such as with a POST of an action or PUT request or indirectly, such as when a
user reboots a machine outside of the Redfish Service.

7.7.3. Services

Service resources represent components of the Redfish Service itself as well as dependent resources.
While the complete list is discoverable only by traversing the Redfish Service tree, the list includes
services like the Eventing service, Task management and Session management.

64 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

72 Published Version 1.2.0

7.7.4. Registry

Registry resources are those resources that assist the client in interpreting Redfish resources beyond the
Redfish Schema definitions. Examples of registries include Message Registries, Event Registries and
enumeration registries, such as those used for BIOS. In registries, a identifier is used to retrieve more
information about a given resource, event, message or other item. This can include other properties,
property restrictions and the like. Registries are themselves resources.

7.8. Special resource situations

There are some situations that arise with certain kinds of resources that need to exhibit common
semantic behavior.

7.8.1. Absent resources

Resources may be either absent or their state unknown at the time a client requests information about
that resource. For removed resources where the URI is expected to remain constant (such as when a fan
is removed), the resource should represent the State property of the Status object as "Absent". In this
circumstance, any required or supported properties for which there is no known value shall be
represented as null.

7.8.2. Schema variations

There are cases when deviations from the published Redfish Schema are necessary. An example is BIOS
where different servers may have minor variations in available configuration settings. A provider may build
a single schema that is a superset of the individual implementations. In order to support these variations,
Redfish supports omitting parameters defined in the class schema in the current configuration object. The
following rules apply:

• All Redfish Services must support attempts to set unsupported configuration elements in the
Setting Data by marking them as exceptions in the Setting Data Apply status structure, but not
failing the entire configuration operation.

• The support of a specific property in a resource is signaled by the presence of that property in
the Current Configuration object. If the element is missing from Current Configuration, the client
may assume the element is not supported on that resource.

• For ENUM configuration items that may have variation in allowable values, a special read-only
capabilities element will be added to Current Configuration which specifies limits to the element.
This is an override for the schema only to be used when necessary.

Providers may split the schema resources into separate files such as Schema + String Registry, each with
a separate URI and different Content-Encoding.

• Resources may communicate omissions from the published schema via the Current

© ISO/IEC 2018 – All rights reserved 65

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 73

Configuration object if applicable.

8. Service details

8.1. Eventing

This clause covers the REST-based mechanism for subscribing to and receiving event messages.

The Redfish Service requires a client or administrator to create subscriptions to receive events. A
subscription is created when an administrator sends an HTTP POST message to the URI of the
subscription resource. This request includes the URI where an event-receiver client expects events to be
sent, as well as the type of events to be sent. The Redfish Service will then, when an event is triggered
within the service, send an event to that URI.

• Services shall support "push" style eventing for all resources capable of sending events.
• Services shall not "push" events (using HTTP POST) unless an event subscription has been

created. Either the client or the service can terminate the event stream at any time by deleting
the subscription. The service may delete a subscription if the number of delivery errors exceeds
pre-configured thresholds.

• Services shall respond to a successful subscription with HTTP status 201 and set the HTTP
Location header to the address of a new subscription resource. Subscriptions are persistent and
will remain across event service restarts.

• Clients shall terminate a subscription by sending an HTTP DELETE message to the URI of the
subscription resource.

• Services may terminate a subscription by sending a special "subscription terminated" event as
the last message. Future requests to the associated subscription resource will respond with
HTTP status 404.

There are two types of events generated in a Redfish Service - life cycle and alert.

Life cycle events happen when resources are created, modified or destroyed. Not every modification of a
resource will result in an event - this is similar to when ETags are changed and implementations may not
send an event for every resource change. For instance, if an event was sent for every Ethernet packet
received or every time a sensor changed 1 degree, this could result in more events than fits a scalable
interface. This event usually indicates the resource that changed as well as, optionally, any attributes that
changed.

Alert events happen when a resource needs to indicate an event of some significance. This may be either
directly or indirectly pertaining to the resource. This style of event usually adopts a message registry
approach similar to extended error handling in that a MessageId will be included. Examples of this kind of
event are when a chassis is opened, button is pushed, cable is unplugged or threshold exceeded. These
events usually do not correspond well to life cycle type events hence they have their own category.

66 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

74 Published Version 1.2.0

NOTE: Refer to the Security clause for security implications of Eventing.

8.1.1. Event message subscription

The client locates the Event Service by traversing the Redfish Service interface. When the service has
been discovered, clients subscribe to messages by sending a HTTP POST to the URL of the Resource
Collection for "Subscriptions" in the Event Service. The Event Service is found of f of the Service Root as
described in the Redfish Schema for that service.

The specific syntax of the subscription body is found in the Redfish Schema definition for
"EventDestination".

On success, the Event Service shall return an HTTP status 201 (CREATED) and the Location header in
the response shall contain a URI giving the location of the newly created subscription resource. The body
of the response, if any, shall contain a representation of the subscription resource conforming to the
"EventDestination" schema. Sending an HTTP GET to the subscription resource shall return the
configuration of the subscription.

Clients begin receiving events once a subscription has been registered with the service and do not
receive events retroactively. Historical events are not retained by the service.

8.1.2. Event message objects

Event message objects POSTed to the specified client endpoint shall contain the properties as described
in the Redfish Event Schema.

This event message structure supports a message registry. In a message registry approach there is a
message registry that has a list or array of MessageIds in a well known format. These MessageIds are
terse in nature and thus they are much smaller than actual messages, making them suitable for
embedded environments. In the registry, there is also a message. The message itself can have
arguments as well as default values for Severity and RecommendedActions.

The MessageId property contents shall be of the form

RegistryName.MajorVersion.MinorVersion.MessageKey

where

• RegistryName is the name of the registry. The registry name shall be Pascal-cased.
• MajorVersion is a positive integer representing the major version of the registry
• MinorVersion is a positive integer representing the minor version of the registry
• MessageKey is a human-readable key into the registry. The message key shall be Pascal-cased

and shall not include spaces, periods or special chars.

© ISO/IEC 2018 – All rights reserved 67

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 75

8.1.3. Subscription cleanup

To unsubscribe from the messages associated with this subscription, the client or administrator simply
sends an HTTP DELETE request to the subscription resource URI.

These are some configurable properties that are global settings that define the behavior for all event
subscriptions. See the properties defined in the "EventService" Redfish Schema for details of the
parameters available to configure the service’s behavior.

8.2. Asynchronous operations

Services that support asynchronous operations will implement the Task service & Task resource.

The Task service is used to describe the service that handles tasks. It contains a Resource Collection of
zero or more "Task" resources. The Task resource is used to describe a long running operation that is
spawned when a request will take longer than a few seconds, such as when a service is instantiated.
Clients will poll the URI of the task resource to determine when the operation has completed and if it was
successful.

The Task structure in the Redfish Schema contains the exact structure of a Task. The type of information
it contains are start time, end time, task state, task status, and zero or more messages associated with
the task.

Each task has a number of possible states. The exact states and their semantics are defined in the Task
resource of the Redfish Schema.

When a client issues a request for a long-running operation, the service returns a status of 202
(Accepted).

Any response with a status code of 202 (Accepted) shall include a location header containing the URL of
the Task Monitor and may include the Retry-After header to specify the amount of time the client should
wait before querying status of the operation.

The Task Monitor is an opaque URL generated by the service intended to be used by the client that
initiated the request. The client queries the status of the operation by performing a GET request on the
Task Monitor.

The client should not include the mime type application/http in the Accept Header when performing a GET
request to the Task Monitor.

The response body of a 202 (Accepted) should contain an instance of the Task resource describing the
state of the task.

As long as the operation is in process, the service shall continue to return a status code of 202
(Accepted) when querying the Task Monitor returned in the location header.

68 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

76 Published Version 1.2.0

The client may cancel the operation by performing a DELETE on the Task Monitor URL. The service
determines when to delete the associated Task resource object.

The client may also cancel the operation by performing a DELETE on the Task resource. Deleting the
Task resource object may invalidate the associated Task Monitor and subsequent GET on the Task
Monitor URL returns either 410 (Gone) or 404 (Not Found).

Once the operation has completed, the Task Monitor shall return a the appropriate status code (OK (200)
for most operations, Created (201) for POST to create a resource) and include the headers and response
body of the initial operation, as if it had completed synchronously. If the initial operation resulted in an
error, the body of the response shall contain an Error Response.

The service may return a status code of 410 (Gone) or 404 (Not Found) if the operation has completed
and the service has already deleted the task. This can occur if the client waits too long to read the Task
Monitor.

The client can continue to get information about the status by directly querying the Task resource using
the resource identifier returned in the body of the 202 (Accepted) response.

• Services that support asynchronous operations shall implement the Task resource
• The response to an asynchronous operation shall return a status code of 202 (Accepted) and set

the HTTP response header "Location" to the URI of a Task Monitor associated with the activity.
The response may also include the Retry-After header specifying the amount of time the client
should wait before polling for status. The response body should contain a representation of the
Task resource in JSON.

• GET requests to either the Task Monitor or the Task resource shall return the current status of
the operation without blocking.

• Operations using HTTP GET, PUT, PATCH should always be synchronous.
• Clients shall be prepared to handle both synchronous and asynchronous responses for requests

using HTTP PUT, PATCH, POST, and DELETE methods.

8.3. Resource tree stability

The Resource Tree, which is defined as the set of URIs and array elements within the implementation,
must be consistent on a single service across device reboot and A/C power cycle, and must withstand a
reasonable amount of configuration change (e.g., adding an adapter to a server). The resource Tree on
one service may not be consistent across instances of devices. The client must walk the data model and
discover resources to interact with them. It is possible that some resources will remain very stable from
system to system (e.g., BMC network settings) -- but it is not an architectural guarantee.

• A Resource Tree should remain stable across Service restarts and minor device configuration
changes, thus the set of URIs and array element indexes should remain constant.

• A Resource Tree shall not be expected by the client to be consistent between instances of
services.

© ISO/IEC 2018 – All rights reserved 69

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 77

8.4. Discovery

Automatic discovery of managed devices supporting the Redfish Scalable Platform Management API may
be accomplished using the Simple Service Discovery Protocol (SSDP). This protocol allows for network-
efficient discovery without resorting to ping-sweeps, router table searches, or restrictive DNS naming
schemes. Use of SSDP is optional, and if implemented, shall allow the user to disable the protocol
through the 'Manager Network Service' resource.

As the objective of discovery is for client software to locate Redfish-compliant managed devices, the
primary SSDP functionality incorporated is the M-SEARCH query. Redfish also follows the SSDP
extensions and naming used by UPnP where applicable, such that Redfish-compliant systems can also
implement UPnP without conflict.

8.4.1. UPnP compatibility

For compatibility with general purpose SSDP client software, primarily UPnP, UDP port 1900 should be
used for all SSDP traffic. In addition, the Time-to-Live (TTL) hop count setting for SSDP multicast
messages should default to 2.

8.4.2. USN format

The UUID supplied in the USN field of the service shall equal the UUID property of the service root. If
there are multiple / redundant managers, the UUID of the service shall remain static regardless of
redundancy failover. The Unique ID shall be in the canonical UUID format, followed by '::dmtf-org'

8.4.3. M-SEARCH response

The Redfish Service Search Target (ST) is defined as: urn:dmtf-org:service:redfish-rest:1

The managed device shall respond to M-SEARCH queries searching for Search Target (ST) of the
Redfish Service as well as "ssdp:all". For UPnP compatibility, the managed device should respond to M-
SEARCH queries searching for Search Target (ST) of "upnp:rootdevice".

The URN provided in the ST header in the reply shall use a service name of "redfish-rest:" followed by the
major version of the Redfish specification. If the minor version of the Redfish Specification to which the
service conforms is a non-zero value, and that version is backwards-compatible with previous minor
revisions, then that minor version shall be appended, preceded with a colon. For example, a service
conforming to a Redfish specification version "1.4" would reply with a service of "redfish-rest:1:4".

The managed device shall provide clients with the AL header pointing to the Redfish Service Root URL.

For UPnP compatibility, the managed device should provide clients with the LOCATION header pointing
to the UPnP XML descriptor.

70 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

Redfish Scalable Platforms Management API Specification DSP0266

78 Published Version 1.2.0

An example response to an M-SEARCH multicast or unicast query shall follow the format shown below.
Fields in brackets are placeholders for device-specific values.

8.4.4. Notify, alive, and shutdown messages

Redfish devices may implement the additional SSDP messages defined by UPnP to announce their
availability to software. This capability, if implemented, must allow the end user to disable the traffic
separately from the M-SEARCH response functionality. This allows users to utilize the discovery
functionality with minimal amounts of network traffic generated.

9. Security

9.1. Protocols

9.1.1. TLS

Implementations shall support TLS v1.1 or later.

Implementations should support the latest version of the TLS v1.x specification.

Implementations should support the SNIA TLS Specification for Storage Systems.

9.1.2. Cipher suites

Implementations should support AES-256 based ciphers from the TLS suites.

Redfish implementations should consider supporting ciphers similar to below which enable authentication
and identification without use of trusted certificates.

HTTP/1.1 200 OK

CACHE-CONTROL:max-age=<seconds, at least 1800>

ST:urn:dmtf-org:service:redfish-rest:1

USN:uuid:<UUID of Manager>::urn:dmtf-org:service:redfish-rest:1

AL:<URL of Redfish service root>
EXT:

TLS_PSK_WITH_AES_256_GCM_SHA384

TLS_DHE_PSK_WITH_AES_256_GCM_SHA384
TLS_RSA_PSK_WITH_AES_256_GCM_SHA384

© ISO/IEC 2018 – All rights reserved 71

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

DSP0266 Redfish Scalable Platforms Management API Specification

Version 1.2.0 Published 79

Additional advantage with using above recommended ciphers is -

"AES-GCM is not only efficient and secure, but hardware implementations can achieve high speeds with
low cost and low latency, because the mode can be pipelined."

Redfish implementations should support the following additional ciphers.

References to RFCs -

9.1.3. Certificates

Redfish implementations shall support replacement of the default certificate if one is provided.

Redfish implementations shall use certificates that are compliant with X.509 v3 certificate format, as
defined in RFC5280.

9.2. Authentication

• Authentication Methods

Service shall support both "Basic Authentication" and "Redfish Session Login Authentication" (as
described below under Session Management). Services shall not require a client to create a
session when Basic Auth is used.

Services may implement other authentication mechanisms.

9.2.1. HTTP header security

• All write requests to Redfish objects shall be authenticated, i.e., POST, PUT/PATCH, and
DELETE, except for

◦ The POST operation to the Sessions service/object needed for authentication
▪ Extended error messages shall NOT provide privileged info when

authentication failures occur
• Redfish objects shall not be available unauthenticated, except for

◦ The root object which is needed to identify the device and service locations
◦ The $metadata object which is needed to retrieve resource types

TLS_RSA_WITH_AES_128_CBC_SHA

http://tools.ietf.org/html/rfc5487
http://tools.ietf.org/html/rfc5288

72 © ISO/IEC 2018 – All rights reserved

ISO/IEC 30115:2018(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 30
11

5:2
01

8

http://tools.ietf.org/html/rfc5487
http://tools.ietf.org/html/rfc5288
https://iecnorm.com/api/?name=8fb0e4260cb2e4f045bd3e26d275b2ab

	Document Identifier: DSP0266
	Supersedes: 1.1.0 Document Class: Normative Document Status: Published Document Language: en-US
	1. Abstract
	2. Normative references
	3. Terms and definitions
	4. Symbols and abbreviated terms
	5. Overview
	5.1. Scope
	5.2. Goals
	5.3. Design tenets
	5.4. Limitations
	5.5. Additional design background and rationale
	5.5.1. REST-based
	5.5.2. Follow OData conventions
	5.5.3. Model-oriented
	5.5.4. Separation of protocol from data model
	5.5.5. Hypermedia API service endpoint

	5.6. Service elements
	5.6.1. Synchronous and asynchronous operation support
	5.6.2. Eventing mechanism
	5.6.3. Actions
	5.6.4. Service entry point discovery
	5.6.5. Remote access support

	5.7. Security

	6. Protocol details
	6.1. Use of HTTP
	6.1.1. URIs
	6.1.2. HTTP methods
	6.1.3. HTTP redirect
	6.1.4. Media types
	6.1.5. ETags

	6.2. Protocol version
	6.3. Redfish-defined URIs and relative URI rules
	6.4. Requests
	6.4.1. Request headers
	6.4.2. Read requests (GET)
	6.4.2.1. Service root request
	6.4.2.2. Metadata document request
	6.4.2.3. OData service document request
	6.4.2.4. Resource retrieval requests
	6.4.2.4.1. Query parameters
	6.4.2.4.2. Retrieving Resource Collections

	6.4.3. HEAD
	6.4.4. Data modification requests
	6.4.4.1. Update (PATCH)
	6.4.4.2. Replace (PUT)
	6.4.4.3. Create (POST)
	6.4.4.4. Delete (DELETE)
	6.4.4.5. Actions (POST)

	6.5. Responses
	6.5.1. Response headers
	6.5.1.1. Link header

	6.5.2. Status codes
	6.5.3. Metadata responses
	6.5.3.1. Service metadata
	6.5.3.1.1. Referencing other schemas
	6.5.3.1.2. Referencing OEM extensions
	6.5.3.1.3. Annotations
	6.5.3.2. OData Service Document

	6.5.4. Resource responses
	6.5.4.1. Context property
	6.5.4.1.1. Select list
	6.5.4.2. Resource identifier property
	6.5.4.3. Type property
	6.5.4.4. ETag property
	6.5.4.5. Primitive properties
	6.5.4.5.1. DateTime values
	6.5.4.6. Structured properties
	6.5.4.7. Actions property
	6.5.4.7.1. Action representation
	6.5.4.7.2. Allowable values
	6.5.4.8. Links property
	6.5.4.8.1. Reference to a single related resource
	6.5.4.8.2. Array of references to related resources
	6.5.4.9. OEM property
	6.5.4.10. Partial resource results
	6.5.4.11. Extended information
	6.5.4.11.1. Extended object information
	6.5.4.11.2. Extended property information
	6.5.4.12. Additional annotations

	6.5.5. Resource Collection responses
	6.5.5.1. Context property
	6.5.5.2. Count property
	6.5.5.3. Members property
	6.5.5.4. NextLink property and partial results
	6.5.5.5. Additional annotations

	6.5.6. Error responses
	6.5.6.1. Message object

	7. Data model and Schema
	7.1. Schema repository
	7.1.1. Programmatic access to schema files

	7.2. Type identifiers
	7.2.1. Type identifiers in JSON

	7.3. Common naming conventions
	7.4. Localization considerations
	7.5. Schema definition
	7.5.1. Common annotations
	7.5.1.1. Description
	7.5.1.2. Long description

	7.5.2. Schema documents
	7.5.2.1. Schema Modification Rules
	7.5.2.2. Schema Version Requirements
	7.5.2.3. Referencing other schemas
	7.5.2.4. Namespace definitions

	7.5.3. Resource type definitions
	7.5.4. Resource properties
	7.5.4.1. Property types
	7.5.4.1.1. Primitive types
	7.5.4.1.2. Structured types
	7.5.4.1.3. Enums
	7.5.4.1.4. Collections
	7.5.4.2. Additional properties
	7.5.4.3. Non-nullable properties
	7.5.4.4. Read-only properties
	7.5.4.5. Required properties
	7.5.4.6. Required properties on create
	7.5.4.7. Units of measure

	7.5.5. Reference properties
	7.5.5.1. Contained resources
	7.5.5.2. Expanded references
	7.5.5.3. Expanded resources

	7.5.6. Resource actions
	7.5.7. Resource extensibility
	7.5.7.1. Oem property
	7.5.7.2. Oem property format and content
	7.5.7.3. Oem property naming

	7.5.8. Oem property examples
	7.5.8.1. Custom actions
	7.5.8.2. Custom annotations

	7.6. Common Redfish resource properties
	7.6.1. Id
	7.6.2. Name
	7.6.3. Description
	7.6.4. Status
	7.6.5. Links
	7.6.6. Members
	7.6.7. RelatedItem
	7.6.8. Actions
	7.6.9. OEM

	7.7. Redfish resources
	7.7.1. Current configuration
	7.7.2. Settings
	7.7.3. Services
	7.7.4. Registry

	7.8. Special resource situations
	7.8.1. Absent resources
	7.8.2. Schema variations

	8. Service details
	8.1. Eventing
	8.1.1. Event message subscription
	8.1.2. Event message objects
	8.1.3. Subscription cleanup

	8.2. Asynchronous operations
	8.3. Resource tree stability
	8.4. Discovery
	8.4.1. UPnP compatibility
	8.4.2. USN format
	8.4.3. M-SEARCH response
	8.4.4. Notify, alive, and shutdown messages

	9. Security
	9.1. Protocols
	9.1.1. TLS
	9.1.2. Cipher suites
	9.1.3. Certificates

	9.2. Authentication
	9.2.1. HTTP header security
	9.2.1.1. HTTP redirect

	9.2.2. Extended error handling
	9.2.3. HTTP header authentication
	9.2.3.1. BASIC authentication
	9.2.3.2. Request/Message level authentication

	9.2.4. Session Management
	9.2.4.1. Session lifecycle management
	• A Redfish Service shall provide login sessions compliant with this specification.
	9.2.4.3. Session login
	9.2.4.4. X-Auth-Token HTTP header
	9.2.4.5. Session lifetime
	9.2.4.6. Session termination or logout

	9.2.5. AccountService
	9.2.6. Async tasks
	9.2.7. Event subscriptions
	9.2.8. Privilege model/Authorization
	9.2.9. Redfish Service Operation to Privilege Mapping
	9.2.9.1. Why specify Operation to Privilege Mapping
	9.2.9.2. Representing Operation to Privilege Mappings
	9.2.9.3. OperationMap Syntax
	9.2.9.4. Mapping Overrides Syntax
	9.2.9.5. Property Override Example
	9.2.9.6. Subordinate Override
	9.2.9.7. ResourceURI Override
	9.2.9.8. Privilege AND and OR Syntax

	10. Redfish Host Interface
	11. Redfish Composability
	11.1. Composition Requests
	11.1.1. Specific Composition

	12. ANNEX A (informative)
	12.1. Change log

	Blank Page
	Blank Page
	Blank Page

