INTERNATIONAL ISO/IEC
STANDARD 8825-2

Sixth edition
2021-06

N —

Information technology — ASN{1
encoding rules —

Part 2:
Specification of Packed Encoding
Rules (PER)

Technologies de l'infermation — Régles de codage ASN.1 —
Partie 2: Spécification des régles de codage compact (PER)

Reference number
ISO/IEC 8825-2:2021(E)

© ISO/IEC 2021

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 e Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org

Published in Switzerland

ii © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the

work.

The I:IEO

described in the ISO/IEC Directives, Part 1. In particular, the different approval ctiterj
the different types of document should be noted. This document was drafted(in-acc
the pditorial rules of the ISO/IEC Directives, Part2 (see

www.ise.org/directives

cedures used to develop this document and those intended for its further maintenance are

a needed for
brdance with
or

www.jec.ch/members experts/refdocs)

Attent
paten
of any
on th
declar

ion is drawn to the possibility that some of the elements of this docdiment may be
rights. ISO and IEC shall not be held responsible for identifying any or all such patent
patent rights identified during the development of the document will be in the Introd
e [SO list of patent declarations received (see www.isofeng/patents) or the IEC
ations received (see patents.iec.ch).

Any ttade name used in this document is information given for the convenience of users
constitute an endorsement.

For aph explanation of the voluntary nature of standards, the meaning of ISO specif]
expressions related to conformity assessment,"as well as information about ISO's adh

World Trade Organization (WTO) principles in the Technical Barriers to
see w.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards
This {:cument was prepared by Joint Technical Committee ISO/IEC JTC 1, Informatio
Subcommittee SC 6, Telecommunications and information exchange between systems, in
with I[TU-T. The identical textis)published as ITU-T X.691 (02/2021).

This §ixth edition cancels and replaces the fifth edition (ISO/IEC 8825-2:2015), wh
technically revised. [t also incorporates ISO/IEC 8825-2:2015/Cor 1:2017.

Alist ¢f all partsinthe ISO/IEC 8825 series can be found on the ISO and IEC websites.

Any fdedback or questions on this document should be directed to the user’s national stan

the subject of
Fights. Details
Iction and/or
list of patent

and does not

c terms and
brence to the
'rade (TBT)

n technology,
collaboration

ch has been

Hards body. A
'.ch /national-

compl|ete listing of these bodies can be found at www.iso.org/members.html and www.ie

committees.

© ISO/IEC 2021 - All rights reserved

iii

https://www.iso.org/directives-and-policies.html
http://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://patents.iec.ch/
https://www.iso.org/foreword-supplementary-information.html
https://www.iec.ch/understanding-standards
https://sd.iso.org/projects/project/71236/overview
https://www.iso.org/members.html
http://www.iec.ch/national-committees
http://www.iec.ch/national-committees
https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021(E)

CONTENTS

Page

LU0l I3 o1 o] ST Vi
1 {0l oL TP T PSSP T VPP PRTPRPRURPN 1
2 NOIMALIVE TETEIEINCES ... ittt r et b e bt bt e bt b e e bt b e ne bt e bt nr bt e bt nn b e ebennebeenenr s 1
2.1 Identical Recommendations | International Standardscccoerereriiinieninieee e 1

2.2 AJAItIONAl FEFEIENCESeieiieitiieee bbb bbbt n e 1

3 DBFINITIONS ...t b et E bR bR bR bbb bt 2
3.1 Specification of BasiC NOTATION.cccoiiiiiiiiiiiee et 2

3.2 Information Object SPECITICAIIONoiiiiiiii e et 2

3.3 CoNSLraint SPECITICALIONeiviiiiiiieiieie ettt et b ettt bbbt e b e 2

3.4 Parameterization Of ASN.1L SPECITICAIION ...c..ecivvieiiiiiiiieiii et eeteesveeeireestveesareestveesneeees 2

3.5 Basic ENCoding RUIEScciiiiiiiiiie e eee B o 2

3.6] PER ENCOdiNg INSLIUCTIONSveiuveiieiiie ettt na e nn e snesne e e T e 2

3.7 Additional definitioNS.........ccooviiiiiiiiee e e s 2

4 ADIIEVIALIONS ...ttt st steste e naeneesnessesnesnesreeneeneesfipadebennnnnnennees]onres 5
5 N0} =L o] o PSSP S Z APPSR F 5
6 LO1a] 1 1Y7T 01 1] o OSSO UUORPUTPTPRT -/ SRUTURURPRPRRI N 5
7 Endoding rules defined in this Recommendation | International Standard8¢C e i, 5
8 CONFOIMENCE ...t 6
9 PER encoding INSLIUCTIONScvoiviiiiicieiice e see e s e s es e resre s e ensesaeseesteseesressesnsesenses foees 6
10 Thdapproach to encoding used fOr PERcccooiiiiiiiiniiii s 52 e 7
10.1 Use of the type NOLALIONcccceveiiiniiiirieiineee e e | 7

10.2 Use of tags to provide a canonical Orderocooe Meriiiiiiiiniiiineeeseeeseese e s 7

10.83 PER-VISIDIE CONSIIAINTSviveieieiieicie e eesgra e e e ee e esaesae e stesnessaeneesaeseessessessessesseeseeses foenes 7

10.4 Type and value model used for eNCOAING....... g i | 9

10.5 Structure of an eNCOTINGoviviriiiiire e M e | 9

10.6 Typesto De eNCOTEA.........ccoveiiiriiiii ettt | 10

11 ENQOdING PrOCEAUIES ..ot e ettt ettt bttt b e bbbt e b sne b sbesne e eneenne s foais 10
11.1 Production of the complete enCOAING...........coviirieiiiiriirirecreeee e | 10

112 Open type fIElAScoeoeeieee s i | 11

11.8 Encoding as a NoN-negative=binary-iNtEgETccovirirriieiiireisiseee s esee foans 11

11.4 Encoding as a 2's-complement-Dinary-iNtegerccouveiiriirieie s | 12

11.% Encoding of a constrained Whole NUMDEK ... | 12

11.6 Encoding of a narmally small non-negative whole number.............cccooiiiiie e 13

11.7 Encoding of.a'semi-constrained Whole NUMDETccccceiiiiiiicie e | 13

11.8 Encodingyofan unconstrained Whole NUMDETcccociiieiiiiicie e | 13

11.9 Generalyules for encoding a length determinantcccccooveveieiiiiiie s | 14

12 ENgoding-the DOOIEAN TYPEoviiiiiiieieite ettt be e sne e ene s e 16
13 ENGOdiNg the INTEOET TYPE ..ottt b e be e b nneneene s e 16
14 ENcoding the ENUMETETEA TYPEc.oveiieieieite ettt et b e et b e sr e ebenn e ebennenea 17
15 ENCOTING the FRAI TYPB ...ttt bt bbbt b et et et b bbbt et e et enee e e 18
16 S aTolo o [Tolo g Tol oTL S T 8o L= SRS 18
17 ENCOdING the OCIEISIIING TYP8 . viveieieiee ettt sttt e et et e sr e st e s beebeere e e eneeneees 19
18 ENCOAING the NUIT EYPE. ... bbb et b e e b e e b et e e ebesbeneeneas 19
19 ENCOdING the SEQUENCE LY ...ttt ettt bbb et b e et b et b e bt eb e e s e ebenneneas 19
20 ENcoding the SEQUENCE-0F LY ..ot et b et b e et ebenr et ebennene s 20
21 ENCOMING the SEL LY <.ttt bttt b et b e bt bt et e e et sb e bt s bt bt et e et eneeneebas 21
22 ENCOMING the SBI-0F TYPB ..eiie e ettt e e s r e st e teeae e e et e e nrenn 21
23 ENCOMING the CNOICE TYP. .. c.ei ittt ettt be b et e e b et e st e s besbeebeeraeneeseeseees 21

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) i

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021(E)

24 Encoding the 0DJect Identifier tYPe.... ..o b e
25 Encoding the relative object identifier TYPe.......c.o oo s
26 Encoding the internationalized reSOUrce referenNCe tYPEccvvviuiiieeieiescce s
27 Encoding the relative internationalized resource referenCe tYPecoevveeererisie e e
28 Encoding the embedded-pAV LYPEov i nre s
29 Encoding of a value of the eXErNal TYPe ..o
30 Encoding the restricted CharaCter StrNG TYPES ...c..e eierie et
31 Encoding the unrestricted CharaCter StHNG tYPE.......covcie it
32 Encoding the time type, the useful time types, the defined time types and the additional time types............
321 GBNEIAL ...ttt r e
32.2 Encoding subtypes with the "Basic=Date" Property Settingcceccrvrerrienernienesesese s
32.3 Encoding subtypes with the "Basic=Time" Property Settingccceocvvererrienernieniennienencspie oo
32.4 Encoding subtypes with the "Basic=Date-Time" property Setting..........cccecerervrvriesimuebsinn o
32.% Encoding subtypes with the "Basic=Interval Interval-type=SE" property setting....|.....
32.6 Encoding subtypes with the "Basic=Interval Interval-type=D" property setting......|.....
32.1 Encoding subtypes with the "Basic=Interval Interval-type=SD" Of
"Basic=Interval Interval-type=DE" property Setting........cccoeee. Grrtenniiviinninnvernnc e
32.8 Encoding subtypes with the "Basic=Rec-Interval Interval-type=SE"
PrOPEILY SEHING....cveveiiiteieeieiie e A ettt sttt st sre st
32.9 Encoding subtypes with the "Basic=Rec-Interval Intervdlstype=D" property setting...
32.10 Encoding subtypes with the "Basic=Rec-Interval Intexval-type=SD" or
"Basic=Rec-Interval Interval-type=DE" Property setting.........c.ceinc o
32.11 Encoding subtypes with mixed settings of the Basic PFOPEMYccovvvvivvrennienesieneeeneeee s foe
33 Object identifiers for transfer SYNTAXES.........coovveririeriiienc e St e
ANNEX A - EXamPpPle OF ENCOUINGSocvviviiriiiiicieicie e et S et e e eree e e e seestestesnassaenseseessessessessessesneesens]onses
A.l] Record that does not use SUDLYPE CONSLIAINTS .. veuveeirierieiiiniecieie e e
All ASN.1 description of the reCOrtkStrUCIUIE........coeveierere e o
Al2 ASN.1 description of @ reCOrAVAlUEcccvcveieieiece e o
Al3 ALIGNED PER representation of this record valuecccooevvniinincinneicc o
Al4 UNALIGNED PER representation of this record value.............ccccccveevieninncnncecnn o
A2l Record that uses SUDLYPE CONSEIAITLS..........ccoeriiiririee e e
A2l ASN.1 description,of the record StrUCIUME.........coeviereiiiiiecee e Jo
A22 ASN.1 description of @ record ValUecccvoireiiiiiciininencese e o
A23 ALIGNED-PER representation of this record valueccccoevvncinncinncic o
A24 UNALIGNED PER representation of this record value.............ccccccoevveninncnncennc e
A3 Record that USES\EXTENSION MAFKETSc.vcvvireieiiirerieesre e e
A3l ASN/1 description of the record StrUCTUIe.coeieiiiiiineceeeee e e
A3.2 ASN.1 description of @ record ValUEcceeieiiiiniieieeeee e fee e
A33 ALIGNED PER representation of this record valuecccccoveveveviiniie e o
A3l UNALIGNED PER representation of this record value..........c..ccocevevveiinininicevencnn o
A4 Record that uses extension addition groUPSc.ccceiveviirereiisiesieie e sre et sre e eees o
Ad.l ASN.1 description of the record StrUCIUNE.........coeovviieiiiieie e o
A.|8.Z ASNL.L UESCTTPUON O d TECOTU VAIULEo
A43 ALIGNED PER representation of this record valuecccocoveininiinneiiieseiees
A4l UNALIGNED PER representation of this record value.............cccccooeriinininencnennn
Annex B — Combining PER-visible and non-PER-ViSible CONSLIaINSccoiiiiiiiiiiiiieee e
2 00 € =10 1] - | OSSR
B.2 Extensibility and visibility of constraints in PER...........ccciiiiiiii e
B.2.1 GBNETAL ...t
B.2.2 PER-VISibility Of CONSIIAINTSc.oiiiiiie i
B.2.3 EFfECtIVE CONSEIAINTS ..ot
2 TG T v 1141] LRSS
iv Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

22
22
22
23
23
23
24
26

26
26
30
32
35
35
36

37

38
38

39
40

42

43
43
43
43
43
44
46
46
46
46
47
48
48
49
49
50
52
52
52
52
53
54
54
54
54

55
56

57

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021(E)

Annex C — Support for the PER algOrithims............cooiiiiii e et 59
Annex D — Support for the ASN.1 rules of eXteNSIDIITYccooiiiiiiiiie e 60
Annex E — Tutorial annex on concatenation 0f PER €NCOUINGSccceivieiieiieiiie e se e e 61
Annex F — Identification of ENCOAING RUIESc.voiiiiiiiece et nne s 62

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) v

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021(E)

Introduction

Specifications Rec. ITU-T X.680 | ISO/IEC 8824-1, Rec. ITU-T X.681 | ISO/IEC 8824-2, Rec. ITU-T X.682 |
ISO/IEC 8824-3, Rec. ITU-T X.683 | ISO/IEC 8824-4 together describe Abstract Syntax Notation One (ASN.1),
a notation for the definition of messages to be exchanged between peer applications.

This Recommendation | International Standard defines encoding rules that may be applied to values of types defined using
the notation specified in Rec. ITU-T X.680 | ISO/IEC 8824-1. Application of these encoding rules produces a transfer
syntax for such values. It is implicit in the specification of these encoding rules that they are also to be used for decoding.

There are more than one set of encoding rules that can be applied to values of ASN.1 types. This Recommendation |
International Standard defines a set of Packed Encoding Rules (PER), so called because they achieve a much more
compact representation than that achieved by the Basic Encoding Rules (BER) and its derivatives described in Rec.
ITU-T X.690 | ISO/IEC 8825-1 which is referenced for some parts of the specification of these Packed Encoding Rules.

vi Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-

INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

Information technology —
ASN.1 encoding rules:
Specification of Packed Encoding Rules (PER)

1 Scope

2:2021 (E)

This Recommendation | International Standard specifies a set of Packed Encoding Rules that may be used to derive a
transfer syntax for values of types defined in Rec. ITU-T X.680 | ISO/IEC 8824-1. These Packed Encoding Rules are also

to be appli

The encod

2 I

The follow
constitute
were valid

Recommendation | International Standard are encouraged to investigate the possibility of applying the most reg

of the Reg
Internatiory
ITU-T Req

NOTE -
of this §

2.1

4 areused at the time of communication;
+ areintended for use in circumstances where minimizing the size of the representation of values i

ed for decoding such a transfer syntax in order to identify the data values being transferred.

Mg Tates SpeCHied i this Recommendation - mtermationat Standard:

concern in the choice of encoding rules;

allow the extension of an abstract syntax by addition of extra values,.preserving the
of the existing values, for all forms of extension described in Rec. ITU-T X680 | ISO/IEC 882

can be modified in accordance with the provisions of Rec. ITU-T X.695{ 1SO/IEC 8825-6.

Normative references

ing Recommendations and International Standards contain provisions which, through reference i
provisions of this Recommendation | International Standard=At the time of publication, the edition
. All Recommendations and Standards are subject to{revision, and parties to agreements bas

ommendations and Standards listed below. Members'of IEC and ISO maintain registers of curr
al Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of curn
ommendations.

This Recommendation | International Standar@is based on ISO/IEC 10646:2003. It cannot be applied using I3
fandard.

dentical Recommendationsd;International Standards

Recommendation ITU-T_X.680 (2021) | ISO/IEC 8824-1:2021, Information technology — Abst
Notation One (ASNel):-Specification of basic notation.

RecommendatignTU-T X.681 (2021) | ISO/IEC 8824-2:2021, Information technology — Abst
Notation One((ASN.1): Information object specification.

Recommeéndation ITU-T X.682 (2021) | ISO/IEC 8824-3:2021, Information technology — Abst
Notatier.One (ASN.1): Constraint specification.

Recommendation ITU-T X.683 (2021) | ISO/IEC 8824-4:2021, Information technology — Abst
Notation One (ASN.1): Parameterization of ASN.1 specifications.

5 the major

encodings
A-1;

h this text,
5 indicated
ed on this
ent edition
ently valid
ently valid

ter versions

act Syntax
act Syntax
act Syntax

act Syntax

Recaommendation I TU-T X 690 (7071) ! ISQ/IEC 8825-1:2021 Information fpr‘hnnlngyf ASN

L encoding

rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished

Encoding Rules (DER).

rules: Registration and application of PER encoding instructions.

Recommendation ITU-T X.695 (2021) | ISO/IEC 8825-6:2021, Information technology — ASN.1 encoding

NOTE — The references above shall be interpreted as references to the identified Recommendations | International Standards
together with all their published amendments and technical corrigenda.

2.2 Additional references

— ISO/IEC 2375:2003, Information technology — Procedure for registration of escape sequences

character sets.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021)

ISO/IEC 646:1991, Information technology — 1SO 7-bit coded character set for information interchange.
ISO/IEC 2022:1994, Information technology — Character code structure and extension techniques.

and coded

1

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

— IS0 6093:1985, Information processing — Representation of numerical values in character strings for
information interchange.

— ISO International Register of Coded Character Sets to be Used with Escape Sequences.
— ISO/IEC 10646:2003, Information technology — Universal Multiple-Octet Coded Character Set (UCS).

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Specification of Basic Notation

For the purposes of this Recommendation | International Standard, all the definitions in Rec. ITU-T X.680 |
ISO/IEC 8824-1 apply

3.2 nformation Object Specification

For the purposes of this Recommendation | International Standard, all the definitions in Rec. ITU-[IT X.681 |
ISO/IEC 8B24-2 apply.

3.3 Constraint Specification

This Recommendation | International Standard makes use of the following termsvdefined in Rec. ITU{T X.682 |
ISO/IEC 8B24-3:

d) component relation constraint;
) table constraint.

3.4 fParameterization of ASN.1 Specification

This Recdgmmendation | International Standard makes use “‘@f'the following term defined in Rec. ITU{T X.683 |
ISO/IEC 8B24-4:

variable constraint.

3.5 Basic Encoding Rules

This Recgmmendation | International Standard makes use of the following terms defined in Rec. ITU{T X.690 |
ISO/IEC 8B25-1:

d) datavalue;
B) dynamic conformance;
@) encoding (of & data value);
d) receiver;
) sendér;

f static conformance.

g

3.6 PER Encoding Tnstructions

This Recommendation | International Standard makes use of the following term defined in Rec. ITU-T X.695 |
ISO/IEC 8825-6:

— identifying keyword.

3.7 Additional definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.7.1 2's-complement-binary-integer encoding: The encoding of a whole number into a bit-field (octet-aligned in
the ALIGNED variant) of a specified length, or into the minimum number of octets that will accommodate that whole
number encoded as a 2's-complement-integer, which provides representations for whole numbers that are equal to, greater
than, or less than zero, as specified in 11.4.

2 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

NOTE 1 — The value of a two's complement binary number is derived by numbering the bits in the contents octets, starting with
bit 1 of the last octet as bit zero and ending the numbering with bit 8 of the first octet. Each bit is assigned a numerical value of 2N,
where N is its position in the above numbering sequence. The value of the two's complement binary number is obtained by summing
the numerical values assigned to each bit for those bits which are set to one, excluding bit 8 of the first octet, and then reducing
this value by the numerical value assigned to bit 8 of the first octet if that bit is set to one.

NOTE 2 — Whole number is a synonym for the mathematical term integer. It is used here to avoid confusion with the ASN.1 type
integer.

3.7.2 abstract syntax value: A value of an abstract syntax (defined as the set of values of a single ASN.1 type),
which is to be encoded by PER, or which is to be generated by PER decoding.

NOTE — The single ASN.1 type associated with an abstract syntax is formally identified by an object of class ABSTRACT-SYNTAX.

3.7.3 bit-field: The product of some part of the encoding mechanism that consists of an ordered set of bits that are
not necessarily a multiple of eight.

NOTE - If the use of this term is followed by "octet-aligned in the ALIGNED variant", this means that the bit-field is required to
begin on.an octet boundary in the complete encoding for the aligned variant of PER

3.74 ganonical encoding: A complete encoding of an abstract syntax value obtained by the application'df encoding
rules that have no implementation-dependent options; such rules result in the definition of a 1-1-mappirg between
unambigugus and unique bitstrings in the transfer syntax and values in the abstract syntax.

3.75 gomposite type: A set, sequence, set-of, sequence-of, choice, embedded-pdv, external'op unrestrictefl character
string type

3.7.6 gomposite value: The value of a composite type.

3.7.7 gonstrained whole number: A whole number which is constrained by PER<visible constraints to Iie within a
range front "Ib" to "ub" with the value "Ib" less than or equal to "ub", and the values’of "Ib" and "ub" as permifted values.
NOTE + Constrained whole numbers occur in the encoding which identifies thecchesen alternative of a choice type, the length of
charactdr, octet and bit string types whose length has been restricted by PER-visihle constraints to a maximum length, fthe count of
the numper of components in a sequence-of or set-of type that has been restriCted by PER-visible constraints to a maxinjum number
of comgonents, the value of an integer type that has been constrained by PER-visible constraints to lie within finite minimum and
maximym values, and the value that denotes an enumeration in an enumerated type.

3.7.8 dffective size constraint (for a constrained stringdype): A single finite size constraint that could|be applied
to a built-i string type and whose effect would be to permit atband only those lengths that can be present in the gonstrained
string type

NOTE 1 - For example, the following has an effective size constraint:

A|::= IA5String (SIZE(l..4) | SIZE(10.-15))
since it fan be rewritten with a single size constraimt that applies to all values:
A|::= IA5String (SIZE(1..4 | 10..15))

whereaq the following has no effective size constraint since the string can be arbitrarily long if it does not contain anly characters
other than 'a’, 'b" and 'c":

B|::= IA5String (SIZE(l..4) | FROM("abc"))
NOTE 2 — The effective size ¢onstraint is used only to determine the encoding of lengths.

3.79 dffective permitted-<alphabet constraint (for a constrained restricted character string type): A single
permitted-plphabet constraint that could be applied to a built-in known-multiplier character string type and whose effect
would be to permit athand only those characters that can be present in at least one character position of any|one of the
values in the constrained restricted character string type.

NOTE 1 - For example, in:
IA5String (FROM("AB") | FROM("CD"))
IA5String (SIZE(1l..4) | FROM("abc"))

Ax has an effective permitted-alphabet constraint of "aBcD". Bx has an effective permitted-alphabet constraint that consists
of the entire 1a5string alphabet since there is no smaller permitted-alphabet constraint that applies to all values of Bx.

NOTE 2 — The effective permitted-alphabet constraint is used only to determine the encoding of characters.

Ax !

Bx ::

3.7.10 enumeration index: The non-negative whole number associated with an "Enumerationltem" in an enumerated
type. The enumeration indices are determined by sorting the "Enumerationltem™s into ascending order by their
enumeration value, then by assigning an enumeration index starting with zero for the first "Enumerationltem”, one for
the second, and so on up to the last "Enumerationltem™ in the sorted list.

NOTE - "Enumerationltem"s in the "RootEnumeration™ are sorted separately from those in the "AdditionalEnumeration”.

3.7.11 extensible for PER encoding: A property of a type which requires that PER identifies an encoding of a value
as that of a root value or as that of an extension addition.

NOTE - Root values are normally encoded more efficiently than extension additions.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 3

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

3.7.12 field-list: An ordered set of bit-fields that is produced as a result of applying these encoding rules to components
of an abstract value.

3.7.13 indefinite-length: An encoding whose length is greater than 64K-1 or whose maximum length cannot be
determined from the ASN.1 notation.

3.7.14 fixed-length type: A type such that the value of the outermost length determinant in an encoding of this type
can be determined (using the mechanisms specified in this Recommendation | International Standard) from the type
notation (after the application of PER-visible constraints only) and is the same for all possible values of the type.

3.7.15 fixed value: A value such that it can be determined (using the mechanisms specified in this Recommendation |
International Standard) that this is the only permitted value (after the application of PER-visible constraints only) of the
type governing it.

3.7.16 known-multiplier character string type: A restricted character string type where the number of octets in the
encoding is a known fixed multiple of the number of characters in the character string for all permitted character string
values. Tlle known-multiplier character string types are IAS5String, PrintableString, VisibleString,
NumericSltring, UniversalString and BMPString.

3.7.17 Iength determinant: A count (of bits, octets, characters, or components) determining the dength of part or all
of a PER ¢ncoding.

3.7.18 normally small non-negative whole number: A part of an encoding which represents‘values of an inbounded
non-negatilve integer, but where small values are more likely to occur than large ones.

3.7.19 ormally small length: A length encoding which represents values of an tinbounded length, but where small
lengths arg more likely to occur than large ones.

3.7.20 on-negative-binary-integer encoding: The encoding of a constraingd’or semi-constrained whole number into
either a bitH-field of a specified length, or into a bit-field (octet-aligned in the’ALIGNED variant) of a specified length, or
into the minimum number of octets that will accommodate that whole RUmber encoded as a non-negative-binpry-integer
which proyides representations for whole numbers greater than or eqtiahto zero, as specified in 11.3.
NOTE + The value of a non-negative-binary-number is derived by numbering the bits in the contents octets, starting yvith bit 1 of
the last pctet as bit zero and ending the numbering with bit 8 of the first octet. Each bit is assigned a numerical value ¢f 2N, where
N is its|position in the above numbering sequence. The value of.the non-negative-binary-number is obtained by simming the
numeridal values assigned to each bit for those bits which are-sét’to one.

3.7.21 qutermost type: An ASN.1 type whose enceding is included in a non-ASN.1 carrier or as the valpe of other
ASN.1 conjstructs (see 11.1.1).

NOTE + PER encodings of an outermost type are-always an integral multiple of eight bits.

3.7.22 PER-visible constraint: An instanee of use of the ASN.1 constraint notation which affects the PER encoding
of a value.

3.7.23 felay-safe encoding: A complete encoding of an abstract syntax value which can be decoded (indluding any
embedded [encodings) without knewledge of the environment in which the encoding was performed.

3.7.24 demi-constrainediwhole number: A whole number which is constrained by PER-visible constraintf to exceed
or equal sgme value "Ib"with the value "lb" as a permitted value, and which is not a constrained whole numbgr.
NOTE } Semi-constrained whole numbers occur in the encoding of the length of unconstrained (and in some cases gonstrained)

charactdr, octet and_bit string types, the count of the number of components in unconstrained (and in some cases g¢onstrained)
sequende-of andset-of types, and the value of an integer type that has been constrained to exceed some minimum valge.

3.7.25 dimiple type: A type that is not a composite type.

3.7.26 textually dependent: A term used to identify the case where if some reference name is used in evaluating an
element set, the value of the element set is considered to be dependent on that reference name, regardless of whether the
actual set arithmetic being performed is such that the final value of the element set is independent of the actual element
set value assigned to the reference name.

NOTE — For example, the following definition of Foo is textually dependent on Bar even though Bar has no effect on Foos set of

values (thus, according to 10.3.6 the constraint on Foo is not PER-visible since Bar is constrained by a table constraint and Foo is
textually dependent on Bar).

MY-CLASS ::= CLASS { &name PrintableString, &age INTEGER } WITH SYNTAX{&name , &age}
MyObjectSet MY-CLASS ::= { {"Jack", 7} | {"Jill", 5} }

Bar ::= MY-CLASS. &age ({MyObjectSet})

Foo ::= INTEGER (Bar | 1..100)

3.7.27 unconstrained whole number: A whole number which is not constrained by PER-visible constraints.
NOTE — Unconstrained whole numbers occur only in the encoding of a value of the integer type.

4 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules of ASN.1
CER Canonical Encoding Rules of ASN.1
DER Distinguished Encoding Rules of ASN.1
PER Packed Encoding Rules of ASN.1

16K 16384

32K 32768

48K 49152

4K 00050
5 INotation

This Recommendation | International Standard references the notation defined by Rec. ITU-T¢X.680 | ISO/IE[C 8824-1.

6 Convention

6.1 This Recommendation | International Standard defines the value of each‘agctet in an encoding by use gf the terms
"most signfficant bit" and "least significant bit".

NOTE -} Lower layer specifications use the same notation to define the order of(bjt transmission on a serial line, or thg assignment
of bits tp parallel channels.

6.2 For the purposes of this Recommendation | International Standard, the bits of an octet are numbefed from 8
to 1, wherg bit 8 is the "most significant bit" and bit 1 the "least significant bit".

6.3 The term "octet” is frequently used in this Recommendation | International Standard to stand for "pight bits".
The use offthis term in place of "eight bits" does not carry.any implications of alignment. Where alignment is {ntended, it
is explicitly stated in this Recommendation | International Standard.

7 [Encoding rules defined in this Recommendation | International Standard

7.1 This Recommendation | International Standard specifies four encoding rules (together with their|associated
object identifiers) which can be used te‘encode and decode the values of an abstract syntax defined as the yalues of a
single (knqwn) ASN.1 type. This Clause describes their applicability and properties.

7.2 Vithout knowledge-of-the type of the value encoded, it is not possible to determine the structure of the encoding
(under any| of the PER enegoding rule algorithms). In particular, the end of the encoding cannot be determingd from the
encoding ifself without-krnowledge of the type being encoded.

7.3 RER encodings are always relay-safe provided the abstract values of the types EXTERNAL, EMBEDDEpP PDV and
CHARACTER STRING are constrained to prevent the carriage of OSI presentation context identifiers.

7.4 The most general encoding rule algorithm specified in this Recommendation | International Standard is
BASIC-PER, which does not in general produce a canonical encoding.

75 A second encoding rule algorithm specified in this Recommendation | International Standard is
CANONICAL-PER, which produces encodings that are canonical. This is defined as a restriction of implementation-
dependent choices in the BASIC-PER encoding.
NOTE 1 — CANONICAL-PER produces canonical encodings that have applications when authenticators need to be applied to
abstract values.

NOTE 2 — Any implementation conforming to CANONICAL-PER for encoding is conformant to BASIC-PER for encoding. Any
implementation conforming to BASIC-PER for decoding is conformant to CANONICAL-PER for decoding. Thus, encodings
made according to CANONICAL-PER are encodings that are permitted by BASIC-PER.

7.6 If a type encoded with BASIC-PER or CANONICAL-PER contains EMBEDDED PDV, CHARACTER STRING Or
EXTERNAL types, then the outer encoding ceases to be relay-safe unless the transfer syntax used for all the EMBEDDED
PDV, CHARACTER STRING and EXTERNAL types is relay safe. If a type encoded with CANONICAL-PER contains

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 5

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

EMBEDDED PDV, EXTERNAL Of CHARACTER STRING types, then the outer encoding ceases to be canonical unless the
transfer syntax used for all the EMBEDDED PDV, EXTERNAL and CHARACTER STRING types is canonical.
NOTE - The character transfer syntaxes supporting all character abstract syntaxes of the form {iso standard 10646

level-1(1)} are canonical. Those supporting {iso standard 10646 level-2(2)} and {iso
standard 10646 level-3(3)} arenotalways canonical. All the above character transfer syntaxes are relay-safe.

7.7 Both BASIC-PER and CANONICAL-PER come in two variants, the ALIGNED variant, and the UNALIGNED
variant. In the ALIGNED variant, padding bits are inserted from time to time to restore octet alignment. In the
UNALIGNED variant, no padding bits are ever inserted.

7.8 There are no interworking possibilities between the ALIGNED variant and the UNALIGNED variant.

79 PER encodings are self-delimiting only with knowledge of the type of the encoded value. Encodings are always
a multiple of eight bits. When carried in an EXTERNAL type they shall be carried in the oCTET STRING choice alternative,
unless the EXTERNAL type itself is encoded in PER, in which case the value may be encoded as a single ASN.1 type
(i_e_’ an opes typn)_ \When-catried—in-OS!t prncnntatinn prnfnr\nll the—ful nnr\ndihg" (:c defined-in-Rec—FU-T X.226 |

ISO/IEC 8B23-1) with the ocTET STRING choice alternative shall be used.

7.10 The rules of this Recommendation | International Standard apply to both algorithms and to both/varignts unless
otherwise $tated (but see 9.2 and 9.3).

7.11 Annex C is informative, and gives recommendations on which combinations of PER)te’implement(in order to
maximize the chances of interworking.

8 Conformance

8.1 [Dynamic conformance is specified by clause 9 onwards.

8.2 $tatic conformance is specified by those standards which specify the application of these Packed Encoding
Rules.

NOTE } Annex C provides guidance on static conformance in relation’to support for the two variants of the two erjcoding rule
algorithims. This guidance is designed to ensure interworking, whilerecognizing the benefits to some applications df encodings
that are [neither relay-safe nor canonical.

8.3 The rules in this Recommendation | InternatiopalStandard are specified in terms of an encoding [procedure.
Implementations are not required to mirror the procedure specified, provided the bit string produced as th¢ complete
encoding df an abstract syntax value is identical to eng of those specified in this Recommendation | Internation@l Standard
for the applicable transfer syntax.

8.4 IImplementations performing deceding are required to produce the abstract syntax value corresponding to any
received bft string which could be produce@.by a sender conforming to the encoding rules identified in the trangfer syntax
associated [with the material being decoded.

NOTE] - In general there are noyalternative encodings defined for the BASIC-PER explicitly stated in this Recommendation |
Internatjonal Standard. The BASIC-PER becomes canonical by specifying relay-safe operation and by restricting fome of the
encoding options of other ASO/IEC Standards that are referenced. CANONICAL-PER provides an alternative fto both the
Distingyiished Encoding Rules and Canonical Encoding Rules (see Rec. ITU-T X.690 | ISO/IEC 8825-1) where a cgnonical and
relay-saffe encoding is required.

NOTE 2 — When CANONICAL-PER is used to provide a canonical encoding, it is recommended that any resulting en¢rypted hash
value that is derived from it should have associated with it an algorithm identifier that identifies CANONICAL{PER as the
transformation-from the abstract syntax value to an initial bitstring (which is then hashed).

9 PER encoding instructions

9.1 PER encoding instructions can be associated with a type in accordance with the provisions of Rec. ITU-T X.680
| ISO/IEC 8824-1 and Rec. ITU-T X.695 | ISO/IEC 8825-6.
NOTE 1 - The application of some PER encoding instructions can make it impossible to encode all the abstract values of the type.
Where this can arise, the specific PER encoding instruction identifies the problem. It is a designers decision, based on the possible
need to use multiple encoding rules, whether to add an explicit constraint on the type in order to restrict the range of abstract values
to those that can be handled by the encoding using the PER encoding instruction. This can make the specification less readable,
but ensures that all encoding rules can encode all allowed abstract values, making relaying possible without errors.

NOTE 2 — Each PER encoding instruction starts with an identifying keyword that unambiguously identifies that encoding
instruction.

9.2 If the ALIGNED version of either BASIC-PER or CANONICAL-PER is in use, then all PER encoding
instructions shall be silently ignored and have no affect on the encoding.

6 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

9.3 If the UNALIGNED version of either BASIC-PER or CANONICAL-PER is in use, then if a type has an
associated encoding instruction, the following subclauses shall apply.

9.3.1 If the identifying keyword is not known, then a "not supported" error message shall be issued.

9.3.2 If the identifying keyword is known, the procedures of this Recommendation | International Standard shall be

modified by the amendments to those procedures that are specified by the PER encoding instruction (see Rec.
ITU-T X.695 | ISO/IEC 8825-6).

NOTE 1 - If multiple PER encoding instructions are associated with a type, then the amendments specified for all of them shall be
applied.

NOTE 2 - It is an error in the register of PER encoding instructions if amendments produced by two or more separate encoding
instructions conflict and it is not stated that they are mutually exclusive.

10 The approach to encoding used for PER

10.1 se of the type notation

10.11 hese encoding rules make specific use of the ASN.1 type notation as specified in Re¢ NTU{T X.680 |
ISO/IEC 8824-1, and can only be applied to encode the values of a single ASN.1 type specified using that notation.

10.1.2 I particular, but not exclusively, they are dependent on the following information beifg retained in|the ASN.1
type and vilue model underlying the use of the notation:

d) the nesting of choice types within choice types;

) the tags placed on the components in a set type, and on the alternativesS/in a choice type, and|the values
given to an enumeration;

@) whether a set or sequence type component is optional or not;
d) whether a set or sequence type component has a DEFAULT value or not;

d) the restricted range of values of a type which arise through the application of PER-visible [constraints
(only);
f) whether a component is an open type;

€K
~

whether a type is extensible for PER encoding:

10.2 Use of tags to provide a canonical arder

This Recojnmendation | International Standard-+equires components of a set type and a choice type to be ¢anonically
ordered ingependent of the textual ordering of the components. The canonical order is determined by sorting thg outermost
tag of eact] component, as specified in Rec” ITU-T X.680 | ISO/IEC 8824-1, 8.6.

10.3 PER-visible constraints

NOTE + The fact that some ASN, 1 constraints may not be PER-visible for the purposes of encoding and decoding dogs not in any
way affect the use of such constraints in the handling of errors detected during decoding, nor does it imply that valyes violating
such cofstraints are allowedto be transmitted by a conforming sender. However, this Recommendation | Internatiofjal Standard
makes rfo use of such.eonstraints in the specification of encodings.

10.3.1 Constraints that are expressed in human-readable text or in ASN.1 comment are not PER-visible.
10.3.2 arighlé constraints are not PER-visible (see Rec. ITU-T X.683 | ISO/IEC 8824-4, 10.3 and 10.4).

10 3 3 IUser-dafinad-caonctrainte fcon Dac 1TLL T VW 02 L 1ICA/ICC 0024 2 Q ranaot DED \icihln
.. Gt ot o CorStTto (ot e e T T o170 O O o OO - ot T oTCT

13
3 Ey = V1ot

10.3.4 Table constraints are not PER-visible (see Rec. ITU-T X.682 | ISO/IEC 8824-3).
10.3.5 Component relation constraints (see Rec. ITU-T X.682 | ISO/IEC 8824-3, 10.7) are not PER-visible.

10.3.6 Constraints whose evaluation is textually dependent on a table constraint or a component relation constraint are
not PER-visible (see Rec. ITU-T X.682 | ISO/IEC 8824-3).

10.3.7 Constraints on restricted character string types which are not (see Rec. ITU-T X.680 | ISO/IEC 8824-1,
clause 41) known-multiplier character string types are not PER-visible (see 3.7.16).

10.3.8 Pattern constraints are not PER-visible.

10.3.9 Subject to the above, all size constraints are PER-visible.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 7

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

10.3.10 The effective size constraint for a constrained type is a single size constraint such that a size is permitted if and
only if there is some value of the constrained type that has that (permitted) size.

10.3.11 Permitted-alphabet constraints on known-multiplier character string types which are not extensible after
application of Rec. ITU-T X.680 | ISO/IEC 8824-1, 52.3 to 52.5, are PER-visible. Permitted-alphabet constraints which
are extensible are not PER-visible.

10.3.12 The effective permitted-alphabet constraint for a constrained type is a single permitted-alphabet constraint
which allows a character if and only if there is some value of the constrained type that contains that character. If all
characters of the type being constrained can be present in some value of the constrained type, then the effective permitted-
alphabet constraint is the set of characters defined for the unconstrained type.

10.3.13 Property setting constraints on the time type (or on the useful and defined time types) which are not
extensible after the application of Rec. ITU-T X.680 | ISO/IEC 8824-1, 52.3 to 52.5, are PER-visible. Property setting
constraints which are extensible are not PER-visible.

10.3.14 Constraints applied to real types are not PER-visible.

10.3.15 An inner type constraint applied to an unrestricted character string or embbeded-pdv type is PER-\fisible only
when it i used to restrict the value of the syntaxes component to a single value, or when it is-used|to restrict
identififation to the £ixed alternative (see clauses 28 and 31).

10.3.16 Constraints on the useful types are not PER-visible.
10.3.17 $ingle value subtype constraints applied to a character string type are not PER=visible.

10.3.18 $ubject to the above, all other constraints are PER-visible if and only if they afe applied to an integef type or to
a known-npultiplier character string type.

10.3.19 In general the constraint on a type will consist of individual constraints combined using some of all of set
arithmetic| contained subtype constraints, and serial application of constraints. The following clauses specify the effect
if some of the component parts of the total constraint are PER-visible-and some are not.

NOTE |- See Annex B for further discussion on the effect of combining constraints that individually are PER-visible or not

PER-vigible.
10.3.20 [if a constraint consists of a serial application of copstraints, the constraints which are not PER-visiple, if any,
do not affdct PER encodings, but cause the extensibility (aid extension additions) present in any earlier constfaints to be
removed ap specified in Rec. ITU-T X.680 | ISO/IEC 8824-1, 50.11.

NOTE 1 - If the final constraint in a serial applicationds not PER-visible, then the type is not extensible for PER-en¢odings, and
is encoded without an extension bit.

NOTE 2 — For example:
A ::= IA5String(SIZE(1..4)) (FROM("ABCD",...))

has an| effective permitted-alphabet’ constraint that consists of the entire 1a5string alphabet since thg extensible
permittdd-alphabet constraint is not PER-visible. It has nevertheless an effective size constraint which is "s1zE(1..4)".

Similarly,
B ::= IA5String(A)
has the same effective size constraint and the same effective permitted-alphabet constraint.

10.3.21 Iff a constraint-that is PER-visible is part of an INTERSECTION construction, then the resulting constraint is
PER-visible, and cansists of the INTERSECTION of all PER-visible parts (with the non-PER-visible parts igfpored). If a
constraint pvhichissnot PER-visible is part of a UNION construction, then the resulting constraint is not PER-Yisible. If a
constraint has.an EXCEPT clause, the EXCEPT and the following value set is completely ignored, whether the value set
following the-exeEpT-isPER-vistble-ornet

NOTE — For example:

A ::= IAS5String (SIZE(l..4) INTERSECTION FROM("ABCD",...))
has an effective size constraint of 1..4 but the alphabet constraint is not visible because it is extensible.

10.3.22 A type is also extensible for PER encodings (whether subsequently constrained or not) if any of the following
occurs:

a) it is derived from an ENUMERATED type (by subtyping, type referencing, or tagging) and there is an
extension marker in the "Enumerations™ production; or

b) itis derived from a SEQUENCE type (by subtyping, type referencing, or tagging) and there is an extension
marker in the "ComponentTypeL.ists" or in the "SequenceType" productions; or

c) itisderived from a ST type (by subtyping, type referencing, or tagging) and there is an extension marker
in the "ComponentTypeL.ists" or in the "SetType" productions; or

8 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

d) it is derived from a cHOICE type (by subtyping, type referencing, or tagging) and there is an extension
marker in the "AlternativeTypeLists" production.

104 Type and value model used for encoding

10.4.1 An ASN.1 type is either a simple type or is a type built using other types. The notation permits the use of type
references and tagging of types. For the purpose of these encoding rules, the use of type references and tagging have no
effect on the encoding and are invisible in the model, except as stated in 10.2. The notation also permits the application
of constraints and of error specifications. PER-visible constraints are present in the model as a restriction of the values of
a type. Other constraints and error specifications do not affect encoding and are invisible in the PER type and value model.

10.4.2 A value to be encoded can be considered as either a simple value or as a composite value built using the
structuring mechanisms from components which are either simple or composite values, paralleling the structure of the
ASN.1 type definition.

10.4.3 hen a constraint includes a value as an extension addition that IS present in the roof, that valug is always
encoded ag a value in the root, not as a value which is an extension addition.

EXAMPL

INTEGER (0..10, ..., 5)
-- The valug 5 encodes as a root value, not as an extension addition.

10.5 $tructure of an encoding

10.5.1 These encoding rules specify:
d) the encoding of a simple value into a field-list; and

B) the encoding of a composite value into a field-list, using the“field-lists generated by applicatipn of these
encoding rules to the components of the composite valueiand

@) the transformation of the field-list of the outermost value’into the complete encoding of the abstract syntax
value (see 11.1).

10.5.2 The encoding of a component of a data value either:

d) consists of three parts, as shown in Figure*L; which appear in the following order:
1) apreamble (see clauses 19, 21 and 23);

2) alength determinant (see 11.9);

3) contents; or

Preamble Length Pfeamble Length Contents Preamble Length Contents

Contents

NOTE — Tlhe preamble{ length, and contents are all "fields" which, concatenated together, form a "field-list". The figld-list of a
composite ftype other(thah the choice type may consist of the fields of several values concatenated together. Either thg preamble,
length andfor contents of any value may be missing.

Figure 1 — Encoding of a composite value into a field-list

b) (where the contents are large) consists of an arbitrary number of parts, as shown in Figure 2, of which the
first is a preamble (see clauses 19, 21 and 23) and the following parts are pairs of bit-fields (octet-aligned
in the ALIGNED variant), the first being a length determinant for a fragment of the contents, and the
second that fragment of the contents; the last pair of fields is identified by the length determinant part,
as specified in 11.9.

Contents
Preamble Length Contents Length Contents e Length (may be
missing)

Figure 2 — Encoding of a long data value

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 9

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

10.5.3 Each of the parts mentioned in 10.5.2 generates either:
a) anull field (nothing); or
b) abit-field (unaligned); or
c) abit-field (octet-aligned in the ALIGNED variant); or

d) a field-list which may contain either bit-fields (unaligned), bit-fields (octet-aligned in the ALIGNED
variant), or both.

10.6 Types to be encoded

10.6.1 The following clauses specify the encoding of the following types into a field-list: boolean, integer, enumerated,
real, bitstring, octetstring, null, sequence, sequence-of, set, set-of, choice, open, object identifier, relative object identifier,
embedded-pdyv, external, restricted character string and unrestricted character string types.

10.6.2

10.6.3 ncoding of tagged types is not included in this Recommendation | International Standard as;exeept as stated
in 10.2, tagging is not visible in the type and value model used for these encoding rules. Tagged typés are thyis encoded
according fo the encoding of the type which has been tagged.

10.6.4 An encoding prefixed type is encoded according to the type which has been prefixed.

10.6.5 The following "useful types" shall be encoded as if they had been replaced by their definitiorfs given in
Rec. ITU-T X.680 | ISO/IEC 8824-1, clause 45:

+ generalized time;
4 universal time;
+ object descriptor.

Constraints on the useful types are not PER-visible. The restrictions imposed on the encoding of the generglized time
and univergal time types by Rec. ITU-T X.690 | ISO/IEC 8825-1, 1.7 and 11.8, shall apply here.

10.6.6 A\ typedefined using a value set assignment shall be éncoded as if the type had been defined using the production
specified ip Rec. ITU-T X.680 | ISO/IEC 8824-1, 16.8.

11 [Encoding procedures

111 Production of the complete engoding

11.1.1 [f an ASN.1 type is encodeéd jusing any of the encoding rules identified by the object identifiefs listed in
subclause B3.2 (or by direct textual reference to this Recommendation | International Standard), and the gncoding is
included in:

an ASN.1 octeétstring; or

an ASN. 1sbitstring, or

an ASN: open type; or

any-part of an ASN.1 external or embedded pdv type; or

I
c

c
d)-Sany carrier protocol that is not defined using ASN.1

then that ASN.1 type is defined as an outermost type for this application, and subclause 11.1.2 shall apply to all encodings
of its values.
NOTE 1 - This means that all complete PER encodings (for all variants) that are used in this way are always an integral multiple
of eight bits except when the UNALIGNED variant is used and the encoding is included in an ASN.1 bitstring (case b)) above).

NOTE 2 — It is possible using the Encoding Control Notation (see Recommendation ITU-T X.692 | ISO/IEC 8825-3) to specify a
variant of PER encodings in which the encoding is not padded to an octet boundary as specified in 11.1.2. Many tools support this
option.

NOTE 3 — It is recognized that a carrier protocol not defined using ASN.1 need not explicitly carry the additional zero bits for
padding (specified in 11.1.2), but can imply their presence.

11.1.2 The field-list produced as a result of applying this Recommendation | International Standard to an abstract value
of an outermost type shall be used to produce the complete encoding of that abstract syntax value as follows: each field
in the field-list shall be taken in turn and concatenated to the end of the bit string which is to form the complete encoding
of the abstract syntax value preceded by additional zero bits for padding as specified below.

10 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

11.1.3 Inthe UNALIGNED variant of these encoding rules, all fields shall be concatenated without padding. In all the
cases of 11.1.1 except case b), subclause 11.1.3.1 applies. In case b) of 11.1.1, subclause 11.1.3.2 applies.

11.1.3.1 (The result of the encoding is not contained in an ASN.1 bitstring) If the result of encoding the outermost value
is an empty bit string, the bit string shall be replaced with a single octet with all bits set to 0. If it is a non-empty bit string
and it is not a multiple of eight bits, (one to seven) zero bits shall be appended to it to produce a multiple of eight bits.

11.1.3.2 (The result of the encoding is contained in an ASN.1 bitstring) If the result of encoding the outermost value is
an empty bit string, the bit string shall be replaced with a single bit set to 0. No padding bits shall be appended.

11.1.4 Inthe ALIGNED variant of these encoding rules, any bit-fields in the field-list shall be concatenated without
padding, and any octet-aligned bit-fields shall be concatenated after (zero to seven) zero bits have been concatenated to
make the length of the encoding produced so far a multiple of eight bits. If the result of encoding the outermost value is
an empty bit string, the bit string shall be replaced with a single octet with all bits set to 0. If it is a non-empty bit string
and it is not a multiple of eight bits, (zero to seven) zero bits shall be appended to it to produce a multiple of eight bits.

NOTE ThC A1) I\JUd;IIU Uf thC UutCllllUdt V(A:UC ;\) thC CIII'Jt_y b;t \)tl ;I Ig ;fl f\.ll C/\(AIII'J:C, thC ﬂbdtl (Abt Q_ylltu V(A:UC ;J Uf e nU” type
or of an|integer type constrained to a single value.
NOTE 2 — Zero-length octet-aligned bit-fields can never be present in the field-list (see 11.9.3.3).

11.1.5 The resulting bit string is the complete encoding of the abstract syntax value of an outermost type.

11.2 Open type fields

11.2.1 I order to encode an open type field, the value of the actual type occupying the field shall be encoded to a
field-list which shall then be converted to a complete encoding of an abstract syntaxvalue as specified in 11.1]to produce
an octet stfing of length "n" (say).

11.2.2 The field-list for the value in which the open type is to be embedded shall then have added to it (& specified
in 11.9) an unconstrained length of "n" (in units of octets) and an associated bit-field (octet-aligned in the ALIGNED
variant) containing the bits produced in 11.2.1.

NOTE -} Where the number of octets in the open type encoding is large;thefragmentation procedures of 11.9 will be ysed, and the

encoding of the open type will be broken without regard to the pasition of the fragment boundary in the encoding| of the type
occupying the open type field.

11.3 Encoding as a non-negative-binary-integer

NOTE + (Tutorial) This subclause gives precision to thesterm "non-negative-binary-integer encoding”, putting the integer into a
field which is a fixed number of bits, a field which is.a fixed number of octets, or a field that is the minimum numfper of octets
needed fo hold it.

11.3.1 $ubsequent subclauses refer to the-generation of a non-negative-binary-integer encoding of a ngn-negative
whole number into a field which is eithetsa’bit-field of specified length, a single octet, a double octet, or thg minimum
number of|octets for the value. This subclause (11.3) specifies the precise encoding to be applied when such|references
are made.

11.3.2 The leading bit of thefield is defined as the leading bit of the bit-field, or as the most significant bit{of the first
octet in the field, and the trailing bit of the field is defined as the trailing bit of the bit-field or as the least sighificant bit
of the last pctet in the fiéld:

11.3.3 Kor the following definition only, the bits shall be numbered zero for the trailing bit of the field, pne for the
next bit, annd soenup to the leading bit of the field.

11.3.4 Ipanon-negative-binary-integer encoding, the value of the whole number represented by the encoding shall be
the sum of The values specified by each bit. A bit which 1S Setto "0 has zero value. A bit with number 'n~ which is set to
"1" has the value 2".

11.3.5 The encoding which sums (as defined above) to the value being encoded is an encoding of that value.
NOTE — Where the size of the encoded field is fixed (a bit-field of specified length, a single octet, or a double octet), then there is
a unique encoding which sums to the value being encoded.

11.3.6 A minimum octet non-negative-binary-integer encoding of the whole number (which does not predetermine the
number of octets to be used for the encoding) has a field which is a multiple of eight bits and also satisfies the condition
that the leading eight bits of the field shall not all be zero unless the field is precisely eight bits long.

NOTE - This is a necessary and sufficient condition to produce a unique encoding.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 11

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

114 Encoding as a 2's-complement-binary-integer

NOTE — (Tutorial) This subclause gives precision to the term “2's-complement-binary-integer encoding”, putting a signed integer
into a field that is the minimum number of octets needed to hold it. These procedures are referenced in later encoding specifications.

11.4.1 Subsequent subclauses refer to the generation of a 2's-complement-binary-integer encoding of a whole number
(which may be negative, zero, or positive) into the minimum number of octets for the value. This subclause (11.4)
specifies the precise encoding to be applied when such references are made.

11.4.2 The leading bit of the field is defined as the most significant bit of the first octet, and the trailing bit of the field
is defined as the least significant bit of the last octet.

11.4.3 For the following definition only, the bits shall be numbered zero for the trailing bit of the field, one for the
next bit, and so on up to the leading bit of the field.

11.4.4 Ina 2's-complement-binary-integer encoding, the value of the whole number represented by the encoding shall
be the sum of the values specified by each bit. A bit which is set to "0" has zero value. A bit with number "n" which is set
to "1" has the value 2" unless it is the leading bit, in which case it has the (negative) value —2".

11.45 Any encoding which sums (as defined above) to the value being encoded is an encoding of thatyvalye.

1146 A minimum octet 2's-complement-binary-integer encoding of the whole number has a field-width that is a
multiple of eight bits and also satisfies the condition that the leading nine bits of the field shall‘not all be zerp and shall
not all be gnes.

NOTE } This is a necessary and sufficient condition to produce a unique encoding.

11.5 Encoding of a constrained whole number

NOTE + (Tutorial) This subclause is referenced by other clauses, and itself referencesyearlier clauses for the productipn of a non-
negativg-binary-integer or a 2's-complement-binary-integer encoding. For the UNALIGNED variant the value is alwgys encoded
in the minimum number of bits necessary to represent the range (defined in 11.5.3). The rest of this Note addresses thg ALIGNED
variant.[Where the range is less than or equal to 255, the value encodes int6 bit-field of the minimum size for the rgnge. Where
the range is exactly 256, the value encodes into a single octet octet-aligned bit-field. Where the range is 257 to 64K, the value
encodeq into a two octet octet-aligned bit-field. Where the range is greater than 64K, the range is ignored and the vglue encodes
into an pctet-aligned bit-field which is the minimum number of octets-for the value. In this latter case, later procedurgs (see 11.9)
also engode a length field (usually a single octet) to indicate the length of the encoding. For the other cases, the lgngth of the
encoding is independent of the value being encoded, and is not@xplicitly encoded.

11.5.1 This subclause (11.5) specifies a mapping from a constrained whole number into either a bit-field (unaligned)
or a bit-field (octet-aligned in the ALIGNED variant), and is invoked by later clauses in this Recomnjendation |
Internatiorjal Standard.

11.5.2 The procedures of this subclause.are‘invoked only if a constrained whole number to be encoded i§ available,
and the values of the lower bound, "Ib",.and the upper bound, "ub", have been determined from the type notgtion (after
the applicgtion of PER-visible constraints).

NOTE + A lower bound cannot bedetermined if MIN evaluates to an infinite number, nor can an upper bound be deterrined if Max
evaluatgs to an infinite number..For example, no upper or lower bound can be determined for INTEGER (MIN. .MAX) .

11.5.3 et "range" be defined as the integer value ("ub” — "lb" + 1), and let the value to be encoded be "n".
1154 [f "range" hasythe value 1, then the result of the encoding shall be an empty bit-field (no bits).

1155 There are.five other cases (leading to different encodings) to consider, where one applies to the UNALIGNED
variant anq fourtothe ALIGNED variant.

1156 Inthecase of the UNALIGNED variant the value ("'n" — "Ib") shall be encoded as a non-negative- binpry-integer
in a bit-field as specified in 11.3 with the minimum number of bits necessary to represent the range.

NOTE — If "range" satisfies the inequality 2™ < "range” < 2™ +1, then the number of bits = m + 1.

11.5.7 Inthe case of the ALIGNED variant the encoding depends on whether:
a) "range" is less than or equal to 255 (the bit-field case);
b) "range" is exactly 256 (the one-octet case);
c) "range" is greater than 256 and less than or equal to 64K (the two-octet case);
d) “range" is greater than 64K (the indefinite length case).

11.5.7.1 (The bit-field case.) If "range" is less than or equal to 255, then invocation of this subclause requires the
generation of a bit-field with a number of bits as specified in the table below, and containing the value ("n" — "Ib") as a
non-negative-binary-integer encoding in a bit-field as specified in 11.3.

12 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

“'range" Bit-field size (in bits)
2 1

3,4
56,7,8
9to 16
1710 32
33to 64
65 to 128
129 to 255 8

~N[o(galhWIN

11.5.7.2 (The one-octet case.) If the range has a value of 256, then the value ("'n" — "Ib™) shall be encoded in a one-octet
bit-field (octet-aligned in the ALIGNED variant) as a non-negative-binary-integer as specified in 11.3.

11.5.7.3 (The two-octet case.) If the "range" has a value greater than or equal to 257 and less than or equal tq 64K, then
the value (|'n" —"Ib") shall be encoded in a two-octet bit-field (octet-aligned in the ALIGNED variant) as a nofp-negative-
binary-intqger encoding as specified in 11.3.

11.5.7.4 (The indefinite length case.) Otherwise, the value ("n" —"Ib") shall be encoded as afionnegative-binpry-integer
in a bit-field (octet-aligned in the ALIGNED variant) with the minimum number of octetstas specified in 11.3, and the
number of|octets "len" used in the encoding is used by other clauses that reference this subclause to specify ap encoding
of the length.

11.6 Encoding of a normally small non-negative whole number

NOTE 1 (Tutorial) This procedure is used when encoding a non-negative whole' number that is expected to be small, but whose
size is potentially unlimited due to the presence of an extension marker. Aneéxample is a choice index.

11.6.1 If the non-negative whole number, "n", is less than or equal to 63, then a single-bit bit-field shall b¢ appended
to the field-list with the bit set to 0, and "n" shall be encoded as a:fon-negative-binary-integer into a 6-bit bit-field.

11.6.2 [f "n" is greater than or equal to 64, a single-bit bit=field with the bit set to 1 shall be appended to thg field-list.
The value|"n" shall then be encoded as a semi-constrained whole number with "Ib" equal to 0 and the prdcedures of
11.9 shall be invoked to add it to the field-list preceded:by a length determinant.

11.7 Encoding of a semi-constrained whole number

NOTE } (Tutorial) This procedure is used when a lower bound can be identified but not an upper bound. The encoding procedure
places the offset from the lower bound inte'the minimum number of octets as a non-negative-binary-integer, and requirds an explicit
length encoding (typically a single octet) as specified in later procedures.

11.7.1 This subclause specifies.@mapping from a semi-constrained whole number into a bit-field (octet-alipned in the
ALIGNED variant), and is invoked by later clauses in this Recommendation | International Standard.

11.7.2 The procedures of this subclause (11.7) are invoked only if a semi-constrained whole number ("'n'| say) to be
encoded isfavailable, afd.the value of "Ib" has been determined from the type notation (after the application of HER-visible
constraints

NOTE A lewer bound cannot be determined if MIN evaluates to an infinite number. For example, no lower bqund can be
determiped/fOr-INTEGER (MIN. .MAX).

11 7 3 tla | £ il lal 1 <l +lo HDA P IV Y 1 +lo
B T PJTULTUUTTS UT TS SUDLTAUST divway s JTUuuuLt UTC TTTUTTITIMT 1Ty uT LdsT.

11.7.4 (The indefinite length case.) The value (*n" — "1b") shall be encoded as a non-negative-binary-integer in a bit-
field (octet-aligned in the ALIGNED variant) with the minimum number of octets as specified in 11.3, and the number
of octets "len" used in the encoding is used by other clauses that reference this subclause to specify an encoding of the
length.

11.8 Encoding of an unconstrained whole number

NOTE — (Tutorial) This case only arises in the encoding of the value of an integer type with no lower bound. The procedure encodes
the value as a 2's-complement-binary-integer into the minimum number of octets required to accommodate the encoding, and
requires an explicit length encoding (typically a single octet) as specified in later procedures.

11.8.1 This subclause (11.8) specifies a mapping from an unconstrained whole number ("n" say) into a bit-field
(octet-aligned in the ALIGNED variant), and is invoked by later clauses in this Recommendation | International Standard.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 13

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

11.8.2 The procedures of this subclause always produce the indefinite length case.

11.8.3 (The indefinite length case.) The value "n" shall be encoded as a 2's-complement-binary-integer in a bit-field
(octet-aligned in the ALIGNED variant) with the minimum number of octets as specified in 11.4, and the number of octets
"len" used in the encoding is used by other clauses that reference this subclause to specify an encoding of the length.

11.9 General rules for encoding a length determinant

NOTE 1 — (Tutorial) The procedures of this subclause are invoked when an explicit length field is needed for some part of the
encoding regardless of whether the length count is bounded above (by PER-visible constraints) or not. The part of the encoding to
which the length applies may be a bit string (with the length count in bits), an octet string (with the length count in octets), a known-
multiplier character string (with the length count in characters), or a list of fields (with the length count in components of a sequence-
of or set-of).

NOTE 2 — (Tutorial) In the case of the ALIGNED variant if the length count is bounded above by an upper bound that is less than
64K, then the constrained whole number encoding is used for the length. For sufficiently small ranges the result is a bit-field,
otherwise the unconstrained length ("'n" say) is encoded into an octet-aligned bit-field in one of three ways (in order of increasing
size):

a ("n" less than 128) a single octet containing "n" with bit 8 set to zero;
b ("n" less than 16K) two octets containing "n" with bit 8 of the first octet set to 1 and bit 7 set to zero;
c (large "n") a single octet containing a count "m" with bit 8 set to 1 and bit 7 set to 1. The count [’/m" is one|to four, and

the length indicates that a fragment of the material follows (a multiple "m" of 16K items)vFor all valueq of "m", the
fragment is then followed by another length encoding for the remainder of the materiale

NOTE 3 — (Tutorial) In the UNALIGNED variant, if the length count is bounded above by an upper bound that is legs than 64K,
then thg constrained whole number encoding is used to encode the length in the minimum_ number of bits necessary [to represent
the rande. Otherwise, the unconstrained length ("n" say) is encoded into a bit-field in the manner described above in Note 2.

11.9.1 This subclause is not invoked if, in accordance with the specification ef later clauses, the value off the length
determinant, "n", is fixed by the type definition (constrained by PER-visible, censtraints) to a value less than §4K.

11.9.2 Thissubclause is invoked for addition to the field-list of a field ,or list of fields, preceded by a length determinant
"n" which determines either:

) the length in octets of an associated field (units are octets); or
B) the length in bits of an associated field (units are bits); or

@) the number of component encodings in ancassociated list of fields (units are components of [a set-of or
sequence-of); or

d) the number of characters in the valug/of an associated known-multiplier character string typ¢ (units are
characters).

11.9.3 ALIGNED variant) The procedures for the ALIGNED variant are specified in 11.9.3.1 to [11.9.3.8.4.
(The procgdures for the UNALIGNED vatiant are specified in 11.9.4.)

Q)

11.9.3.1 As a result of the analysis. of-the type definition (specified in later clauses) the length determinarnt (a whole
number "n|") will have been determined to be either:

d) anormally small-length with a lower bound "Ib" equal to one; or

) a constrained whole number with a lower bound "Ib" (greater than or equal to zero), and an upper bound
"ub" lessthan 64K; or

¢) asemi-constrained whole number with a lower bound "Ib" (greater than or equal to zero), or a ¢onstrained
whole number with a lower bound "Ib" (greater than or equal to zero) and an upper bound "lib" greater
than or equal to 64K.

11.9.3.2 The subclauses invoking the procedures of this subclause will have determined a value for "Ib", the lower bound
of the length (this is zero if the length is unconstrained), and for "ub", the upper bound of the length. "ub" is unset if there
is no upper bound determinable from PER-visible constraints.

11.9.3.3 Where the length determinant is a constrained whole number with "ub" less than 64K, then the field-list shall
have appended to it the encoding of the constrained whole number for the length determinant as specified in 11.5. If "'n"
is non-zero, this shall be followed by the associated field or list of fields, completing these procedures. If "n" is zero there
shall be no further addition to the field-list, completing these procedures.

NOTE 1 - For example:

A ::= IA5String (SIZE (3..6)) -- Length is encoded in a 2-bit bit-field.
B ::= IA5String (SIZE (40000..40254)) -- Length is encoded in an 8-bit bit-field.
C ::= IA5String (SIZE (0..32000)) -- Length is encoded in a 2-octet

-- bit-field (octet-aligned in the
ALIGNED variant).

14 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

D ::= IA5String (SIZE (64000)) -- Length is not encoded.

NOTE 2 — The effect of making no addition in the case of "n" equals zero is that padding to an octet boundary does not occur when
these procedures are invoked to add an octet-aligned-bit-field of zero length, unless required by 11.5.

11.9.3.4 Where the length determinant is a normally small length and "n" is less than or equal to 64, a single-bit bit-field
shall be appended to the field-list with the bit set to 0, and the value "n—1" shall be encoded as a non-negative-binary-
integer into a 6-bit bit-field. This shall be followed by the associated field, completing these procedures. If "n" is greater
than 64, a single-bit bit-field shall be appended to the field-list with the bit set to 1, followed by the encoding of "n" as an
unconstrained length determinant followed by the associated field, according to the procedures of 11.9.3.5 t0 11.9.3.8.4.

NOTE — Normally small lengths are only used to indicate the length of the bitmap that prefixes the extension addition values of a
set or sequence type.

11.9.3.5 Otherwise (unconstrained length, or large "ub™), "n™ is encoded and appended to the field-list followed by the
associated fields as specified below.

NOTE — The lower bound, "Ib", does not affect the length encodings specified in 11.9.3.6 t0 11.9.3.8.4.

11.9.3.6 Ilf "n" is less than or equal to 127, then "n" shall be encoded as a non-negative-binary-integer|(using the
procedureq of 11.3) into bits 7 (most significant) to 1 (least significant) of a single octet and bit 8 shall be set to zero.
This shall pe appended to the field-list as a bit-field (octet-aligned in the ALIGNED variant) followed by the|associated
field or lisy of fields, completing these procedures.
NOTE + For example, if in the following a value of a is 4 characters long, and that of B is 4 items long®
A|::= IA5String
B|::= SEQUENCE (SIZE (4..123456)) OF INTEGER

both values are encoded with the length octet occupying one octet, and with the most significant set to 0 to indicate thgt the length
is less tihan or equal to 127:

0 0000100 4 characters/items

Length Value

11.9.3.7 [f "n" is greater than 127 and less than 16K, then ?n" shall be encoded as a non-negative-binary-intgger (using
the procedures of 11.3) into bit 6 of octet one (most sighificant) to bit 1 of octet two (least significant) of 4 two-octet
bit-field (octet-aligned in the ALIGNED variant) with kit 8 of the first octet set to 1 and bit 7 of the first octet et to zero.
This shall pe appended to the field-list followed by the associated field or list of fields, completing these procgdures.
NOTE -} If in the example of 11.9.3.6 a value of a is 130 characters long, and a value of B is 130 items long, both valuesjare encoded

with thg length component occupying 2 octets, and'with the two most significant bits (bits 8 and 7) of the octet set to 1P to indicate
that the [length is greater than 127 but less than-16K.

40y~ 000000 10000010 130 characters/items

Length Value

11.9.3.8 I[if "n" is gfeater than or equal to 16K, then there shall be appended to the field-list a single octet irl a bit-field
(octet-aligned in-the*ALIGNED variant) with bit 8 set to 1 and bit 7 set to 1, and bits 6 to 1 encoding the valug 1, 2, 3 or
4 as a nor-negative-binary-integer (using the procedures of 11.8). This single octet shall be followed by part of the
associated [field’or list of fields, as specified below.

NOTE — The value of bits 6 to 1 is restricted to 1-4 (instead of the theoretical limits of 0-63) so as to limit the number of items that
an implementation has to have knowledge of to a more manageable number (64K instead of 1024K).

11.9.38.1 The value of bits 6 to 1 (1 to 4) shall be multiplied by 16K giving a count ("m" say). The choice of the
integer in bits 6 to 1 shall be the maximum allowed value such that the associated field or list of fields contains more than
or exactly "m" octets, bits, components or characters, as appropriate.

NOTE 1 - The unfragmented form handles lengths up to 16K. The fragmentation therefore provides for lengths up to 64K with a
granularity of 16K.

NOTE 2 — If in the example of 11.9.3.6 a value of "B" is 144K + 1 (i.e., 64K + 64K + 16K + 1) items long, the value is fragmented,
with the two most significant bits (bits 8 and 7) of the first three fragments set to 11 to indicate that one to four blocks each of 16K
items follow, and that another length component will follow the last block of each fragment:

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 15

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

11 000100 64K items 11 000100 64K items 11 000001 16K items 0 0000001

1item

Length Value Length Value Length Value Length

11.9.3.8.2 That part of the contents specified by "m" shall then be appended to the field-list as either:

Value

a) asingle bit-field (octet-aligned in the ALIGNED variant) of "m" octets containing the first "m" octets of

the associated field, for units which are octets; or

b) asingle bit-field (octet-aligned in the ALIGNED variant) of "m" bits containing the first "m"
associated field, for units which are bits; or

¢) the list of fields encoding the first "m" components in the associated list of fields, for units
components of a set-of or sequence-of types; or

anad—t tha AL ILCNIE MAKian €IV haractare ocontainino

bits of the

which are

first "m"

c\ a cinanla bt £i.14 [tot_al 0 D CAWP-X cha tora taring th
) T ST o HC IO (UCtiC oy ricoU— T tic— 7T ro TN D var iart)— ot T oraractCTro— o g — o

characters of the associated field, for units which are characters.

11.9.3.8.3 The procedures of 11.9 shall then be reapplied to add the remaining part of the associated fie
fields to thg field-list with a length which is a semi-constrained whole number equal to ("n" —"m") @With a lows
zero.

NOTE - If the last fragment that contains part of the encoded value has a length that is an exact mdltiple of 16K, it is
a final ffagment that consists only of a single octet length component set to 0.

11.9.3.84 The addition of only a part of the associated field(s) to the field-list with-reapplication of these
is called the fragmentation procedure.

1194 UNALIGNED variant) The procedures for the UNALIGNED vatidnt are specified in 11.9.4.1
(the procex[’ures for the ALIGNED variant are specified in 11.9.3).
|

11.9.4.1 I|f the length determinant "n" to be encoded is a constrainediwhole number with "ub™ less than
("n"—"Ib")|shall be encoded as a non-negative-binary-integer (as specified in 11.3) using the minimum nun
necessary 1o encode the "range" ("ub"” — "lb" + 1), unless "range™is I, in which case there shall be no length ¢
"n" is non{zero this shall be followed by an associated field or st of fields, completing these procedures. If
there shall|be no further addition to the field-list, completingthese procedures.

NOTE 1 If "range" satisfies the inequality 2™ < "range" <. 2"+ 1, then the number of bits in the length determinant is 1

11.9.4.2 Iff the length determinant "n" to be encoded(s a normally small length, or a constrained whole numbe
greater thah or equal to 64K, or is a semi-constrained whole number, then "n" shall be encoded as specified
t011.9.3.84.

NOTE 4 Thus, if "ub" is greater than or equal 10 64K, the encoding of the length determinant is the same as it would be
were unconstrained.

12 ncoding the boolean type

12.1 value of the boolean type shall be encoded as a bit-field consisting of a single bit.
12.2 he bit shatkbe set to 1 for TRUE and 0 for FALSE.

12.3 he bit-field shall be appended to the field-list with no length determinant.

d or list of
r bound of

followed by

procedures

0 11.9.4.2

64K, then
ber of bits
ncoding. If
n" is zero

h+ 1.

I with "ub”
in 11.9.3.4

if the length

13 Encoding the integer type

NOTE 1 — (Tutorial ALIGNED variant) Ranges which allow the encoding of all values into one octet or less go into a minimum-
sized bit-field with no length count. Ranges which allow encoding of all values into two octets go into two octets in an octet-aligned
bit-field with no length count. Otherwise, the value is encoded into the minimum number of octets (using non-negative-binary-
integer or 2's-complement-binary-integer encoding as appropriate) and a length determinant is added. In this case, if the integer
value can be encoded in less than 127 octets (as an offset from any lower bound that might be determined), and there is no finite
upper and lower bound, there is a one-octet length determinant, else the length is encoded in the fewest number of bits needed.

Other cases are not of any practical interest, but are specified for completeness.

NOTE 2 — (Tutorial UNALIGNED variant) Constrained integers are encoded in the fewest number of bits necessary
the range regardless of its size. Unconstrained integers are encoded as in Note 1.

to represent

13.1 If an extension marker is present in the constraint specification of the integer type, then a single bit shall be
added to the field-list in a bit-field of length one. The bit shall be set to 1 if the value to be encoded is not within the range
of the extension root, and zero otherwise. In the former case, the value shall be added to the field-list as an unconstrained

16 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

integer value, as specified in 13.2.4 to 13.2.6, completing this procedure. In the latter case, the value shall be encoded as
if the extension marker is not present.

13.2 If an extension marker is not present in the constraint specification of the integer type, then the following
applies.

13.2.1 If PER-visible constraints restrict the integer value to a single value, then there shall be no addition to the
field-list, completing these procedures.

13.2.2 If PER-visible constraints restrict the integer value to be a constrained whole number, then it shall be converted
to a field according to the procedures of 11.5 (encoding of a constrained whole number), and the procedures of 13.2.5 to
13.2.6 shall then be applied.

13.2.3 If PER-visible constraints restrict the integer value to be a semi-constrained whole number, then it shall be
converted to a field according to the procedures of 11.7 (encoding of a semi-constrained whole number), and the
procedures of 13.2.6 shall then be applied.

13.2.4 [f PER-visible constraints do not restrict the integer to be either a constrained or a semi-constrajned whole
number, then it shall be converted to a field according to the procedures of 11.8 (encoding of an unconstralned whole
number), gnd the procedures of 13.2.6 shall then be applied.

13.2.5 Iff the procedures invoked to encode the integer value into a field did not produce the ind¢finite length case (see
11.5.7.4 anjd 11.8.2), then that field shall be appended to the field-list completing these procedures.

13.2.6 (Qtherwise, (the indefinite length case) the procedures of 11.9 shall be invoked-to append the field tp the field-
list precedgd by one of the following:

d) A constrained length determinant "len™ (as determined by 11.5.7.4)"if PER-visible constraints|restrict the
type with finite upper and lower bounds and, if the type is extensible, the value lies within the rpnge of the
extension root. The lower bound "lb" used in the length detefminant shall be 1, and the upper hound "ub"
shall be the count of the number of octets required to hold the’range of the integer value.
NOTE — The encoding of the value "foo INTEGER (256..1234567) ::= 256" would thus be engoded in the
ALIGNED variant as 00xxxxxx00000000, where each.X' represents a zero pad bit that may or may nqt be present
depending on where within the octet the length oceurs (e.g., the encoding is 00 xxxxxx 00000000 {f the length
starts on an octet boundary, and 00 00000000 ifitstarts with the two least significant bits (bits 2 gnd 1) of an
octet).

B) An unconstrained length determinant equal to "len" (as determined by 11.7 and 11.8) if HER-visible
constraints do not restrict the type with-finite upper and lower bounds, or if the type is extensiple and the
value does not lie within the range of\the extension root.

14 [Encoding the enumerated-type

NOTE + (Tutorial) An enumerated type-without an extension marker is encoded as if it were a constrained integer wtose subtype
constraint does not contain an extension marker. This means that an enumerated type will almost always in practice bg encoded as
a bit-fieJd in the smallest number.6f*bits needed to express every enumeration. In the presence of an extension marker, it is encoded
as a norfmally small non-negative' whole number if the value is not in the extension root.

14.1 The enumerations.in the enumeration root shall be sorted into ascending order by their enumeration|value, and

shall then be assigned@an-enumeration index starting with zero for the first enumeration, one for the second, and so on up

to the last pnumeration in the sorted list. The extension additions (which are always defined in ascending ordgr) shall be

assigned ap enumeration index starting with zero for the first enumeration, one for the second, and so on upj to the last

enumeratign dfr the extension additions.
NOTE Pac 1TLLT X 6880 I ISOUEC 88241 rnquirne that each sticcassivia axtansian-addition shall havg o grngfnr numeration
value than the last.

14.2 If the extension marker is absent in the definition of the enumerated type, then the enumeration index shall be
encoded. Its encoding shall be as though it were a value of a constrained integer type for which there is no extension
marker present, where the lower bound is 0 and the upper bound is the largest enumeration index associated with the type,
completing this procedure.

14.3 If the extension marker is present, then a single bit shall be added to the field-list in a bit-field of length one.
The bit shall be set to 1 if the value to be encoded is not within the extension root, and zero otherwise. In the former case,
the enumeration additions shall be sorted according to 14.1 and the value shall be added to the field-list as a normally
small non-negative whole number whose value is the enumeration index of the additional enumeration and with "Ib" set
to 0, completing this procedure. In the latter case, the value shall be encoded as if the extension marker is not present, as
specified in 14.2.

NOTE — There are no PER-visible constraints that can be applied to an enumerated type that are visible to these encoding rules.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 17

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

15 Encoding the real type

NOTE — (Tutorial) A real uses the contents octets of CER/DER preceded by a length determinant that will in practice be a single
octet.

15.1 If the base of the abstract value is 10, then the base of the encoded value shall be 10, and if the base of the
abstract value is 2 the base of the encoded value shall be 2.

15.2 The encoding of REAL specified for CER and DER in Rec. ITU-T X.690 | ISO/IEC 8825-1, 11.3 shall be applied
to give a bit-field (octet-aligned in the ALIGNED variant) which is the contents octets of the CER/DER encoding. The
contents octets of this encoding consists of "n™ (say) octets and is placed in a bit-field (octet-aligned in the ALIGNED
variant) of "n" octets. The procedures of 11.9 shall be invoked to append this bit-field (octet-aligned in the ALIGNED
variant) of "n" octets to the field-list, preceded by an unconstrained length determinant equal to "n".

16 ncoding the bitstring type

NOTE } (Tutorial) Bitstrings constrained to a fixed length less than or equal to 16 bits do not cause octet alignment. Larger
bitstrings are octet-aligned in the ALIGNED variant. If the length is fixed by constraints and the upper bound.isdegs than 64K,
there is no explicit length encoding, otherwise a length encoding is included which can take any of the formsspecifigd earlier for
length encodings, including fragmentation for large bit strings.

16.1 RER-visible constraints can only constrain the length of the bitstring.

16.2 Vhere there are no PER-visible constraints and Rec. ITU-T X.680 | ISO/IEC 8824-1, 22.7, applief the value
shall be enpoded with no trailing 0 bits (note that this means that a value with no 1 bits is always encoded as ap empty bit
string).

16.3 Vhere there is a PER-visible constraint and Rec. ITU-T X.680 | ISO/IEC8824-1, 22.7, applies (i.e., the bitstring
type is defjned with a "NamedBitList"), the value shall be encoded with trailing™0 bits added or removed as necessary to
ensure that the size of the transmitted value is the smallest size capable of(carrying this value and satisfies tte effective
size constrpint.

16.4 lLet the maximum number of bits in the bitstring (as determined by PER-visible constraints on the[length) be
"ub™ and the minimum number of bits be "Ib". If there is no, fidite maximum we say that "ub™ is unset. If there is no
constraint pn the minimum, then "Ib" has the value zero. Let the length of the actual bit string value to be gncoded be
"n" bits.

16.5 \Vhen a bitstring value is placed in a bit-fieldias specified in 16.6 to 16.11, the leading bit of the bitgtring value

shall be placed in the leading bit of the bit-field, and\the trailing bit of the bitstring value shall be placed in the|trailing bit

of the bit-lLeId.
I

16.6 the type is extensible for PER egncoedings (see 10.3.9), then a bit-field consisting of a single bit shall be added
to the field-list. The bit shall be set to-I\if the length of this encoding is not within the range of the extensiop root, and
zero otheryvise. In the former case, 16:31 shall be invoked to add the length as a semi-constrained whole number to the
field-list, fpollowed by the bitstringivalue. In the latter case the length and value shall be encoded as if no ejxtension is
present in the constraint.

16.7 Iif an extension arker is not present in the constraint specification of the bitstring type, then 168 to 16.11
apply.
16.8 Iif the bitstring is constrained to be of zero length (ub™ equals zero), then it shall not be encoded (np additions

to the field-list), completing the procedures of this clause.

16.9 If ‘allvalues of the bitstring are constrained to be of the same length ("ub" equals "Ib") and that length is less
than or equal to sixteen bits, then the bitstring shall be placed in a bit-field of the constrained length "ub™ which shall be
appended to the field-list with no length determinant, completing the procedures of this clause.

16.10 Ifall values of the bitstring are constrained to be of the same length ("ub" equals "Ib") and that length is greater
than sixteen bits but less than 64K bits, then the bitstring shall be placed in a bit-field (octet-aligned in the ALIGNED
variant) of length "ub™ (which is not necessarily a multiple of eight bits) and shall be appended to the field-list with no
length determinant, completing the procedures of this clause.

16.11 If 16.8-16.10 do not apply, the bitstring shall be placed in a bit-field (octet-aligned in the ALIGNED variant)
of length "n" bits and the procedures of 11.9 shall be invoked to add this bit-field (octet-aligned in the ALIGNED variant)
of "n" bits to the field-list, preceded by a length determinant equal to "n" bits as a constrained whole number if "ub" is set
and is less than 64K or as a semi-constrained whole number if "ub™ is unset. "Ib" is as determined above.

NOTE — Fragmentation applies for unconstrained or large "ub" after 16K, 32K, 48K or 64K bits.

18 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

17 Encoding the octetstring type

NOTE - Octet strings of fixed length less than or equal to two octets are not octet-aligned. All other octet strings are octet-aligned
in the ALIGNED variant. Fixed length octet strings encode with no length octets if they are shorter than 64K. For unconstrained
octet strings the length is explicitly encoded (with fragmentation if necessary).

17.1 PER-visible constraints can only constrain the length of the octetstring.

17.2 Let the maximum number of octets in the octetstring (as determined by PER-visible constraints on the length)
be "ub" and the minimum number of octets be "Ib". If there is no finite maximum, we say that "ub" is unset. If there is no
constraint on the minimum, then "Ib" has the value zero. Let the length of the actual octetstring value to be encoded be
"n" octets.

17.3 If the type is extensible for PER encodings (see 10.3.9), then a bit-field consisting of a single bit shall be added
to the field-list. The bit shall be set to 1 if the length of this encoding is not within the range of the extension root, and
zero otherwise. In the former case 17.8 shall be invoked to add the length as a semi-constrained whole number to the
field-list, felowed-bythe octetstring-value—tnthelatter casethe length-and-value shall- be-ensoded-asH-na-extension is

present in the constraint.

17.4 Iif an extension marker is not present in the constraint specification of the octetstring typenthen 1f.5 to 17.8
apply.
175 Iif the octetstring is constrained to be of zero length ("ub™ equals zero), then it shall natjpe’encoded (np additions

to the field-list), completing the procedures of this clause.

17.6 Iif all values of the octetstring are constrained to be of the same length ("ub",equals "Ib") and that lepgth is less
than or eqpal to two octets, the octetstring shall be placed in a bit-field with a number of bits equal to the qonstrained
length "ubl" multiplied by eight which shall be appended to the field-list with fh0)length determinant, completing the
procedureq of this clause.

17.7 Iif all values of the octetstring are constrained to be of the same_length ("ub" equals "lb") and that length is
greater thah two octets but less than 64K, then the octetstring shall be placed in a bit-field (octet-aligned in the ALIGNED
variant) wjth the constrained length "ub™ octets which shall be appénded to the field-list with no length d¢terminant,
completing the procedures of this clause.

17.8 If 17.5 to 17.7 do not apply, the octetstring shall be placed in a bit-field (octet-aligned in the ALIGNED variant)
of length '[n" octets and the procedures of 11.9 shall bexinoked to add this bit-field (octet-aligned in the ALIGNED
variant) of]"n" octets to the field-list, preceded by a length'determinant equal to "n" octets as a constrained whle number
if "ub™ is st, and as a semi-constrained whole number;if "ub™ is unset. "Ib™ is as determined above.

NOTE - The fragmentation procedures may apply after 16K, 32K, 48K, or 64K octets.

18 EEncoding the null type

NOTE + (Tutorial) The null type is essentially a place holder, with practical meaning only in the case of a choice or an|optional set
or sequgnce component. Identifigation of the null in a choice, or its presence as an optional element, is performed in thgse encoding
rules without the need to have(octets representing the null. Null values therefore never contribute to the octets of an erjcoding.

There shal|] be no additiontto the field-list for a null value.

19 [Encoding the sequence type

NOTE + (Tutorial) A sequence type begins with a preamble which is a bit-map. If the sequence type has no extension fnarker, then
the bit-thap.merely records the presence or absence of default and optional components in the type, encoded as a fixefl length bit-
field. If the sequence type does have an extension marker, then the bit-map is preceded by a single bit that says whether values of
extension additions are actually present in the encoding. The preamble is encoded without any length determinant provided it is
less than 64K bits long, otherwise a length determinant is encoded to obtain fragmentation. The preamble is followed by the fields
that encode each of the components, taken in turn. If there are extension additions, then immediately before the first one is encoded
there is the encoding (as a normally small length) of a count of the number of extension additions in the type being encoded,
followed by a bit-map equal in length to this count which records the presence or absence of values of each extension addition.
This is followed by the encodings of the extension additions as if each one was the value of an open type field.

19.1 If the sequence type has an extension marker in the "ComponentTypeLists" or in the "SequenceType"
productions, then a single bit shall first be added to the field-list in a bit-field of length one. The bit shall be one if values
of extension additions are present in this encoding, and zero otherwise. (This bit is called the “extension bit" in the
following text.) If there is no extension marker in the "ComponentTypeLists" or in the "SequenceType" productions,
there shall be no extension bit added.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 19

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

19.2 If the sequence type has "n" components in the extension root that are marked OPTIONAL or DEFAULT, then a
single bit-field with "n" bits shall be produced for addition to the field-list. The bits of the bit-field shall, taken in order,
encode the presence or absence of an encoding of each optional or default component in the sequence type. A bit value
of 1 shall encode the presence of the encoding of the component, and a bit value of 0 shall encode the absence of the
encoding of the component. The leading bit in the preamble shall encode the presence or absence of the first optional or
default component, and the trailing bit shall encode the presence or absence of the last optional or default component.

19.3 If "n" is less than 64K, the bit-field shall be appended to the field-list. If "n" is greater than or equal to 64K,
then the procedures of 11.9 shall be invoked to add this bit-field of "n" bits to the field-list, preceded by a length
determinant equal to "n" bits as a constrained whole number with "ub" and "Ib" both set to "n".

NOTE - In this case, "ub" and "Ib" will be ignored by the length procedures. These procedures are invoked here in order to provide
fragmentation of a large preamble. The situation is expected to arise only rarely.

194 The preamble shall be followed by the field-lists of each of the components of the sequence value which are
present, taken in turn.

19.5 ffor CANONICAL-PER, encodings of components marked pEFAULT shall always be absent if the yalue to be
encoded ig[the default value. For BASIC-PER, encodings of components marked DEFAULT shall always-be apsent if the
value to bg encoded is the default value of a simple type (see 3.7.25), otherwise it is a sender's option wheth¢r or not to
encode it.

19.6 This completes the encoding if the extension bit is absent or is zero. If the extension/bit is preseng and set to
one, then the following procedures apply.

19.7 lLet the number of extension additions in the type being encoded be "n", then a bit-field with "n" bjts shall be
produced for addition to the field-list. The bits of the bit-field shall, taken in order-encode the presence or abgence of an
encoding df each extension addition in the type being encoded. A bit value of 1,shall encode the presence of the encoding
of the extdnsion addition, and a bit value of 0 shall encode the absence of the.encoding of the extension adglition. The
leading bifl in the bit-field shall encode the presence or absence of the first'extension addition, and the trailimg bit shall
encode the| presence or absence of the last extension addition.

NOTE + If conformance is claimed to a particular version of a specification, then the value "n" is always equal to the number of
extensiqn additions in that version.

19.8 The procedures of 11.9 shall be invoked to add this bit-field of "n" bits to the field-list, preceded by a length
determinant equal to "n" as a normally small length.
NOTE -} "n" cannot be zero, as this procedure is only invoked if there is at least one extension addition being encoded

19.9 This shall be followed by field-lists containifg the encodings of each extension addition that is present, taken in
turn. Each|extension addition that is a "ComponentType" (i.e., not an "ExtensionAdditionGroup™) shall be encqded as if it
were the vglue of an open type field as specifiedin11.2.1. Each extension addition that is an "ExtensionAdditionGroup” shall
be encoded as a sequence type as specified in'19.2 to 19.6, which is then encoded as if it were the value of an opeh type field
as specifid in 11.2.1. If all components values of the "ExtensionAdditionGroup" are missing |then, the
"ExtensionfAdditionGroup™ shall be eneoded as a missing extension addition (i.e., the corresponding bit in the bit-field
described ip 19.7 shall be set to 0).

NOTE |1 - If an "ExtensionAdditionGroup” contains components marked OPTIONAL or DEFAULT,| then the

"ExtensjonAdditionGroup" s prefixed with a bit-map that indicates the presence/absence of values for each compoment marked
OPTIONAL O DEFAULT.

NOTE 2 — "RootComporentTypeList" components that are defined after the extension marker pair are encoded as |f they were
defined [immediately~before the extension marker pair.

20 Encoding the sequence-of type

20.1 PER-visible constraints can constrain the number of components of the sequence-of type.

20.2 Let the maximum number of components in the sequence-of (as determined by PER-visible constraints) be "ub"
components and the minimum number of components be "Ib". If there is no finite maximum or "ub" is greater than or
equal to 64K we say that "ub" is unset. If there is no constraint on the minimum, then "Ib" has the value zero. Let the

number of components in the actual sequence-of value to be encoded be "n" components.

20.3 The encoding of each component of the sequence-of will generate a number of fields to be appended to the
field-list for the sequence-of type.

20.4 If there is a PER-visible constraint and an extension marker is present in it, a single bit shall be added to the
field-list in a bit-field of length one. The bit shall be set to 1 if the number of components in this encoding is not within
the range of the extension root, and zero otherwise. In the former case 11.9 shall be invoked to add the length determinant
as a semi-constrained whole number to the field-list, followed by the component values. In the latter case the length and
value shall be encoded as if the extension marker is not present.

20 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

20.5 If the number of components is fixed ("ub" equals "1b™) and "ub™ is less than 64K, then there shall be no length
determinant for the sequence-of, and the fields of each component shall be appended in turn to the field-list of the
sequence-of.

20.6 Otherwise, the procedures of 11.9 shall be invoked to add the list of fields generated by the "n" components to
the field-list, preceded by a length determinant equal to "n" components as a constrained whole number if "ub" is set, and
as a semi-constrained whole number if "ub™ is unset. "Ib™ is as determined above.

NOTE 1 — The fragmentation procedures may apply after 16K, 32K, 48K, or 64K components.

NOTE 2 — The break-points for fragmentation are between fields. The number of bits prior to a break-point are not necessarily a
multiple of eight.

21 Encoding the set type

The set ty, ified in Rec.
ITU-T X.680 | ISO/IEC 8824-1, 8.6, and additionally for the purposes of determlnlng the order in which camponents are
encoded when one or more component is an untagged choice type, each untagged choice type is ordered.a$ thpugh it has
a tag equal to that of the smallest tag in the "RootAlternative TypeL.ist" of that choice type or any untagged choice types
nested within. The set elements that occur in the "RootComponentTypeList" shall then be encoded as if if had been
declared afsequence type. The set elements that occur in the "ExtensionAdditionList" shall be encodéd as though they were
components of a sequence type as specified in 19.9 (i.e., they are encoded in the order in whichthey are defined).

EXAMPLE - In the following which assumes a tagging environment of IMPLICTIT TAGS:
A :=SET
{

a [3] INTEGER,

b [1] CHOICE

{
¢ [2]INTEGER,
d [4] INTEGER
}
e CHOICE
{
f CHOICE
{
g [5] INTEGER,
h [6] INTEGER
h
i CHOICE
{
i [0] INTEGER
}
}

the order in which the components of the set are encoded will always be e, b, a, since the tag [01 sqrts lowest,
then [1], then [3]

22 [Encoding the set-of type
22.1 For€ANONICAL-PER the encoding of the component values of the set-of type shall appear in ascending order,

the compcnnnf nnr\r\ﬂlhge hnlng f\nmporurl ag hlf efrlngc poﬂr{nﬂ at H’\nlr fralllnn anﬂo \Allfh as many as-seven) blts to an
octet boundary, and with 0-octets added to the shorter one if necessary to make the length equal to that of the longer one.
NOTE — Any pad bits or pad octets added for the sort do not appear in the actual encoding.

22.2 For BASIC-PER the set-of shall be encoded as if it had been declared a sequence-of type.

23 Encoding the choice type

NOTE — (Tutorial) A choice type is encoded by encoding an index specifying the chosen alternative. This is encoded as for a
constrained integer (unless the extension marker is present in the choice type, in which case it is a normally small non-negative
whole number) and would therefore typically occupy a fixed length bit-field of the minimum number of bits needed to encode the
index. (Although it could in principle be arbitrarily large.) This is followed by the encoding of the chosen alternative, with
alternatives that are extension additions encoded as if they were the value of an open type field. Where the choice has only one
alternative, there is no encoding for the index.

23.1 Encoding of choice types are not affected by PER-visible constraints.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 21

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

23.2 Each component of a choice has an index associated with it which has the value zero for the first alternative in
the root of the choice (taking the alternatives in the canonical order specified in Rec. ITU-T X.680 | ISO/IEC 8824-1,
8.6), one for the second, and so on up to the last component in the extension root of the choice. An index value is similarly
assigned to each "NamedType" within the "ExtensionAdditionAlternativesList”, starting with 0 just as with the
components of the extension root. Let "n" be the value of the largest index in the root.

NOTE — Rec. ITU-T X.680 | ISO/IEC 8824-1, 29.7, requires that each successive extension addition shall have a greater tag value
than the last added to the "ExtensionAdditionAlternativesL.ist".

23.3 For the purposes of canonical ordering of choice alternatives that contain an untagged choice, each untagged
choice type shall be ordered as though it has a tag equal to that of the smallest tag in the extension root of either that
choice type or any untagged choice types nested within.

23.4 If the choice has only one alternative in the extension root, there shall be no encoding for the index if that
alternative is chosen.
235 it shall first

be added tp the field-list in a blt fleld of Iength one. The bit shaII be 1 if a value of an extension addltlon ispresent in the
encoding, fnd zero otherwise. (This bit is called the "extension bit" in the following text.) If there is noextensjon marker
in the "AltgrnativeTypeLists" production, there shall be no extension bit added.

23.6 Iif the extension bit is absent, then the choice index of the chosen alternative shall<be’ éncoded into a field

according fo the procedures of clause 13 as if it were a value of an integer type (with no extension marker in fits subtype

constraint)| constrained to the range 0 to "n", and that field shall be appended to the field-list;Fhis shall then He followed

by the fielts of the chosen alternative, completing the procedures of this clause.
|

23.7 the extension bit is present and the chosen alternative lies within the extension root, the choice ifdex of the
chosen altgrnative shall be encoded as if the extension marker is absent, according/to the procedure of clausg 13. This
shall then be followed by the fields of the chosen alternative, completing the proeedures of this clause.

of the chogden alternative shall be encoded as a normally small non-negative whole number with "lb" set to 0 arnjd that field
shall be appended to the field-list. This shall then be followed by/a"field-list containing the encoding of the chosen
alternativelencoded as if it were the value of an open type fieldas specified in 11.2, completing the proceddires of this
clause.

NOTE { Version brackets in the definition of choice extension‘additions have no effect on how "ExtensionAdditionAlternatives"
are encqded.

23.8 %the extension bit is present and the chosen alternative does not lie within the extension root, the choice index

24 [Encoding the object identifiertype

NOTE 1 (Tutorial) An object identifier typeencoding uses the contents octets of BER preceded by a length determinpnt that will
in pract{ce be a single octet.

The encodjng specified for BER shall be applied to give a bit-field (octet-aligned in the ALIGNED variant) which is the
contents ogtets of the BER encoding. The contents octets of this BER encoding consists of "n" (say) octets and is placed
in a bit-field (octet-aligned in the ALIGNED variant) of "n" octets. The procedures of 11.9 shall be invoked to append

this bit-fie|d (octet-aligned in-the ALIGNED variant) to the field-list, preceded by a length determinant equalfto "n" as a
semi-consfrained wholg.ntmber octet count.

25 [Encading the relative object identifier type

NOTE + (Tutorial) A relative object identifier type encoding uses the contents octets of BER preceded by a length detefminant that
will in practice be a single octet. The following text is identical to that of clause 24.

The encoding specified for BER shall be applied to give a bit-field (octet-aligned in the ALIGNED variant) which is the
contents octets of the BER encoding. The contents octets of this BER encoding consists of "n" (say) octets and is placed
in a bit-field (octet-aligned in the ALIGNED variant) of "n" octets. The procedures of 11.9 shall be invoked to append
this bit-field (octet-aligned in the ALIGNED variant) to the field-list, preceded by a length determinant equal to "n" as a
semi-constrained whole number octet count.

26 Encoding the internationalized resource reference type

NOTE - (Tutorial) An internationalized resource reference type encoding uses the contents octets of BER preceded by a length
determinant that will in practice be a single octet. The following text is identical to that of clause 24.

The encoding specified for BER shall be applied to give a bit-field (octet-aligned in the ALIGNED variant) which is the
contents octets of the BER encoding. The contents octets of this BER encoding consists of "n" (say) octets and is placed

22 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

in a bit-field (octet-aligned in the ALIGNED variant) of "n" octets. The procedures of 11.9 shall be invoked to append
this bit-field (octet-aligned in the ALIGNED variant) to the field-list, preceded by a length determinant equal to "n™ as a
semi-constrained whole number octet count.

27 Encoding the relative internationalized resource reference type

NOTE - (Tutorial) A relative internationalized resource reference type encoding uses the contents octets of BER preceded by a
length determinant that will in practice be a single octet. The following text is identical to that of clause 24.

The encoding specified for BER shall be applied to give a bit-field (octet-aligned in the ALIGNED variant) which is the
contents octets of the BER encoding. The contents octets of this BER encoding consists of "n" (say) octets and is placed
in a bit-field (octet-aligned in the ALIGNED variant) of "n" octets. The procedures of 11.9 shall be invoked to append

this bit-field (octet-aligned in the ALIGNED variant) to the field-list, preceded by a length determinant equal to "n" as a
semi-constrained whole number octet count.

28 [Encoding the embedded-pdv type

28.1 There are two ways in which an embedded-pdv type can be encoded:

) the syntaxes alternative of the embedded-pdv type is constrained with a PER-visible inner typg constraint
to asingle value or identification is constrained with a PER-visible innertype constraint tg the £ixed
alternative, in which case only the data-value shall be encoded; this isccalled the "predefined" case;

Q)

B) an inner type constraint is not employed to constrain the syntaxesalteérnative to a single vglue, nor to
constrain identification to the £ixed alternative, in which casé bpth the identificationfand data-
value shall be encoded; this is called the "general case.

28.2 In the "predefined"” case, the encoding of the value of the embedded-pdv type shall be the PER-engoding of a
value of the OCTET STRING type. The value of the ocTET STRING shalldbe the octets which form the complete encoding
of the single data value referenced in Rec. ITU-T X.680 | ISO/IEC 8824-1, 36.3 a).

28.3 I the "general” case, the encoding of a value of the embedded-pdv type shall be the PER encoding [of the type
defined in[Rec. ITU-T X.680 | ISO/IEC 8824-1, 36.5, with thé"data-value-descriptor element removgd (that is,
there shalll be no oPTIONAL bit-map at the head of thesencoding of the SEQUENCE). The value of the dgta-value
component of type ocTET STRING shall be the octets which form the complete encoding of the single |[data value
referenced|in Rec. ITU-T X.680 | ISO/IEC 8824-1, 36,3 a).

29 [Encoding of a value of the-external type

29.1 The encoding of a value of the_external type shall be the PER encoding of the following sequence typg, assumed
to be defined in an environment oflEXPLICIT TAGS, with a value as specified in the subclauses below:

[UNIVERSAL 8] IMRLICIT SEQUENCE {

direct-reference OBJECT IDENTIFIER OPTIONAL,
indirect-reference INTEGER OPTIONAL,
data-value-descriptor ObjectDescriptor OPTIONAL,
encoding CHOICE {
single-ASN1-type [0] ABSTRACT-SYNTAX.&Type,
octet-aligned [1] IMPLICIT OCTET STRING,
arbitrary [2] IMPLICIT BIT STRING } }

NOTE — This sequence type differs from that in Rec. ITU-T X.680 | ISO/IEC 8824-1 for historical reasons.

29.2 The value of the components depends on the abstract value being transmitted, which is a value of the type
specified in Rec. ITU-T X.680 | ISO/IEC 8824-1, 36.5.

29.3 The data-value-descriptor above shall be present if and only if the data-value-descriptor is present
in the abstract value, and shall have the same value.

29.4 Values of direct-reference and indirect-reference above shall be present or absent in accordance with
Table 1. Table 1 maps the external type alternatives of identification defined in Rec. ITU-T X.680 | ISO/IEC 8824-1,
36.5, to the external type components direct-reference and indirect-reference defined in 29.1.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 23

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

Table 1 — Alternative encodings for ""identification"

identification

direct-reference

indirect-reference

syntaxes *** CANNOT OCCUR *** *** CANNOT OCCUR ***
syntax syntax ABSENT
presentation-context-id ABSENT presentation-context-id

context-negotiation

transfer-syntax

presentation-context-id

transfer-syntax

*** CANNOT OCCUR ***

*** CANNOT OCCUR ***

fixed

*** CANNOT OCCUR ***

*** CANNOT OCCUR ***

29.5 The data value shall be encoded according to the transfer syntax identified by the encoding, and shall be placed
in an alternative of the encoding choice as specified below.

29.6 I|f the data value is the value of a single ASN.1 data type (see the Note in 29.7), and if the engcodirg rules for
this data v3lue are those specified in this Recommendation | International Standard, then the sending implementation shall

use the single-ASN1-type alternative.

29.7 Otherwise, if the encoding of the data value, using the agreed or negotiated encoding,‘isjan integrallnumber of

octets, then the sending implementation shall encode as octet-aligned.

NOTE } A data value which is a series of ASN.1 types, and for which the transfer syntax specifies simple concaterjation of the
octet strfings produced by applying the ASN.1 Basic Encoding Rules to each ASN.1 type, falls.into this category, not that of 29.6.

29.8 Dtherwise, if the encoding of the data value, using the agreed or negotiated,.encoding, is not an integfal number

of octets, the encoding choice shall be arbitrary.

29.9 If the encoding choice is chosen as single-ASN1-type, then the ASN.1 type shall be encoded gs specified

in11.2 wi

29.10
negotiated|transfer syntax, and the resulting octets shall formthe value of the octetstring.

a value equal to the data value to be encoded.

NOTE } The range of values which might occur in the open type is determined by the registration of the object ideftifier value
associated with the direct-reference, and/or the integer value associated with the indirect-reference.

Iif the encoding choice is octet-aligned, then the“data value shall be encoded according to th¢ agreed or

29.11 If the encoding choice is arbitrary, then the data value shall be encoded according to the| agreed or

negotiated|transfer syntax, and the result shall form-thé value of the bitstring.

30

24

[Encoding the restricted.character string types

NOTE] - (Tutorial ALIGNED variant) Character strings of fixed length less than or equal to two octets are not ogtet-aligned.
Character strings of variable length that are constrained to have a maximum length of less than two octets are not octet{aligned. All
other cHaracter strings are octet<aligned in the ALIGNED variant. Fixed length character strings encode with no length octets if
they ard shorter than 64K characters. For unconstrained character strings or constrained character strings longer than| 64K-1, the
length is explicitly encoded (with fragmentation if necessary). Each NumericString, PrintableString, VisibleString
(1s064§string), IA5String, BMPString and UniversalString character is encoded into the number of bits that is|the smallest
power df two that caf accommodate all characters allowed by the effective permitted-alphabet constraint.

NOTE 2 — (Tutorial UNALIGNED variant) Character strings are not octet-aligned. If there is only one possible length value there
is no lefgth encading if they are shorter than 64K characters. For unconstrained character strings or constrained charpcter strings
longer than/64K*1, the length is explicitly encoded (with fragmentation if necessary). Each NumericString, PrintableString,
VisiblpString (ISOG4 6String), IA5String, BMPString and UniversalString character is encoded into the number of bits
that iS ute bllldllt‘bl llldl Cdll dLLUIIIIIIUUdlU dll Llldl dClels dIIUWBU Uy LIIC EIIELLIVE pEIIIIILU:‘U dl[JIIdUEL LUIIbLIdIIIl

NOTE 3 — (Tutorial on size of each encoded character) Encoding of each character depends on the effective permitted-alphabet
constraint (see 10.3.12), which defines the alphabet in use for the type. Suppose this alphabet consists of a set of characters ALPHA
(say). For each of the known-multiplier character string types (see 3.7.16), there is an integer value associated with each character,
obtained by reference to some code table associated with the restricted character string type. The set of values BETA (say)
corresponding to the set of characters ALPHA is used to determine the encoding to be used, as follows: the number of bits for the
encoding of each character is determined solely by the number of elements, N, in the set BETA (or ALPHA). For the UNALIGNED
variant is the smallest number of bits that can encode the value N — 1 as a non-negative binary integer. For the ALIGNED variant
this is the smallest number of bits that is a power of two and that can encode the value N — 1. Suppose the selected number of bits
is B. Then if every value in the set BETA can be encoded (with no transformation) in B bits, then the value in set BETA is used to
represent the corresponding characters in the set ALPHA. Otherwise, the values in set BETA are taken in ascending order and
replaced by values 0, 1, 2, and so on up to N — 1, and it is these values that are used to represent the corresponding character. In
summary: minimum bits (taken to the next power of two for the ALIGNED variant) are always used. Preference is then given to
using the value normally associated with the character, but if any of these values cannot be encoded in the minimum number of
bits a compaction is applied.

Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

30.1 The following restricted character string types are known-multiplier character string types: NumericString,
PrintableString, VisibleString (IS0646String), IA5String, BMPString, and UniversalString. Effective
permitted-alphabet constraints are PER-visible only for these types.

30.2 The effective size constraint notation may determine an upper bound "aub" for the length of the abstract
character string. Otherwise, "aub" is unset.

30.3 The effective size constraint notation may determine a non-zero lower bound "alb" for the length of the abstract
character string. Otherwise, "alb" is zero.

NOTE - PER-visible constraints only apply to known-multiplier character string types. For other restricted character string types
"aub" will be unset and "alb™ will be zero.

30.4 If the type is extensible for PER encodings (see 10.3.18), then a bit-field consisting of a single bit shall be added
to the field-list. The single bit shall be set to zero if the value is within the range of the extension root, and to one otherwise.
If the value is outside the range of the extension root, then the following encoding shall be as if there was no effective

size constr; it and chall havia tha affactivia narmittad alnhahat canctraint cnacifiad 1n 102 192
PR E-SHeH- e EtHE-EH e CtrY e-pe ittt e p B e EoRStatSpeerHeatH—=oo—===

NOTE 1 - Only the known-multiplier character string types can be extensible for PER encodings. Extensibility markers on other
charactdr string types do not affect the PER encoding.

NOTE 2 — Effective permitted-alphabet constraints can never be extensible, as extensible permitted-alphabet.constrgints are not
PER-vigible (see 10.3.11).

30.5 This subclause applies to known-multiplier character strings. Encoding of the other restricted character string
types is spgcified in 30.6.

30.5.1 The effective permitted alphabet is defined to be that alphabet permitted by the’permitted-alphabet|constraint,
or the entife alphabet of the built-in type if there is no PermittedAlphabet constraint:

30.5.2 et N be the number of characters in the effective permitted alphabet:“Det B be the smallest integer puch that 2
to the powgr B is greater than or equal to N. Let B2 be the smallest power of-2 that is greater than or equal to[B. Then in
the ALIGNED variant, each character shall encode into B2 bits, and in,the UNALIGNED variant into B bjts. Let the
number of[bits identified by this rule be "b".

30.5.3 numerical value "v" is associated with each character.by reference to Rec. ITU-T X.680 | ISO/IEC 8824-1,
clause 43 gs follows. For universalstring, the value is thatused to determine the canonical order in Rec. ITU-T X.680
| ISO/IEC B824-1, 43.3 (the value is in the range 0 to 232 —(Z). For BMPString, the value is that used to defermine the
canonical grder in Rec. ITU-T X.680 | ISO/IEC 8824-1, 43.3 (the value is in the range 0 to 216 — 1). For NumedicString
and PrintlableString and VisibleString and IA5String the value is that defined for the ISO/IEC 646 gncoding of
the corresponding character. (For 1A5String th€ range is O to 127, for visibleString it is 32 tp 126, for
NumericSltring it is 32 to 57, and for PrintableString it is 32 to 122. For IA5String and Visible$tring all
values in the range are present, but for NumeticString and PrintableString not all values in the range afe in use.)

30.5.4 llet the smallest value in therange for the set of characters in the permitted alphabet be "Ib" and [the largest
value be "gb". Then the encoding of a character into ""b" bits is the non-negative-binary-integer encoding of thg value "v"
identified #s follows:

4) if "ub™ is lessithan or equal to 20 — 1, then "v" is the value specified in above; otherwise

) the characters‘are placed in the canonical order defined in Rec. ITU-T X.680 | ISO/IEC 8824-1| clause 43.
The first’is assigned the value zero and the next in canonical order is assigned a value that is pne greater
than.the' value assigned to the previous character in the canonical order. These are the values "y"

NOTE — Item a) above can never apply to a constrained or unconstrained NumericString character, which always
encodes into four bits or less using b).

30.5.5 he encoding of the entire character string shall be obtained by encoding each character (using an appropriate
value "v") as a non-negative-binary-integer into "b" bits which shall be concatenated to form a bit-field that is a multiple
of "b" bits.

30.5.6 If"aub" equals "alb" and is less than 64K, then the bit-field shall be added to the field-list as a field (octet-aligned
in the ALIGNED variant) if "aub" times "b" is greater than 16, but shall otherwise be added as a bit-field that is not
octet-aligned. This completes the procedures of this subclause.

30.5.7 If "aub" does not equal "alb" or is greater than or equal to 64K, then 11.9 shall be invoked to add the bit-field
preceded by a length determinant with "n" as a count of the characters in the character string with a lower bound for the
length determinant of "alb™ and an upper bound of "aub". The bit-field shall be added as a field (octet-aligned in the
ALIGNED variant) if "aub" times "b" is greater than or equal to 16, but shall otherwise be added as a bit-field that is not
octet-aligned. This completes the procedures of this subclause.

NOTE - Both 30.5.6 and 30.5.7 specify no alignment if "aub” times "b" is less than 16, and alignment if the product is greater
than 16. For a value exactly equal to 16, 30.5.6 specifies no alignment and 30.5.7 specifies alignment.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 25

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

30.6 This subclause applies to character strings that are not known-multiplier character strings. In this case,
constraints are never PER-visible, and the type can never be extensible for PER encoding.

30.6.1 For BASIC-PER, reference below to "base encoding™" means production of the octet string specified in Rec.
ITU-T X.690 | ISO/IEC 8825-1, 8.23.5. For CANONICAL-PER it means the production of the same octet string subject
to the restrictions specified for CER and DER in Rec. ITU-T X.690 | ISO/IEC 8825-1, 11.4.

30.6.2 The "base encoding" shall be applied to the character string to give a field of "n" octets.

30.6.3 Subclause 11.9 shall be invoked to add the field of "n" octets as a bit-field (octet-aligned in the ALIGNED
variant), preceded by an unconstrained length determinant with "n" as a count in octets, completing the procedures of this
subclause.

31 Encoding the unrestricted character string type

31.1 There are two ways in which an unrestricted character string type can be encoded:

d) the syntaxes alternative of the unrestricted character string type is constrained with a PER>v(sible inner
type constraint to a single value or identification is constrained with a PER-visible [inner type
constraint to the £ixed alternative, in which case only the string-value shall be encaded; tHis is called
the "predefined” case;

) an inner type constraint is not employed to constrain the syntaxes alternative/to a single vglue, nor to
constrain identification to the fixed alternative, in which case boththe identification and
string-value Shall be encoded; this is called the "general” case.

31.2 fror the "predefined" case, the encoding of the value of the CHARACTER STRING type shall be the PER-encoding
of a value [of the oCTET STRING type. The value of the oCTET STRING shall-be the octets which form thg complete
encoding df the character string value referenced in Rec. ITU-T X.680 | ISO/IEC 8824-1, 44.3 a).

31.3 In the "general” case, the encoding of a value of the unrestricted.character string type shall be the PER encoding
of the typg defined in Rec. ITU-T X.680 | ISO/IEC 8824-1, 44,5, with the data-value-descriptor fomponent
removed (fhat is, there shall be no opTIONAL bit-map at the head of the encoding of the SEQUENCE). The vjlue of the

string-vialue component of type oCTET STRING shall be the.octets which form the complete encoding of the character
string valug referenced in Rec. ITU-T X.680 | ISO/IEC 8824-1,"44.3 a).
32 ncoding the time type, the usefultime types, the defined time types and the

wdditional time types

he encoding of the useful‘time types, the defined time types and the additional time types shall be fletermined
by the property settings of the abstract values of these types. Property settings for the abstract values of theuseful and
defined tinpe types are specified.in Rec. ITU-T X.680 | ISO/IEC 8824-1, 38.4 and Annex B, respectively. Propefty settings
for the abgtract values of additional time types are determined by the property settings of the parent type, rgstricted by

32.1.2 I all the-abstract values of the type to be encoded have one of the property settings listed in a row of column 2
of Table 2 [thenthat type shall be encoded as if the type with its constraints (if any) had been replaced by the tyge specified
in the corrg¢sponding row of column 3 of Table 2. Otherwise, it shall be encoded as specified in 32.11.

NOTE a-tie-prope or-exarple-Midnight)Hs-Rot-Hsted-Table2forapartictHarrow-there-is-ho-constrain

an its setting.
32.1.3 Forrows 24 to 32 to be applicable, all abstract values of the type are required to have the same value of nin Fn.

32.1.4 The types specified in column 3 of Table 2 are defined (using the ASN.1 notation) in 32.2 to 32.10, and are
assumed to be defined in an environment of AUTOMATIC TAGS.

NOTE 1 — The use of these type reference names in the specification of PER encodings does not make them available for use by
an application designer in an ASN.1 specification, nor are they reserved words in such a specification. However, with the removal
of -ENCODING, they correspond to the names of the useful time types or defined time types specified in

Rec. ITU-T X.680 | ISO/IEC 8824-1, 38.4 and Annex B.

NOTE 2 — All the useful and defined time types satisfy the conditions for one of the rows of Table 2, and hence have optimized
encodings. Additional time types may satisfy the conditions for one of the rows, but are otherwise encoded as specified in 32.11.
The unconstrained TIME type is always encoded as specified in 32.11.

26 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

Table 2 — Encoding of a time subtype with all abstract values having specified property settings

ISO/IEC 8825-2:2021 (E)

nuRrg\k,)Ver Property settings ASN.1 type to be encoded
"Basic=Date Date=C Year=Basic" CENTURY-ENCODING
1 or (see 32.2.1)
"Basic=Date Date=C Year=Proleptic"
"Basic=Date Date=C Year=Negative" ANY-CENTURY-ENCODING
2 or (see 32.2.2)
"Basic=Date Date=C Year=Ln" (for any n)
"Basic=Date Date=Y Year=Basic" YEAR-ENCODING
3 oF (ee32.2°3)
"Basic=Date Date=Y Year=Proleptic"
"Basic=Date Date=Y Year=Negative" ANY-YEAR-ENCODING
4 or (see 32.2.4)
"Basic=Date Date=Y Year=Ln" (for any n)
"Basic=Date Date=YM Year=Basic" YEAR-MONTH-ENCODING
5 or (see'32.2.5)
"Basic=Date Date=YM Year=Proleptic"
"Basic=Date Date=YM Year=Negative" ANY~YEAR-MONTH-ENCODING
6 or (see 32.2.6)
"Basic=Date Date=YM Year=Ln" (for any n)
"Basic=Date Date=YMD Year=Basic" DATE-ENCODING
7 or (see 32.2.7)
"Basic=Date Date=YMD Year=Proleptic"
"Basic=Date Date=YMD Year=Negative" ANY-DATE-ENCODING
8 or (see 32.2.8)
"Basic=Date Date=YMD Year=Ln" (for any.n)
"Basic=Date Date=YD Year=Basic" YEAR-DAY-ENCODING
9 or (see 32.2.9)
"Basic=Date Date=YD Year=Proleptic"
"Basic=Date Date=YD Year=Negative" ANY-YEAR-DAY-ENCODING
10 or (see 32.2.10)
"Basic=Date Date=YD, Year=Ln" (for any n)
"Basic=Date Date=¥W Year=Basic" YEAR-WEEK-ENCODING
11 or (see 32.2.11)
"Basic=Date Date=YW Year=Proleptic"
"Basic=Date 'Date=YW Year=Negative" ANY-YEAR-WEEK-ENCODING
12 o (see 32.2.12)
"Basic=Date Date=YW Year=Ln" (for any n)
"Basic=Date Date=YWD Year=Basic" YEAR-WEEK-DAY-ENCODING
13 ok (see 322 13)
"Basic=Date Date=YWD Year=Proleptic"
"Basic=Date Date=YWD Year=Negative" ANY-YEAR-WEEK-DAY-ENCODING
14 or (see 32.2.14)
"Basic=Date Date=YWD Year=Ln" (forany n)
"Basic=Time Time=H Local-or-UTC=L" HOURS-ENCODING
15 (see 32.3.1)
"Basic=Time Time=H Local-or-UTC=Z" HOURS-UTC-ENCODING
16 (see 32.3.2)
"Basic=Time Time=H Local-or-UTC=LD" HOURS-AND-DIFF-ENCODING
17 (see 32.3.3)
"Basic=Time Time=HM Local-or-UTC=L" MINUTES-ENCODING
18 (see 32.3.4)

© ISO/IEC 2021 - All rights reserved

Rec. ITU-T X.691 (02/2021)

27

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

Table 2 — Encoding of a time subtype with all abstract values having specified property settings

Row .
number Property settings ASN.1 type to be encoded
"Basic=Time Time=HM Local-or-UTC=Z" MINUTES-UTC-ENCODING
19 (see 32.3.5)
"Basic=Time Time=HM Local-or-UTC=LD" MINUTES-AND-DIFF-ENCODING
20 (see 32.3.6)
"Basic=Time Time=HMS Local-or-UTC=L" TIME-OF-DAY-ENCODING
21 (see 32.3.7)
"Basic=Time Time=HMS Local-or-UTC=Z" TIME-OF-DAY-UTC-ENCODING
22 {see-32-3-8Y
{ ~o70)]
"Basic=Time Time=HMS Local-or-UTC=LD" TIME—OF—DAY—AND—DIFF—ENCODIhG
23 (see 32.3.9)
"Basic=Time Time=HFn Local-or-UTC=L" HOURS-AND-FRACTION-ENCODING
24 (but see 32.1.3) (see 32.3.10)
"Basic=Time Time=HFn Local-or-UTC=Z" HOURS-UTC-AND-FRACTION-ENCOD[NG
25 (but see 32.1.3) (see 32.3.11)
"Basic=Time Time=HFn Local-or-UTC=LD" HOURS-AND-DIEFF-AND-FRACTION-ENQODING
26 (but see 32.1.3) (see 32.3.12)
"Basic=Time Time=HMFn Local-or-UTC=L" MINUTES-AND-FRACTION-ENCODING
27 (but see 32.1.3) (see 32.3.13)
"Basic=Time Time=HMFn Local-or-UTC=Z" MINUTES-UTC-AND-FRACTION-ENCODING
28 (but see 32.1.3) (see 32.3.14)
"Basic=Time Time=HMFn Local-or-UTC=LD" MINUTES-AND-DIFF-AND-FRACTION-ENCODING
29 (but see 32.1.3) (see 32.3.15)
"Basic=Time Time=HMSFn Local-or-UTC=L" TIME-OF-DAY-AND-FRACTION-ENCOPING
30 (but see 32.1.3) (see 32.3.16)
"Basic=Time Time=HMSFn Local-or=UTC=2" TIME-OF-DAY-UTC-AND-FRACTION-EN{CODING
31 (but see 32.1.3) (see 32.3.17)
"Basic=Time Time=HMSFn Localsor-UTC=LD" TIME-OF-DAY-AND-DIFF-AND-FRACTION-
32 (but see 32.1.3) ENCODING
(see 32.3.18)
"Basic=Date-Time" DATE-TIME-ENCODING
33 All abstract values are required to have the same {Date-Type, Time-Type}
additional property settings specified in one of rows 7, 8, (instantiated as specified in 32.4.1)
9, 10, 13 and 14 for"Basic=Date" together with the
same additionalproperty settings specified in one of the
rows 15 to 32)for "Basic=Time".
"Basic=Interval Interval-type=SE START-END-DATE-INTERVAL-ENCOOQING
34 SE-point=Date" {Date-Type}
Al abstract values are required to have the same (see 32.5.1)
additional property settings specified in one of rows 1 to
14 for "Basic=Date".
"Basic=Interval Interval-type=SE START-END-TIME-INTERVAL-ENCODING
35 SE-point=Time" {Time-Type}
All abstract values are required to have the same (see 32.5.2)
additional property settings specified in one of rows 15 to
32 for "Basic=Time".
"Basic=Interval Interval-type=SE START-END-DATE-TIME-INTERVAL-ENCODING
36 SE-point=Date-Time" {Date-Type, Time-Type}
All abstract values are required to have the same (see 32.5.3)
additional property settings specified in one of rows 7, 8,
9, 10, 13 and 14 for "Basic=Date" together with the
same additional property settings specified in one of
rows 15 to 32 for "Basic=Time".
28 Rec. ITU-T X.691 (02/2021)

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

Table 2 — Encoding of a time subtype with all abstract values having specified property settings

Row .
number Property settings ASN.1 type to be encoded

"Basic=Interval Interval-type=D" DURATION-INTERVAL-ENCODING
37 (see 32.6.1)

"Basic=Interval Interval—type:SD START-DATE-DURATION-INTERVAL-ENCODING
38 SE-point=Date" {Date-Type}

All abstract values are required to have the same (see 32.7.1)

additional property settings specified in one of rows 1 to

14 for "Basic=Date".

u ie= valt—type=5b START-FIME-DURATION-INTERVAL-ENCODING
39 SE-point=Time" {Time-Type}

All abstract values are required to have the same (see 32.7.2)

additional property settings specified in one of rows 15 to

32 for "Basic=Time".

"Basic=Interval Interval-type=SD START-DATE-TIME-DURATION-
40 SE-point=Date-Time" INTERVAL-ENCODING

All abstract values are required to have the same {Date-Type; Time-Type}

additional property settings specified in one of rows 7, 8, (see 32.7.3)

9, 10, 13 and 14 for "Basic=Date" together with the

same additional property settings specified in one of

rows 15 to 32 for "Basic=Time".

"Basic=Interval Interval-type=DE DURATION-END-DATE-INTERVAL-ENCPDING
41 SE-point=Date" {Date-Type}

All abstract values are required to have the same (see 32.7.4)

additional properties specified in one of rows 1 to 14 for

"Basic=Date".

"Basic=Interval Interval-type=DE DURATION-END-TIME-INTERVAL-ENCODING
42 SE-point=Time" {Time-Type}

All abstract values are required to have the samé (see 32.7.5)

additional properties specified in one of rowsd5 to 32 for

"Basic=Time".

"Basic=Interval Interval-type=DE DURATION-END-DATE-TIME-INTERVAL-
43 SE-point=Date-Time" ENCODING

All abstract values are required to have the same {Date-Type, Time-Type}

additional properties spegified in one of rows 7, 8, 9, 10, (see 32.7.6)

13 and 14 for "Basic=DPate" together with the same

additional property.settings specified in one of rows 15 to

32 for "Basic=Time".

"Basic=Rec>Interval Interval-type=SE REC-START-END-DATE-INTERVAL-ENJODING
44 SE-pointsDate" {Date-Type}

All abstract values are required to have the same (see 32.8.1)

additional property settings specified in one of rows 1 to

14fer "Basic=Date".

"Basic=Rec-Interval Interval-type=SE REC-START-END-TIME-INTERVAL-ENCODING
45 SE-point=Time" {Time-Type}

All abstract values are required to have the same (see 32.8.2)

additional property settings specified in one of rows 15 to

32 for "Basic=Time".

"Basic=Rec-Interval Interval-type=SE REC-START-END-DATE-TIME-INTERVAL-
46 SE-point=Date-Time" ENCODING

All abstract values are required to have the same {Date-Type, Time-Type}

additional property settings specified in one of rows 7, 8, (see 32.8.3)

9, 10, 13 and 14 for "Basic=Date" together with the

same additional property settings specified in one of

rows 15 to 32 for "Basic=Time".

"Basic=Rec-Interval Interval-type=D" REC-DURATION-INTERVAL-ENCODING
47 (see 32.9.1)
© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 29

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC

8825-2:2021 (E)

Table 2 — Encoding of a time subtype with all abstract values having specified property settings

Row .
number Property settings ASN.1 type to be encoded

"Basic=Rec-Interval Interval-type=SD REC-START-DATE-DURATION-INTERVAL-
48 SE-point=Date" ENCODING

Al abstract values are required to have the same {Date-Type}

additional property settings specified in one of rows 1 to (see 32.10.1)

14 for "Basic=Date".

"Basic=Rec-Interval Interval-type=SD REC-START-TIME-DURATION-INTERVAL-
49 SE-point=Time" ENCODING

All abstract values are required to have the same {Time-Type}

additional property settings specified in one of rows 15 to (see 32.10.2)

32 for "Basic=Time".

"Basic=Rec-Interval Interval-type=SD REC-START-DATE-TIME-DURATION-INTERVAL-
50 SE-point=Date-Time" ENCODING

Al abstract values are required to have the same {Date-Type, Time-Type}

additional property settings specified in one of rows 7, 8, (see 32,103)

9, 10, 13 and 14 for "Basic=Date" together with the

same additional property settings specified in one of

rows 15 to 32 for "Basic=Time".

"Basic=Rec-Interval Interval-type=DE REC-DURATION-END-DATE-INTERVAL-ENCODING
51 SE-point=Date" {Date-Type}

All abstract values are required to have the same (see 32.10.4)

additional properties specified in one of rows 1 to 14 for

"Basic=Date".

"Basic=Rec-Interval Interval-type=DE REC-DURATION-END-TIME-INTERVAL-ENCODING
52 SE-point=Time" {Time-Type}

All abstract values are required to have the same (see 32.10.5)

additional properties specified in one of rows 15 to.32for

"Basic=Time".

"Basic=Rec-Interval Interval-type=DE REC-DURATION-END-DATE-TIME-INTEHRVAL-
53 SE-point=Date-Time" ENCODING

All abstract values are required to have.the same {Date-Type, Time-Type}

additional properties specified in one-of rows 7, 8, 9, 10, (see 32.10.6)

13 and 14 for "Basic=Date"\10gether with the same

additional property settings specified in one of rows 15 to

32 for "Basic=Time".

32.2 Encoding subtypes with the "Basic=Date" property setting

This subcl@use definesithe’ASN.1 types referenced in Table 2, column 3 for types where all the abstract values|of the type

asic=Date" property setting.

he’CENTURY-ENCODING type is:

with the integer value set to the value specified by the first two digits of the year component of the abstract value.

32.2.2

ANY-CENTURY-ENCODING ::=

The ANY-CENTURY-ENCODING type is:

INTEGER (MIN. .MAX)

with the integer value set to the value specified by the year component of the abstract value, ignoring the last two digits.

32.2.3

30

The YEAR-ENCODING type is:

YEAR-ENCODING ::= CHOICE { -- 2 bits for choice determinant
immediate INTEGER (2005..2020), -- 4 bits
near-future INTEGER (2021..2276), -- 8 bits
near-past INTEGER (1749..2004), -- 8 bits
remainder INTEGER (MIN..1748 | 2277..MAX)}

Rec. ITU-T X.691 (02/2021)

© ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)
with the integer value set to the year component of the abstract value.
NOTE — This has been optimized to provide a 6-bit or a 10-bit encoding in common cases.
32.2.4 The ANY-YEAR-ENCODING type is:

ANY-YEAR-ENCODING ::= INTEGER (MIN..MAX)
with the integer value set to the year component of the abstract value.

32.25 The YEAR-MONTH-ENCODING type is:

YEAR-MONTH-ENCODING ::= SEQUENCE {
year YEAR-ENCODING,
month INTEGER (1..12) -- 4 bits -- }

with the YEAR-ENCODING set according to 32.2.3 and the month integer value set to the month component of the abstract
value.
NOTE + This has been optimized to provide a 10-bit or a 14-bit encoding in common cases.

32.2.6 The ANY-YEAR-MONTH-ENCODING type is:

ANY-YEAR-MONTH-ENCODING ::= SEQUENCE ({
year ANY-YEAR-ENCODING,
month INTEGER (1..12) }

with the ANY-YEAR-ENCODING set according to 32.2.4 and the month integer value set-to‘the month compohent of the
abstract vdlue.

32.2.7 The DATE-ENCODING type is:

DATE-ENCODING ::= SEQUENCE {

year YEAR-ENCODING,

month INTEGER (1..12), -- 4 bits
day INTEGER (1..31) - 5 bits -- }

with the YEAR-ENCODING set according to 32.2.3, the month integer value set to the month component of the abstract
value and the day integer value set to the day component of the.abstract value.

NOTE + This has been optimized to provide a 15-bit or a 19:bif-encoding in common cases.
32.2.8 The ANY-DATE-ENCODING type is:

ANY-DATE-ENCODING : := SEQUENCE.\{
year ANY-YEAR-ENCODING,
month INTEGER (1.:12),

day INTEGER(1(31)}

with the ANY-YEAR-ENCODING set according to 32.2.4, the month integer value set to the month component of the abstract
value and the day integer value set\to the day component of the abstract value.

32.29 The YEAR-DAY-ENCODING type is:

YEAR-DAY-ENCODING ::= SEQUENCE {
year YEAR-ENCODING,
day INTEGER (1..366)}

with the YRAR~ENCODING set according to 32.2.3 and the day integer value set to the day component of the absfract value.
32,210 TFheANY—Y¥RAR-DAY-FENCODINGHyPes:

ANY-YEAR-DAY-ENCODING ::= SEQUENCE {
year ANY-YEAR-ENCODING,
day INTEGER (1..366)}

with the ANY-YEAR-ENCODING set according to 32.2.4 and the day integer value set to the day component of the abstract
value.

32.2.11 The YEAR-WEEK-ENCODING type is:

YEAR-WEEK-ENCODING ::= SEQUENCE ({
year YEAR-ENCODING,
week INTEGER (1..53) -- 6 bits --}

with the YEAR-ENCODING set according to 32.2.3 and the week integer value set to the week component of the abstract
value.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 31

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

NOTE - This has been optimized to provide a 12-bit or a 16-bit encoding in common cases.
32.2.12 The ANY-YEAR-WEEK-ENCODING type is:

ANY-YEAR-WEEK-ENCODING ::= SEQUENCE ({
year ANY-YEAR-ENCODING,
week INTEGER (1..53)}

with the ANY-YEAR-ENCODING set according to 32.2.4 and the week integer value set to the week component of the
abstract value.

32.2.13 The YEAR-WEEK-DAY-ENCODING type is:

YEAR-WEEK-DAY-ENCODING : := SEQUENCE {
year YEAR-ENCODING,
week INTEGER (1..53), -- 6 bits
day INTEGER (1..7) -- 3 bits -- }

with the YEAR-ENCODING set according to 32.2.3, the week integer value set to the week component of the abgtract value
and the dal integer value set to the day component of the abstract value.

NOTE -} This has been optimized to provide a 15-bit or a 19-bit encoding in common cases.
32.2.14 The ANY-YEAR-WEEK-DAY-ENCODING type is:

ANY-YEAR-WEEK-DAY-ENCODING ::= SEQUENCE {
year ANY-YEAR-ENCODING,

week INTEGER (1..53),

day INTEGER (1..7)}

with the ANY-YEAR-ENCODING Set according to 32.2.4, the week integer valueset to the week component of the abstract
value and the day integer value set to the day component of the abstract valde.

32.3 Encoding subtypes with the "Basic=Time" propefty/setting

This subcl@use defines the ASN.1 types referenced in Table 2, column 3 for types where all the abstract values|of the type
have the Basic=Time property setting.

32.3.1 The HOURS-ENCODING type is:
HOURS-ENCODING ::= INTEGER(0..24)°-- 5 bits

with the integer value set to the hours component, of the abstract value.
NOTE + This has been optimized to provide.a 5-bit encoding.

32.3.2 The HOURS-UTC-ENCODINGAYpE IS:
HOURS-UTC-ENCODINGy, : := INTEGER(O0..24) -- 5 bits

with the integer value set to the hours component of the abstract value.
NOTE 4 This has been optimized to provide a 5-bit encoding.

32.3.3 The HOURS-AND-DIFF-ENCODING type is:

HOURS-AND-DIFF-ENCODING ::= SEQUENCE {
local-hours INTEGER (0..24),
time-difference TIME-DIFFERENCE }

where:

TIME-DIFFERENCE ::= SEQUENCE {
sign ENUMERATED { positive, negative },
hours INTEGER (0..15),
minutes INTEGER (1..59) OPTIONAL }

with the local-hours integer value set to the hours component of the local time of the abstract value and the
time-difference Set to the sign, hours and minutes of the time-difference component of the abstract value. If the
minutes component of the time-difference is zero, the TIME-DIFFERENCE minutes Shall be omitted.

32.3.4 The MINUTES-ENCODING type is:

MINUTES-ENCODING ::= SEQUENCE {
hours INTEGER (0..24), -- 5 bits
minutes INTEGER (0..59) -- 5 bits -- }

32 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

with the hours integer value set to the hours component of the abstract value and the minutes integer value set to the
minutes component.

NOTE — This has been optimized to provide a 10-bit encoding.

32.3.5 The MINUTES-UTC-ENCODING type is:

MINUTES-UTC-ENCODING ::= SEQUENCE {
hours INTEGER (0..24), -- 5 bits
minutes INTEGER (0..59) -- 5 bits -- }

with the hours integer value set to the hours component of the abstract value and the minutes integer value set to the
minutes component.

NOTE — This has been optimized to provide a 10-bit encoding.

32.3.6 The MINUTES-AND-DIFF-ENCODING type is:

MINUPES—AND—DIFF-ENCODING———=SEQUENCE—
local-time SEQUENCE {

hours INTEGER (0..24),

minutes INTEGER (0..59) },
time-difference TIME-DIFFERENCE }

with the 1lpcal-time set to the hours and minutes component of the local time of the abstract value and |the time-
differenke Set to the sign, hours and minutes of the time-difference component of thecbstract value as gpecified in
32.3.3.

32.3.7 The TIME-OF-DAY-ENCODING type is:

TIME-OF-DAY-ENCODING ::= SEQUENCE {
hours INTEGER (0..24), -- 5 bits
minutes INTEGER (0..59), -- 5 bits
seconds INTEGER (0..60) -- 5 bits -- }

with the hqurs integer value set to the hours component of the abstract value, the minutes integer value set to the minutes
component, and the seconds integer value set to the seconds component.

NOTE + This has been optimized to provide a 15-bit encoding,
32.3.8 The TIME-OF-DAY-UTC-ENCODING type is:

TIME-OF-DAY-UTC-ENCODING ::= SEQUENCE {
hours INTEGER (0..24), -- 5'bits
minutes INTEGER (0..59),=25 bits
seconds INTEGER (0.:60) -- 5 bits -- }

with the hqurs integer value set to the iours component of the abstract value, the minutes integer value set to the minutes
component, and the seconds integer value set to the seconds component.

NOTE + This has been optimized:to provide a 15-bit encoding.
32.39 The TIME-OF-DAY-AND-DIFF-ENCODING type is:

TIME-OF-DAY-AND-DIFF-ENCODING ::= SEQUENCE {
local-time SEQUENCE {

hours INTEGER (0..24),

minutes INTEGER (0..59),

secondsINTEGER (0..60) },
time-difference TIME-DIEFEEERENCE }

with the local-time set to the hours, minutes and seconds components of the local time of the abstract value and the
time-difference Set to the sign, hours and minutes of the time-difference component of the abstract value as specified
in 32.3.3.

32.3.10 The HOURS-AND-FRACTION-ENCODING type is:

HOURS-AND-FRACTION-ENCODING ::= SEQUENCE {
hours INTEGER (0..24), -- 5 bits
fraction INTEGER (0..999, ..., 1000..MAX)
-- 11 bits for up to three digits accuracy -- }

with the hours integer value set to the hours component of the abstract value and the fraction integer value set to the
fractional hours multiplied by ten-to-the-power-N, where N is the specified number of digits in the fractional part.
NOTE — This has been optimized to provide a 16-bit encoding for up to 3-digit accuracy.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 33

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

32.3.11 The HOURS-UTC-AND-FRACTION-ENCODING type is:

HOURS-UTC-AND-FRACTION-ENCODING ::= SEQUENCE {
hours INTEGER (0..24), -- 5 bits
fraction INTEGER (0..999, ..., 1000..MAX)
-- 11 bits for up to three digits accuracy -- }

with the hours integer value set to the hours component of the abstract value and the fraction integer value set to the
fractional hours multiplied by ten-to-the-power-N, where N is the specified number of digits in the fractional part.
NOTE — This has been optimized to provide a 16-bit encoding for up to 3-digit accuracy.

32.3.12 The HOURS-AND-DIFF-AND-FRACTION-ENCODING type is:

HOURS-AND-DIFF-AND-FRACTION-ENCODING ::= SEQUENCE {

local-hours INTEGER (0..24), -- 5 bits

fraction INTEGER (0..999, ..., 1000..MAX)
11-bitsfortp-to-three-digits-acetiacy

time-difference TIME-DIFFERENCE }

with the 1pcal-hours integer value set to the hours component of the local time of the abstract value)the|fraction
integer value set to the fractional hours multiplied by ten-to-the-power-N (where N is the specified number pf digits in
the fractiofal part) and the time-difference Set to the sign, hours and minutes of the time-difference compgnent of the
abstract VJ:ue as specified in 32.3.3.

32.3.13 The MINUTES-AND-FRACTION-ENCODING type is:

MINUTES-AND-FRACTION-ENCODING ::= SEQUENCE {
hours INTEGER (0..24), -- 5 bits
minutes INTEGER (0..59), -- 5 bits
fraction INTEGER (0..999, ..., 1000..MAX)
-- 11 bits for up to three digits accuracy -- }

with the hqurs integer value set to the hours component of the abstractvalue, the minutes integer value set to the minutes
component and the £raction integer value set to the fractional houfrs multiplied by ten-to-the-power-N, whdre N is the
specified qumber of digits in the fractional part.

NOTE -} This has been optimized to provide a 21-bit encoding for up to 3-digit accuracy.

32.3.14 The MINUTES-UTC-AND-FRACTION-ENCODING-type is:

MINUTES-UTC-AND-FRACTION-ENCODING : := SEQUENCE {
hours INTEGER (0..24), -- 5bits
minutes INTEGER (0..59),'<2'5 bits
fraction INTEGER (0.:999, ..., 1000.. MAX)
-- 11 bits for up to theee-digits accuracy -- }

with the hqurs integer value set to the hours component of the abstract value, the minutes integer value set to the minutes
component and the £raction integer value set to the fractional hours multiplied by ten-to-the-power-N (whgre N is the
specified umber of digits in the fractional part).

NOTE + This has been optimized to provide a 21-bit encoding for up to 3-digit accuracy.

32.3.15 The MINUTES~AND-DIFF-AND-FRACTION-ENCODING type is:

MINUTES=AND-DIFF-AND-FRACTION-ENCODING ::= SEQUENCE {
local-time SEQUENCE {

hours INTEGER (0..24),

e HNTFEGERAG-59)

fraction INTEGER (0..999, ..., 1000..MAX)},
time-difference TIME-DIFFERENCE }

with the local-time set to the hours and minutes component of the local time of the abstract value, the fraction
integer value set to the fractional minutes multiplied by ten-to-the-power-N (where N is the specified number of digits in
the fractional part) and the time-difference Set to the sign, hours and minutes of the time-difference component of the
abstract value as specified in 32.3.3.

32.3.16 The TIME-OF-DAY-AND-FRACTION-ENCODING type is:

TIME-OF-DAY-AND-FRACTION-ENCODING ::= SEQUENCE ({
hours INTEGER (0..24), -- 5 bits
minutes INTEGER (0..59), -- 5 bits
seconds INTEGER (0..60), -- 5 bits --
fraction INTEGER (0..999, ..., 1000..MAX)

34 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

-- 11 bits for up to three digits accuracy -- }

with the hours integer value set to the hours component of the abstract value, the minutes integer value set to the minutes
component, the seconds integer value set to the seconds component and £raction integer value set to the fractional
seconds multiplied by ten-to-the-power-N, where N is the specified number of digits in the fractional part.

NOTE — This has been optimized to provide a 26-bit encoding.

32.3.17 The TIME-OF-DAY-UTC-AND-FRACTION-ENCODING type is:

TIME-OF-DAY-UTC-AND-FRACTION-ENCODING ::= SEQUENCE {
hours INTEGER (0..24), -- 5 bits
minutes INTEGER (0..59), -- 5 bits
seconds INTEGER (0..60), -- 5 bits --
fraction INTEGER (0..999, ..., 1000..MAX)
-- 11 bits for up to three digits accuracy -- }

with the hqu 56 abstractvat . egervatde-sette-the minutes

component, the seconds integer value set to the seconds component and fraction integer value set to thg fractional

seconds mpltiplied by ten-to-the-power-N, where N is the specified number of digits in the fractional part.
NOTE -} This has been optimized to provide a 26-bit encoding.

32.3.18 The TIME-OF-DAY-AND-DIFF-AND-FRACTION-ENCODING type is:

TIME-OF-DAY-AND-DIFF-AND-FRACTION-ENCODING ::= SEQUENCE {
local-time SEQUENCE {

hours INTEGER (0..24),

minutes INTEGER (0..59),

secondsINTEGER (0..60),

fraction INTEGER (0..999, ..., 1000..MAX)},
time-difference TIME-DIFFERENCE }

with the 1¢cal-time set to the hours, minutes, seconds and fractionakpart components of the local time of the abstract
value and the time-difference Set to the sign, hours and minutés of the time-difference component of the abstract
value as sgecified in 32.3.3.

32.4 Encoding subtypes with the "Basic=Date~Time" property setting

This subclguse defines the ASN.1 type referenced in Table 2, column 3 for types where all the abstract values|of the type
have the "Basic=Date-Time" property setting.

3241 The DATE-TIME-ENCODING type-is:

DATE-TIME-ENCODING {Date<Type, Time-Type} ::= SEQUENCE {
date Date-Type,
time Time-Type}

324.2 The encoding shiall*be the encoding of an instantiation of this type with the bate-Type and Jime-Type

actual pargmeters set to the_types specified in Table 2 column 3 of the "Basic=Date" and "Basic=Tjme" rows

(respectivdly) that specify the additional property settings of all the abstract values of the type.
NOTE + This has been optimized to provide a 32-bit encoding in common cases.

325 Engcoding subtypes with the "Basic=Interval Interval-type=SE" property setting

This subclés iy :
have the "Basic=Interval Interval-type=SE" property setting.

es'of the type

32.5.1 The START-END-DATE-INTERVAL-ENCODING type is:

START-END-DATE-INTERVAL-ENCODING {Date-Type} ::= SEQUENCE {
start Date-Type,
end Date-Type}

and the encoding shall be the encoding of an instantiation of this type with the Date-Type actual parameter set to the
type specified in Table 2 column 3 of the "Basic=Date" row that specifies the additional property settings of all the
abstract values of the type. The start component shall be set to the start date and the end component shall be set to the
end date of the interval.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 35

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

3252 The START-END-TIME-INTERVAL-ENCODING type is:

START-END-TIME-INTERVAL-ENCODING {Time-Type} ::= SEQUENCE {
start Time-Type,
end Time-Type}

and the encoding shall be the encoding of an instantiation of this type with the Time-Type actual parameter set to the
type specified in Table 2 column 3 of the "Basic=Time" row that specifies the additional property settings of all the
abstract values of the type. The start component shall be set to the start time and the end component shall be set to the
end time of the interval.

32.5.3 The START-END-DATE-TIME-INTERVAL-ENCODING type is:

START-END-DATE-TIME-INTERVAL-ENCODING {Date-Type, Time-Type} ::=
SEQUENCE {
start DATE-TIME-ENCODING {Date-Type, Time-Type},

and the erfcoding shall be the encoding of an instantiation of this type with the Date-Type and Time-Type actual
parameterd set to the types specified in Table 2 column 3 of the "Basic=Date" and "Basic=Time" roWws (regpectively)
that specify the additional property settings of all the abstract values of the type. The start component shall be set (as
specified ip 32.4) to the start date-time and the end component shall be set to the end date-time ofithe interval.

32.6 Encoding subtypes with the "Basic=Interval Interval-type=D" property setting

This subclguse defines the ASN.1 type referenced in Table 2, column 3 for types whete-all the abstract values|of the type
have the "Basic=Interval Interval-type=D" property setting.

32.6.1 The DURATION-INTERVAL-ENCODING type is:

DURATION-INTERVAL-ENCODING ::= SEQUENCE { -- 8/bits for optionality
years INTEGER (0..31, ..., 32..MAX) OPTIONAL,
-- 5 bits for up to 31 years
months INTEGER (0..15, ..., 16.MAX).©OPTIONAL,
-- 4 bits for up to 15 months
weeks INTEGER (0..63, ..., 64, MAX) OPTIONAL,
-- 6 bits for up to 63 weéeks
days INTEGER (0..31, ...,'32..MAX) OPTIONAL,
-- 5 bits for up to3¥days
hours INTEGER (0..3%; ..., 32..MAX) OPTIONAL,
-- 5 bits.for up to 31 hours
minutes INTEGER-(0..63, ..., 64.MAX) OPTIONAL,
= @hits for up to 63 minutes
seconds INTEGER (0..63, ..., 64.MAX) OPTIONAL,

-- 6.bits for up to 63 seconds
fractional-part SEQUENCE {
number-of-digits INTEGER(1..3, ..., 4.MAX),
-- 3 bits for up to three digits accuracy
fractional-value INTEGER(0..999, ..., 1000..MAX)
-- 11 bits for up to three digits accuracy
} OPTIONAL }

32.6.2 The,weeks component shall be present if, and only if, the years, months, days, hours, mifqutes, and
seconds domponents are all absent.

NOTE — This reflects restrictions that are present for the use of time elements in the definition of the DurRaTION abstract value.

32.6.3 If a time element component of the abstract value is zero, and does not have a fractional part, then the
corresponding component of DURATION-INTERVAL-ENCODING shall be absent unless this time element is the least
significant time element in the abstract value. If a time element of the abstract value has the value zero, and is the least
significant time element in the abstract value, or has a fractional part, then the corresponding component shall be present
in DURATION- INTERVAL-ENCODING With the value zero.

NOTE - This ensures that the encoding is canonical.

32.6.4 The fractional-part Of DURATION-INTERVAL-ENCODING shall be absent if there is no fractional part of any
time element, otherwise it shall be set to the fractional part (of the least significant time element) as specified in 32.6.5.

32.6.5 The number of digits in the fractional part shall be placed in number-of-digits. If the number of digits is N,
then the value of the fractional part shall be multiplied by ten-to-the-power-N and the resulting integer value placed in
fractional-value.

36 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

NOTE 1 — Decoders can recover the original fractional part from these encodings, including any trailing zeros.

NOTE 2 — This encoding has been optimized for the cases where there are only a few non-zero time elements in the abstract value,
and where the values of the time elements are small. Encodings of less than 16 bits occur in simple cases.

32.7 Encoding subtypes with the "Basic=Interval Interval-type=SD" Or "Basic=Interval
Interval-type=DE" property setting

This subclause defines the ASN.1 types referenced in Table 2, column 3 for types where all the abstract values of the type
have the "Basic=Interval Interval-type=SD" Of "Basic=Interval Interval-type=DE" property setting.

32.7.1 The START-DATE-DURATION-INTERVAL-ENCODING type is:

START-DATE-DURATION-INTERVAL-ENCODING {Date-Type} ::= SEQUENCE {
start Date-Type,
duration DURATION-INTERVAL-ENCODING}

and the entoding shall be the encoding of an instantiation of this type with the pate-Type actual parametef set to the
type specified in Table 2 column 3 of the "Basic=Date" row that specifies the additional property settingp of all the
abstract values of the type. The start component shall be set to the start date and the duration component ghall be set
(as specifigd in 32.6) to the duration of the interval.

32.7.2 The START-TIME-DURATION-INTERVAL-ENCODING type is:

$TART-TIME-DURATION-INTERVAL-ENCODING {Time-Type} ::= SEQUENCE {
start Time-Type,
duration DURATION-INTERVAL-ENCODING }

and the entoding shall be the encoding of an instantiation of this type with the-Time-Type actual parametef set to the
type specified in Table 2 column 3 of the "Basic=Time" row that specifigs the additional property settingp of all the
abstract values of the type. The start component shall be set to the start time and the duration component ghall be set
(as specifigd in 32.6) to the duration of the interval.

32.7.3 The START-DATE-TIME-DURATION-INTERVAL-ENCODING type is:

$TART-DATE-TIME-DURATION-INTERVAL-ENCODING {Date-Type, Time-Type} ::=
SEQUENCE {
start DATE-TIME-ENCODING {Date-Type, Time-Type},
durationDURATION-INTERVALSENCODING }

and the erfcoding shall be the encoding of an instantiation of this type with the bate-Type and Time-Tlype actual
parameterd set to the types specified in Table 2'column 3 of the "Basic=Date" and "Basic=Time" rows (regpectively)
that specify the additional property settings of all the abstract values of the type. The start component shall be set (as
specified ip 32.4) to the start date-time,and-the duration component shall be set (as specified in 32.6) to the furation of
the interva).

32.7.4 The DURATION-END-DATE-INTERVAL-ENCODING type is:

DURATION-END-DATE-INTERVAL-ENCODING {Date-Type} ::= SEQUENCE {
duration.* DURATION-INTERVAL-ENCODING,
end Date-Type }

and the enpoding.shall be the encoding of an instantiation of this type with the pate-Type actual parametef set to the
type specified in_Table 2 column 3 of the "Basic=Date" row that specifies the additional property settingp of all the
abstract vajlues.of the type. The duration component shall be set (as specified in 32.6) to the duration of the ipterval and
the end component shall be set to the end date.

32.7.5 The DURATION-END-TIME-INTERVAL-ENCODING type is:

DURATION-END-TIME-INTERVAL-ENCODING {Time-Type} ::= SEQUENCE {
duration DURATION-INTERVAL-ENCODING,
end Time-Type }

and the encoding shall be the encoding of an instantiation of this type with the Time-Type actual parameter set to the
type specified in Table 2 column 3 of the "Basic=Time" row that specifies the additional property settings of all the
abstract values of the type. The duration component shall be set (as specified in 32.6) to the duration of the interval and
the end component shall be set to the end time.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 37

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

32.7.6 The DURATION-END-DATE-TIME-INTERVAL-ENCODING type is:

DURATION-END-DATE-TIME-INTERVAL-ENCODING {Date-Type, Time-Type} ::= SEQUENCE {
duration DURATION-INTERVAL-ENCODING,
end DATE-TIME-ENCODING {Date-Type, Time-Type}}

and the encoding shall be the encoding of an instantiation of this type with the Date-Type and Time-Type actual
parameters set to the types specified in Table 2 column 3 of the "Basic=Date" and "Basic=Time" rows (respectively)
that specify the additional property settings of all the abstract values of the type. The duration component shall be set
(as specified in 32.6) to the duration of the interval and the end component shall be set (as specified in 32.4) to the end
date-time.

32.8 Encoding subtypes with the "Basic=Rec-Interval Interval-type=SE" property setting

This subclause defines the ASN.1 types referenced in Table 2, column 3 for types where all the abstract values of the type
have the "Basic=Rec-Interval Interval-type=SE" PIOPeIty Seting.

32.8.1 The REC-START-END-DATE-INTERVAL-ENCODING type is:

REC-START-END-DATE-INTERVAL-ENCODING {Date-Type} ::= SEQUENCE {
recurrence INTEGER OPTIONAL,

start Date-Type,

end Date-Type}

and the entoding shall be the encoding of an instantiation of this type with the pate-Type actual parametef set to the
type specified in Table 2 column 3 of the "Basic=Date" row that specifies the additional property settingp of all the
abstract vdlues of the type. The recurrence component shall be absent for an. unlimited number of recurrepces in the
abstract viue, and shall otherwise be set to the number of recurrences. The stazt component shall be set to the start date
and the enfd component shall be set to the end date of the interval.

32.8.2 The REC-START-END-TIME-INTERVAL-ENCODING type is;

REC-START-END-TIME-INTERVAL-ENCODING {Time-Type} ::= SEQUENCE {
recurrence INTEGER OPTIONAL,

start Time-Type,

end Time-Type}

and the enpoding shall be the encoding of an instantidtion of this type with the Time-Type actual parametef set to the
type specified in Table 2 column 3 of the "Basic=Time" row that specifies the additional property settingp of all the
abstract vdlues of the type. The recurrence component shall be absent for an unlimited number of recurrepces in the
abstract vziue, and shall otherwise be set to the humber of recurrences. The start component shall be set to the start time
and the enfd component shall be set to the.énd time of the interval.

32.8.3 The REC-START-END-DATE-TIME-INTERVAL-ENCODING type is:

REC-START-END-DATE=TIME-INTERVAL-ENCODING {Date-Type, Time-Type} ::=
SEQUENCE {

recurregnce INTEGER OPTIONAL,

start DATE-TIME-ENCODING {Date-Type, Time-Type},

end DATE-TIME-ENCODING {Date-Type, Time-Type}}

and the erfcodingsshall be the encoding of an instantiation of this type with the Date-Type and Time-Tlype actual
parameterq set to-the types specified in Table 2 column 3 of the "Basic=Date" and "Basic=Time" rows (reppectively)
that specify_the additional property settings of all the abstract values of the type. The recurrence compongnt shall be
absent for an unlimited number of recurrences in the abstract value, and shall otherwise be set to the number of
recurrences. The start component shall be set (as specified in 32.4) to the start date-time and the end component shall
be set to the end date-time of the recurring interval.

32.9 Encoding subtypes with the "Basic=Rec-Interval Interval-type=D" property setting

This subclause defines the ASN.1 type referenced in Table 2, column 3 for types where all the abstract values of the type
have the "Basic=Rec-Interval Interval-type=D" property setting.

32.9.1 The REC-DURATION-INTERVAL-ENCODING type is:

REC-DURATION-INTERVAL-ENCODING ::= SEQUENCE {
recurrence INTEGER OPTIONAL,
duration DURATION-INTERVAL-ENCODING}

38 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

32.9.2 The recurrence component shall be absent for an unlimited number of recurrences in the abstract value, and
shall otherwise be set to the number of recurrences. The duration component shall be set (as specified in 32.6) to the
duration of the recurring interval.

32.10 Encoding subtypes with the "Basic=Rec-Interval Interval-type=SD" Or
"Basic=Rec-Interval Interval-type=DE" property setting

This subclause defines the ASN.1 types referenced in Table 2, column 3 for types where all the abstract values of the type
have the "Basic=Rec-Interval Interval-type=SD" Of "Basic=Rec-Interval Interval-type=DE" property
setting.

32.10.1 The REC-START-DATE-DURATION-INTERVAL-ENCODING type is:

REC-START-DATE-DURATION-INTERVAL-ENCODING {Date-Type} ::= SEQUENCE {
recurrence INTEGER OPTIONAL,

start Date-Type,

duration DURATION-INTERVAL-ENCODING}

and the entoding shall be the encoding of an instantiation of this type with the Date-Type actual parametef set to the
type specified in Table 2 column 3 of the "Basic=Date" row that specifies the additional property settingp of all the
abstract vdlues of the type. The recurrence component shall be absent for an unlimited number of recurrepces in the
abstract value, and shall otherwise be set to the number of recurrences. The start compongnt’shall be set to the start date
and the dufration component shall be set (as specified in 32.6) to the duration of the interval.

32.10.2 The REC-START-TIME-DURATION-INTERVAL-ENCODING type is:

REC-START-TIME-DURATION-INTERVAL-ENCODING {Time-Typ€} - := SEQUENCE {
recurrence INTEGER OPTIONAL,

start Time-Type,

duration DURATION-INTERVAL-ENCODING }

and the entoding shall be the encoding of an instantiation of this type’with the Time-Type actual parametef set to the
type specified in Table 2 column 3 of the "Basic=Time" row that specifies the additional property settingp of all the
abstract v%lues of the type. The recurrence component shalkbe absent for an unlimited number of recurrepces in the

abstract vajue, and shall otherwise be set to the number of.rectrrences. The start component shall be set to the start time
and the dufration component shall be set (as specified in*32.6) to the duration of the interval.

32.10.3 The REC-START-DATE-TIME-DURATION<INTERVAL-ENCODING type is:

REC-START-DATE-TIME-DURATION-INTERVAL-ENCODING {Date-Type, Time-Type} ::=
SEQUENCE {

recurrence INFEGER OPTIONAL,

start DATE-TIME-ENCODING {Date-Type, Time-Type},

duration DURATION-INTERVAL-ENCODING }

and the erfcoding shall be the“eneoding of an instantiation of this type with the bate-Type and Time-Type actual
parameterd set to the types spegified in Table 2 column 3 of the "Basic=Date" and "Basic=Time" rows (reppectively)
that specify the additional \property settings of all the abstract values of the type. The recurrence compongnt shall be
absent for[an unlimited-number of recurrences in the abstract value, and shall otherwise be set to the pumber of
recurrencep. The start component shall be set (as specified in 32.4) to the start date-time and the duration fomponent
shall be sef (as specified in 32.6) to the duration of the recurring interval.

32.10.4 The'REC-DURATION-END-DATE-INTERVAL-ENCODING type is:

REC-DURATION-END-DATE-INTERVAL-ENCODING {Date-Type} ::= SEQUENCE ({
recurrence INTEGER OPTIONAL,
duration DURATION-INTERVAL-ENCODING,
end Date-Type }

and the encoding shall be the encoding of an instantiation of this type with the pate-Type actual parameter set to the
type specified in Table 2 column 3 of the "Basic=Date" row that specifies the additional property settings of all the
abstract values of the type. The recurrence component shall be absent for an unlimited number of recurrences in the
abstract value, and shall otherwise be set to the number of recurrences. The duration component shall be set (as specified
in 32.6) to the duration of the interval and the end component shall be set to the end date.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 39

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

32.10.5 The REC-DURATION-END-TIME-INTERVAL-ENCODING type is:

REC-DURATION-END-TIME-INTERVAL-ENCODING {Time-Type} ::= SEQUENCE {
recurrence INTEGER OPTIONAL,
duration DURATION-INTERVAL-ENCODING,
end Time-Type }

and the encoding shall be the encoding of an instantiation of this type with the Time-Type actual paramete

r set to the

type specified in Table 2 column 3 of the "Basic=Time" row that specifies the additional property settings of all the
abstract values of the type. The recurrence component shall be absent for an unlimited number of recurrences in the
abstract value, and shall otherwise be set to the number of recurrences. The duration component shall be set (as specified

in 32.6) to the duration of the interval and the end component shall be set to the end time.

32.10.6 The REC-DURATION-END-DATE-TIME-INTERVAL-ENCODING type is:

REC-DURATION-END-DATE-TIME-INTERVAL-ENCODING {Date-Type, Time-Type} ::= SEQUENCE ({
TECUTTETICE INTEGER OPTIONAL,
duration DURATION-INTERVAL-ENCODING,

end DATE-TIME-ENCODING {Date-Type, Time-Type}}

and the erjcoding shall be the encoding of an instantiation of this type with the Date-Type and Time-T
parameterd set to the types specified in Table 2 column 3 of the "Basic=Date" and "Basic=Timé" rows (re
that specify the additional property settings of all the abstract values of the type. The recuzrence compons
absent for[an unlimited number of recurrences in the abstract value, and shall otherwise be set to the

ype actual
Spectively)
nt shall be
humber of

recurrencep. The duration component shall be set (as specified in 32.6) to the duration of the interval and the end

component shall be set (as specified in 32.4) to the end date-time.

32.11 Encoding subtypes with mixed settings of the Basic property

This subcl@use specifies the encoding for the TIME type and subsets of that type whose abstract values do not §
same settirjg of the Basic property or for which there is no applicablé.row in Table 2 (for example, because o

Il have the
f the use of

multiple accuracies — see 32.1.3). It defines and uses the types{ DATE-TYPE, TIME-TYPE, and MIXED-[ENCODING

(see 32.11]5 to 32.11.7). These types are defined using the ASN.1\types defined in earlier subclauses.

32.11.1 HKor all abstract values of the TIME type, there.is‘exactly one row of Table 2 for which the prope
specified ip column 2 match the property settings of the abstract value, for all of those property settings that g
column 2.[(The abstract value may have additional property settings not listed in column 2.) This is calle
determining row.

32.11.2 If the main determining row is row 33; 34, 36, 38, 40, 41, 43, 44, 46, 48, 50, 51, or 53, there is a r
that the adplitional properties match those specified in one of rows 1 to 14. The applicable row 1 to 14 is call
determining row.

32.11.3 Iff the main determining rowe-is row 33, 35, 36, 39, 40, 42, 43 45, 46, 49, 50, 52 or 53, there is a requi
the additional properties match-those specified in one of rows 15 to 32. The applicable row 15 to 32 is callg
determining row.

32.11.4 Ip the DATE-TYPE, TIME-TYPE and MIXED-ENCODING type, the row-n alternative shall be selected
determining row, the-time determining row, or the main determining row (respectively) is row n.

32.11.5 The encading of the abstract value shall be the encoding of the MIXED-ENCODING type:

MIXED-ENCODRING ::= CHOICE ({

ty settings
re listed in
I the main

buirement
pd the date

ement that
d the time

if the date

row-=t CENTUORY-ENCODING;

row-2 ANY-CENTURY-ENCODING,
row-3 YEAR-ENCODING,

row-4 ANY-YEAR-ENCODING,

row-5 YEAR-MONTH-ENCODING,
row-6 ANY-YEAR-MONTH-ENCODING,
row-7 DATE-ENCODING,

row-8 ANY-DATE-ENCODING,

row-9 YEAR-DAY-ENCODING,

row-10 ANY-YEAR-DAY-ENCODING,
row-11 YEAR-WEEK-ENCODING,
row-12 ANY-YEAR-WEEK-ENCODING,
row-13 YEAR-WEEK-DAY-ENCODING,
row-14 ANY-YEAR-WEEK-DAY-ENCODING,
row-15 HOURS-ENCODING,

row-16 HOURS-UTC-ENCODING,

40 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

row-17 HOURS-AND-DIFF-ENCODING,

row-18 MINUTES-ENCODING,

row-19 MINUTES-UTC-ENCODING,

row-20 MINUTES-AND-DIFF-ENCODING,

row-21 TIME-OF-DAY-ENCODING,

row-22 TIME-OF-DAY-UTC-ENCODING,

row-23 TIME-OF-DAY-AND-DIFF-ENCODING,

row-24 FRACTIONAL-TIME{HOURS-AND-FRACTION-ENCODING},

row-25 FRACTIONAL-TIME{HOURS-UTC-AND-FRACTION-ENCODING},

row-26 FRACTIONAL-TIME{HOURS-AND-DIFF-AND-FRACTION-ENCODING},
row-27 FRACTIONAL-TIME{MINUTES-AND-FRACTION-ENCODING},

row-28 FRACTIONAL-TIME{MINUTES-UTC-AND-FRACTION-ENCODING},
row-29 FRACTIONAL-TIME{MINUTES-AND-DIFF-AND-FRACTION-ENCODING},
row-30 FRACTIONAL-TIME{TIME-OF-DAY-AND-FRACTION-ENCODING},
row-31 FRACTIONAL-TIME{TIME-OF-DAY-UTC-AND-FRACTION-ENCODING},
row-32 FRACTIONAL-TIME{TIME-OF-DAY-AND-DIFF-AND-FRACTION-ENCODING},

where the

of the maif determining row.

32116 ¢

FRACTIO
number-of
time-value

The numbd

ow-33 DATE-TIME-ENCODING {DATE-TYPE, TIME-TYPE},
ow-34 START-END-DATE-INTERVAL-ENCODING {DATE-TYPE},
ow-35 START-END-TIME-INTERVAL-ENCODING {TIME-TYPE},
ow-36 START-END-DATE-TIME-INTERVAL-ENCODING {DATE-TYPE, TIME-TYPE},
ow-37 DURATION-INTERVAL-ENCODING,
ow-38 START-DATE-DURATION-INTERVAL-ENCODING {DATE-TYPE},
ow-39 START-TIME-DURATION-INTERVAL-ENCODING {TIME-TYPE},
ow-40 START-DATE-TIME-DURATION-INTERVAL-ENCODING {DATE-TYPE, TIME-TYPE},
ow-41 DURATION-END-DATE-INTERVAL-ENCODING {DATE-TYPE},
ow-42 DURATION-END-TIME-INTERVAL-ENCODING {TIME-TYPE},
ow-43 DURATION-END-DATE-TIME-INTERVAL-ENCODING {DATE-TYPE, TIME-TYPE},
ow-44 REC-START-END-DATE-INTERVAL-ENCODING {DATE<T.YPE},
ow-45 REC-START-END-TIME-INTERVAL-ENCODING {TIME*TYPE},
ow-46 REC-START-END-DATE-TIME-INTERVAL-ENCODING {DATE-TYPE, TIME-TYPE},
ow-47 REC-DURATION-INTERVAL-ENCODING,
ow-48 REC-START-DATE-DURATION-INTERVAL-ENCODING {DATE-TYPE},
ow-49 REC-START-TIME-DURATION-INTERVAL-ENCODING {TIME-TYPE},
ow-50 REC-START-DATE-TIME-DURATION-INTERVAL-ENCODING
{DATE-TYPE, TIME-TYPE},
ow-51 REC-DURATION-END-DATE-INTERVAI-ENCODING {DATE-TYPE},
ow-52 REC-DURATION-END-TIME-INTERVAL-ENCODING {TIME-TYPE},
ow-53 REC-DURATION-END-DATE-TIME-INTERVAL-ENCODING
{DATE-TYPE, TIME-TYPE} }

bncoding of the type of each alternative shall be as specified in the subclause identified in Table 2

'/RACTIONAL-TIME is defined as follows:

NAL-TIME{Time-Type}tw.= SEQUENCE {
digits INTEGER (1..MAX),
Time-Type}

r-of-digits-encodes the number of digits in the fractional part of the abstract value.

32.11.7 The DATELTYPE iS:
DATE-TY : {=,CHOICE {
oW1 CENTURY-ENCODING,
) ANY-CENTLIRY El\l("ﬁhll\l("

row-3 YEAR-ENCODING,

row-4 ANY-YEAR-ENCODING,

row-5 YEAR-MONTH-ENCODING,
row-6 ANY-YEAR-MONTH-ENCODING,
row-7 DATE-ENCODING,

row-8 ANY-DATE-ENCODING,

row-9 YEAR-DAY-ENCODING,

row-10 ANY-YEAR-DAY-ENCODING,
row-11 YEAR-WEEK-ENCODING,
row-12 ANY-YEAR-WEEK-ENCODING,
row-13 YEAR-WEEK-DAY-ENCODING,
row-14 ANY-YEAR-WEEK-DAY-ENCODING }

. column 3

where the encoding of the type of each alternative shall be as specified in the subclause identified in Table 2, column 3

of the date

determining row.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021)

41

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

32.11.8 The TIME-TYPE iS:

TIME-TYPE ::= SEQUENCE {
number-of-digits INTEGER (1..MAX) OPTIONAL,

ti

ime-type CHOICE {

where the
of the timg

32.11.9
row-24 t0

33 (

33.1
whenever

33.2 T
and object
Internatiory

{joint-iso-it
"/ASN.1/P§
""Packed er

{joint-iso-it
"'/ASN.1/P3
""Packed er]

{joint-iso-it
"/ASN.1/P4
""Packed er]

The number-of-digits shall be present in the TIME-TYPE if and only if the time-type alternati

The encoding rules specified in this Recommendation:f.International Standard can be referenced 3

row-15 HOURS-ENCODING,

row-16 HOURS-UTC-ENCODING,

row-17 HOURS-AND-DIFF-ENCODING,

row-18 MINUTES-ENCODING,

row-19 MINUTES-UTC-ENCODING,

row-20 MINUTES-AND-DIFF-ENCODING,

row-21 TIME-OF-DAY-ENCODING,

row-22 TIME-OF-DAY-UTC-ENCODING,

row-23 TIME-OF-DAY-AND-DIFF-ENCODING,

row-24 HOURS-AND-FRACTION-ENCODING,

row-25 HOURS-UTC-AND-FRACTION-ENCODING,

row-Zo HOURS-AND-DIFF-AND-FRACU TTON-ENCODING,
row-27 MINUTES-AND-FRACTION-ENCODING,

row-28 MINUTES-UTC-AND-FRACTION-ENCODING,
row-29 MINUTES-AND-DIFF-AND-FRACTION-ENCODING,
row-30 TIME-OF-DAY-AND-FRACTION-ENCODING,
row-31 TIME-OF-DAY-UTC-AND-FRACTION-ENCODING,
row-32 TIME-OF-DAY-AND-DIFF-AND-FRACTION-ENCODING } }

encoding of the type of each alternative shall be as specified in the subclause-identified in Table 2
determining row.

row-32. It shall encode the number of digits in the fractional part efthe abstract value.

Dbject identifiers for transfer syntaxes

here is a need to specify an unambiguous bit string representation for all of the values of a single A

[he following object identifier, OID internationalized resource identifier (with assignment of Unic
descriptor values are assigned to identify andhdescribe the encoding rules specified in this Recomn
al Standard:

For BASIC-PER, ALIGNED vafiant:
u-t asnl (1) packed-encoding (3) basic (0) aligned (0)}
cked-Encoding/Basic/Aligned™
coding of a single ASN.1 type (basic aligned)"

For BASIC-PER, UNALIGNED variant:
u-t asnl (1) packed-encoding (3) basic (0) unaligned (1)}
cked-Encoding/Basic/Unaligned"
coding of a single.ASN.1 type (basic unaligned)"

For CANONICAL-PER, ALIGNED variant:
u-t asnl(L)packed-encoding (3) canonical (1) aligned (0)}
cked<Encoding/Canonical/Aligned*™*
coding of a single ASN.1 type (canonical aligned)"

, column 3

e is one of

nd applied
SN.1 type.

pde labels)
nendation |

For CANONICAL-PER, UNALIGNED variant:

{joint-iso-itu-t asnl (1) packed-encoding (3) canonical (1) unaligned (1)}
""/ASN.1/Packed-Encoding/Canonical/Unaligned™
"Packed encoding of a single ASN.1 type (canonical unaligned)"

33.3 Where an application standard defines an abstract syntax as a set of abstract values, each of which is a value of
some specifically named ASN.1 type defined using the ASN.1 notation, then the object identifier values specified in 33.2
may be used with the abstract syntax name to identify those transfer syntaxes which result from the application of the
encoding rules specified in this Recommendation | International Standard to the specifically named ASN.1 type used in
defining the abstract syntax.

33.4 The names specified in 33.2 shall not be used with an abstract syntax name to identify a transfer syntax if the

conditions

42

of 33.3 for the definition of the abstract syntax are not met.

Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

Annex A

Example of encodings
(This annex does not form an integral part of this Recommendation | International Standard.)

This annex illustrates the use of the Packed Encoding Rules specified in this Recommendation | International Standard
by showing representations in octets of a (hypothetical) personnel record which is defined using ASN.1.
Al Record that does not use subtype constraints

A.11 ASN.1 description of the record structure

The struct
T X.680 |

re—of-the-hypothetical-pe el+ec j aTdia j pecified—in-Rec. ITU-
SO/IEC 8824-1 for defining types. Rec. ITY-T X.690 |

ISO/IEC 8B25-1, Annex A.

ersonnelRecord ::= [APPLICATION 0] IMPLICIT SET {
ame Name,
tle [0] VisibleString,

number EmployeeNumber,

dateOfHire [1] Date,

nameOfSpouse [2] Name,

dhildren [3] IMPLICIT

SEQUENCE OF ChildInformation DEFAULT {} }
ChildInformation ::= SET

{ name Name,

dateOfBirth [0] Date}
Name ::= [APPLICATION 1] IMPLICIT SEQUENCE
{| givenName VisibleString,

initial VisibleString,

familyName VisibleString}

EmployeeNumber ::= [APPLICATION 2] IMPLIECIT INTEGER

Date ::= [APPLICATION 3] IMPLICIT VisibleString -- YYYYMMDD

A.1.2 ASN.1 description of a record valug¢

The value pf John Smith's personnel record is formally described below using ASN.1.

{ name {givenName "'John"initial "'P"* ,familyName "'Smith"'},

title "Director",

number 5%;

dateOfHire "'19710917",

nameOfSpouse {givenName "*Mary"initial ""T"",familyName **Smith"},
children

{{name-{givenName ""Ralph",initial ""T"* ,familyName "'Smith"'},
dateOfBirth ""19571111"},

{name {givenName "'Susan"initial "'B"",familyName "'Jones''},
dateOfBirth "'19590717"}}}

A.13 ALIGNED PER representation of this record value

The representation of the record value given above (after applying the ALIGNED variant of the Packed Encoding Rules
defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary.

The length of this encoding is 94 octets. For comparison, the same PersonnelRecord value encoded using the
UNALIGNED variant of PER is 84 octets, BER with the definite length form is at least 136 octets, and BER with the
indefinite length form is at least 161 octets.

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 43

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

A.1.3.1 Hexadecimal view
80044A6F 686E0150 05536D69 74680133 08446972 6563746F 72083139 37313039
3137044D 61727901 5405536D 69746802 0552616C 70680154 05536D69 74680831
39353731 31313105 53757361 6EQ014205 4A6F6E6S5 73083139 35393037 3137

A.1.3.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong together
(typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a character
string; and an 'X' represents a zero pad bit that is used from time to time to align fields on an octet boundary.

IXXXXXXX Bitmap bit = 1 indicates "children™ is present
00000100 Length of name.givenName = 4
01001010 Llullll UllUlUGU ullulllu IIaIIIC.giVUI |Na|||c - "JUi Ll I'I

00000001 Length of name.initial = 1

01010000 name.initial = "P"

00000101 Length of name.familyName =5
01010011 0{1101101 01101001 01110100 01101000 name.familyName, < ¥Smith"
00000001 Length of (employee) number = 1
00110011 (employeg) number = 51

00001000 Length.oftitle = 8

01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010 title =" Director"

00001000 Length of dateOfHire = 8

00110001 0111001 00110111 00110001 00110000 00111001 00110001 00110112~ dateOfHire = "19710917"

00000100 Length of nameOfSpouse.givenNdme = 4
01001101 01100001 01110010 01111001 nameOfSpouse.givenName = "Mary"
00000001 Length of nameOfSpouse.initial =|1
01010100 nameOfSpouse.initial = "T"

00000101 Length of nameOfSpouse.familyName =5
01010011 0j1101101 01101001 01110100 01101000 nameOfSpouse.familyName = "Srpith"
00000010 Number of children

00000101 Length of children[0].givenName | 5
01010010 0{1100001 01101100 01110000 01101000 children[0].givenName = "Ralph"
00000001 Length of children[0].initial = 1
01010100 children[0].initial ="T"

00000101 Length of children[0].familyNamg = 5
01010011 0j1101101 01101001(01110100 01101000 children[0].familyName = "Smith'
00001000 Length of children[0].dateOfBirth|= 8
00110001 0P111001 00120101 00110111 00110001 00110001 00110001 00110001 children[0].dateOfBirth = "19571311"
00000101 Length of children[1].givenName F
01010011 0j1110101 01110011 01100001 01101110 children[1].givenName = "Susan"
00000001 L ength of children[1] injtial = 1
01000010 children[1].initial = "B"

00000101 Length of children[1].familyName = 5
01001010 01101111 01101110 01100101 01110011 children[1].familyName = "Jones"
00001000 Length of children[1].dateOfBirth = 8

00110001 00111001 00110101 00111001 00110000 00110111 00110001 00110111 children[1].dateOfBirth = "19590717"

A.1l4 UNALIGNED PER representation of this record value

The representation of the record value given above (after applying the UNALIGNED variant of the Packed Encoding
Rules defined in this Recommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed by a commented description of the encoding shown in binary. Note that pad bits do not occur in the
UNALIGNED variant, and characters are encoded in the fewest number of bits possible.

44 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

The length of this encoding is 84 octets. For comparison, the same PersonnelRecord value encoded using the ALIGNED
variant of PER is 94 octets, BER with the definite length form is at least 136 octets, and BER with the indefinite length
form is at least 161 octets.

A.14.1 Hexadecimal view

824ADFA3 700D005A 7B74F4D0 02661113 4F2CB8FA 6FE410C5 CB762ClC B16E0937
OF2F2035 0169EDD3 D340102D 2C3B3868 01A80B4F 6E9ESA02 18B96ADD 8B1l62C41l
69F5E787 700C2059 b5BF765E6 10C5CB57 2C1BBl6E

A.1.42 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong together
(typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a character

string; a peredHHsHsedto-mark-octet-botndares—andanrxrepresentsazero-bit-usedto-padthe-final-octeyto an octet
boundary.

1 Bitmap bit = 1 indicates ¢children(is present
0000010.0 Length of name.givenName = 4
1001010.1101111 1.101000 11.01110 name.givenName-~"John"

000.00001 Length of nameinitial = 1

101.0000 name.initial = "P"

0000.0101 Length.0f name.familyName = 5
1010.011 11011.01 110100.1 1110100 .1101000 nafme)familyName = "Smith"

0.0000001 Length of (employee) number = 1
0.0110011 (employee) number = 51

0.0001000 Length of title = 8

1.000100 111.01001 111.0010 1100.101 11000.11 111010.0 1101111 .¥110010 title = "Director”

0.0001000 Length of dateOfHire = 8

0.110001 0f1.11001 011.0111 0110.001 01100.00 011100.1 0110001 .0110111 dateOfHire = "19710917"

0.0000100 Length of nameOfSpouse.givenNdme = 4
1.001101 11.00001 111.0010 1111.001 nameOfSpouse.givenName = "Mary"
00000.001 Length of nameOfSpouse.initial =|1
10101.00 nameOfSpouse.initial = "T"

000001.01 Length of nameOfSpouse.familyName =5
101001.1 1101101 .1101001 1.110100 11.01000 nameOfSpouse.familyName = "Srpith"
000.00010 Number of children

000.00101 Length of children[0].givenName F 5
101.0010 11100.001 11011.00 (111000.0 1101000 children[0].givenName = "Ralph"
.00000001 Length of children[0].initial = 1
.1010100 children[0].initial = "T"

0.0000101 Length of children[0].familyNamd = 5
1.010011 11.01101) 110.1001 1110.100 11010.00 children[0].familyName = "Smith’
000010.00 | ength of children[0] dateOQfBirthl= 8
011000.1 0111001 .0110101 0.110111 01.10001 011.0001 0110.001 01100.01 children[0].dateOfBirth = "19571111"
000001.01 Length of children[1].givenName =5
101001.1 1110101 .1110011 1.100001 11.01110 children[1].givenName = "Susan"
000.00001 Length of children[1].initial = 1
100.0010 children[1].initial = "B"

0000.0101 Length of children[1].familyName =5
1001.100 11011.11 110111.0 1100101 .1110011 children[1].familyName = "Jones"
0.0001000 Length of children[1].dateOfBirth = 8

0.110001 01.11001 011.0101 0111.001 01100.00 011011.1 0110001 .0110111x children[1].dateOfBirth = "19590717"

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 45

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

A2

Record that uses subtype constraints

This example is the same as that shown in clause A.1, except that it makes use of the subtype notation to impose constraints
on some items.

A21

ASN.1 description of the record structure

The structure of the hypothetical personnel record is formally described below using ASN.1 specified in Rec.
ITU-T X.680 | ISO/IEC 8824-1 for defining types.

A22

The value

A23

The represgentation of the-record value given above (after applying the ALIGNED variant of the Packed Enco
defined in[this Recommendation | International Standard) is shown below. The encoding is shown in he
y a commented description of the encoding shown in binary. In the binary view an 'x' is used to regresent pad
bits that arp encoded as zero-bits; they are used to align the fields from time to time.

followed b

PersonnelRecord ::= [APPLICATION O] IMPLICIT SET {

name Name,

title [0] VisibleString,
number EmployeeNumber,
dateOfHire [1] Date,
nameOfSpouse [2] Name,
qiitdren [3] HPHCH

SEQUENCE OF ChildInformation DEFAULT {}}
ChildInformation ::= SET

{| name Name,
dateOfBirth [0] Date}
Name ::= [APPLICATION 1] IMPLICIT SEQUENCE
{ givenName NameString,
initial NameString (SIZE(1)),
familyName NameString}

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

Date ::= [APPLICATION 3] IMPLICIT VisibleString
(FROM("'0".."9"") ~ SIZE(8)) -- YYYYMMDD

NameString ::= VisibleString (FROM("a™.."" z"" | "A"..""Z" | "¢.'") ™ SIZE(1..64))

ASN.1 description of a record value

bf John Smith's personnel record is formally described below using ASN.1.
{ name {givenName "'John""initial "'P"*,familyName "'Smith"'},
title "Director",
number 51,
dateOfHire "'19710917",
nameOfSpouse {givenName“*:Mary"initial "T"* ,familyName "'Smith"'},
children

{{name {givenName ""Ralphinitial ""T"' familyName ""Smith"'},
dateOfBirth '"19571111"},

{name {givenName % Susan"',initial "'B"",familyName "*Jones"'},
dateOfBirth ""19590717"}}}

ALIGNED PER representation of this record value

ding Rules
kadecimal,

The length of this encoding 15 /4 OCtets. For comparison, the same PersonnelRecord value encoded
UNALIGNED variant of PER is 61 octets, BER with the definite length form is at least 136 octets, and BER with the
indefinite length form is at least 161 octets.

A.2.3.1 Hexadecimal view

using the

864A6F68 6E501053 6D697468 01330844 69726563 746F7219 7109170C 4D617279

5410536D 69746802 1052616C 70685410 536D6974 68195711 11105375 73616E42

104A6F6E 65731959 0717

46

Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

A.2.3.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong together
(typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a character
string; and an X' represents a zero pad bit that is used from time to time to align fields on an octet boundary.

1 Bitmap bit = 1 indicates "children™ is present
000011x Length of name.givenName =4

01001010 01101111 01101000 01101110 name.givenName = "John"

01010000 name.initial = "P"

000100xx Length of name.familyName =5

01010011 01101101 01101001 01110100 01101000 name.familyName = "Smith"

00000001 Length of (employee) number = 1

00110011 (Amplnynn) number =51

00001000 Length of title = 8

01000100 0{L101001 01110010 01100101 01100011 01110100 01101111 01110010 title = "Director"

0001 10010111 0001 0000 1001 0001 0111 dateOfHire = 197109117

000011xx Length of nameOfSpouse.givenNdme = 4
01001101 01100001 01110010 01111001 nameOfSpouse.givenName = "Mary"
01010100 nameOfSpouse.initial = "T"

000100xx Length'of nameOfSpouse.familyName =5
01010011 0{1101101 01101001 01110100 01101000 pameOfSpouse.familyName = "Srpith"
00000010 Number of children

000100xx Length of children[0].givenName [5
01010010 0{1100001 01101100 01110000 01101000 children[0].givenName = "Ralph"

01010100 children[0].initial = "T"

000100xx Length of children[0].familyNamg = 5
01010011 0{1101101 01101001 01110100 01101000 children[0].familyName = "Smith’

0001 1001(0101 0111 0001 0001 0001 0001 children[0].dateOfBirth = "19571411"
000100xx Length of children[1].givenName F 5
01010011 0{1110101 01110011 01100001 01101110 children[1].givenName = "Susan"

01000010 children[1].initial = "B"

000100xx Length of children[1].familyNamg = 5
01001010 0{1101111 01101110 01100101 01110011 children[1].familyName = "Jones'

0001 1001(0101 1001 0000 01140001 0111 children[1].dateOfBirth = "19590417"
A.2.4 WUNALIGNED RER representation of this record value

The repregentation of-the record value given above (after applying the UNALIGNED variant of the Packeq Encoding
Rules defined in thissRecommendation | International Standard) is shown below. The encoding is shown in hexadecimal,
followed Iy a(commented description of the encoding shown in binary. Note that pad bits do not odcur in the
UNALIGNED variant, and characters are encoded in the fewest number of bits possible.

The length of this encoding is 61 octets. For comparison, the same PersonnelRecord value encoded using the ALIGNED
variant of PER is 74 octets, BER with the definite length form is at least 136 octets, and BER with the indefinite length
form is at least 161 octets.

A.2.4.1 Hexadecimal view
865D51D2 888A5125 F1809984 44D3CB2E 3E9BFO0C B8848B86 7396E8A8 8A5125F1
81089B93 D71AA229 4497Ce632 AE222222 985CE521 885D54C1 70CAC838 BS8

A.2.4.2 Binary view

So as to make it easier to read the binary view of the data, blank lines are used to group fields that logically belong together
(typically length/value pairs); a newline is used to delineate fields; space is used to delineate characters within a character
string; a period (.) is used to mark octet boundaries; and an 'x' represents a zero-bit used to pad the final octet to an octet
boundary:

© ISO/IEC 2021 - All rights reserved Rec. ITU-T X.691 (02/2021) 47

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

ISO/IEC 8825-2:2021 (E)

1 Bitmap bit = 1 indicates "children" is present
000011 Length of name.givenName = 4
0.01011 101.010 10001.1 101001 name.givenName = "John"
0.10001 name.initial = "P"
000.100 Length of name.familyName =5
01010.0 101000 1.00100 101.111 10001.1 name.familyName = "Smith"
0000000.1 Length of (employee) number = 1
0011001.1 (employee) number = 51
0000100.0 Length of title = 8
1000100 .1101001 1.110010 11.00101 110.0011 1110.100 11011.11 111001.0 title = "Director”
0001 100.1 0111 000.1 0000 100.1 0001 011.1 dateOfHire = "19710917"
000011 Lcugth of ||a|||chSpuuac.g;vcuN me =4
0.01110 01j1.100 10110.1 110100 nameOfSpouse.givenName =.'"Mary"
0.10101 nameOfSpouse.initial = "7"
000.100 Length of nameOfSpouse.familyName = 5
01010.0 10{000 1.00100 101.111 10001.1 nameOfSpouse.familyName = "Srpith"
0000001.0 Number of children
000100 Length of\children[0].givenName | 5
0.10011 01{1.100 10011.1 101011 1.00011 childrenf0].givenName = "Ralph"
010.101 children[0].initial = "T"
00010.0 Length of children[0].familyNamg = 5
010100 1.0000 100.100 10111.1 100011 children[0].familyName = "Smith’
0.001 1001 0.101 0111 0.001 0001 0.001 0001 children[0].dateOfBirth = "19571411"
0.00100 Length of children[1].givenName F 5
010.100 11pp00.0 101110 0.11100 101.001 children[1].givenName = "Susan"
00001.1 children[1].initial = "B"
000100 Length of children[1].familyNamg = 5
0.01011 101.010 10100.1 100000 1.01110 children[1].familyName = "Jones'
000.1 1001 010.1 1001 000.0 0111 000.1 0111xxx children[1].dateOfBirth = "19590417"
A3 Record that uses extensionmarkers
A.3.1 ASN.1 description of the record structure
The structure of the hypothetical personnel record is formally described below using ASN.1 specifigd in Rec.
ITU-T X.680 | ISO/IEC 8824-1 for defining types:
FersonnelRecoerd-::= [APPLICATION 0] IMPLICIT SET {
name Name,
title [0] VisibleString,
number EmployeeNumber,
dateOfHire [1] Date,
nameOfSpouse [2] Name
children [3] IMPLICIT
SEQUENCE (SIZE(2, ...)) OF ChildInformation OPTIONAL,
}
ChildInformation ::= SET
{ name Name,
dateOfBirth [0] Date,
sex [1] IMPLICIT ENUMERATED {male(1), female(2),
unknown(3)} OPTIONAL
}
Name ::= [APPLICATION 1] IMPLICIT SEQUENCE
{ givenName NameString,
initial NameString (SIZE(1)),
48 Rec. ITU-T X.691 (02/2021) © ISO/IEC 2021 - All rights reserved

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

A3.2

ISO/IEC 8825-2:2021 (E)

familyName NameString,

&
EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER (0..9999, ...)

Date ::= [APPLICATION 3] IMPLICIT VisibleString
(FROM(™'0".."9™) A SIZE(S, ..., 9..20)) -- YYYYMMDD

NameString ::= VisibleString
(FROM("a™..""z" | "A™."Z" | "-."") " SIZE(1..64, ...))

ASN.1 description of a record value

The value of John Smith's personnel record is formally described below using ASN.1:

A33

The represgntation of the record value given above (after applying the ALIGNEB variant of the Packed Encoj
defined in|this Recommendation | International Standard) is shown below. The encoding is shown in he
y a commented description of the encoding shown in binary. In the binary view an 'x' is used to represent pad
bits that arp encoded as zero-bits; they are used to align the fields from-time to time.

followed b

The length of this encoding is 83 octets. For comparison, the<same PersonnelRecord value encoded
UNALIGNED variant of PER is 65 octets, BER with the definite length form is at least 139 octets, and BE

indefinite

A33.1

40CO04ApEF 686E5008 536D6974 68000033 08446972 6563746F 72001971 0917
617279p4 08536D69 74680100 52616C70 68540853 6D697468 00195711 1182
757361pE 42084A6F 6E6573000,°19590717 010140

A33.2

So as to make it easier to read the-binary view of the data, blank lines are used to group fields that logically belo

(typically

string; and|an X' represents.a.zero pad bit that is used from time to time to align fields on an octet boundary:

{ name {givenName "'John"\initial "'P"* ,familyName "*Smith"'},

title "nirnm‘nr"’

number 51,

dateOfHire 19710917,

nameOfSpouse {givenName ""Mary"initial " T"" familyName ""Smith"},
children

{{name {givenName ""Ralph",initial ""T"' ,familyName ""Smith"'},
dateOfBirth *'19571111"},

{name {givenName "'Susan"'initial "'B"*",familyName "*Jones"'},
dateOfBirth ""19590717", sex female}}}

ALIGNED PER representation of this record value

ength form is at least 164 octets.

Hexadecimal view

Binary view

ength/value pairs);anewline is used to delineate fields; space is used to delineate characters within

ding Rules
kadecimal,

using the
R with the

034D
0053

ng together
A character

0 No extension values present in PergonnelRecord
1 Bitmap bit = 1 indicates "children"|is present
0 No extension values present in "name"

0 Length is within range of extension root
0000 1IXXXXXX Length of name.givenName = 4

01001010 01101111 01101000 01101110 name.givenName = "John"

01010000 name.initial = "P"

0 Length is within range of extension root
000100x Length of name.familyName =5

01010011 01101101 01101001 01110100 01101000 name.familyName = "Smith"

OXXXXXXX Value is within range of extension root
00000000 00110011 (employee) number = 51

00001000 Length of title = 8

01000100 01101001 01110010 01100101 01100011 01110100 01101111 01110010 title = "Director"

OXXXXXXX

© ISO/IEC 2021 - All rights reserved

Length is within range of extension root
0001 1001 0111 0001 0000 1001 0001 0111 dateOfHire = "19710917"

Rec. ITU-T X.691 (02/2021) 49

https://iecnorm.com/api/?name=2954e20c6690279d0e5c004c4061c35a

	Rec. ITU-T X.691 (02/2021) Information technology – ASN.1 encoding rules: Specification of Packed Encoding Rules (PER)
	Summary
	History
	FOREWORD
	CONTENTS
	Introduction
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 Specification of Basic Notation
	3.2 Information Object Specification
	3.3 Constraint Specification
	3.4 Parameterization of ASN.1 Specification
	3.5 Basic Encoding Rules
	3.6 PER Encoding Instructions
	3.7 Additional definitions

	4 Abbreviations
	5 Notation
	6 Convention
	7 Encoding rules defined in this Recommendation | International Standard
	8 Conformance
	9 PER encoding instructions
	10 The approach to encoding used for PER
	10.1 Use of the type notation
	10.2 Use of tags to provide a canonical order
	10.3 PER-visible constraints
	10.4 Type and value model used for encoding
	10.5 Structure of an encoding
	10.6 Types to be encoded

	11 Encoding procedures
	11.1 Production of the complete encoding
	11.2 Open type fields
	11.3 Encoding as a non-negative-binary-integer
	11.4 Encoding as a 2's-complement-binary-integer
	11.5 Encoding of a constrained whole number
	11.6 Encoding of a normally small non-negative whole number
	11.7 Encoding of a semi-constrained whole number
	11.8 Encoding of an unconstrained whole number
	11.9 General rules for encoding a length determinant

	12 Encoding the boolean type
	13 Encoding the integer type
	14 Encoding the enumerated type
	15 Encoding the real type
	16 Encoding the bitstring type
	17 Encoding the octetstring type
	18 Encoding the null type
	19 Encoding the sequence type
	20 Encoding the sequence-of type
	21 Encoding the set type
	22 Encoding the set-of type
	23 Encoding the choice type
	24 Encoding the object identifier type
	25 Encoding the relative object identifier type
	26 Encoding the internationalized resource reference type
	27 Encoding the relative internationalized resource reference type
	28 Encoding the embedded-pdv type
	29 Encoding of a value of the external type
	30 Encoding the restricted character string types
	31 Encoding the unrestricted character string type
	32 Encoding the time type, the useful time types, the defined time types and the additional time types
	32.1 General
	32.2 Encoding subtypes with the "Basic=Date" property setting
	32.3 Encoding subtypes with the "Basic=Time" property setting
	32.4 Encoding subtypes with the "Basic=Date-Time" property setting
	32.5 Encoding subtypes with the "Basic=Interval Interval-type=SE" property setting
	32.6 Encoding subtypes with the "Basic=Interval Interval-type=D" property setting
	32.7 Encoding subtypes with the "Basic=Interval Interval-type=SD" or "Basic=Interval Interval-type=DE" property setting
	32.8 Encoding subtypes with the "Basic=Rec-Interval Interval-type=SE" property setting
	32.9 Encoding subtypes with the "Basic=Rec-Interval Interval-type=D" property setting
	32.10 Encoding subtypes with the "Basic=Rec-Interval Interval-type=SD" or "Basic=Rec-Interval Interval-type=DE" property setting
	32.11 Encoding subtypes with mixed settings of the Basic property

	33 Object identifiers for transfer syntaxes
	A.1 Record that does not use subtype constraints
	A.1.1 ASN.1 description of the record structure
	A.1.2 ASN.1 description of a record value
	A.1.3 ALIGNED PER representation of this record value
	A.1.3.1 Hexadecimal view
	A.1.3.2 Binary view

	A.1.4 UNALIGNED PER representation of this record value
	A.1.4.1 Hexadecimal view
	A.1.4.2 Binary view

	A.2 Record that uses subtype constraints
	A.2.1 ASN.1 description of the record structure
	A.2.2 ASN.1 description of a record value
	A.2.3 ALIGNED PER representation of this record value
	A.2.3.1 Hexadecimal view
	A.2.3.2 Binary view

	A.2.4 UNALIGNED PER representation of this record value
	A.2.4.1 Hexadecimal view
	A.2.4.2 Binary view

	A.3 Record that uses extension markers
	A.3.1 ASN.1 description of the record structure
	A.3.2 ASN.1 description of a record value
	A.3.3 ALIGNED PER representation of this record value
	A.3.3.1 Hexadecimal view
	A.3.3.2 Binary view

	A.3.4 UNALIGNED PER representation of this record value
	A.3.4.1 Hexadecimal view
	A.3.4.2 Binary view

	A.4 Record that uses extension addition groups
	A.4.1 ASN.1 description of the record structure
	A.4.2 ASN.1 description of a record value
	A.4.3 ALIGNED PER representation of this record value
	A.4.3.1 Hexadecimal view
	A.4.3.2 Binary view

	A.4.4 UNALIGNED PER representation of this record value
	A.4.4.1 Hexadecimal view
	A.4.4.2 Binary view

	B.1 General
	B.2 Extensibility and visibility of constraints in PER
	B.2.1 General
	B.2.2 PER-visibility of constraints
	B.2.3 Effective constraints

	B.3 Examples
	Blank Page

