TECHNICAL ISO/IECTR
REPORT 19075-7

First edition
2017-03

Information technology < "Database
languages — SQL Technical Reports —

Part 7:
Polymorphic table functions in SQL

Technologies de l'information — Langages de base de donnges — SQL
rapport techniques —

Partie 7: Fonctions-de table polymorphes dans SQL

Reference number
ISO/IEC TR 19075-7:2017(E)

© ISO/IEC 2017

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

www.iso.org

ii © ISO/IEC 2017 - All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

Contents Page
0] =T o o e o Xi
INEFOAUCHION. . . . et e e AL . Xii
L GO0 i A 1
2 Normative referenCes. D .3
21 ISOand IEC standards. ool .3
3 Iptroduction to Polymorphic Table Functions. /e5b
31 AUdiENCES. . . .ot S ..5
32 Motivating examples.6
321 L0 = o ..6
322 PIVOt. L Y L7
323 SOl . e .9
324 TOPNPIUS. . oo .12
3.25 EXECR. . NN e .15
326 SIMI LIty . . .o e e .16
3.27 UD OIN. oo R .18
3.2.8 MaDREAUCE.ottt e e e .19
33 Thelifecycleof aPTF.20
4 HTF processing MOdel.o e ... 23
4.1 Processing phases. ol e .23
4.2 VirtUal ProCESSOrS. e e e e .23
4.3 PTF component ProGEAUNES. ottt e et e e e et e ettt et .23
44 Input table Char@CtEristiCS.24
4.5 Partitioning@nel Ordering.ottt .25
4.6 FIOW Of fCORMIOl. . . . oo e e e .26
47 Flow, Of) INfOrmation. oo e .. 27
4.8 F OV, Of FOW By PES. .« oottt et e e e ..28
4.9 Pass-through ColUMNS. o e e e e .30
4.10 SECUNTY MO0 . - . - . o e r i e et 30
411 Conformance fEAIUNES. e e 31
5 SPECHICALION. . . oottt e 35
51 Functional SpeCifiCation.ot e 35
511 ParamEEr ISt . . oo 35
512 INput table SEMANtiCS. 36
513 PrUNEDI LIty . . oo 37
514 Passthrough COIUMNS. e e e e e 37
©ISO/IEC 2017 — All rights reserved Contents iii

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

515
516
517
518
52

521
522
523
524

6.1
6.2
6.3
6.4

7.1
711
712
713
714
7.2
7.3
74
74.1
742
743
7.5
7.6

8.1
8.2
8.3
8.4
85
8.6
8.6.1
8.6.2
8.6.3
8.7
8.8
8.9
8.10
8.11

RESUIL FOW Y P8, . . oottt e e e e e e e e e e e 38
D= (0 1= 38
SOl -dalA BCCESS. .« v o vt ettt et e e e e e e 39
Documenting the PTF to the query author. e 39
DESIgN SPECHICAIION. . . .ottt 40
Name the COMPOoNENt ProCEAUNES.ottt ettt ettt et ettt 40
Privale dala - - - ... 40
Routine characteristics of the component procedures. N L4l
Component procedure SIgNAUMES. oottt e et ST ... 42
ata definition [angUadE.ot P AT
PTE Creation.o e e e RN L AT
PTF component proCeAUIES.ottt e et e e e e e e e pa T e e e e ... 49
Altering PTF component proceduresand PTFS. it ... 49
Dropping a PTF and its component procedures.o oo it e e e 50
Mplementation. S ...51
PTF descriptor areas.o i O ...5b1
PTF descriptor areaheader.o N ...52
SQL item descriptor areas for row types.ot O e ...53
SQL item descriptor areas for partitioning. ;G ...57
SQL item descriptor areas for ordering. &/ ... 57
PTFE extended NameS.ttt A e e et et e et e e ...57
Reading a PTF desCriplor @reaot s e et ettt e et et e et ...58
Writing @ PTF desCriptor @rea.o 8 et e e ...58
Using DESCRIBE to populate a PTF deseriptor area.oove et iiae e ... 59
Using SET DESCRIPTOR to populate a PTF descriptor area.o oo oo ...59
Using COPY DESCRIPTOR topopulate aPTF descriptorarea.o oo vii i ... 60
Reading a PTF iNPUL CUMSOI . o . ettt e e e e e e ettt it ...61
OULPULLING @ FOW. . . .o s ettt e e e e e e e e ...62
13720102 L4] o ...65
<tabl e PNy > .). o ...65
<PTFE derived table>. e ...65
Proper result*correlation name and proper result columnnaming.vieineinennenn.. ...65
STOULINE) INVOCAI ON>. . . o .ottt et et e e e e e e e e e e e e e ...66
<tAl e argUMENE>. . . o ...67
<iable argQUMENt PrOPE >, . . o oottt e ...68
<taDI€ OF QUETY NAIMES. et e 68
<tAblE SUDUENY >, . . . o e 68
Nested table fuNCLioN INVOCELION.ot e e e e 69
Table argument COrrelation NAMIE.ttt et e e ettt et e 69
Table argument COlUMN FENAMING. oottt e et e e et e et e e e 70
Range variables and column renaming innested PTF. e 70
PartitioNiNg. 70
PrUNI NG, .« .o 71

iv. Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

8.12 L0 0 =T o o 71
8.13 CoPaArtitiONING. . . . oottt e e e e e e e 72
8.14 Cross products Of Partitions.t e 73
8.15 <OESCHI PO AIGUIMIE I, . . . oot ettt ettt e e e e e e e e e e et e e e 74
O COMPI A ON. . e 75
9.1 Calling the describe component proCedUIe.ttt e e e e e 75
9.2 Inside the describe component procedure.t e AL ... 75
9.3 Using the result of describe.o Y ... 76
10 QPtIMIZAtioN. AL L TT
11 BXECULION. ..ottt et et A ... 79
111 Partitions and Virtual ProCeSSOrS.ot i ettt e e e RN .79
11.2 Calling the start component procedure.ttt e ... 80
11.3 Inside the start component procedure. AN ...81
114 Calling the PTF fulfill component procedure.Gt ...81
115 Inside the PTF fulfill component procedure. N81
11.6 ClOSING CUISOIS. . . o v ettt e e e ettt e e e e e ...81
11.7 Calling the PTF finish component procedure. o6 N e ...81
11.8 Inside the PTF finish component procedure.50 o e ... 82
11.9 Collectingtheoutput. O ... 82
11.10 Cleanup on aVvirtual ProCESSOr.ottt e e e e e e e e et et e ... 82
11.11 Final resUlt. N ... 82
12 BXampPles. ... e 83
121 PrO Lt ON. . . . 84
1211 OVEIVIEBW. ..o 84
12.1.2| Functiona specification of Projeetion. e e ...84
12.1.3| Design specification for ProjeCtion.o e ...85
12.1.4 | Projection COMponent ProBEAUIES.ottt ettt et e e e e e ...85
1215 InvoKIiNg Projection. . .. o o ... 87
12.1.6| Caling Projections0escribe. oo ... 87
12.1.7 | Inside Projection—0escribe. 89
12.1.8| Result of Projection describe. 91
12.1.9| Virtual precessors for Projection.ot 91
12.1.1Q Caling—Projection_fulfill. 92
12.1.11 Inside Projection_fulfill. 93
12.1.13 NECOlleCting the reSUITS.ot 93
2 0 N O = T o 94
12.2 LY=o = PP 95
1221 OVEIVIBI. .« ottt ettt e e e et e e e e 95
12.2.2 Functional specification of CSVreader.ot e 95
12.2.3 Design specification for CSVreader.ot 95
12.2.4 CSVreader COMPONENt PrOCEAUIES. vttt et et e e e e et e e e e e et e e e e 96
1225 Implementation Of COVIader.o ot 97
1226 InVOKING GOV a0E . . . oottt e e e e e e e 98

©ISO/IEC 2017 — All rights reserved Contents v

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

12.2.7 Caling CSVreader _describe. oo 98
1228 Inside CSVreader desCribe.ot 100
1229 Result of CSVreader_describe. o 101
12.2.10 Virtual processor for CSVIeader.ottt 103
12211 Caling COVreader Start.ottt e e 103
12212 Inside COVreader Start.ottt e e 104
12213 Catimg CSvreader fuffitt - - - - - - A .. 104
12.214 Inside CSVreader fulfill. N .. 104
12218 Collectingthe OULPUL.t)T .. 105
12.2.19 Caling CSVreader finish. i e N .. 105
122174 Inside CSVreader finish.t i A .. 106
12228 CleanuD. . . oo vt et e e O 106
12.3 PV Ot o e 107
1232 OVEIVION. . ot e e N .. 107
12.3.2| Functional specification of Pivot. N .. 107
12.3.3| Design specificationfor Pivot. AN .. 108
12.3.4 | Pivot component ProCEAUIES.ottt et et e e e e e ettt .. 108
1235 Invoking pivoL. oot N .. 109
12.3.6 | Caling Pivot_describe.o T .. 109
1237 | Inside Pivot describe.) .. 113
12.3.8| Result of Pivot_describe. e .. 115
12.3.9 | Virtual processorsfor PIVOL. O .. 117
12310 Cdling Pivot_fulfill. ... s . 117
12329 Inside Pivot_fulfill. 118
12317 Collecting the results. o li e 118
0 B O = T o 119
124 T = 120
1240 OVEIVION. . .o s .. 120
12.4.2| Functional specification of SCOre. oottt e .. 120
12.4.3| Design specificatiQnifor SCOre.t .. 120
12.4.4 Score COMPONENE_PIrOCEAUIES. vttt et ettt et e et et et e e e et 121
1245 IVOKING SEOME. . . oottt et et e e e e e e e e .. 122
1246 Caling S0re desCribe. o .. 122
1247 INSIde SCOre AEsCribe. . . o ot .. 125
1248 Result of Score describe. 126
12.4.9 | s Virtual ProCeSSOrS fOr SCOME. . .. vttt it e e e et e e e .. 127
12420 Caling Score fUlfill. e 129
12411 Inside Score fulfill. e 129
12412 ColleCting the QUEPUL. oot e e e e e e e e e e e e 130
T N O = T T o 131
125 TOPNPIUS. . oot e e e 132
L1251 OV VIO, o ottt ettt e e e et e e e e e 132
125.2 Functional specification of TOPNPIUS.ot e 132
1253 Design specification for TOPNPIUS.o oot 132

vi Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

1254 TopNplus component ProCEAUNES. oottt e e e e e e e e e et e e e e e 133
1255 Invoking TOPNPIUS. oo e e e e e e 134
1256 Caling TOPNPIUS DESCIiDe. . . . oo e e e e e 134
1257 Inside TOPNPIUS ESCribe. oo e e 137
125.8 Result of TOpNpIUS describe. i e 139
1259 Virtual processors for TOPNPIUS. oottt e e e e e et e e e e 139
1251 Catimg TopNplos forfi - - - - A 141
12511 Inside TopNplus fulfill.o N 141
12513 Collectingthe OULPUL.t eee)T 142
12513 CleANUD. . o oottt e et e e e e e o 142
125.14 TopNplususing pass-through columns.c.o i AP 143
12.6 EXECR. . O 145
L2.8.0 [OVEIVIBI. o o ettt et ettt et e e e e e e e e e .. 145
12.6.2| Functional specification of EXeCR. N .. 145
12.6.3| Design specification for EXeCR. N .. 145
12.6.4 | ExecR component procedures.oiveinneiin e NN .. 146
1265 InVOKING EXECR. . ..ot e e e T .. 147
12.6.6 | Caling ExecR describe. o N .. 147
12.6.7| Inside EXeCR desCribe.o e e .. 149
12.6.8| Result of ExecR describe.) .. 150
12.6.9 | Virtual processors for EXECR.t e e .. 150
12.6.10 Caling EXeCR _Start.o O .. 151
12610 Inside EXeCR start.o s .. 152
12.6.14 Cdling ExecR_fulfill. 152
12.6.13 Inside ExecR_fulfill. i 152
12.6.14 Collecting the OULPUL.o e e e e e e e e e e e e e 153
12.6.15 Caling EXeCR _fiNish. 153
12.6.19 Inside EXECR_fiNiSN. . . o aotd o 153
126070 Cleanup.o S e 153
12.7 SIMIAIITY. . o e e e et 154
L1270 OVEIVIEW. . .) e e e .. 154
12.7.2| Functional specification of Similarity. 154
12.7.3| Design specification for Similarity. 154
12.7.4 1 Similarity component ProCEAUNES. oottt et e e e e e et e e e e e .. 155
1275 IQVOKING SIMIlarity. . ..o e .. 156
12.7.6 | ~0Caling Similarity_desCribe.o e .. 156
12.7.7 Insde Similarity _desCribe.o 158
12.7.8 Result of Similarity_describe. 159
12.7.9 Virtual processors for SIMilarity. 159
12.7.10 Cadling Similarity_fulfill. 163
12.7.11 Inside Similarity _fulfill. o 163
12.7.12 Collecting the QULPUL.ot e e e e e et e e 164
12703 CleAINUP. . o e ettt e ettt et e e e e e e e e e 164
12.8 LU o o 165

©ISO/IEC 2017 — All rights reserved Contents vii

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

12,81 OVEIVIBI. o oottt et et et e e e e 165
12.8.2 Functional specification of UDJOIN.ttt e 165
12.8.3 Design specification for UDJOIN.ottt e 165
12.8.4 UDjoin cOMPONENnt ProCRAUNES. o ottt et e et e e e e e e e e et e e et 166
1285 InVOKING UDJOIN. . .ottt ettt e e e e e e e e 167
12.8.6 Caling UDjOIN _AESCribe.ottt e e e e e e e 167
12.8.7 [Ingde UDjOIM O6CINDE. — - - - - - - - -~ oo A . 168
12.8.8| Result of UDjoin_describe. N . 168
12.8.9| Virtual processorsfor UDJOiN.o) .. 168
12.8.10 Caling UDjoin fulfill. e N .. 168
12811 InsideUDjoin fulfill. A .. 169
12.8.14 Collectingthe output.t i it ON . 170
12813 CleaNUD. . o oo ettt et e e e e e e e A e .170
12.9 Nested PTF invOCaLIioN.o oo N JA71
129.1| Nested PTF syntax and Semantics.oovviiineiiie e N e 171
129.2| Nested PTF compilation. o NN 174
1293 Nested PTF @XECULION. . . . oo oo ettt et e et e e e et e et 175
12.9.4| The PTF author's view of nested PTF invoCations. 5. e . 176
Biblidgraphy. ... e 177
0 =« A IO 179

viii Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

Tables
Table Page
1 Primary audiences for Clauses and Subclauses in this Technical Report. o i, 20
2 PTF routine CharaCteristiCs.ottt e e e e e e e 41
3 Tlble parameter SEmMantiCs.o vt e e A ...43
4 Gorresponding PTF component procedure parameters.o oo e it e i e e e ... 44
5 HTF desCriptor area.ottt e e e e e e e e i e ...52
6 HTF descriptor area header.o ey ...52
7 Relevant SQL item descriptor cComponents.ooveiveineiin e A ...5b3

©ISO/IEC 2017 — All rights reserved Contents ix

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

Figures
Figure Page
1 PTFinformation flow. o 28
2 ROW tYPe rElaliONSNIPS. .« . o v vttt et e ettt e e e e e e e e e 29
3 Nested PTRdataflow. e A . 172
4 HOW Of FOW By PES. . . ottt e e e e e et e N .. 174
5 Simplified flow of roOwW types. o .. 175
6 Net effect of complete compilation. ey N .. 175

x Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees

establi
techni
and nd

al committees collaborate in fields of mutual interest. Other international organizations, geve
n-governmental, in liaison with ISO and IEC, also take part in the work. In the field.'of info

techndlogy, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

The pr
the IS
docum
Direct

Attent
rights.
patent
list of

Any ti

ocedures used to develop this document and those intended for its further maintenance are desc
D/IEC Directives, Part 1. In particular the different approval criteria needed for the different t
ent should be noted. This document was drafted in accordance with thefeditorial rules of the I
ves, Part 2 (see www.iso.org/directives).

on is drawn to the possibility that some of the elements of this(document may be the subject o
ISO and IEC shall not be held responsible for identifying any-er all such patent rights. Details
rights identified during the development of the document will be in the Introduction and/or on 1
batent declarations received (see www.iso.org/patents).

ade name used in this document is information. given for the convenience of users and d

constifute an endorsement.

ched by the respective organization to deal with particular fields of technical activity. ISO\ahd IEC

mental
‘mation

[ibed in
ypes of
SO/IEC

[patent
of any
he ISO

Des not

For anl explanation on the voluntary nature of standards, the meaning of ISO specific terms and expiessions
related to conformity assessment, as wellZas information about ISO's adherence to the World Trade
Organjzation (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL:
www.1so0.org/iso/foreword.html.

This focument was prepared)by Technical Committee ISO/IEC JTC 1, Information techpology,
Subcommittee SC 32 Data management and interchange.

A list ¢f all parts in the ISO 19075 series can be found on the ISO website.

NOTE 1}— Theindividual parts of multi-part technical reports are not necessarily published together. New editions of one or more parts
may be gublishedwithout publication of new editions of other parts.

©ISO/IEC 2017 — All rights reserved Foreword xi

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

I ntroduction

The organization of this part of ISO/IEC 19075 is as follows:

1)
2)

3)

4)

5)

6)

7)

8)

9)

10)

xii Polymor phic Table Functionsin SQL

functions, the requirements leading to their incorporation into SQL, and illustrations af-their use.

Clause 1, “ Scope”, specifies the scope of this part of 1SO/IEC 19075.

Clause 2, “Normative references’, identifies additional standards that, through reference in thispal
ISO/IEC 19075, constitute provisions of this part of 1SO/IEC 19075.

Clause 3, “Introduction to Polymorphic Table Functions’, provides an introduction to pelymorphi

in[the context of an SQL-implementation.

Clause 5, “ Specification”, describes the manner in which polymorphic tablefunctions are specifieg
DL standard.

X
Clause 6, “ Data definition language”, providesthe syntax and semantics of the SQL statementsthat
mpdify, and drop polymorphic table functions.

C

ause 7, “Implementation”, guides authors of polymorphic table functions through the steps requ
create al of the functions necessary to accomplish partieular purposes.

Clause 8, “Invocation”, supplies the information neeessary for application writers, especialy SQL
althors, to take advantage of the polymorphic tabléfunctions that are available to them.

Clause 9, “Compilation”, is directed at the authiors of polymorphic table functions and of SQL datj
syistems to guide them in the steps required\to’ compile polymorphic table functions in the context
particular SQL-implementation.

off such functions and the authors.of 'SQL -implementations must be aware to adequately optimize t
cytion of such functions.

Clause 11, “Execution”, discusses the details of executing polymorphic table functionsin the cont
the processing model-

uge cases, therequirements that relate to polymorphic table functions, and the specifics of the solu
far each usecase.

t of

c table

Clause4, “PTF processing model”, describesthe abstract processing model for polyrmerphic table fupctions

inthe

create,

red to

query

hbase
Df a

Clause 10, “Optimization”, describes the various aspects of polymorphic functions of which the athors

e exe-

bxt of

Clause 12, “Examplés’, supplies numerous examples in detail with commentaries to explain the various

lions

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

TECHNICAL REPORT ISO/IEC TR 19075-7:2017(E)

| nfor mation technology — Database languages — SQL Technical Reports —

Part 1:
Polymor phic table functionsin SQL

1 Stope

This Technical Report describes the definition and use of polymorphic table functionsin SQL.
The Report discusses the following features of the SQL Language:

— Tihe processing model of polymorphic table functions in the context 'of"'SQL..

— Tlhe creation and maintenance of polymorphic table functions.

— Ispues related to methods of implementing polymorphic tablefunctions.

— Hpw polymorphic table functions are invoked by application programs.

— Ispues concerning compilation, optimization, and execution of polymorphic table functions.

©ISO/IEC 2017 — All rights reserved

Scope 1

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

(Blank page)

2 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

2 N

2.1

[1(
Fou

ISO/IEC TR 19075-7:2017(E)
2.1 1SO and |EC standards

ormativereferences

| SO and | EC standards

DO075-2] 1SO/IEC 9075-2:2016, Infor mation technology — Database languages — SQL — Part
hdation (SQL/Foundation).

rences,
luding

2

©ISO/IEC 2017 — All rights reserved

Normativereferences 3

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

(Blank page)

4 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.1 Audiences

3 Introduction to Polymor phic Table Functions

In addition, aPTF may have generic table parameters (i.e., no row type declared when the PTF i'screated),
the row type of the result might depend on the row type(s) of the input tables. This Technical, Report isin
to proyide an informal description of PTFs, using examples and practical step-by-step advice on how t(
PTF capability to arelational DBMS, how to write a PTF, and how to invoke a PTF in-anapplication.

3.1 | Audiences

This Technical Report iswritten for three audiences:
1) The DBMS developer.

2) Tihe PTF author.

3) The query author.

It isimportant to recognize that a PTF is somewhat dike a view, only more procedural. With aview, the
the samethree parties: DBMS, view author, and query author. The DBM Sistheintermediary between th
author{and the query author. The view is away:for the view author to “publish” an interface to tablesw
exposipg theinner workings of theinterface:Similarly, aPTFisaway for the PTF author to publishanin

re are
eview
ithout

terface

to a prpcedural mechanism that defines atable. The query author only sees the published interface, whereas

the DBM S and the PTF author share a more complex “private” interface. In particular, the query autho
asingle PTF function, whereasthe DBM S and the PTF authcr see af.ami ly of oneto four related SQL -i

sees
voked

ience

ing the

the set of quenes may be such that noonedisk a Iocatl on scheme will allow optl mal performance of alI querles
Themost relevant section for aDBA allocating disk storageis Subclause 11.1, “ Partitions and virtual processors’,

where the audience isnominally the DBM S and the PTF author. However, specific advice about disk allocation
is beyond the scope of this Technical Report.

©ISO/IEC 2017 — All rights reserved Introduction to Polymor phic Table Funct

ions 5

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.2 Motivating examples

3.2 Motivating examples

We begin by showing eight motivating examples that illustrate the capabilities of PTFs. These examples are
presented from the standpoint of the query author, hiding the role of the PTF author and DBMS. The objective
here isto get ataste of the power and generality of PTFs. The perspectives of the DBMS and the PTF author
are explored at length in Clause 12, “Examples’.

3.2.1 | CSVreader

A spre

FUNCT| ON CSVr eader (

This sijgnature has two parameter types that are distinctive to PTFs:

1)

2)

In thislexample, the returntype of CSVreader is TABLE. Thisis adistinguishing characteristic of ever
morphjc table function;-it returns a generic table.

The PTF author haspublished a user reference for CSVreader. The user reference tells the query authof
semantics of theiaput parameters and what the output will be. In this example, the user reference docu
the following:

1)

2)

3)

RETURNS TABLE
NOT | DETERM NI STI C
CONTAINS SQL

arga

TABLE denotes the generic table type, atype whose value is atable. The row type of the tableisn
sgecified, and may vary depending on the invocation of the PTF.

Fill e VARCHAR(1000),
Flloat s DESCRI PTOR DEFAULT NULL,
Dait es DESCRI PTOR DEFAULT NULL)

DESCRIPTOR isatypethat is capable of-describing alist of column names, and optionally for each ¢
ndme, adatatype. There is a helper function provided for the query author to construct a PTF desa

pdsheet can usually output a comma-separated list of values. Generally, thefirst line'ef the file cgntains
alist gf column names, and subsequent lines of the file contain data. The data in general.¢an be treated
large VARCHAR. However, some of the fields may be numeric or datetime.

The PTF author has provided a PTF called CSVreader designed to read afile of ‘comma-separated valu
interpret this file as atable. The query author can see this PTF in the Information Schema and knows th
has the following signature:

asa

es and
at it

tolumn
riptor

ot

poly-

the
ments

the resultl ng coI umns. Succeedl ng lines contain the data_ Each Ilne after the first will r&eult in one row of
output, with column names as determined by the first line of the input.

Foatsis aPTF descriptor area, which should provide alist of the column names that are to be interpreted

numerically. These columns will be output with the data type FL OAT.

Datesis a PTF descriptor area, which provides alist of the column names that are to be interpreted as

datetimes. These columns will be output with the data type DATE.

Based on the documentation in the user reference, the query author may write a query such as the following:

6 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.2 Motivating examples

SELECT *

FROM TABLE (CSVreader (File => '"abc.csv',
Fl oats => DESCRI PTOR ("principle", "interest")
Dat es => DESCRI PTOR ("due_date")
)) AS S

In the FROM clause, the TABLE operator introduces the invocation of atable function. A table function might

be eitl
with re
Thisir
found
'intere
interpr

For ex

docnoj}nane, due_dat e, pri nci pl e, i nt er est
123, ery, 01/ 01/ 2014, 234. 56, 345. 67
234, E¢igar, 01/ 01/ 2014, 654. 32, 543. 21
The result will be
docno name due date principle interest
123 Mary 2014-01-01 234.56 345.67
234 Edgar 2014-01-/01 654.32 543.21
The digtinguishing feature of this example isthat there are no input tables. Subsequent examples show

possib

Thisg

322

e a conventional (monomorphic) tabie functiomor a PT F T this Case, Decanse CSvTeader isd
pturn type TABLE, thisis a PTF invocation.

jvocation says that CSVreader should open the file called abc.csv. The list of output column nam
n the first line of the file. Among these column names, there must be columns named principle
', which should be interpreted as numeric values, and a column named 'due_date'ywhich shoulc
eted as a date.

Ampl e, suppose that the contents of abc.csv are

lities involving input tables.

ampleis continued in detail in:Subclause 12.2, “CSVreader”.

Pivot

Ingen

and the output istiermalized. For example, maybe an input table has six columns, forming three pairs of
type, ghone number), and the user wishes to normalize this into a table with two columns.

The

a, apivotisan operation that reads arow and outputs severa rows. Generally, theinput is denorn

Clared

esis
and
be

arious

nalized
phone

Fauthor has provided a PTF called Pivot; the query author can see the following signature in th

Informetter-Scheme:

FUNCTI

ON Pivot (

I nput TABLE PASS THROUGH W TH ROW SEMANTI CS,
Qut put _pi vot _col umms DESCRI PTOR,

| nput _pi vot _col utms1 DESCRI PTOR,

| nput _pi vot _col utms2 DESCRI PTOR DEFAULT NULL,
| nput _pi vot _col utms3 DESCRI PTOR DEFAULT NULL,
| nput _pi vot _col utms4 DESCRI PTOR DEFAULT NULL,
| nput _pi vot _col utms5 DESCRI PTOR DEFAULT NULL

©ISO/IEC 2017 — All rights reserved Introduction to Polymor phic Table Funct

ions 7

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IE

C TR 19075-7:2017(E)

3.2 Motivating examples

) RETURNS TABLE
DETERM NI STI C
READS SQL DATA

The PTF author has provided a user reference that documents the following semantics for this PTF:

1) Thefirst parameter, Input, isageneric table. Thistableisdeclared to have two options, “PASS THROUGH”
and “WITH ROW SEMANTICS’. These options have the following implications for the query author:

a)

b)

WITH ROW SEMANTICS meansthat theresult isdetermined on arow-by-row basis. The alter
set semantics, will be seen in subsequent examples. At most one input table can have row.sem

PASS THROUGH means that, for each input row, the PTF makes the entire input row availab
the output, qualified by arange variable associated with the input table. The aterhative, NO P
THROUGH, will be seen in some subsequent examples.

native,
antics.
ein
N\SS

2) Thesecond parameter, Output_pivot_columns, isa PTF descriptor areathat lists the names of the cplumns

3) Thethird parameter, Input_pivot_columnsl, is mandatory. This parameter’is a PTF descriptor area
ligts the names of the columns of the input table which are to be pivoted into the corresponding co

of

4) Tipe remaining parameters, Input_pivot_columns2, Input ¢pivot_columns3, Input_pivot_columns4,
Input_pivot_columnsb, are optional (indicated by the DEFAULT NULL declaration). If supplied,
are additional PTF descriptor areas for the input columns that are to be pivoted into the output col

E

This
more |

Based

SELEC]
FROM

Inthig
passes
requirg

thit the query author wants to see in the result.

descriptor area and in the Input_pivot_columnsl descriptor area.

TABLE (Pivot (Input =>TABLE (Joe.Data) AS D,

.ISince Joe.Datais atable, it is possible to assign it a correlation name, D in this example. (If an €

the output table. There must be the same number of column names in the Output_pivot_column

h of these PTF descriptor areas must have the same number of column names as Output_pivot_co

ows the capability to pivot at most 5 sets ef-celumns. Of course, the PTF author could support 1
y simply adding more optional parametersto the signature.

on this user documentation, the query~author might write the following invocation:
[D.1d, D.Nane, P.Phonetype,” P. Phonenunber

Cut puf _pi vot _col uims => DESCRI PTCR (phonet ype, phonenunber),

I nput _pi vot _col umms1 => DESCRI PTOR (phtypel, phonenunber1l),

lsaput _pi vot _col ums2 => DESCRI PTOR (phtype2, phonenunber 2)
)())AS P

invocation, thefirst TABLE () operator encloses the PTF invocation. The first parameter, called
atable, anduses the TABLE () operator to enclose the table name. This second TABLE () operd
bd because SQL would normally interpret syntax such as Joe.Data as a column name rather than

qtion name isnot provi ided, then the table name Joe.Data, or jUSt Data, may be used asa range va

that
umns
5 PTF

and
hese
mns.
lumns.

nany

nput,
for is
atable
Xplicit
riable

the corresponding pal rs of input pivot coI umns.

d then

The query has two correlation names, D and P. D is associated with the input table Joe.Datawhereas Pis
associated with the output of the PTF.

For input tables with pass-through columns, as in this example, the correlation name of the input table may be
used asaqualifier to reference any column of the associated input table. (Input tableswith set semanticsfollow
adightly different rule to be presented later.) In thisexample, D has been used to qualify the columns D.1d and
D.Name.

8 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.2 Motivating examples

P may be used to reference the columns that are produced by the PTF. In this example, P has been used to
qualify the columns P.Phonetype and P.Phonenumber.

Theresult of the PTF invocation isamultiset of rows, each row having some columns qualified by D and some
columns qualified by P. Every column of the input table Joe.Datais accessible in the columns qualified by D;
the output columns of the PTF are referenceable using the correlation name P. In effect, each input row is
concatenated with the columns that are produced by the PTF. Thisis a consequence of the fact that the input
table r\ncc.fhrnl |gh columns and row-semantics. the result of the PTE isdetermined on-a rn\A/-h\J/-rm / basis
(row semantics), and the entire input row is concatenated with the result of the PTF (pass-through columns).
(The HTF may produce more than one row for a given input row; thiswill cause a“multiplier effeet™ ir} the
output|)

For example, suppose Joe.Data has the following data:

ID NAME | PHTYPE1l | PHNUMBERL | PHTYPE2 | PHNUMBER?2

123 Mary home par cell stu

234 Edgar home VWX work Xyz

The result will be

ID NAME | PHONETYRE/)| PHONENUMBER
123 Mary home par

123 Mary cell stu

234 Edgar home VWX

234 Edgar: work Xyz

This exampleis continued in detal in Subclause 12.3, “Pivot”.

3.2.3 | Score

Score has two.input tables:

1) Opeinput table contains rows to be scored according to some algorithm.

2) Theother input table (the model) contains the parameters Tor the algorithm that 1S Used t0 SCOTe arow.

Each row can be scored independently of every other row. In contrast, every row of the model isrequired to
specify the scoring algorithm.

The PTF author has provided a PTF called Score; the query author can see the following signature in the
Information Schema:

FUNCTI ON Score (
Dat a TABLE PASS THROUGH W TH ROW SEMANTI CS,

©ISO/IEC 2017 — All rights reserved Introduction to Polymor phic Table Functions 9

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

32 M

otivating examples

Model TABLE NO PASS THROUGH

W TH SET SEMANTI CS PRUNE WHEN EMPTY

) RETURNS TABLE (Score REAL)
DETERM NI STI C

READS

SQL DATA

Thefirst input table, called Data, contains the rows to be scored. Each row is scored independently of every
other row, asindicated by WITH ROW SEMANTICS. The entire input row is accessible in the output, as

indicafed by PASS THROUGH.

The s
isregy

seman

icsmay be partitioned and/or ordered. Partitioning and ordering are decisions made by the query

expressed in query syntax, aswe shall see.

NO PA
input i

5 partitioned, then the partitioning column(s) are still available in the output:

cond input table, called Model, contains the parameters used for scoring a row. Since the efitire data set
ired to specify the algorithm, thistable is declared asWITH SET SEMANTICS. A table with sg

author,

SS THROUGH indicates that columns of the Model table are not copied to the eutput. Howevel, if the

Sincethe algorithm cannot work with an empty model, the qualifier PRUNE WHEN EMPTY isadded, indjcating

that th
invoki

b result of the PTF isempty if the model table is empty. This enablesthe DBM Sto optimize by n
ng the PTF when this table is empty.

The regult, for each input row of Data, is arow concatenated from:thefollowing three sources:

1) T
2T
3 A

ne entire row of Data (because this has row semantics with pass-through columns).
ne partitioning columns of Model, if any (because this has set semantics without pass-through col

n additional column named SCORE of type REAL containing the score for that row of Data.

Ot even

LMns).

The qyery author has atable containing a numbex‘of different models, which can be used to score rowd for

compd

SELEC]
FROM

) AS
This g

1) D
an

2) M
th

T

rison against different “what if” scenaries. The query author writes the following query:

[D.1d, DS, D.T, M Mdelid,. T.'Score

TABLE (Score (Data => TABLE (MyData) AS D

Model => TABLE (Mbdels) AS M
PARTI TI ON BY Model i d

isthe correationnamefor theinput table MyData. MyData has row semantics with pass-through ¢
d its correlation name D may be used to qualify any column of MyData.

3) T

isthe correlation name for the input table Models. Models has set semantlcs It does not have pa

ample has three correlation names, corresponding to the three sources for columns in the output rows:

blumns

This example introduces the PARTITION BY clause. Only tables with set semantics may be partitioned. The
input table is partitioned as specified by the column(s) in the PARTITION BY clause; the PTF is evaluated
independently on each partition. The SQL standard uses an abstraction called avirtual processor to specify the
evaluation of a PTF. In this example, each partition is assigned to a separate virtual processor.

For example, perhaps Maodels contains the following rows:

10 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.2 Motivating examples

Modelid pname | pvalue
wet X 19

wet y 28

Wet Z 37

dry X 4

dry y 5

dry z 6

Thistgbles contains two models, “wet” and “dry”, each having three parameterSnamed “x”,
parameter values in the column pvalue.

y",and“Z', with

Table MyData may contain information to be scored by these two models:

id S t

122 9.4 34

233 8.4 6.5

344 10.2 93

455 11.0 8.8

The result might look like this:

id S t Modelid | score
122 9.5 34 wet 12.9
233 84 6.5 wet 14.9
344 102 |93 wet 19.5
455 11.0 8.8 wet 19.8
122 9.5 34 dry 6.4
233 84 6.5 dry 74
344 102 |93 dry 9.2
455 11.0 8.8 dry 94

©ISO/IEC 2017 — All rights reserved Introduction to Polymorphic Table Functions 11

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

32 M

otivating examples

In the result, the first three columns are copied from MyData. The next column, M.Modelid, comes from the
partitioning of Models. Every row of MyDatais analyzed by both models, “wet” and “dry”. Since there are

four rowsin MyData and two models, there are eight rows in the result, four for each model. The last column
is the score produced by the PTF.

This exampleis continued in detail in Subclause 12.4, “ Score”.

3.2.4 | TopNplus

TopNplus takes an input table that has been sorted on a numeric column. It copies the first n rows throd

gh to

the output table. Any additional rows are summarized in asingle output row in which thesort' column has been

summed and all other columns are null.

The qu

FUNCT

) R
NOT
REAI
The P]

1) T
of
E
th

2 T
Using

SELEC]
FROM 1

Thise

HIput TABLE NO PASS THROUGH

output table; all rows after this will contribute to the final summary row in the output.

ery author sees the following signature in the Information Schema:
ON TopNpl us (

W TH SET SEMANTI CS PRUNE WHEN EMPTY,
wrany | NTEGER
FTURNS TABLE
DETERM NI STI C
DS SQL DATA

[author has provided the following user documentation:

ne first parameter, Input, isthe input table. Thistable has set semantics, meaning that the result d
the set of data(sincethelast row isasummary row). In addition, the table is marked as PRUNE
MPTY, meaning that the result is necessarily empty if the input is empty. The query author must

sinput table on a single numeric colunmn (syntax below).

ne second parameter, Howmany, specifies how many input rows that the user wants to be copied i

the user documentation, the query author might write the following query:

[S.Region, T.*
[ABLE (TopNplus (Input => TABLE (M/. Sales) AS S
PARTI TI ON BY Regi on
ORDER BY Sal es DESC,
Howmany => 3
)
) AS T

bpends
VHEN
order

nto the

ample shows an input table that is both partitioned and ordered. In general, an input table with s

et

seman

ICS may be partitioned or ordered or both.

Consider the following input data representing the content of the table My.Sales:

12 Polymorphic Table Functionsin SQL

Region | Product | Sales

East A 1234.56

East B 987.65

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.2 Motivating examples

Thefir

TheD

Region | Product | Sales
East C 876.54
East D 765.43
East E 654.32
West E 2345.67
West D 2001.33
West C 1357.99
West B 975.35
West A 864.22

st five rows make up the partition with Region
Region = 'West'. Also notice that each partition has been sorted in descending order on Sales.

= 'East' and the last five rows make up the partition with

Region = 'East’, TopNplus sees the following input as S:

Inthe

BM S creates two virtual processors, one for each partition.“For example, on the virtual processof for

Region | Product | Sales
East A 1234.56
East B 987.65
East C 876.54
East D 765.43
East E 654.32

pther partition;for Region = "West', TopNplus sees the following input as S:

Region | Product | Sales
West E 2345.67
West D 2001.33
West C 1357.99
West B 975.35
West A 864.22

©ISO/IEC 2017 — All rights reserved

Introduction to Polymorphic Table Functions 13

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.2 Motivating examples

On each virtual processor, TopNplus copiesthefirst 3 rows to the output (because Howmany = 3). However,

it does not copy the partitioning column, sincethat is available to the query using the correlation name S. Then,
TopNplus reads the remaining rows and computes the sum. In partition Region = 'East’, the sum is 1419.75; in
the other partition, the sum is 1839.57.

The result of the PTF invocation is shown bel ow:

S

Region | Product Sales

East A 1234.56

East B 987.65

East C 876.54

East 1419.75

West E 2345.67

West D 2001.33

West C 1357.99

West 1839.57
Note that the result uses two correlation names., S;to qualify the partitioning column, and T, to qualify fthe
columps that were output by TopNplus.
This example has been designed to show-how the PTF can copy rows of input to the output without using
Feature B205, “ Pass-through columns’,*which is an optional feature and may not be available in every imple-
mentation of polymorphic table functions. The example can aso be modified alittle to exploit pass-thrpugh
columpsif Feature B205, “Passtthrough columns’ is available. The modification is necessary because pass-
through columns are an “all or nothing” capability — either an entire input row is copied to the output,(or a
row of|nulls (except for thepartitioning columns). In the results above, the first three rows in each partition
can be|copied to the output, where they would be qualified by S rather than T. The summary row, on the other
hand, ils not copied fremrany input row; therefore, the summary row would be null in the S.Product and $.Sales

columps. To reporbthe summary statistic, the PTF would use a separate column, qualified by T. Thusthe result

might |ook likgthis:

14 Polymorphic Table Functionsin SQL

S T
Region | Product Sales Sales
East A 1234.56 | 1234.56
East B 987.65 987.65
East C 876.54 876.54

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2

017(E)

3.2 Motivating examples

Thisg

3.25

Risa
PTF rq

deternine the row type of the result. Consquently, the query author bears the burden of specifying the ¢

row ty

The qyery author sees the following signature in thelnformation Schema:

FUNCT
S

R
RETY
NOT
REA

The P]
H T

2T
th
ta)

:[put TABLE NO PASS THROUGH

S T
Region | Product Sales Sales
East 1419.75
West E 2345.67 | 2345.67
West D 2001.33 | 2001.33
West C 1357.99 | 1357.99
West 1839.57

ampleis continued in detail in Subclause 12.5, “ TopNplus”.

ExecR

brogramming language used for analytic calculations. ExecR ‘executes an R script on an input tab

pDe.

ON ExecR (
ri pt VARCHAR(10000),

W TH SET SEMANTI CS KEERMHEN EMPTY,
wt ype DESCRI PTOR)
URNS TABLE
DETERM NI STI C
DS SQL DATA

[author suppliesithe following user documentation:

pe first argument; Script, is acharacter string containing the R script to be executed.

e The

ceives the R script as an input character string, but lacksthe sophistication to analyze this R script to
putput

ssed to

ne second argument, Input, is a generic input table with set semantics. Thisinput table will be pa

ble'and produce an output table. Since it is possible that the R script might produce an output evi

th

e R script using an interface defined by the PTF author. The R script is expected to process the i%gut

if

pre’s empty input, this generic tableis marked KEEP WHEN EMPTY . Since the R script will not have

the ability to copy input rowsinto output rows, the input table is NO PASS THROUGH.

3) Thethird argument, Rowtype, is a PTF descriptor area of the row type that the R script will produce.

Based

on the PTF documentation, the query author might write this query:

SELECT D. Regi on, R Name, R Val ue
FROM TABLE (ExecR (Script =>"'...",

©ISO/IEC 2017 — All rights reserved

| nput => TABLE (My.Data) AS D
PARTI TI ON BY Regi on,

Introduction to Polymorphic Table Functions 15

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.2 Motivating examples

Rowt ype =>
DESCRI PTOR (Nane VARCHAR(100), Val ue REAL)
)

) AS R
In thisinvocation, the thingsto note are:

1) Thefirst argument isthe R script to be evaluated.

2) The second argument isan input table with set semantics, partitioned by Region. In this exampl e/the input
is[not sorted.

3) The third argument, Rowtype, provides a PTF descriptor area of two columns, called Name and Value,
w|th types VARCHAR(100) and REAL, respectively.

The repult rows are concatenated from two sources:

174

1) The partitioning column D.Region, qualified by the correlation name for thedartitioned input tabl ¢.

2) The columns R.Name and R.Value that are output by the PTF, qualifiedby R, the correlation name asso-
cifpted with the PTF.

This rgsult is supported as follows:

1) Theinput datais partitioned on Region.

2) Egch region effectively constitutes an independent data’set:
3) The DBMS creates avirtual processor for each partition.
4) Tlhevirtual processor reads the datain a partitioan and produces arow with two columns, Name andValue.

5) The Region codeis constant for al input rowson avirtual processor, and so the DBMSis able to ajgment
the result from the PTF with the partitiof;column.

6) Inthe SELECT ligt, the partitioning.column is referenced using the correlation name D declared in the
PARTITION clause, whereas theloutput of the PTF is referenced using the correlation name R.

Refer {o Subclause 3.2.4, “ TopNplus’, for afuller example of partitioning, including an example of hoy the
correlgtion names and result.column names work.

The ExecR example is continued in detail in Subclause 12.6, “ExecR”.

3.2.6 | Similarity

Similgityperforms an analysis on two data sets, which are both tables of two columns, treated asthe ¥ and y
axes of agraph. The analysis results In a number which indicates the degree of ssimilarity between the two
graphs, with 1 being perfectly identical and O being completely dissimilar. The numeric result isreturned in a
table with one row and one column. The result columniis called Val and is of type REAL.

The query author sees the following signature in the Information Schema:

FUNCTION Sinilarlity (
I nput 1 TABLE NO PASS THROUGH
W TH SET SEMANTI CS KEEP WHEN EMPTY,
| nput 2 TABLE NO PASS THROUGH

16 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.2 Motivating examples

W TH SET SEMANTI CS KEEP WHEN EMPTY)
RETURNS TABLE (Val REAL)
NOT DETERM NI STI C
READS SQL DATA

Note that in this example the result row type is known when creating the PTF; therefore, it can be specified in
the DDL. The PTF author supplies the following documentation:

1)

2) Similarity performs an analysis on two data sets, resulting in a number which indicates the degree of sim-
ilgrity between the two graphs, with 1 being perfectly identical and O being completely dissimilar.[The
nymeric result is returned in a table with one row and one column. The result column is'called Val [and is
of{type REAL.

The qyery author might write a query such as the following:

SELECT T1. Country, T2.Code, S. Val
FROM TABLE (Simlarity (Inputl => TABLE (Sales) AS T1
PARTI TI ON BY Country
ORDER BY (Qr, Revenue),
I nput 2 => TABLE (Countries) AS.T2
PARTI TI ON BY Code
ORDER BY (Quarter, GDP)
COPARTI TI O (T1, T2)

) AS S

Thisexample hastwo partitioned input tables. Wherithere is more than one partitioned input table, then Freature
B202, | PTF Copartitioning” isrelevant. If the SQL=implementation supportsthisfeature, then the query|syntax
suppottsan optional COPARTITION clause. The COPARTITION clause specifiesthat theinput tablesidentified
by the|correlation names T1 and T2 are to.be copartitioned. Each partitioning list must have the same number
of COIi ns, and corresponding column.names must be the comparable. In this example, the length of gach
partitipning list is 1, and the correspending columns T1.Country and T2.Code must be comparable.

In exegution, copartitioning workstike this: The DBMS effectively forms a master list of all country cqdes
from §3 and T3, eliminating.duplicates. One way to do thisisto perform this full outer equijoin:

SELECT *
FROM (SELECT Country, 1 AS One
FROM Sal.es~) AS S3
FULL OUTER JO N
SELECT—Code, 1 AS One
FROMNCountries) AS T3
DNC(,'S3. Country |I'S NOT DI STI NCT FROM T3. Code)

(The ISNOT DISTINCT FROM predicateis Trueif the two comparands are equal or both null.)

For example, suppose that the distinct values of Sales.Country are'CAN', 'JPN', and 'USA', whereas the distinct
values of Countries.Code are'CAN', 'JPN', and 'GBR'. The result of the preceding query is

S3.Country | S3.0ne | T3.Code | T3.0ne

CAN 1 CAN 1

©ISO/IEC 2017 — All rights reserved Introduction to Polymorphic Table Functions 17

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

32 M

otivating examples

S3.Country | S3.0ne | T3.Code | T3.0ne

JPN 1 JPN 1

USA 1

GBR 1

Thust
for eag

There
) T
2) T
3 T
Thise

327

UDjoi
join cr
“clusts
inthe
any ev

After g
that so
inT1.

nere arefour copartitions (for 'CAN', 'JPN', 'USA', and 'GBR') and the DBM Smust start avirtual pre
h of them.

sult of the PTF invocation therefore has three columns:
he copartitioning column called Country.

ne copartitioning column called Code.

ne result of the PTF itself, called Val.

ampleis continued in detail in Subclause 12.7, “ Similarity”.

UDjoin

N performs a user-defined join. It takes two input.tables, T1 and T2, and matches rows according t
terion. It isintended that T2 is ordered on a tiymestamp. UDjoin will analyze this ordered datain

brdering, they are placed in the same cluster. Some rows may be interpreted as “noise”, not repres
ent.

Inalyzing T2 into event clusters, rowsfrom T1 are matched to the most relevant event cluster. Itisp
me rows of T1 have no matching event cluster. It isalso possible that some event clusters have no

The o

Risjolned to every row of\EC. If R has no matching event cluster, then R is output with a null-extendes

inpl

with nplls in the partion of the output corresponding to T1.

e of the event cluster. Conversely, if an event cluster EC is not matched, then every row of EC is

CESSOr

D SsOme
10]

rs’ of related rows, where each cluster is interpreted as representing some “event”. If two rows gre tied

benting

bssible
match

tput resembles afull @uter join. If arow R of T1 matches an event cluster EC of T2, then in the gutput

0 row
output

Like affull outerjoin, there are range variables associated with each input table, which qualify output columns

that carrespond.to columns of the input.

The

Fauthor creates this PTF with the following signature:

CREATE FUNCTI ON UDj oi n (
Candi dat es TABLE PASS THROUGH
W TH SET SEMANTI CS KEEP WHEN EMPTY,
Event St ream TABLE PASS THROUGH
W TH SET SEMANTI CS KEEP WHEN EMPTY
) RETURNS ONLY PASS THROUGH

The RETURNS ONLY PASS THROUGH syntax declares that the PTF does not generate any columns of its
own; instead, the only output columns are passed through from input columns.

18 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.2 Motivating examples

The query author might write the following query:

SELECT G *, S.*
FROM TABLE (UDjoin (Candi dates => TABLE (Goods) AS G
Event Stream => TABLE (Ti meSeries) AS S
CRDER BY Tstanp))

Note that the PTF does not generate any columns; therefore, there is no correlation name for the PTF itself,
only f¢r the input tables.

The result might look like this:

G S

Gid | Golly | Wiz Tstamp | Color Shape

125 | Mally | Oz 3 Crimson Diamond

125 | Mally | Oz 4 Aquamaroon [Star

125 | Moally | Oz 5 Vermilion Pentagon
8 Violet Crescent
9 Purple Circle
10 Plum Ellipse

126 | Dolly | Narnia

In the fesults, the row (G.Gid = 125, G.Golly = 'Mally', G.Wiz ='0z') is matched to an event of three rpws
with Tetamp = {3, 4, 5}. The next evenit, with Tstamp = {8, 9, 10}, hasno match in G, so the columns of G are
null. The final row (G.Gid = 126, G:Golly = 'Dally', G.Wiz = 'Narnia) has no matching event in S, where the
columps are null.

3.2.8 | MapReduce

MapReduce is ardata processing paradigm using two phases, called Map and Reduce. In the classic “wprd
count”| exampleof the MapReduce paradigm, the Map phase reads one or more input files. Each input fileis
parsed|into\words separated by delimiters. Map outputs aseries of records, each record being atuple comprising
awordandacount. These records are then partitioned on word. In the Reduce phase, the countsin each partition
are summed. The final result is alist of words appearing in any of the input files, with their counts.

Map can be implemented using a PTF that takes as input alist of files, producing an output table with two
columns, word and count. Reduce can then be performed using conventional SQL grouping and the COUNT

aggregate.

In more general terms, the MapReduce paradigm has two phases, Map and Reduce. The Map phase analyzes
itsinput into some fixed format suitable for input to the Reduce phase. The datais partitioned and Reduce
performs some analysis on the partitioned data, which might not be supported by an SQL aggregate. In this

©ISO/IEC 2017 — All rights reserved Introduction to Polymorphic Table Functions 19

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.2 Motivating examples

genera paradigm, both the Map and the Reduce phases can be implemented by PTFs. To get the complete
paradigm, the query author will write afunctional composition of the two phases, schematically:

SELECT ...
FROM TABLE (Reduce (Map (...))) AS MT

Theinvocation of Map nested within Reduce does not need a TABL E operator because Map is known to return
atable.

Thisp
tion”,

3.3

Thisp
whole
statem
author

You, the reader, may fill any or all of theseroles. If you are a DBMS'devel oper, you will of course writ
hentation of the DBM S functionality; during development and testing you will also play therole
and query author. If you are a PTF author, then you will\also fill the role of query author to test

Vhen testing a PTF, it is recommended that you usesgparate SQL -schemas for the PTF implemel
and the PTF test suite. If you are a query author, you may:still find it useful to understand how the DBN
- body interoperate to deliver the result of the PTF.

implen
author
PTFE. V]

the PT|

There
audien

provides examples of nested PTF invocations.

Thelifecycleof aPTF

Table 1 — Primary audien¢es for Clauses and Subclausesin this Technical Report

hper does not discuss the MapReduce paradigm further. However, Subclause 12.9, “Nested PTF ijnvoca-

bper will weave among the three audiences in order to arrive at a comprehensive understanding gf the
We assume that both the PTF author and the query author edit text filesin which they build thei
ents. Readlistically, the development cycle will include many iterationsby the PTF author, and thé
may iterate the design of the query. These iterations are not shown in the our examples.

I SQOL
P query

e the
bf PTF
our
htation
1S and

naining sections of this Technical Report ‘and their primary audiences are shown in Table 1, “Primary
ces for Clauses and Subclauses in this Fechnical Report”:

PTFA

ithor

BBM S Developer

Query Author

Subclause 4.1, “Processing phases’

Subclause 4.2, “Virtual processors’

Subctause 4.3, “ PTF component procedures’

Subclause 4.4, * Input table characteristics’

Subclause 4.5, “Partitioning and ordering”

Subclause 4.6, “Flow of control”

Subclause 4.7, “ Flow of information”

Subclause 4.8, “Flow of row types’

Subclause 4.9, “Pass-through columns’

20 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.3 Thelifecycleof aPTF

PTF Author

DBM S Developer

Query Author

Subclause 4.10, “ Security model”

Subclause 4.11, “ Conformance features’

Clause 5, “ Specification”

Clause 6, “ Data definition language”

Claus

e 7, “Implementation”

Clause 8, “Invocation”

Subclause 9.1, “ Calling the describe compo-
nent procedure”

Subq
describ

lause 9.2, “Inside the
b component procedure”

Subclause 9.3, “Using the result of describe’

Clause

10, “Optimization”

Cessors’

Subclause 11.1, “ Partitions and virtual pro-

Subclause 11.2,“Calling the start compo-
Aent procedure”

Subcl
col

se11.3, “Insidethe start
ponent procedure”

component proced

Subclause 11.4, “Calling the PTF fulfill

ure’

Subclalise 11.5, “Insidethe PTF

fulfill

component procedure”

Subclause 11.6, “ Closing cursors’

component proced

Subclause 11.7, “ Calling the PTF finish

ure”

Subclause 11.8, “Insidethe PTF
finish component procedure’

Subclause 11.9, “ Collecting the output”

processor”

Subclause 11.10, “Cleanup on avirtual

©ISO/IEC 2017 — All rights reserved

Introduction to Polymor phic Table Functions 21

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
3.3 Thelifecycleof aPTF

PTF Author

DBM S Developer

Query Author

Subclause 11.11, “Final result”

The examples are developed in Clause 12, “Examples’, using the same outline.

22 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
4.1 Processing phases

4 PTF processing model

All of thissection isaddressed to the DBM S developer and the PTE aithar. The query aithar needsto understand
input table semantics (Subclause 4.4, “ Input table characteristics’) and partitioning (Subclause 4.5, * Partifioning
and orflering”).

4.1 | Processing phases

Primarly audience: DBM S developer and PTF author

Processing a PTF invocation is divided into two phases: compilation and execution. These phases corraspond

to PREPARE and EXECUTE in dynamic SQL. In static SQL, the query auther is not aware of the phases, since
compilation is followed immediately by execution. However, the DBMS and the PTF author are alwayg aware
of thege phases.

4.2 | Virtual processors

audience: DBMS devel oper and PTF author

The eXecution phase is described using an abstraction called a virtual processor. A virtual processor is @ pro-
cessing unit capable of executing a sequentiaagorithm. A virtual processor might be an actual physical pro-
cessor (with associated operating system,. etc.). Using techniques such as multiprocessing, a single phygical

r might host several virtual processors. Virtual processors may execute independently and concufrently,
either pn a single physical processor or distributed across multiple physical processors. There is no communi-
cation petween virtual processors. The DBM Sisresponsiblefor collecting the output on each virtual progessor;
the unjon of the output from.all.virtual processorsisthe result of the PTF.

4.3 | PTF component procedures

Primaiy audience: DBMS devel oper and PTF author

The query~author perceives asingle PTF. The PTF author and the DBM S perceive that the PTF is composed
of oneto four PTF component procedures, which areinvoked at various points during compilation and execution,
asfollows:

1) PTF describe component procedure:; called once during compilation. The primary task of the PTF describe
component procedure is to determine the row type of the output table. It can also initialize private data
that will be passed to subsequent PTF component procedures. (This component procedure is optional.)

2) PTF start component procedure: called once per virtual processor to perform any initialization that is not
done by the DBMS or the PTF describe component procedure (This component procedure is optional.)

©ISO/IEC 2017 — All rights reserved PTF processing model 23

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

43
3)

4)

PTF component procedures

PTF fulfill component procedure: called once per virtual processor to deliver the output table by “piping”

rows to the DBMS. (This component procedure is required.)

PTF finish component procedure: called once per virtual processor to perform any clean up not perf
by the DBMS. (This component procedure is optional.)

Thus a polymorphic table function is actually an organized collection of SQL-invoked procedures.

Any inputscata et S SSeg Tt Proce
null. 1 the non-null mput scalars are insufficient for the PTF describe component procedure to determine the
output{row type, then it may return an error, which effectively becomes a syntax error. Thus, the|PTF alithor

ormed

ure as

may effectively impose syntax constraints on the the query author by returning an error fromithe'descripe

compdnent procedure if the syntax requirements are not met.
The run-time PTF component procedures are used to process the input table(s) and generate the output|table.
4.4 | Input table characteristics
Primary audience: DBMS devel oper, PTF author, and query author.
Input tiebles are classified by three characteristics:
1) Input tables have either row semantics or set semanticsyas follows:
a)| Row semantics means that the the result of the'PTF is decided on arow-by-row basis. As an extreme
example, the DBM S could atomize the input‘tabl e into individual rows, and send each single fow to
adifferent virtual processor.

b) Set semantics meansthat the outcome.af the function depends on how the datais partitioned. A partition
may not be split across virtual processors, nor may avirtual processor handle more than one patition.

2) The second characteristic, which applies only to input tables with set semantics, is whether the PTF can
generate aresult row even if theinput table is empty. If the PTF can generate aresult row on empty input,
the tableis said to be “ keepwhen empty”, meaning that the DBMS must actually instantiate a virtyal pro-
cgssor (or more than one virtual processor in the presence of other input tables). The aternative isicalled
“grune when empty” , meaning that the DBM S can prune virtual processorsfrom the query planif theinput
taple is empty. (Tableswith row semantics are always effectively “ prune when empty”, so this chojceis
nqt relevant to them)

3) Thethird characteristic is whether the input table supports pass-through columns or not. Pass-throfigh
cqlumns isaimechanism enabling the PTF to copy every column of an input row into columns of anjoutput
row.

In the

Example | Table Row or set | Keep or Pass-through?
Parameter semantics? | prune
when
empty?

24 Polymorphic Table Functionsin SQL

CSVreader | notable
parameters

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
4.4 |Input table characteristics

Example | Table Row or set | Keep or Pass-through?
Parameter semantics? | prune
when
empty?
Pivot Input row (N/A) yes
Score Data row (N/A) yes
Model set prune no
TopNplus | Input set keep no (example could be
worked using pass*
through)
ExecR Input Set keep no
Similarity | Inputl set keep no
Input2 set keep no
UDjoin Candidates set prune yes
EventStream | set prune yes

4.5 | Partitioning and ordering

Primaiy audience: DBM S devel oper, PIEE author, and query author.

The input tables with set semanticsimay be partitioned on one or more columns, at the discretion of the
author] An input table with at least one partitioning column is said to be partitioned (even if, in fact, the
tioning column has only one.value). An input table with no partitioning column is said to be broadcast.
examples, TopNplus, ExeeR;'and Similarity illustrate partitioning.

The input tables with set’semantics may be ordered on one or more columns (other than partitioning cg

query
parti-
Inthe

lumns

— thefe is no benefitto ordering on a partitioning column), also at the discretion of the query author. Ttre PTF

isaware of the ordering during al PTF component procedures, and may utilize the ordering semantical
(TopNplusillustrates this possibility). If the PTF does not use the ordering semantically, then thereisno
to the uery_author in ordering the input table. Ordering an input table does not imply an ordering to the

ly
benefit
results

or the guery as awhole.

Input tables with row semantics may not be partitioned or ordered. Row semantics implies that the result can
be determined on arow-by-row basis; therefore, the DBM S can assign rows of such tablesto virtual processors
arbitrarily, for example, using random, round robin, or load balancing algorithms. The Pivot and Score examples

illustrate input tables with row semantics.

When thereis morethan one partitioned input table, they can, at the option of the query author, be copartitioned.
With copartitioning, the copartitioned table arguments must have the same number of partitioning columns,
and corresponding partitioning columns must be comparable. The DBMS effectively performs afull outer
equijoin on the copartitioning columns, assigning one virtual processor to each combination of partitions

©ISO/IEC 2017 — All rights reserved PTF processing model 25

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
4.5 Partitioning and ordering

resulting from this equijoin. The Similarity example illustrates copartitioning. For detailed examples of copar-
titioning, see Subclause 12.7.9, “Virtual processors for Similarity”.

4.6 Flow of control

Primarfy audience: DBMS developer and PTF author.
This sgction presents a conceptual architecture for the flow of control during the compilation and.execution.

Refer o the following diagram, showing a schematic execution plan involving multiple virtuah processprs Py,
Py, P4l ...

C_ompile Virtual Run Time

Time Processor

Describe Start | Fulfill JJ\Einish
P1
P2
P3

Theflgw of execution moves basically |eft to righteThe describe step is not shown using any virtual progessor,
sinceif isan indivisible computational step.

The pyrpose of compilation isto set up for the'subsequent execution phases. Compilation is performed without
the abi’!ity to read the input data, thoughcthe row type and sort order of the input tables are passed to th¢ PTF
I

descrilpe component procedure via PTE descriptor areas.
Compiflation resultsin two kinds of information:
1) Therow type of the restlt.

2) Valuesof the privatevariables of the PTF, if any. These values are saved by the DBM S and re-instantiated
adinput to therun-time PTF component procedures. This provides for information flow from the RTF
dgscribe compenent procedure to the run-time PTF component procedures.

is pregaredand executed as separate steps, there can be many executions, not portrayed in this diagram. For
exampl&,if the PTF invocation isin aview definition, then the PTF invocation is compiled when the view is
defined and executed when the view is referenced in a query.

Thetime between compilation and execution isindicated by the vertical blank space between them. If ;p{:vuery

At run-time, the DBM S assembles the input data, partitionsit, and directs each partition to a separate virtual
processor. Each virtual processor executes independently of every other virtual processor. Virtual processors
may be scheduled sequentially on the same physical processor, or concurrently on the same or different physical
processors. Scheduling virtual processors is implementati on-dependent.

Note that partitioning is only semantically correct if the overall task can be decomposed as a union of digjoint
tasks. If an input table has row semantics, then the input table can be partitioned arbitrarily, so in that case the

26 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
4.6 Flow of control

partitioning decision is made by the DBM S according to an implementation-dependent algorithm. If an input
table has set semantics, then the partitioning decision is the responsibility of the query author, and the default
isto form asingle partition.

4.7

PrimalL/ audience: DBM S devel oper and PTF author.

Inforn

1) T
ar

2T

ty
th

3 T
Cq

m
ar
4 T
ex
S

Ce6
Thefo

Stibclause 4.9, “ Pass-through columns”.)

Flow of infor mation

ation flows between stages of execution as follows:

) aswell as any scalar input arguments that are compile-time constants.

peisalso made availableto all the run-time PTF component procedures. (1f. any table argument ha
Fough columns, the handling of the result row type has some additiona complexity, discussed in

ne PTF describe component procedure might have private information to communicate to the oth
mponent procedures that will execute in run time. For example, the PTF describe component pro
By go to some trouble to analyze the input scalars and tablesyand it may be useful to pass adigest

he run-time PTF component procedures may haveinformation to pass from one stage to ancther.
ample, if aresourceis alocated during the start:component procedure, then a handle for that reg
ould be passed to the fulfill component procedure to use the resource, and to the finish compone
dure to deallocate it.

lowing diagram illustrates the flow ofédnformation in a PTF invocation:

alysis to the run-time PTF component procedures, sothat they do not need to repeat the analysis.

ne PTF describe component procedure receives a description of the input tables and their ordering (if

ne PTF describe component procedure returns the row type of the PTF's result to the DBMS. Thils row

S pass-

er PTF
cedure
of this

For
purce
Nt pro-

©ISO/IE

C 2017 - All rights reserved PTF processing model 27

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
4.7 Flow of information

COMPILE TIME | RUN TIME |
: : User
Query: SELECT | virtual processor 1 |
FINUIVE TADL L \I' LI \...)}... | Start _ FUlfI“ — FInISh |
1l | \ results |
results
DBMS
: virtual processor 2 H\
. scalars, | Start — Fulfill — Finish |
escriptors
P | \ results | DBMS
result row Descnb | virtual processor 3 _L/
type, I Start — Fulfill — Finish I
p(rjiv?te / : \ resdlts :
ata 1
DBMS |
I I
result row
type,
private
data

4.8 | Flow of row types

Primary audience: DBM S developer and PTF author.

For eath table argument, a'PTF invocation has the following input row types:

Figure 1 —RTF information flow

1) Thefull row type of an input table, including every column of the input table. If the input table has ¢golumn
renaming (spegified by a<parenthesized derived column list>), then the column namesin the <parenthesized
derived column list> are used; otherwise, the original column names of the input table are used.

2)

thlSls a copy of the fuI I row type)

3) Thecursor row type of aninput table. Thisisthe same asthe requested row type, plus one additional column
(the pass-through input surrogate column) if the input table has pass-through columns (see Subclause 4.9,

“Pass-through columns”).

A PTF invocation also has the following result row types:

28 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
4.8 Flow of row types

1) Theinitia result row type. Thisrow type lists the columns that the PTF itself will generate (called the

pr

oper result columns of the PTF).

2) Theintermediate result row type. Thisisidentical to theinitial result row type, plus one additional column
(the pass-through output surrogate column) for each input table that has pass-through columns. Thisisthe
row type that must be used when performing <pipe row statement> during the execution phase to output
arow.

3 T
Cq

49 T
th

a)

b)
There

ne external result row type. Thisisthe same asthe initial result row type, except that the proper rnesult
lumns may be renamed by the query using a <parenthesized derived column list>.

ne complete result row type (called just the “row type of <table primary>" in the standard)Compfising
B external result row type plus, for each table argument TA:

If TA has pass-through columns, then, for every column of TA, aresult columnthaving the samg name
and data type.

Otherwise, for every partitioning column of TA, aresult column havingthe same name and data type.

ationships between these row typesisillustrated in the following diagram:

full row type | |

* describe

requested row type | |

¢ pass-through input surrogate column

cursor row type | | |

describe or ’

<table function column list>
pass- through output surrogate columr

initial result row | |

' v

htermediate result row | | |

¢ expansion of surrogate to obtain
pass-through output columns

external result row | |

l partitioning columns

complete result row | | | |

Figure 2 — Row typerelationships

©ISO/IEC 2017 — All rights reserved PTF processing model 29

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
4.9 Pass-through columns

4.9 Pass-through columns

Primary audience: DBMS devel oper and PTF author.

Pass-through columns are a mechanism whereby a PTF can copy al columns of an input row into aresult row,
without needing to fetch the columns individually, and without needing to understand their data types. From
the PTF's perspective, pass-through columns are condensed into a single surrogate value. The query is not

aware pf the surrogates and instead sees that an input row has been copied into the result.

Refer 1o Figure 2, “Row type relationships’. For each table argument, typically the PTF describe'comp
procedure requests a subset of the full row type, comprising just the columns that the PTF needs'to exa
for its pemantics. If the input table has pass-through columns, then the cursor row typeisformed by app
asingle column of implementation-dependent name and type, called the pass-through input surrogate c

Asfor|the result of a PTF, either the PTF describe component procedure or the <table function column

During the execution phase, the PTF fulfill component procedure receives PTF descriptor areas for the
row types and the intermediate result row type. When the PTF fulfill component procedure fetches fror
cursor{ the DBM S popul ates the pass-through input surrogate ¢olumn with an opague value that represe
non-pgrtitioning columns of the table, including both requested‘and non-requested columns. For examp
surrogpte might be formed by compressing the columns.into aBLOB, or it might be a candidate key. (1
that by using common column projection algorithms, the surrogate value actually only needsto represer]
columps that are actually referenced later in the query.)

The PTF fulfill component procedure can copy the value of the pass-through input surrogate column tg
pass-t%rough output surrogate column in the iitermediate result row. The intermediate result row is sen
DBM

partitipning columns that the surrogateval ue represents.

pnent
Mmine
ending
blumn.

list>
roper
5 of a
Nt that

cursor
na

nts the
le, this
Note

t those

the
[to the

by a<pipe row statement>, whereupon the DBM S expands the surrogate val ue to reconstruct the non-

Alterngtively, the PTF fulfill companent procedure can place a null value in the pass-through output sufrogate

colump. When transmitted to the DBM S by a <pipe row statement>, the null value of the surrogate will ¢
into nyll valuesin all the pass-through result columns. (Note that this has no effect on partitioning colu
since the surrogate does npetrepresent them.) Thisis the only output scenario available to the PTF start
finish component procedures, which can use a <pipe row statement>, but have no cursor and hence no
surroggte value.

Partitipning columns are handled separately from pass-through columns. The values of partitioning col
arei iants-onavirtual processor. Since the virtual processor isthe processing unit that processes a 4
row statement>, the virtual processor is able to add the values of the partitioning columns into the com

bxpand
mns,
and
nput

Limns
Fpipe
Dl ete

result fow:

4.10 Security model

Primary audience: DBMS developer and PTF author.

The security model for PTFsis asfollows:

30 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

1)
2)

3)

4)

5

ISO/IEC TR 19075-7:2017(E)
4.10 Security model

The query author must have EXECUTE privilege on the PTF in order to invoke it.

The query author must have SELECT privilege on input tables (more precisely, on the columns of
input tables).

the

In this Technical Report, the owner of the PTF is generally portrayed as the owner of the PTF component
procedures. Thisislikely to be the case in practice, but the minimal requirement is merely that the owner

of the PTF has EXECUTE privilege on al PTF component privileges.

privilege on the input tables. The DBM S opens the input tables and passes open read-only elirsors
PTF fulfill component procedure. These cursors are anonymous in the sense that the PTF doés not
the identity of the input tables. The only operation the PTF can perform on these input/cursorsis Fl

Ifla PTF needs a side table to perform a“table lookup”, the PTF author has threeways to do this:
a)| If thelookup tableis proprietary to the PTF (perhapsit is the intellectualproperty of the PTF g

component procedures using “definer'srights’. There is no need to grant SELECT on the prop
table to the query author.

b)| If thelookup tableisnot proprietary to the PTF, then the PTiF-can expect the query author to p
lookup table as an input table, in which case the table will be subject to access checking using
guery author's privileges.

¢)| If the preceding techniques are not sufficient, thenthe PTF can expect the query author to pas
arguments containing the names of tables, etc.;.from which the PTF can build a dynamic quer
dynamic query must be access-checked usingthe query author's privileges, so the PTF compd
procedure that does this must be created with “invoker's rights’.

Note that the implementation techniques described in Clause 7, “Implementation”, have no access cheq

and ca

not negd to be concerned with definer's rights or invoker's rights unless the PTF falls under either sceng
or) apove.

4.11 | Conformancefeatures

Suppoft for polymaorphic table functionsis an optional feature of SQL. If the DBMS provides minimal
for pollymorphic table functions, as specified in [1SO9075-2], then the DBMS can claim support for Fej
B200, [Polymarphic table functions’.

[1SO9075-2])specifies additional advanced features that require support for Feature B200, “Polymorphi
functigns®yand enrich that minimal support with extrafunctionality. These additional conformance f
are astollows:

Tihe PTF doesnot need SELECT privilege on theinput tables or their columns; only the query authof

needs
to the
know
ETCH.

Lithor),

then the PTF may perform SELECT operations on the proprietary table by opening it in the PTF

rietary

Bss the
the

5 text
y. This
nent

king

h be used fredly in either definer's rightsior invoker's rights component procedures. The PTF authgr does

Irio a)

upport
ature

table
ures

— Feature B201, “More than one PTF generic table parameter”

Thisfeature permits apolymorphic table function to have more than one generic table parameter. Examples
of multi-table input to a PTF are found in Subclause 12.4, “ Score”, Subclause 12.7, “ Similarity”, and

Subclause 12.8, “UDjoin”.

— Feature B202, “PTF Copartitioning”

©ISO/IEC 2017 — All rights reserved

PTF processing model 31

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
4.11 Conformance features

Thisfeature provides support for copartitioning. The example for copartitioning isfound in Subclause 12.7,
“Similarity”.

— Feature B203, “More than one copartition specification”

This feature permits a polymorphic table to have more than one copartitioning specification. At least four
input tables are required to utilize thisfeature (two input tablesfor each of two copartitioning specifications).
There are no examples of thisfeaturein this Technical Report.

— Feature B204, “PRUNE WHEN EMPTY”

Tlhis feature permits the DBM S to avoid creating a virtual processor for a partition that is Knewn tg be
empty. Syntactically, it can be specified by either the PTF author or the query author.

Tihe PTF author specifies PRUNE WHEN EMPTY in DDL syntax of atable parameter if the PTF[author
knows that the result of the PTF for a partition is empty when the input partition.has no rows. From the
stgndpoint of the DBMS, it is an optimization if the DBMS can avoid creating.a virtual processor for an
empty input partition. However, from afunctionality standpoint, the outcomeisthe same whether thejvirtual
processor is created or not, since the result is empty in either case. If the PTF can generate aresult|even
when given an empty input data set, the PTF author should not specify PRUNE WHEN EMPTY . Examples
of|this DDL syntax are found in Subclause 12.4, “ Score”, and Subclause 12.5, “ TopNplus’.

If the PTF can generate aresult on an empty input partition, the query author may not be interested|in that
result. In that case the query author can specify PRUNE WHEN EMPTY in the query syntax. An example
off PRUNE WHEN EMPTY in query syntax isfound in‘Stibclause 12.7, “ Similarity”.

— Feature B205, “Pass-through columns”

Pass-through columns are a device that the DBM S can provide to the PTF author, making it easy fpr the

PTF author to copy an input row into the output, Examples of thisare foundin Subclause 12.1, “ Projection”,
bclause 12.3, “Pivot”, Subclause 12.4, “ Segore”, and Subclause 12.8, “UDjoin”. In addition, Subclauge 12.5,
opNplus’, shows how the PTF author‘Can copy an input row to an output row even if the DBM§ does

ngt support this Feature.

— Feature B206, “PTF descriptor parameters”

PTF descriptor parameters aré a mechanism for the query author to pass arow type as an argument to a
glymorphic table function. Examples of PTF descriptor parameters are found in Subclause 12.1, “ Projec-

— Feature B207, “ Cross products of partitionings”

ith this feature, if an invocation of a polymorphic table function has more than one partitioned ingput
' [itloning.
cificar

There are also two conformance features that are relevant only to the PTF author and the DBM S devel oper:
— Feature B208, “PTF component procedure interface”

[1S09075-2] specifies an optional interface between the DBM S and the polymorphic table function. The
interface is provided as a specification device, to specify the semantics of an invocation of a polymorphic
table function. An SQL-implementation is not required to use the specified interface; it may substitute an
equivaent interface that provides the same functionality to the PTF author. If the DBM S adheres to the

32 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
411 Conformance features

interface as specified in [1SO9075-2], then the DBM S may claim conformance to Feature B208, “PTF
component procedure interface”. All of the examples in this Technical Report assume thisinterface.

— Feature B209, “PTF extended names’

PTF extended names are a distinctive category of dynamic extended names, used to name PTF cursors and
PTF descriptor areas. PTF extended names are part of the optional interface between the DBMS and the
polymorphic tablefunction. It ispossiblethat an SQL -implementation may choose to support PTF extended
ngmes without supporting other aspects of the interface. In that case, the DBMS may claim conforimance
to|Feature B209, “PTF extended names’, even if it does not conform to Feature B208, “ PTF component
procedure interface”. All of the examplesin this Technical Report assume this feature.

©ISO/IEC 2017 — All rights reserved PTF processing model 33

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

(Blank page)

34 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

5.1 Functional specif

5 Specification

Primary_audience: PTE author

ication

Specification is the planning phase of software development, prior to implementation. For our purpese
Techniical Report, the specification phase results in what we call “skeleton DDL”, that is, al of the'CR
statements necessary to define a PTF, except for the body of the PTF. Specification can be divided into

subph

— FUinctional specification specifies the software as seen from the outside (as a“ black-box”). This ph

S0
ba

— D
in
51

The fin
will de

functignal specification becomes the basis for documentation supplied to the query author.

511

Thefi
lowing

) T
w
ta

2 T

3 T
m

ecifies the user interface and semantics of the software. The functional specification can become
sis for documentation addressed to the query author.

bsign specification specifies the software as seen from the inside (“white box™). This may be prop
Formation not divulged to the query author.

Functional specification

st step in the life cycleisto write afunctional specification for the PTF. The functional specifica
scribe the user interface and semantics of the PTF, without describing the inner design of the PT|

Parameter list
st step in writing a functional-specification is to decide the parameter list, which might includet
things:

ne input table(s). These are generic tables, so the input tables should be thought of in terms of th
thin the transformation that the PTF implements. Note that Feature B201, “More than one PTF
ble parameter™.iStequired if the PTF has more than one input table.

ne scalar inputs. The PTF can use scalar inputs to parameterize the behavior of the PTF.

ne PTF descriptor areainputs. A PTF descriptor area can provide alist of column names, possibl
ented by data types. Of course, alist of column names can be provided via a character string scal

in this
FATE
two

ase
the

rietary

tion
F. The

ne fol-
ir role

eneric

y aug-
ar,

h

arcasar thio vy nr oot o DT 0 ey Al o =V (S FESWERWUIE 1 2wy T 3 VTPV PN HIIWIT WA |
vVVCVCl, U IIDIWUIICO i rirww HIUVIUCG'JCIIJIIU \JCqJGLJIIILy, VVILUIT CGLLTIIUTUTNT tU CAOT ™ OC! IdLIVIL_y run

es. In

general, if aPTF can deduce alist of columns without a PTF descriptor area, that will be preferable from
the standpoint of the PTF author's customer, the query author. However, in totally dynamic situations, the
query author may have to provide column lists, and PTF descriptor areas will probably be the most conve-
nient way to do this. PTF descriptor areas are discussed in Subclause 7.1, “PTF descriptor areas’. The
examples Pivot and ExecR illustrate descriptor parameters. Note that Feature B206, “ PTF descriptor
parameters’, isrequired if there are any PTF descriptor areainputs.

©ISO/IEC 2017 — All rights reserved Specificati

on 35

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
5.1 Functional specification

After deciding on the parameter list, the PTF author is ready to write the first skeleton CREATE FUNCTION
statement. At this stage we have an incomplete CREATE FUNCTION becauseit only liststhe input parameters
(thereis more DDL to come later). The parameters are declared with the following types:

— Input tables have parameter type TABLE.
— Input scalars have their usual parameter types (VARCHAR, INTEGER, etc.).

CREATE FUNCTI ON ptf (
| nplit TABLE,
Scallar | NTEGER,
Col ilfms DESCRI PTOR)
RETURNS TABLE

At thig stage the PTF author may also be able to decide which inputs are optional. Optional inputs are inglicated
by sperifying a default value; for example:

CREATIEE FUNCTION ptf (

| npit TABLE,

ScaE[ar | NTEGER DEFAULT 3,

Col irms DESCRI PTOR DEFAULT NULL)
RETURNS TABLE

Input

Advicg to the DBM S devel oper: you want to supportthe PTF author at this early stage. The CREATE FUNC-
TION ptatement above isincomplete and not suitable for actual use. Nevertheless, the DBM S may wart to
allow the PTF author to load such a definition.as akind of “invalid” function definition. Thiswill facilifate a
DBM$ tool that can assist the PTF author asthe latter goes through the stages of devel opment outlined here.
We will talk more about how the DBM Sean assist the PTF author later in Subclause 5.2.4, “ Component|proce-
dure sifgnatures”.

les are always mandatory; you cannot specify adefault for atable input.

5.1.2 | Input table semantics

After lysting the parameters, the next specification step is to classify each input table as row semantics @r set
semantics.

— Row semantics means that the the result of the PTF is decided on arow-by-row basis. As an extrer
ample} the DBMS could atomize the input table into individual rows, and send each single row
different virtual processor. Or the DBM'S might process them all on the same virtual processor. A fable
should be given row semantics it the PTF does not care how rows are assigned to virtual processors.

— Set semantics meansthat the outcome of the function depends on how the datais partitioned. A table should
be given set semanticsif all rows of a partition should be processed on the same virtual processor. Thisis
the default semantics.

At most one input table may have row semantics; all other input tables must have set semantics. A PTF that
has an input table with row semanticsis said to be a per-row PTF; otherwise, the PTF is said to be a per-set
PTF

36 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
5.1 Functional specification

In our examples:

5.1.3 | Prunability

If the DBM S supports Feature B204, “PRUNE WHEN EMPTY”, then prunability isthe next step in fun
specifi

CSVreader has no input tables.
Pivot has an input table with row semantics.

Score has one input table with row semantics and one with set semantics.

Tnpl\lph Ishasan inp| it table with set semantics

ExecR has an input table with set semantics.

Similarity and UDjoin have two input tables with set semantics.

ctiona

Cation. In this case, if an input table has set semantics, then there isafurther property: whether the table

can bepruned or not. An input table is prunable if the the result of the PTFwith an empty input table i an
empty [output table. (Prunability is not a choice for input tables with few semantics, since an empty input row

necessarily generates no output rows.)

We haye five exampl es that have input tables with set semantics:

empty lres ay-cost-some performance since the DBM S may needless

Sgore has one table parameter with row semantics andone with set semantics. The second table par
isfused to define amodel to score rows of the first.parameter. It isimpossible to set up a model wit
empty table, so thisis be PRUNE WHEN EMPTY'.

T

PN plus: on an empty input, it would be very reasonable to make an empty output, so we could S

ilarity: we'll assumethat the similarity algorithm computesthat an empty tableiscompletely dis
bm a non-empty table(result = 0), and completely similar to another empty table (result = 1). Thu

ameter
h an

pecify
the
TY.

be

Similar
5, there

result evenif opeor bothinputsisempty; therefore, both input tables should be KEEPWHEN EMPTY .
isempty,

KEEP

for empty partltl ons.

5.1.4 Pass-through columns

£S an

If the SQL -implementation supports Feature B205, “ Pass-through columns’, then the final characteristic of
input tablesiswhether they support pass-through columns or not. Pass-through columnsis afeature that enables

©ISO/IEC 2017 — All rights reserved Specificati

on 37

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
5.1 Functional specification

the PTF to copy al columns of arow of an input table into an output row, without copying the columns indi-
vidually and without needing to understand the data types of the columns. (See Subclause 4.9, “ Pass-through
columns’, for adiscussion of how thisworks.) If atable parameter has pass-through columns, then every column
of the table argument is avail able to the query, qualified by the range variable of the table argument. The
examples Pivot, Score, and UDjoin illustrate pass-through columns (TopNplus could be redesigned to exploit
pass-through columns too). The keywords PASS THROUGH indicate that a table parameter uses pass-through
columns; NO PASSTH ROUGH indicatesthat atable parameter does not. If the SQL |mpI ementall on does not
= puit table
is effegtively NO PASS THROUGH. A PTF can stlll copy an |nput row |nto the output, but it requiresinore
effort on the PTF author’s part, and there may be a performance penalty because the PTF may need to fequest
input golumns it would not otherwise need in order to copy them to the output. This scenariois iHustrated in
Subclguse 12.5, “ TopNplus’.

5.1.5 | Result row type

The result row type of a PTF invocation consists of the following:

1) Coplumns generated by the PTF; these are called the proper result-columns of the PTF.
2) titioning columns of partitioned table arguments.

3) For any table argument that has pass-through columns, thetnon-partitioning columns of that table argument.

Item 2), and item 3) are determined by decisions already.discussed. Asfor the proper result columns, there are
three gptions:

— If|the proper result columns are already knowhn during the specification stage, they can be specified in the
refurn type CREATE FUNCTION statement. The examples Score and Similarity illustrate this posgibility;
if [TopNplusis redesigned to use pass-through columns, then it could be redesigned to do this as wgll.

— Ifjthere are no proper result columns; then the return type RETURNS ONLY PASS THROUGH can be
sfecified. The example UDjoindltustrates this possibility.

— Otherwise, the PTF describe component procedure is mandatory and determinesthe proper result cjumns.

5.1.6 | Determinism

A PTHisdeterministic if it necessarily produces the same set of rows when re-executed using a particular set
of inpyts. Theinputs are the values of scalar arguments, descriptor arguments, and table arguments. The value
of ataE:e argument comprises a multiset of rows, as well as the partitioning and ordering of those rowg as
specifiledHby-the-guer

In particular, if theresult of aPTF depends on the ordering of rows, then the PTF is nondeterministic. TopNplus
isagood example. The second parameter, Howmany, tells how many rows in each partition to copy from the
input to the output. Suppose that Howmany is 3, and suppose that the first four rows of a partition aretied in
the ordering. Then it is non-deterministic which three rows will be copied into the output. If, on the other hand,
TopNplus was defined so that it copies Howmany rows, plus any ties to the last of these rows, then TopNplus
becomes deterministic.

38 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

5.1 Functional specif

ication

Thus, input ordering is potentially significant to the determinism of a PTF. On the other hand, the order in

which

output rows are generated is not significant to the determinism of a PTF.

The contents of SQL-datathat is not passed in table argument(s) is not regarded as input to a PTF. Thusif the
result of the PTF depends on the contents of proprietary data (see Subclause 4.10, “ Security model”, item 5)a)))
or on the result of aquery constructed dynamically (see Subclause 4.10, “ Security model”, item 5)c))), then

the PT

F is non-deterministic.

5.1.7

SQL-0
SQL-i
MODI
the PT]
PTFis

Thislg
input t
Othery
518

After g

availalle to the query author, telling the query author how to write an acceptable invocation of the PTH

what t

SQL -data access

ata accessis aproperty of SQL-invoked routines that specifies the degree of accessto-SQL-datat
voked routine requires. There are four choices: NO SQL, CONTAINS SQL, READS SQL DAT
FIES SQL DATA. A PTF will amost never have SQL -data access of NO SQL , béecause at the ver
I fulfill component procedure will use a PIPE ROW statement to output a%ow. At the other extre
not allowed MODIFIES SQL DATA.

aves CONTAINS SQL or READS SQL DATA. READS SQL DATASS appropriate if the PTF ha
pble, or if it performs alookup in aside table as described in Subiclause 4.10, “ Security model”, i
vise, CONTAINS SQL isthe appropriate SQL -data access.

Documenting the PTF to the query author

ompleting the functional specification, the PTF author can write the documentation that will be

ne result will be,

hat the
A, and
Y leadt,
bme, a

S an
em 5).

made
and

©ISO/IEC 2017 — All rights reserved

Specification 39

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
5.2 Design specification

5.2 Design specification

Next, the PTF author can start adesign specification. The principle differenceisthat the functional specification
should be made available to the query author in some fashion, such as user documentation, whereas the design
specification can remain confidential to the PTF author.

5.2.1 | Namethe component procedures

The PTF author must choose names for the PTF component procedures. There are one to four, PTF component
procedures:

— “describe”: PTF component procedure to be invoked during query compilation (optional).
— “gart”: PTF component procedure to be invoked at the start of execution on@virtual processor (optional).

— “fulfill”: PTF component procedure to be invoked during execution; thisis the component procedure that
repds the input tables and generates the output table (mandatory).

— “flnish”: PTF component procedure to beinvoked at the end of exeeution on avirtual processor (optional).

The PTF describe component procedure is optional if the PTF hasho proper result columns, or if the proper
result columns are declared statically in the CREATE FUNCTION statement; otherwise, it is mandatoryy.
Howeyer, evenif itisoptional, it may still be useful becauséthe PTF describe component procedure can Vididate
the ingut arguments, initialize the private data, and reduce the list of columnsin the input cursor(s) to just the
columps that the PTF needs semantically.

Many PTFswill not need astart or finish component procedure. The DBM Swill provide completeinfrastfucture
for thginput tables and the output stream, so the start component procedure is not needed to initialize that
infrastfucture and the finish component procedure is not needed to clean it up.

Thus, the start and finish component precedures only need to worry about other resources that the PTF{needs
during|the execution phase. For example, a PTF may wish to open an operating system file during the start

compdnent and closeit again during the finish component. Alternatively, the fulfill component procedure could
do both the file open and close. Thus, it is more a matter of programming style whether to have start and finish
compdnent procedures.

The PTF fulfill compohent procedure is mandatory. This is the only one that receives cursors to read the input
table grguments.

5.2.2 | Private data

The design specification can also specify private data for the PTF component procedures. The private datais
passed between the PTF component procedures (with the DBMS as an intermediary), but it is not exposed to
the query author. The DBMS perceives the private data as a set of variablesthat it must allocate and passto
the PTF component procedures. Each PTF component procedure perceives the private data as argumentsin its
argument list.

40 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
5.2 Design specification

Private data can be of any SQL types that have bindings in the implementation language. The private datais
passed by the DBM S as INOUT parameters to the PTF component procedures. The DBM S makes no use of
the private data, smply passing it around between the PTF component procedures to enable them to communicate.

Private data serves two purposes:

1) The describe component procedure may analyze the input arguments, and pass a digest to the later PTF
component procedures in the execution phase. This way, the execution phase component procedures do

2) If

Cq
ar

Optior
IS speg

these

523

TheP1
are as

ollows:

ngt need to re-analyze the input arguments.

ally you can specify default values for the private data. Private data defaultstonull if no explicit
ified. The describe component procedure will see the private data initializedto the default values. Sub-
t component procedures see the private data as it was last set by the preceding component proceflure in
uence: describe — start — fulfill — finish.

Routine characteristics of the component procedutes

[F author must decide the routine characteristics of the cemponent procedures. The routine charact

Table 2 — PTEr@utine char acteristics

Characteristic

Value

<language clause>

SQL, C, etc.

<parameter style clause>

Not used with language SQL . For external languages, either
PARAMETER STYLE GENERAL or PARAMETER
STYLE SQL

<specific name>

PTF author's choice

<deterministic characteris-
tic>

A PTF component procedure is deterministic if it produces
the same results (initial result row type, result rows, status
code) when invoked with the same scalar arguments, PTF
descriptor areas and PTF extended cursors. A PTF fulfill

the execution phase has start and finish component procedures, then the private data can be.used for
mmunication during the execution phase. For example, the start component procedure.might open afile
d place a“handl€” in the private data, so that the fulfill component procedure can read the file and the
fimish component procedure can close the file.

default

bristics

component pmrpdl reisnon-deterministic if theresult rows
depend on the order of the PTF extended cursor(s). The PTF
describe component procedure must be deterministic. The
PTF start, fulfill, and finish component procedures must be
deterministic if the PTF isto be deterministic.

©ISO/IEC 2017 — All rights reserved

Specification 41

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
5.2 Design specification

Advics
TheD

Characteristic

Value

<SQL -data access indica-
tion>

— The describe component procedure will usually be
CONTAINS SQL, though READS SQL DATA is pos-
sible.

— |If the start and finish component procedures only man-

age external Tesources such as 1iTes, then they WiTt Tsu-
ally be CONTAINS SQL if the implementation lan-
guageis SQL and NO SQL for external languages stich
as C, though READS SQL DATA ispossible. Ifthey
output rows using <pipe row statement>, thenthey will
usually be CONTAINS SQL.

— If thereis atable argument, then the fulfill'component
procedure will probably be READS'SQL ; otherwise,
CONTAINS SQL may be sufficient.

<null-call clause>

(omit)

<returned result setscharac-
teristic>

Must be DYNAMIC RESULFSETSO.

<savepoint level indica
tion>

Must be OLD SAVEPOINT LEVEL

security (<rights clause> if
the language is SQL/PSM;
otherwise, <external secu-
rity clause>)

Irrelevant if-the only SQL statements are FETCH from a
table argument cursor or SET/GET/COPY DESCRIPTOR
of PTE-descriptor arguments. Definer's rights may be used
if thelPTF executes SQL against tables proprietary to the
PTF (as opposed to the query author's data, which should
be passed viatable arguments). Invoker'srightsis permitted
but will usually not be necessary.

to supjport an iterative development process.

524

At thi

Component procedure signatures

pornt, the PI'F author has skeleton DDL thal declaresthe F1F Input parameters, the F1F privat

pto the DBM S: the PTF-component procedure characteristics cannot be deduced from the PTF declgration.
BM S tool should provide some kind of interface for the PTF author to specify them, preferably ir

afile,

data,

and the names of the PTF component procedures. The DBM S should provide some kind of DBM S tool for the
next step, which isgenerating the parameter lists of the PTF component procedures. The DDL aready specified
implies the parameter lists for the PTF component procedures, so this step can be done manually in principle,
but in practice it will be useful to have aDBM S tool to do this step.

In general, the parameter list of a PTF component procedures is derived from the parameter list of the PTF
itself asfollows:

42 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
5.2 Design specification

1) The private parameters are placed at the head of the parameter list of the PTF component procedure, in
order of declaration in the skeleton DDL.
2) The parameters of the PTF come next, in order of declaration.

a) Scaar parameter declarations are simply copied from the PTF parameter list to the PTF component
procedure parameter list.

c)| A table parameter is passed as a consecutive list of two to four VARCHAR parameters that ngme the
PTF descriptor areas and cursors relevant to that table parameter and PTF component'\procedure. The
preciselist of VARCHAR parameters depends on the table parameter's semantics (row or set semantics)
and the PTF component procedure, as shown in the following table:

Table 3 — Table parameter semantiCcs

PTF component Table parameter semantics
procedure
Row semantics Set semantics
describe full row type descriptor name full row type descriptor name

partitioning descriptor name
_ ordering descriptor name
regquested row type descriptor name requested row type descriptor name

start partitioning descriptor name
ordering descriptor name

fulfill cursor row type-descriptor cursor row type descriptor
partitioning descriptor name

ordering descriptor name
curQChame cursor name

finish partitioning descriptor name
ordering descriptor name

3) Ngxt thereisasingle VARCHAR parameter for the PTF extended name of the result row type's PTF
descriptor area.

a)| For the describe component procedure, this parameter is called the initial result row type desctiptor.
The describe component procedure populates the initial result row type descriptor to describejthe
nraonerrocilt colivmne of tha PTE (Thicnaramatar i omitted forthea PTE doecrriba camnonant nrd ﬁedure
proper-resut-colurnsof the PH-(Fhisparametertsomittedor-the PH--deserbe eompenent prec

if there are no proper result columns— RETURN ONLY PASS THROUGH — or the return type
declares afixed row type.)

b) For the start, fulfill and finish component procedures, this parameter is called the intermediate result
row type descriptor. The DBMS forms the intermediate result row type descriptor from the initial
result row type descriptor plus pass-through output surrogate columnsif there are any pass-through
table parameters.

4) Finaly, thereisa CHAR(5) parameter for the status code.

©ISO/IEC 2017 — All rights reserved Specification 43

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
5.2 Design specification

As seen above, many arguments that are passed to the PTF component procedures are PTF extended names.
PTF extended names are discussed in Subclause 7.2, “ PTF extended names’ . PTF extended names are character
strings generated by the DBMS, so the DBM S controls their lengths. They can usually be rather short names,
1, 2 or 3 characters will probably suffice. For example, using ten digits and 26 letters can support up to 36 dif-
ferent input tables, each with a different distinctive character. Another character can be used to distinguish the
type of PTF extended name (e.g., C for cursor, R for row type, P for partitioning, and S for sort order.) Thus,
2-character names will easily support up to 36 input tables and 36 DESCRIPTOR parameters. In the following

table, EWMWWWMW
The trgnsformation of PTF private data and PTF input parameter to PTF component procedure parameler is

summarized in the following table:

Table 4 — Corresponding PTF component procedure parameter’s

PTF privatedataand | Corresponding PTF component procedure parameter (s)
input parameters

For each parameter:

scalar scalar
PTF descriptor area VARCHAR(N)
table two to four VARCHAR(n) parameters as described above

At theend of the'parameter list:

result row type descriptor | VARCHAR(r).(omitted if the PTF has no proper result columns,

area or the propex result columns are declared in the CREATE FUNC-
TION)
status code CHAR(5)

For example, consider the following skeleton DDL:

CREATEE FUNCTION Ptf (
I np:ljt 1 TABLE W TH ROW SEMANTI CS,
| npyit 2 TABLE W'TH SET SEMANTI CS,
Par || NTEGER,
Des¢ DESCRIPTOR)
RETURNS TABLE
NOT DETERMUNI STI C
READS| SQL” DATA
PRI VATE DATA
Priv | NTEGER)
DESCRI BE W TH PROCEDURE Pt f_descri be
START W TH PROCEDURE Ptf_start
FULFI LL W TH PROCEDURE Ptf _fulfill
FI'Nl SH W TH PROCEDURE Pt f _fi ni sh

Then the signature for Ptf_describe is generated as follows:

CREATE PROCEDURE Pt f _describe (

44 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
5.2 Design specification

/* private data */

I NOUT Priv | NTEGER,

/* Inputl (row semantics) */

IN I nputl_row descr VARCHAR(2),

IN I nput1_request_descr VARCHAR(2),
/* Input2 (set semantics) */

IN I nput2_row descr VARCHAR(2),

I N I nput 2_pby_descr VARCHAR(2),

I N
I N
/*
I N
/*
I N
/*
| NO|

) DETI

READS

Notet
READ

The pd

CREAT

/[* private data */

| NOJ
/*
/*
I'N
I'N
/*
I'N
/*
I'N
/*
| NOJ
) NOT
READS

Ptf wa
minist
Ptf wa
For Pt

CREAT

nput 2_order_descr VARCHAR(2),
nput 2_r equest _descr VARCHAR(2),

Par */
Par | NTEGER,
Desc */

Desc VARCHAR (2)
tatus code */

UT St at us CHAR(5)
FRM NI STI C

SQL DATA

hat Ptf_describe must be deterministic, even if Ptf is not. The DBM Stoel can copy the SQL -data
S SQL DATA from the declaration for the PTF.

rameter list for the Ptf_start is
F PROCEDURE Ptf_start (

UT Priv | NTEGER,

nputl (row senantics) */
nput2 (set semantics) */
nput 2_pby_descr VARCHAR(2),
nput 2_order _descr VARCHAR(2),

Par */
Par | NTEGER,
Desc */

Desc VARCHAR (2)
tatus code */

UT St at us CHAR(5)
DETERM NI STI C
SQL DATA

5 declared as NOT,.DETERMINISTIC; therefore, at least one of its component proceduresis not
c. The DBMSitaal can just assume that all PTF component procedures of Ptf are non-determinis
5 declared as DETERMINISTIC, then al component procedures must be deterministic as well.

fulfill;xthere are also parameters for the cursor names, so the signature looks like this:

EAFUNCTI ON Ptf_ful fill (

access

deter-
tic. If

/*

- ! et
rvate udl d T

I NOUT Priv | NTECER,

[* 1
IN I
IN I
[* 1
IN I
IN I
IN I
IN I

©ISO/IE

nputl */

nput 1_cursor _descr VARCHAR(2),
nput 1_cursor _name VARCHAR(2),
nput 2 */

nput 2_cur sor _descr VARCHAR(2),
nput 2_pby_descr VARCHAR(2),
nput 2_or der _descr VARCHAR(2),
nput 2_cur sor _name VARCHAR(2),

C 2017 — All rights reserved Specificati

on 45

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
5.2 Design specification

/* Par */
I N Par | NTEGER,
/* Desc */

I N Desc VARCHAR (2)

/* status code */

I NOUT Status CHAR(5)
) NOT DETERM NI STI C
READS SQL DATA

The pgrameter list for the Ptf_finishis:

CREATIE PROCEDURE Ptf _finish (
/* private data */
IN Priv | NTEGER,
/* Inputl (row semantics) */
/* Input2 (set semantics) */
I N I nput 2_pby_descr VARCHAR(2),
IN Input 2_order_descr VARCHAR(2),

[* Par */
I N Par | NTEGER,
/* Desc */

IN DPesc VARCHAR (2)

/* s$tatus code */

I NOUT St atus CHAR(5)
) NOT|DETERM NI STI C
READS| SQL DATA

The o;LI)y difference in the parameter lists of Ptf_start and\Ptf_finish isthat the private parameters are passed
asIN fo Ptf_finish, since thereis no later stage to read-the private parameters.

46 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
6.1 PTF creation

6 Datadefinition language

Primary_audiencer DBRMS developer and PTE author

Thistgpic haslargely been covered implicitly in the preceding sections Subclause 5.1, “ Functional specifig
and Sybclause 5.2, “Design specification”. Here we summarize the DDL relevant to PTFs.

6.1 | PTF creation

Thefollowing showsthe parts of the BNF from [SO9075-2], Subclause 11.60, “ <SQL -invoked routine;
are relpvant to the declaration of a PTF. BNF productions that do not apply,te PTF declaration have bet
omitteql.

<schefm function> ::=
CREATE <SQ.-i nvoked function>

<SQ@.-invoked function> ::=
<fuIction speci fication> <routine body>

<SQ. paraneter declaration list> ::=
<l eft paren>
[<SQ. paraneter declaration>
[{ <comma> <SQ. paraneter declaration>}...]]
ht paren>

arameter declaration> ::=
QL paraneter nanme>]

aneter type>

FAULT <paraneter defaukt>]

ter default> ::=

al ue expressi op>

ontextual |y typed val ue specification>
escriptor valUue constructor>

ter type> ::=

ata type> [<locator indication>]
enefic table parameter type>
escriptor paraneter type>

ation”,

", that
N

<generic table paraneter type> ::=
TABLE [<pass through option>]
[<generic table semantics>]

<pass through option> ::=
PASS THROUGH
| NO PASS THROUGH

<generic table semantics> ::=
W TH ROW SEMANTI CS

©ISO/IEC 2017 — All rights reserved Data definition language 47

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
6.1 PTF creation

| WTH SET SEMANTICS [<generic table pruning>]

<generic table pruning> ::=
PRUNE ON EMPTY
| KEEP ON EMPTY

<descriptor paraneter type> ::=
DESCRI PTOR

<f unct
FUN(

<routi
[<

<routi
S

| <determ nistic characteristic>

| <

<retu
RET]

<retu
<r ef

<retu
T
| O

<routi
<pol

<pol ypor phic table function bady> ::=

[<
WT
FI'N

<PTF private paranmetérs> ::=

ion specification> ::=

CTI ON <scherma qual ified routine nanme>
<SQ. paraneter declaration |ist>
<returns cl ause>

<routine characteristics>

ne characteristics> ::=
outi ne characteristic>. ..]

ne characteristic> ::=
PECI FI C <speci fic name>

bQL- dat a access i ndication>

ns clause> ::=
DRNS <returns type>

ns type> ::=
urns table type>

ns table type> ::=
ABLE [<table function colum list>]
NLY PASS THROUGH

ne body> ::=
ynor phic table function body>

PTF private parameters>:]J([DESCRI BE WTH <PTF descri be conponent procedure>] [
H <PTF start conponent procedure>] FULFILL WTH <PTF fulfill conponent procedu
SH W TH <PTF fi ni sh conponent procedure>]

PRI YATE [DATA] (<SQL paraneter declaration |ist>
<PTF dlescri be gonponent procedure> ::=

<spg¢ci fic routi ne desi gnator>
<PTF gtart cconponent procedure> ::=

<spg¢cific routine designator>
<PTF fulfill conponent procedure> ::=

<specific routine designator>

<PTF finish conponent procedure> ::=
<speci fic routine designator>

The defaults for the optional syntax are:
1) <passthrough option> defaultsto NO PASS THROUGH.

48 Polymorphic Table Functionsin SQL

START
re> [

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

2)
3)
4)
5)
6)

6.2

A PTF

proc
start
proc

compdnent procedures first, then the PTF itself. Thisis analogous to ayiew: the underlying tables mus
createql first, then the view.

The

isno special syntax in the declaration of a PTF component proeedure that announces that it is intended

by a

The
PTF

explaied in Subclause 5.2.4, “ Component procedure signatures”.

There pre syntactic restrictions on the characteristics of PTF component procedures, as explained in
Subclguse 5.2.3, “Routine characteristics ef, the component procedures’. Since thereis no syntax indic
that ar] SQL-invoked procedure will be:subsequently used as a PTF component procedure, these restrig
are nof syntax checked when the PTE.eomponent procedure is created. Instead, they are checked when t
is cregied.

6.3

The

may
onit

isnam

befo
The

©ISO

ISO/IEC TR 19075-7:2017(E)
6.1 PTF creation

<generic table semantics> defaultsto WITH SET SEMANTICS.
<generic table pruning> defaults to KEEP ON EMPTY .

<gpecific name> defaults to an implementati on-dependent specific name.
<deterministic characteristic> defaults to NOT DETERMINISTIC.

the

<QQI -data access indication> defaultsto READS QQI DATA if thereisan inpl it tnhln; otherwise
default is CONTAINS SQL.

PTF component procedures

edures. This means that the PTF is dependent on its component procedures<Adthough the PTF auth
tHe specification and design process with the PTF, the implementation will start with the PTF com
edures, which should be declared before the PTF itself is. The order of creation and declaration is

ntax to create a PTF component procedure is the same as forany other SQL-invoked procedure.

F.

PTF component procedure does not have parametersfor generic tables or descriptor areas. Instead
component procedure has parameters for the PEFextended names of cursors and descriptor aress.

Altering PTF'component proceduresand PTFs

SOQL standardthas very limited capabilitiesto alter SQL -invoked routinesin general. Only external r

requires one to four PTF component procedures. These are declared as conventional SQL-invoked

or will
ponent
PTF
be

There
for use

the
Thisis

iting
tions
e PTF

butines

. $ince aPTF is dependent on its component procedures, this means that once an SQL -invoked pr

b¢ altered;not routineswrittenin SQL. An external routine can be altered only if thereare no depen%enci es

edure

ed as a component procedure of a PTF, it can no longer be atered. The only recourseisto drop tihe PTF

re atering Its components, arter which the P11+ may be re-created.

SQL standard has no syntax to ater a PTF itself.

/IEC 2017 — All rights reserved

Data definition language 49

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
6.4 DroppingaPTF and its component procedures

6.4 DroppingaPTF and its component procedures

Because of the dependency relationship, a PTF must be dropped before altering or dropping its component
procedures.

50 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

~

Primary_audience: PTE author

ISO/IEC TR 19075-7:2017(E)
7.1 PTF descriptor areas

I mplementation

After 9
bodieq

1
2)
3)
4)

H
H
H
H

ltem1
Inthis
tructur

Impler
asasp
compa
DBMS
than th

7.1

PTFs yise PTF descriptor areas for-the following purposes:

1)
2)
3)
4)
5)
6)

Td
Tg
Tq
T¢
(d

pecifying the PTF, the PTF author will implement it, that is, supply the programming logic for'the
of the PTF component procedures. To do that, the PTF author will need to understand the follow

pw the DBM S will process and invoke of the PTF.
pw to read and write PTF descriptor areas.

pw to read the input PTF cursor.

DW tO output a row.

ispresented in Clause 4, “PTF processing model”, Clause 9, “Compilation”, and Clause 11, “ Exec
Subclause, we talk about the remaining topicsin ageneric fashian! This Subclause describes the
e that the DBM S provides so that the PTF author can implement the PTF.

hentation of aPTF depends upon theinterface provided by, the DBMS. [1SO9075-2], specifiesanin
ecification device. Thisinterfaceis optional, and is gaverned by conformance Feature B208, “ P
nent procedure interface” (and the feature that it impglies, Feature B209, “ PTF extended names”
b provides a different interface, then the implementation of a PTF will need to use that interface f
e one shown in this Technical Report.

PTF descriptor areas

describe the row type of input tables.

describe the partitioning and ordering of input tables.

describe the rowtype of the result.

receive descriptions of row types supplied by the query author.

ptionally) to receive rows of the input tables.

Tq

routine
ing:

ution”.
infras-

terface
'

. If the
ather

pass output rows from the PTF back to the DBMS.

See Subclause 4.8, “Flow of row types’, for alist of the various input and output row types.

PTF descriptor areas are akind of SQL descriptor area. This Subclause discusses only the features of SQL
descriptor areas that pertain to PTF descriptor areas.

A PTF descriptor area consists of a header and zero or more SQL item descriptor areas. SQL item descriptor
areas within a PTF descriptor area are numbered sequentially beginning at 1. A PTF descriptor area can be
visualized like this:

©ISO/IEC 2017 — All rights reserved Implementati

on 51

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
7.1 PTF descriptor areas

The hgader is used to provide information about the PTF descriptor area as awhole. AR SQL item desd
area pliesents information about a single column of atable, a partitioning, or an ofdering.

The hgader and each SQL item descriptor area have several named components. There is no prescribed
structyre for the header or SQL item descriptor area (nothing like a C st ruct). Instead, each compong
header or SQL item descriptor areais referenced by a keyword, essenti@ly the name of the component

The PTF can get the value of one or more components using a GET BESCRIPTOR command. The PT
set the

There

sourceg PTF descriptor areato a destination PTF descriptor area.

Because SQL has constructed types, which permit arbitrary nesting of datatypes, the SQL item descriptd

canfo

emitting an SQL item descriptor area whenever anode isfirst entered. The LEVEL component indicat§
deeply| nested an SQL item descriptor areaisfrom the root. Scanning the list of SQL item descriptor arez
first tolast, if LEVEL goes up by 1, that means to create a child node; if LEVEL remainsthe same, that

tocr
Oin

isthetptal number of SQL item descriptor areas (including subordinate ones), whilethe TOP_LEVEL_C
is the pumber of columns.

711

A PTH

Table 5— PTF descriptor area

Descriptor area header

SQL item descriptor area 1

SQL Ttem descriptor area 2

SQL item descriptor area 3

saso aCOPY DESCRIPTOR command that may be-tised to copy an SQL item descriptor area

m atree. The treeisflattened as pictured above, by walking the tree from root to leaves and | ft t

easibling node; if LEVEL goesdown by 1, that means the previous set of childrenis done. LE
L item descriptor areas that are hot subordinate to a constructed type. The header component C

PTF descripter area header

descriptonarea header has the following components:

riptor

data
Nt of a

I can

value of components in the header or SQL item descriptor @reas using a SET DESCRIPTOR compmand.

from a

r areas
D right,
bs how
s from
means

VEL is
DUNT
OUNT

Table 6 — PTF descriptor area header

Nam

e Datatype | Use

TOP_LEVEL _COUNT | integer Number of columns described by the SQL item descriptor areas

Cou

NT integer Number of SQL item descriptor areas. Thisis equal to

or rows).

TOP_LEVEL_COUNT if thereare no constructed types (collections

52 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

712

ISO/IEC TR 19075-7:2017(E)
7.1 PTF descriptor areas

SQL item descriptor areasfor row types

An SQL item descriptor areadescribes acolumn of atable, apartitioning, or an ordering. When used to describe
acolumn of atable, it consists of anumber of components with three purposes:

1) Namethe column.

2) D¢

3) P
When
When
) T
2 W
3) W
We col

The cd
and ho
Was cr

Them
codes

additignal data types using negative integers, whichithis Technical Report cannot enumerate. Many dat

areas
shown

fire-a-datatype-

ss a value of that data type to or from the DBMS.

Lised to describe a column of a partitioning, the only purpose is to hame the column.
used to describe a column of an ordering, the components describe the following:

he name of the column.

hether the column is sorted in ascending or descending order.

hether nulls are sorted first or last.

nsider the components relevant to a column of atable first.

lumn nameisin the NAME component. Thisis avariable length character string that is case ser

ated with the <identifier> Col is represented as'COL’; whereas "Col" is represented as 'Col'.

Dst important component for defining atypeis called TY PE, which isasmall integer with predef
or thevarious datatypes (for example, CHARACTER is1, INTEGER is4, etc.). The DBM S may

D qualified by additional components. The‘compl ete set of relevant components for each SQL ty
in the following table:

Table 7 — Rélevant SQL item descriptor components

sitive

dsthe column name after any case conversion or escaping have been applied. Thus, a column naine that

ined
define
n types
beis

Data

type Relevant SQL item descriptor components

CHA

[CO

CHARACTER SET catT:schl.set LENGTH =n

R(n) TYPE=1

| LATION cat2.sch2.coll] CHARACTER_SET_CATALOG = catl
CHARACTER_SET_SCHEMA = schl
CHARACTER_SET_NAME = set
Optionally, a collation may be specified:
COLLATION_CATALOG = cat2

COLLATION_SCHEMA = sch2

Ol L ATION _MAMIE — onll

CULTATTON_TNAIVIIE = CUN

©ISO/IE

C 2017 — All rights reserved Implementati

on 53

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
7.1 PTF descriptor areas

Datatype Relevant SQL item descriptor components
VARCHAR(n) TYPE=12

CHARACTER SET catl.schl.set LENGTH =n

[COLLATION cat2.sch2.coll] CHARACTER_SET_CATALOG = catl

CHARACTER_SET_SCHEMA = schl
CHARACTER SET NAME = set
Optionally, a collation may be specified:
COLLATION_CATALOG = cat2
COLLATION_SCHEMA = sch2
COLLATION_NAME =call

CLOB(n) TYPE =40
CHARACTER SET catl.schl.set LENGTH =n
[COLLATION cat2.sch2.coll] CHARACTER_SET_CATALOG=catl

CHARACTER_SET_SCHEMA'= schl
CHARACTER_SET_NAMEGE set
Optionally, a collation may.be specified:
COLLATION_CATALOG'= cat2
COLLATION_SCHEMA = sch2
COLLATION_NAME = coll

BINARY (n) TYPE =60
LENGTH =n
VARBINARY (n) TYPE =61
LENGTH =n
BLOB(n) TYPE =30
LENGTH =n
NUMERIC(prec, c) TYPE=2
PRECISION = prec
SCALE=sc
DECIMAL (prec, sc) TYPE=3
PRECISION = prec
SCALE=sc
SMALLINT TYPE=5
INTEGER TYPE=4
BIGINT TYPE=25
FLOAT (prec) TYPE=6
PRECISION = prec
REAL TYPE=7
DOUBLE PRECISION TYPE=8

54 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
7.1 PTF descriptor areas

Datatype Relevant SQL item descriptor components
DECFLOAT (prec) TYPE =26
PRECISION = prec
BOOLEAN TYPE =16
DATE TYPE=9
DATETIME_INTERVAL_CODE=1
TIMIEE(prec) TYPE=9
WITHOUT TIME ZONE DATETIME_INTERVAL_CODE =2
PRECISION = prec
TIMIEE(prec) TYPE=9
WITH TIME ZONE DATETIME_INTERVAL_CODE =4
PRECISION = prec
TIMESTAMP(prec) TYPE=9
WITHOUT TIME ZONE DATETIME_INTERVAL” CODE =3
PRECISION = preg
TIMESTAMP(prec) TYPE=9
WITH TIME ZONE DATETIME INTERVAL_CODE =5
PRECISION = prec
INTERVAL { TYPE=10
Y EAR(prec) DATETIME_INTERVAL_PRECISION = prec
MONTH(prec) The value of DATETIME_INTERVAL_CODE dependson
DAY (prec) theinterval qualifier asfollows:
HOUR(prec) YEAR: 3
MINUTE(prec) } MONTH: 2
DAY: 3
HOUR: 4
MINUTE: 5
INTERVAL { TYPE =10
YEAR(prec) TO MONTH DATETIME_INTERVAL_PRECISION = prec
DAY([prec) TO HOUR The value of DATETIME_INTERVAL_CODE dependsion
DAY ([prec) TOMINUTE theinterval qualifier asfollows:
HOUR(prec) TO MINUTE } YEARTO MONTH: 7

DAY TOHOUR: 8

HOUR TO MINUTE: 11

©ISO/IEC 2017 — All rights reserved Implementation 55

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
7.1 PTF descriptor areas

Datatype

Relevant SQL item descriptor components

INTERVAL {

DAY (prec) TO SECOND(frac)
HOUR(prec) TO SECOND(frac)
MINUTE(prec) TO SECOND(frac)
SECOND(prec, frac) }

TYPE =10

DATETIME_INTERVAL_PRECISION = prec

The value of DATETIME_INTERVAL_CODE depends
theinterval qualifier asfollows:

DAY TO SECOND: 10

on

HOUR TO SECOND: 12
MINUTE TO SECOND: 13
SECOND: 6

ROW

(fieldy, fieldy, ... fieldy)

TYPE=19

DEGREE = n

There are n immediately subordinate)SQL item descript
that describe field,, fieldy, ... fieldg

ors

user-

Hefined type

TYPE =17
USER_DEFINED_TYPE:GATALOG = catl
USER_DEFINED_TYPE)'SCHEMA = schl
USER_DEFINED_TYPE_NAME =ty

REF
SCO

catl.schl.ty)
PE cat2.sch2.tab

TYPE=20
USER_DEEINED TYPE_CATALOG = catl
USER_DEFINED_TYPE_SCHEMA = schl
USER_DEFINED_TYPE_NAME =ty
SCOPE CATALOG = cat2
SCOPE_SCHEMA = sch2

SCOPE_NAME = tab

ty AR

RRAY [card]

TYPE =50

CARDINALITY = card
There is one immediately subordinate SQL item descrip
areathat describes the element typety

tor

tyM

ULTISET [card]

TYPE =55

CARDINALITY = card
Thereisoneimmediately subordinate SQL item descrif
areathat describes the element type ty

tor

Const
Thefir

ucted types (arrays, multisets, rows) are described using several consecutive SQL item descriptor areas.
st<SQL item descriptor area specifies the kind of constructed type, and subsequent SQL item des

Criptor

deof nrowu + A Thal E\/C

anf A onll 1N Ay th

areas desertbe-the-compenents—the element-type-ofa-ccHection-erthe fields-of arow-type—The EEVEE com-
ponent is used for bookkeeping to keep track of the depth of nesting. At thetop level, LEVEL is0, and LEVEL
isincremented by 1 to descend alevel when describing a constructed type.

There are also components to indicate if the described column is nullable, or if it isamember of the primary
key or candidate key. These components are not needed for PTFs, and are not considered in this Technical
Report.

Each SQL item descriptor area has a component called DATA that can hold the value of the corresponding
column, which must be of the type described by the other components. DATA is conceptually similar to aunion

56 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
7.1 PTF descriptor areas

in C, since all types can be placed there. Subordinate item descriptor areas are not used to pass elements of a
collection or components of arow type; the entire value must be passed at the top level of a constructed type.
The DATA component may be used when reading arow of an input table, or when creating an output row.

7.1.3 SQL item descriptor areasfor partitioning

The orlly relevant components when describing a partitioning are LEVEL and NAME. Since type information
is not present, there are no subordinate SQL item descriptor areas. Therefore, LEVEL is0 in every)SQL item
descriptor area, and in the header, COUNT = TOP_LEVEL_COUNT isthe number of partitionirg coliimns.

7.1.4 | SQL item descriptor areasfor ordering

PTF descriptor areas are al so used to describe the ordering of input tables with set semantics. Thereis o need
for tygde information, so there is no need for subordinate item descriptor areas when describing an ordefing.
Conseguently COUNT and TOP_LEVEL_COUNT in the header are thiessame value, which is the numper of
columpsin the ORDER BY clause. In the SQL item descriptor areasfour components are used:

— LEVEL (aways0).

NAME, the name of the column in the ORDER BY clause.

— ORDER_DIRECTION, either +1 for ASC (ascending) or —1 for DESC (descending).
NULL_PLACEMENT, either +1 for NULLSFIRST or -1 for NULLSLAST.

7.2 | PTF extended names

In gengral, the SQL standard hasthree namespaces for SQL descriptor areas: the non-extended namespace, the
extended namespace, and the PTF namespace. The distinguishing feature of the PTF namespace is that|the
DBM $ assigns the names rather than the PTF author or the query author. Non-extended names and extended
nameslare assigned to SQL) descriptor areas using the ALLOCATE DESCRIPTOR command. In contrast, all
the SQL descriptor areas'discussed in this Technical Report are created automatically by the DBMS (tH
author|does not write'an ALLOCATE DESCRIPTOR command for them). The names of these SQL d
areas gre called PTFextended names and they constitute the PTF namespace. The DBM S assigns uniquelnames
within|the PTEnamespace, and it isthese unique namesthat are passed in descriptor area argumentsto the PTF
compdnent procedures. When aquery has multiple PTF invocations, then each one hasits own PTF name

For exemple,suppose that Input d isaninput argument to g component procedure containing!'the
name of a PTF descriptor areafor the row type of an input table. The value of Input_descr might be 'l 1. This
valueis assigned by the DBM S in an implementation-dependent manner. The name is meaningless to the PTF
and thereis no reason for a PTF component procedure to examine the value of this input argument. Instead,
the name can simply be passed along in various commands (GET DESCRIPTOR, SET DESCRIPTOR, and
COPY DESCRIPTOR), as explained in succeeding subsections.

Evenif the DBMS does not support the entire interface described in this Clause, it may choose to support PTF
extended names, in which case it can claim conformance to Feature B209, “ PTF extended names’, without
claiming conformance to Feature B208, “PTF component procedure interface”.

©ISO/IEC 2017 — All rights reserved Implementation 57

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
7.3 Reading a PTF descriptor area

7.3

Reading a PTF descriptor area

PTF descriptor areas are read using the GET DESCRIPTOR command. For example, suppose that Input_descr
is an argument that contains the name of a PTF descriptor area. The PTF component procedure might contain:

EXEC SQL GET DESCRI PTOR PTF : | nput_descr :I1tens = COUNT;

Thisc

whoselname is given by Input_descr. The result is placed in the host variable items.

If thei

GET DESCRI PTOR PTF | nput _descr itens = COUNT;

Them
not.

to ex
variabl
inform

EXEC

The VA
arrays

GET Df
Vi
n
dt

Dataty
of the

“SQL

14

The P]

After aFtti ng the number of SQL item descriptors, the PTF component procedure will typically set up

cmanme[J- 1] = NAME,
s dtype[J-1] = TYPE;

bmmand gets the COUN I component Trom the header of the P I+ descriptor areain the FP1 F nam

[mplementation language is SQL/PSM, the command looks very similar:

bin difference here is that embedded variables are preceded by a colon, whereas SQL/PSM variak

ine al the items. The loop might examine the column names and datatypes, for example. Let J
e used to index into an array, with J=1 for the first column, etc. Fo,obtain column name and datg
ation on the J-th column, in embedded C the command wouldbe:

BQL GET DESCRI PTOR PTF : I nput _descr VALUE :J

\L UE clause specifies which item descriptor areais desired. Note the use of J-1 to account for O-
in C vs 1-relative itemsin SQL descriptor areas.' In SQL/PSM the command is:

FSCRI PTOR PTF | nput _descr
ALUE J

e[J] = NAME,

ype[J] = TYPE;

pes are represented by codesdefined in the SQL standard. Depending on the type, additional comy
tem descriptor areamay berelevant, such as LENGTH, PRECISION, or SCALE. See Subclaust
tem descriptor areas for row types’, for more details.

Writinga PTF descriptor area

[describe component procedure must populate PTF descriptor areas for two purposes:

espace

lesare

L loop
bea

[type

el ative

onents
2 7.1.2,

) T

pevrequested row type: thisis essentially just alist of the names of the columns that the PTF wisl

esto

read on the cursor for an input table.

2) Theinitial result row type: if the CREATE FUNCTION that created the PTF does not declare the proper
columns (either through <table function column list> or RETURNS ONLY PASS THROUGH), then the
PTF describe component is responsible for describing the names and types of the proper result columns.

For each of these purposes, the DBM S allocates an empty PTF descriptor areain the PTF descriptor namespace
and passes the name of the PTF descriptor areato the describe PTF component procedure. Initially, the COUNT

58 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
7.4 Writinga PTF descriptor area

in the PTF descriptor area header will be O; before returning, the PTF describe component procedure should
set this to the number of requested columns or output columns.

In addition, during execution, the PTF component procedureswriteto the DATA components of theintermediate
result row descriptor.

Writing to a PTF descriptor areais one of the most challenging parts of writing a PTF. We will present three
different ways from which the PTF author may choose, depending on the complexity of the PTF.

7.4.1 | Using DESCRIBE to populate a PTF descriptor area

The DESCRIBE command may be used to populate the initial result row type PTF desCriptor area. To $tart
with a unlikely but simple example, supposethat theresult isawaysasingle column ealled V of type DQUBLE
PRECISION. Inthat case, the PTF describe component procedure might use a DESCRIBE such asthefollpwing:

EXEC $Q. PREPARE St nt

FROM ' SELECT CAST (0 AS DOUBLE PRECI SIQN) AS V
FROM | NFORMATI ON_SCHEMA. TABLES' ;

EXEC $Q. DESCRI BE St nt

UPl NG DESCRI PTOR PTF :Initial _result_row,

be readable by PUBLIC inthe FROM clause, so that the PREPARE statement is guaranteed to succeed. Similarly,
the prgcise column definition in the SELECT list does net matter. The point isto prepare any statement with
asingle column named V of type DOUBLE PRECISION. Using a CAST and acolumn aliasisaclear pnd
certairf way to do this.

The precise FROM clause in the prepared statement isirrelevant. This example used atable known to @%i_‘st and

This example is unrealistic because the PTF author has a better way to declare that the PTF always retyrns a
singlefpolumnV of type DOUBLE PRECISION, by simply declaring it inthe CREATE FUNCTION staiement.
Howeer, the example can be generalized by making it more dynamic. For example, suppose that the viriable
IsDouble isaboolean variable that is True if the column should be DOUBLE PRECISION; otherwiseg, [the
column should be INTEGER. In that case, one might write the following in SQL/PSM:

SET S{ring = " SELECT CAST (0 AS'
I
CASE WHEN | sDoubl e THEN
' DOUBLE PRECI SI ON
ELSE
" | NTEGER
END

') AS V
FROM | NFORMATI ON_SCHEMA. TABLES' ;
PREPAI ST FROMESUT T NG,
DESCRI BE Stnt USI NG DESCRI PTOR PTF Initial _result_row,

7.4.2 Using SET DESCRIPTOR to populate a PTF descriptor area

To use SET DESCRIPTOR, first item descriptor area(s) must be added to the empty PTF descriptor area. This
can be done by setting COUNT to a non-zero value. The command in embedded SQL might look like this:

©ISO/IEC 2017 — All rights reserved Implementation 59

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IE

C TR 19075-7:2017(E)

7.4 Writinga PTF descriptor area

EXEC SQL SET DESCRI PTOR PTF :lnitial _result_row

COUNT = :ncol;

or, if the implementation language is SQL/PSM, then this:

SET DESCRI PTOR PTF Initial _result_row

COUNT = ncol ;

After iLem descriptor area(s) have been added to the PTF descriptor area, the various components must
riately. Each item descriptor arearequiresaLEVEL, NAME, and TY PE, and possibly other Carmppnents,

approg
asexp

For example, to specify that the column whose ordinal position in the row is given by Ncolvand whose
given by Colname and is of type VARCHAR with maximum length 100, this could be used:

EXEC $QL SET DESCRI PTOR PTF :lnitial _result_row

Here, 12 isthe code for VARCHAR type.

It may,

by 1 on each iteration, then set COUNT in the header to Neol to allocate another SQL item desciptor,

set the

743

COPY

descripptor area. Here, we examine situiations where each of these can be useful.

Somet
examp

converient way to popul ate the result row typeisto copy it initsentirety from some input PTF descript

To coy

EXEC

The pr

ained in Subclause 7.1.2, “ SQL item descriptor areas for row types’.

VALUE : Ncol
LEVEL = 0,

NAMVE = : Col nane,
TYPE = 12,
LENGTH = 100;

column name and type information in the item descriptor area indexed by Ncol.

Using COPY DESCRIPTOR topopulatea PTF descriptor area

DESCRIPTOR isacommand to.copy either an entire PTF area descriptor, or just asingle SQL

mes, the result row type isthe same as either an input table (for example, TopNplusin our runni
es) or issimply provided by the query author (ExecR in our running examples). In that case, the

y an entire PTF(@rea descriptor, the PTF author might use something like the following:

BQL COPY DESCRI PTOR PTF : | nput _t abl e_descr
TO PTF : Result_row_type;

eceding simply copies the entire PTF descriptor from Input_table descr to Result_row_type.

be set

name

be convenient to build the result row type descriptor ifiarloop. The loop might increment variablie Ncol

d then

tem

ng
most
r area

Inoth

H vy 4 laetloat]] dacl QN1 4 =l Hey ala Lol lo s ol [1
CITUUITISLANUES, TUITIAY UT Al Uy STITULTU OWJL TITTTTUTSUITTITULN S I TUUTU UT CUDITUL T°UN TAAITIDIT, U

erhaps

an output column has the same column name and/or type information as a column of an input table. In that
case, it might be convenient to just copy the column name and/or type information from the input table's PTF
descriptor areato the result's PTF descriptor area. For example, in embedded SQL,

EXEC SQL COPY DESCRI PTOR

60 Polymorphic Table Functionsin SQL

PTF : Sour ce_descr
VALUE :cl (NAME, TYPE)
TO PTF : Dest _descr
VALUE :c2;

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
7.4 Writinga PTF descriptor area

This copies from the PTF descriptor areaidentified by Source descr in the item identified by c1 to the PTF
descriptor areaidentified by Dest_descr, placing the information in the item descriptor areaidentified by c2.
This example copies the NAME and TY PE components from the source to the destination. When copying
TY PE, any other components that are required to complete the type specification are also copied.

Thistechnigue can also be used in conjunction with SET DESCRIPTOR as explained abovein Subclause 7.4.2,

“Using SET DESCRIPTOR to populate a PTF descri ptor area’. For example suppose that the first column of
_ In that

the

colump name, like this;

EXEC $QL COPY DESCRI PTOR
PTF : Sour ce_descr
VALUE 1 TYPE
TO PTF : Dest _descr
VALUE 1;
EXEC $QL SET DESCRI PTOR PTF : Dest _descr
VALUE 1 NAME = 'X';

7.5 | Reading a PTF input cursor

For each input table I T, during execution on avirtual processorVP, the DBM S will create a cursor that|reads
the rows of the partition of IT that is assigned to VP. The DBMS will give this cursor anamein the PT
namespace for cursors. The PTF fulfill component procedure will receive the name of the cursor in an iinput

argument. The cursor is already open, so the PTF fulfil component procedure can simply issue FETCH com-
mandgto read the cursor. In addition, the row typeef the input cursor is described by a PTF descriptor jarea

whoselname is in another input argument. The RTF fulfill component procedure can simply FETCH from the
input qursor into the PTF descriptor area for ¢hat input table.

For example, suppose the input cursor pame is passed in the parameter Input_cursor and the name of the PTF
descripptor areafor the row typeis passed in the parameter Input_row_descr. Then, using embedded SQL, the
PTF fylfill component procedure might use this command:

EXEC $QL FETCH FROM PTF\ I'nput _cur sor
I NTO BESCRI PTOR PTF : I nput _row_descr;

or if te implementationdanguage is SQL/PSM,

FETCH| FROM PFR nput _cur sor
| NTO_DESCRI PTOR PTF | nput _r ow_descr;

After fletching arow into aPTF descn ptor area, the PTF fulfill component procedure will want to access the

other components ofltem deecrl ptor areas DATA hasno flxed type | nstead |tstype |s s mpIy the type of the
column, which is of course described by other components of the same item descriptor area.

For example, suppose that Var is a variable of an appropriate type to receive the value of a column found in
the item descriptor areaindicated by Colno. Then, the value of that column can be obtained in Var using this
command in embedded SQL:

EXEC SQL GET DESCRI PTOR PTF : I nput_row_descr VALUE : Col no
:Var = DATA;

©ISO/IEC 2017 — All rights reserved Implementation 61

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
7.5 Reading a PTF input cursor

or, using SQL/PSM:

GET DESCRI PTOR PTF | nput _row _descr VALUE Col no
Var = DATA;

If the input data can be of several types, then it will generally be necessary to set up conditional logic that tests
the TY PE of a column so that the DATA can be assigned to an appropriately typed variable.

TypicdTythe UIfiT component procedure wi ChTows from the input cursor until it reaches thelend of
the cuisor. At that point, the PTF fulfill component procedure does not need to close the cursor; thiswi|l be
handled automatically by the DBMS when the PTF fulfill component procedure returns control to.the DBMS.

7.6 | Outputtingarow

During run-time on avirtua processor VP, the PTF start, fulfill, and/or finish component procedures nged to
genergte and output row(s) for the result. Outputting arow is a two-step process:

1) First, the output row is populated by setting the DATA component of,the SQL item descriptor areas of the
result row descriptor.

2) Sgcond, aPIPE ROW command is used to send the row to the DBMS as output.

For expmple, suppose the output row has two columns. Suppose that the value of the first column has een

computed in variable X and the value of the second column.has been computed in variableY. Suppose that the
name ¢f the result row descriptor isin the argument Intesmediate_result_row. Then, these commands could be
used t populate the output row:

EXEC $QL SET DESCRI PTOR PTF :Internediate result_row
VALUE 1. DATA = :X;
EXEC $QL SET DESCRI PTOR PTF :Internmedi ate result_row
VALUE_2 DATA = :.Y;

It isa$o possible to use COPY DESCRIPTOR to transfer DATA from an input row to the result row. I the
input row has precisely the same row type as the result row (corresponding column names and types mgtch),
then QOPY DESCRIPTOR without VALUE can be used, like this:

EXEC $QL COPY DESCRFFPFOR PTF : I nput_tabl e_descr (DATA)
TO PTF :Internediate_result_row,

To cogy asingleolumn from an input row to the result row, the VALUE clause is needed:

EXEC $QL (CORY DESCRI PTOR PTF : | nput _t abl e_descr
VALUE : I nCol No (DATA)
TO PTE - Internediate result row

VALUE : Qut Col No: -

Thistechnigque can be used with pass-through surrogate values. For any input table with pass-through columns,
the pass-through input surrogate columnisthe last onein the cursor row type. The DBMSwill giveit adistinctive
implementation-dependent name. The corresponding pass-through output surrogate column can be found in
the intermediate result row descriptor by searching for the matching name. Having located the surrogatesin
the input and output rows, COPY DESCRIPTOR can be used to copy the surrogate value from the input row
to the output row.

62 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
7.6 Outputtingarow

Once the output row has been populated, the PTF start, fulfill, or finish component procedure can write this
row to output using this command:

EXEC SQL PI PE ROW PTF :Internediate_result_row,

If there is more than one output row, the result row descriptor can be reused for each output row, for example,
inaloop.

©ISO/IEC 2017 — All rights reserved Implementation 63

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

(Blank page)

64 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
8.1 <tableprimary>

8 Invocation

Primary_audience: DBMS developer and query author

Once the PTF and its component procedures have been written, it is possible to write an invocation: Dllring

develgpment, the PTF author will write test invocations; in deployment, the query author will writeinvodations.
Examples of theinvocation syntax have already been presented in Subclause 3.2, “Motivating €éxamples’]. Here,
we prgsent the invocation syntax formally.

8.1 | <tableprimary>

A PTHisinvoked only inaFROM clause, asakind of <table primary>. Theteafe many kinds of <table prinary>,
the mgst common being atable name. For PTFs, the relevant syntax bégins as follows:

<tabl ¢ primary> ::=

| <IPTF derived tabl e>
[<correlation or recognition>]

Thus g PTF invocation consists of a <PTF derived table> and sometimes a <correlation or recognition. The
BNF gbove suggests that the query author can choose to have the <correlation or recognition> or not, Qut in

fact it presence or absence is dictated by the DDL that created the PTF, as we shall see in Subclause 83,
“Propgr result correlation name and proper xesult column naming”.

8.2 | <PTF derived tahte>

<PTF dlerived tabl e> &=
TABLE <l eft paren>‘<routine invocation> <right paren>

A <PT|F derived table> consists of the keyword TABLE and a parenthesized <routine invocation> that ivokes
the PTF. Thisisthesame syntax that is used to invoke a monomorphic table function.

8.3

<correlation or recognition> ::=
[AS] <correlation name>
[<parenthesized derived colum |ist>]

The correlation nameis used to qualify the proper result columns of the PTF, that is, the columns that the PTF
itself generates. We will call this the proper result correlation name to distinguish it from the table argument
correlation names that may be associated with input tables (see Subclause 8.6, “ <table argument proper>", and

©ISO/IEC 2017 — All rights reserved Invocation 65

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
8.3 Proper result correlation name and proper result column naming

Subclause 8.7, “ Table argument correlation name”, regarding table argument correlation names). Hereisa
skeleton example:

FROM TABLE (Ptf (...)) AS P

Optionally, you can rename the proper result columns. In the preceding example, suppose that there is one
proper result column, named Score, and you want to rename it to Val:

FROM TABLE (Ptf (...)) AS P (Val)

If the PTFisdeclared RETURNS ONLY PASS THROUGH, then there are no proper result columns ang
the praper result correlation name (and column renaming) isforbidden. Otherwise, the proper result corr
name ifs required, and the column renaming is optional.

8.4

<routine invocation> is enhanced to support table and descriptor arguments.(for PTF only, of course):

<routine invocation> ::=
<roliti ne name> <SQ@ argunent |ist>

<routifne nane> ::=

[

The <1joutine invocation> must, of course, invoke a PT R Fhe usual name resolution rules of the SQL st

<routineinvocation>

<g¢chema nanme> <period>] <qualified identifiéer>

hence
elation

andard

apply, jncluding the use of the SQL path and the precise'argument list to determine the specific PTF to invoke.

The cgmplete rules for subject routine resol ution-are-complex and outside the scope of this Technical R
The PTF author can avoid most of this complexity by avoiding duplicate PTF names. Even though the st
permits overloading of SQL-invoked routines; it is better to use optional parametersin asingle PTF defi
rather than defining multiple PTFs of the same name and different parameter lists. The query author mg
use fully qualified schema nameswhen invoking a PTF, though this Technical Report has not dpne so
in its gxamples.

well td

Note that the query author does not invoke the PTF component procedures explicitly, these being hidden
the PTF. The query author only needs EXECUTE privilege on the PTF, not on the PTF component proc

<SQL

<left paren> [<SQ. argunent>

“Cop:

The oaTional <copartition clause> is used in copartitioning and will be presented later in Subclause 8.1

Argument | i st>==

[{ <conma>s<SQ argunent> }...]]
[<copartition clause>] <right paren>

titloning” .

eport.
andard

nition,
hy do

within
pdures.

<SQ argunent> ::=

<val ue expressi on>

<general i zed expression>

<target specification>

<contextual |y typed val ue specification>
<named argument specification>

<t abl e argunent >

<descri ptor argunent>

<named argunent specification> ::=

66 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
8.4 <routineinvocation>

<SQ. paraneter name> <naned argunment assignment token>
<named argunment SQ. ar gunent>

<narmed argunment SQL argunent> ::=

<val ue expressi on>

<target specification>

<contextual ly typed val ue specification>
<t abl e argunent >

<@esSTTT ptor _ar gument=

Input Values can be passed to a PTF either positionally or by parameter names (named arguments)., There are
two kinds of argumentsthat are allowed only in PTFinvocations: <table argument> and <descriptor argument>.
Asthgr names imply, a <table argument> is used to pass an input table, and a <descriptor argument> is used
to pass a descriptor to a PTF.

All of the examplesin this Technical Report use named arguments as a “ best practice™from a readability
standppint; however, positional argument lists are a so permitted. Optional arguments may be omitted, ifwhich
case the default is taken.

8.5 | <tableargument>

Now we focus on <table argument>:

<tabl ¢ argunment> ::=
<t alpl e argunent proper>
[[AS] <table argunent correl ati on nanme>
[<table argunent parenthesized deridéed colum list>]]
[<table argunent partitioning>]
[<table argunent pruning>]
[<table argunent ordering>]

<t abl ¢ argunment correl ation nane> ::=
<cofrel ati on name>

<t abl ¢ argunment parenthesi-zed derived colum list> ::=
<pat ent hesi zed deringed colum |ist>

That i$, a <table argument> consists of up to six components:
1) The <table argument proper>, which specifies the input table.
2) Ap optienal <correlation name> for the input table.

3) If{thefeisa<correlation name>, then optional column renaming of the input table.

4) Anoptiona partitioning (set semantics tables only).
5) Anoptional pruning (set semantics tables only).
6) An optiona ordering (set semantics tables only).

©ISO/IEC 2017 — All rights reserved Invocation 67

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

8.6

8.6

<table argument proper>

<table argument proper>

Now let'slook at <table argument proper>:

<tabl e argunent proper> ::=

TABLE <l eft paren> <table or query nane> <right paren>
TABLE <t abl e subquery>

<foutime fnvocatiomn>

Thusthere are three waysto specify atable: <table or query name>, <table subquery>, or <routine+nvod
(nesteql table function invocation). The next three subsections consider each of these in turn.

8.6.1 | <tableor query name>

This hs two subcases;

1)

2)

Al<table name>, which of course might be schema qualified and might.be a DDL view name. Usif
syintax presented so far, one could write any of the following:

FROM TABLE (Ptf (TABLE (Enp))) AS P
FROM TABLE (Ptf (TABLE (My.Enmp))) AS P
FROM TABLE (Ptf (TABLE (Enp) AS E)) AS‘P

FROM TABLE (Ptf (TABLE (Enp) AS E(E1,E2,E3))) AS P

ation>

hg the

syintax presented so far, but they are usedto reference input tablesin <copartition clause> (present
infSubclause 8.13, “ Copartitioning”), and also outside of the PTF invocation to reference the parti
cqlumns (if the table has set semantics) or any column of the input table (if the table has pass-thro
cqlumns).

Al<query name>, which is the name of an in-line view declared in the WITH clause. If Qnisa<q
name>, then one could Write any of the following:

FROM TABLE (Ptf((" TABLE (1))) AS P
FROM TABLE/QPtf (TABLE (Qn) ASE)) AS P

FROM TABRE (Ptf (TABLE (Qn) AS E(E1,E2,E3))) AS P

Inthe'first example above, the default range variableis Qn.

Inthe first two, the default range variable is Emp or My.Emp. Range variables do not matter with %Ze

later
ioning
igh

lery

8.6.2 <tablesubquery>

Note that <table subquery> is <left paren> <query expression> <right paren>, so this case also has parentheses.
This permits the following example:

FROM TABLE (Ptf (TABLE (SELECT * FROMEnp))) AS P

68 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

8.6 <tableargument p

roper>

Thereis no default range variable in this caseg; it isimplementation-dependent and unknowabl e to the query
author. The following example provides an explicit correlation name:

FROM TABLE (Ptf (TABLE (SELECT * FROMEmp) ASV)) AS P

8.6.3 Nested table function invacation

A <r

or po

isat

morphic. No TABLE operator is required (or permitted) in this case because the function'sretur

:;ti ne invocation> used as a <table argument proper> must invoke a table function, either pjonom
le. Thereis no default correlation name, but one can be provided explicitly. Some examples:

FROM TABLE (Reduce (Map (...))) AS P

FROM TABLE (Reduce (Map (...) ASM)) AS P

Inth

e preceding examples, Reduce is a polymorphic table function, and Map is invoked as atable argu

of Reduce. Map may be either monomorphic or polymorphic table functien.Note that a <routine invoc

used

ap atable argument is necessarily a nested table function invocation

If the njested tabl e function is monomorphic, then the correlation name qualifies all result columns of the
table function. If the nested table function is polymorphic, then the correlation name qualifies only the

resul

t columns; any pass-through or partitioning columns are-qualified by the appropriate range variabl

establiphed within the nested <routine invocation>.

For example, suppose that Map is a polymorphic tablefunction that has one table argument, which has
through columns. Consider the following invocati on:

FROM TABLE (Reduce

) AS P

(Map (TABLE (Enp AS:EY)) AS M
PARTI TI ON BY“E. E1, M ML)

Then K qualifies the pass-through-cofumns of Emp, whereas M qualifies the proper result columns of N

The

8.7

result of Map in the preceding example is partitioned on E.E1 and M.M 1.

Table argument correlation name

An optiional correlation name for atable argument may be supplied after the <table argument proper>; ex
have already been provided above. In the absence of atable argument correlation name, a<table or query

©ISO/IEC 2017 — All rights reserved

Orphic
N type

ment
ation>

nested
proper
3

pass-

bmples
hame>

For use in a<copartition clause>, if any.

To qualify column namesin <table argument partitioning> (see Subclause 8.10, “Partitioning”) or
argument ordering> (see Subclause 8.12, “ Ordering”).

> do

<table

If the input table has set semantics, then its correlation name may be used to reference the partitioning
columns later in the query (“later” meansin any subsequent lateral joins in the FROM clause, aswell as

the WHERE, GROUP BY, and HAVING clauses, and the SELECT list).

Invocation 69

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
8.7 Table argument correlation name

4) If theinput table has pass-through columns, then its range variable may be used to reference al columns
of the input table later in the query.

8.8 Table argument column renaming

A table argument correlation name may be followed by an optional parenthesized list of column names, used
to rename the columns of the input table. If the table argument is a <routine invocation> that invokes ajpoly-
morphjc table function, then this only renames the proper result columns of the nested PTF invocation.|If
columps are renamed, those new names are the ones to reference in the partitioning and ordering clausgs. The
new names are also the column names that the PTF will see; this could be important if the®PTF author has

designed the PTF to look for specific column names in the input.

8.9 | Rangevariablesand column renaming in nested PTF

When there are nested PTF invocations, range variables and column renaming can occur at many level$. The
important thing to note is that a column has only one opportunity toeceive arange variable, and thisis also
itsonly opportunity to be renamed. This opportunity istheinnermest scopein the syntax where arange viriable
for that column can be determined. Once acolumn receivesitsfange variable (and optional renaming), it jcannot
receive a different range variable (or renaming) in an outey-Scope.

Hereig an example:

FROM TABLE (G (F (TABLE (Emp) AS E (Enq))
AS R(Rno)))

\S S(Sno)

In this|example:

— Emp has one column.

— Fhasone proper result column.

— GJhas one proper result.column.

Then:
— The column©f-Emp is renamed Eno.

— The properresult column of F is renamed Rno.

— Theproper result column of G is renamed Sno.

Thus, every column has one opportunity to be renamed, which isat the place in the syntax where the correlation
name for that column can be introduced.

8.10 Partitioning

After the <table argument proper>, there is the optiona <table argument partitioning>:

70 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
8.10 Partitioning

<tabl e argunent partitioning> ::=
PARTI TI ON BY <tabl e argunent partitioning |ist>

<tabl e argunment partitioning list> ::=
<col um reference>
| <left paren> [<column reference>
[{ <conma> <colum reference> }...]] <right paren>

ThuS <tahla ararment- nartitionitna>ste PA RTITIOM- RV with o lict of zaro-ormarecolimne Thalict can IW S
CaJre A TN LT \A ALY Ca T Al w

YUt P troromiTig>= ot 7 st 1 T T o O 2o O Mo CoOram o T TICTTOr G

be encjosed in parentheses. If there is only one partitioning column, then the parentheses are optional\

Here gre some examples with asingle table using PARTITION BY':

FROM TABLE (Ptf (TABLE (M. Enp)
PARTITION BY ())) AS P

FROM TABLE (Ptf (TABLE (M. Enp)
PARTI TI ON BY Deptno)) AS P

FROM TABLE (Ptf (TABLE (M. Enp)
PARTI TI ON BY (Deptno))) AS P

FROM TABLE (Ptf (TABLE (M. Enp)
PARTI TI ON BY (Deptno, Jobclass))) AS P

The fifst example uses () to indicate explicitly that there are.ng‘partitioning columns. The second example
showsia single partitioning column without parentheses. The third example shows a single partitioning ¢olumn
with pgrentheses. The fourth example shows alist of twepartitioning columns with parentheses.

8.11| Pruning

If Feature B204, “PRUNE WHEN EMPFY”, is supported, then a table with set semantics supports DDL to

declarg either PRUNE WHEN EMPRTY or KEEP WHEN EMPTY. PRUNE WHEN EMPTY means that there
isno goint in invoking the PTF prian empty partition because the result will be empty. If atable paramgter is
declar¢d to be KEEP WHEN EMPTY , then the PTF may be capable of producing aresult, but the query|author

<tabl ¢ argunent pranipng> ::=
PIRUNE WHEN EMRTY

e, and

8.12 Ordering

Ordering is specified by an ORDER BY clause:

<tabl e argunent ordering> ::=

©ISO/IEC 2017 — All rights reserved Invocation 71

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
8.12 Ordering

ORDER BY <tabl e argunent ordering list>

<tabl e argunment ordering list> ::=
<t abl e argunment ordering col um>

| <l

eft paren> <table argunent ordering col um>
[{ <conmme> <table argument ordering colum> }...] <right paren>

<tabl e argunent ordering colum> ::=

<co

L P o HIE SHEP-S-
T T

<or de

Thus<

be sorfed in either ascending (ASC) or descending (DESC) direction; thedefault is ASC. Each column

option
implen
then th
that or

columpislisted.

Here g

FROM 1

FROM 1

FROM 1

FROM

8.13

TABLE (Ptf (TABLEW M. Enp)

["

w—fef-erences>—f—<erder-rg—speet--eati-en
[<null ordering>]

ing specification> ::=

5C

ESC

ordering> ::=

LLS FI RST

ULLS LAST

table argument ordering> isORDER BY with alist of one or more columns. Each column may opt

0l |y be be sorted with either nullsfirst (NULLS FIRST) or nullsdast (NULLS LAST); the defaul
nentation-defined. The list can always be enclosed in parentheses. If there is only one ordering ¢

ly columns may be sorted (not arbitrary expressions) and the list must be parenthesized if moreth

Fe some examples with asingle table using ORDER BY :

[ABLE (Ptf (TABLE (M. Enp)
ORDER BY Enpno)) AS'P

[ABLE (Ptf (TABLE (M. Enp)
ORDER BY Enpno DESC)) AS P

[ABLE (Ptf (TABLE (M. Enp)
ORDER BY-X(Enpno DESC))) AS P

GRDER BY (Deptno ASC, Jobclass DESC)))
AS P

Copartitioning

onaly
may
Lis
blumn,

e parentheses are optional. Note that this differs from the ORDER BY clause in some other contextsin

an one

|f the DNBMS amnnorts Eaatiira B202 “DTE Caonartitionina’ than 2 PTE invacation-mav-snecifvconarti
Beivo-SUppoORSTt E-BLoS5— 1 SO0pPaHHBRHRg—tHeRa- = HMOEaHOR-Hay-—SpecHY-Copartt

with the following syntax:

<copartition clause> ::=
COPARTI TI ON <copartition list>

<copartition list> ::=
<copartition specification>

[{ <comma> <copartition specification> }...]

<copartition specification> ::=

72 Polymorphic Table Functionsin SQL

ioning

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
8.13 Copartitioning

<l eft paren> <range vari abl e> <coma> <range vari abl e>
[{ <conma> <range variable> }...]

<range variable> ::=
<tabl e nanme>
| <correlation name>

A <copart|t| on cI ause> |s used if there are muIt| pI e partltloned tabI es and copartltlonl ng is deS| red By default

name, [f any, otherwise the table name). Each input table listed in a <copartition specification> must be parti-
tioned| They must all have the same number of partitioning columns, and corresponding partitioning cglumns
must e comparable.

If therg is more than one <copartition specification>, then the cross product is formed between the copartitipnings.
More than one <copartition specification> requires Feature B203, “ Mare than one copartition specificgion”.

8.14 | Cross products of partitions

If ther@ is more than one partitioned input table withrset semantics, and they are not all copartitioned tagether
in asingle <copartition specification>, then execution of the PTF invocation will require the DBMSto form
Cross ;l‘roducts of partitions. (See Subclause 11:1, “Partitions and virtual processors’, for more information
about the formation of partitions.) The DBMS can choose not to support cross products of partitions, with
syntactic restrictions such as the followipg:

— Pgrmit at most one table parameter (that is, do not support Feature B201, “More than one PTF gerjeric
table parameter”).

Permit at most one table parameter with set semantics. In this case, the DBM S will not support Fegture

BR02, “PTF Copartitioning”, since copartitioning isonly possibleif there are at least two input tableswith

Sdt semantics.

Permit morethan one table parameter with set semantics, but alow at most one of them to be partifioned.
n this case the DBM S will not support Feature B202, “PTF Copartitioning”.

— Pegrmit more than one table parameter with set semantics, and allow them all to be partitioned, but fequire
thetif there are at least two partitioned input tables, then all partitioned input tables must be listed|in a
single <copartition Specification>.

If the DBM S supports cross products of partitions, then the DBMS can claim conformance to Feature B207,
“Cross products of partitionings’.

©ISO/IEC 2017 — All rights reserved Invocation 73

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
8.15 <descriptor argument>

8.15

<descriptor argument>

<descriptor argunment> ::=
<descri ptor val ue constructor>

<descri ptor value constructor> ::=
DESCRI PTOR <l eft paren> <descriptor columm |ist> <right paren>

<desc
<de

<desc
<col

A <def
each ¢
descril
names

i ptor colum list> ::=
criptor colum specification>
[{ <comma> <descriptor columm specification> }...]

i ptor colum specification> ::=
um nanme> [<data type>]

eriptor argument> is the keyword DESCRIPTOR followed by a parenthesizetJist of column na

blumn name may optionally have a datatype. If every column name has a data type, then the des
esarow type. Inthe examples, CSVreader and Pivot use descriptor argumentsthat arejust listsof ¢
ExecR is an example that uses a descriptor to pass a complete row type.

mes,
criptor
tolumn

74 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

9 C

many
step fr
two se

9.1

Primaiy audience: DBM S devel oper

To con
do the

1) C
in
2) C
re
re
in
ar
3) C
pr
th
4 G
5 C

Witht
The ar
tures’.

ISO/IEC TR 19075-7:2017(E)
9.1 Calling the describe component procedure

ompilation

mes. Using an interactive SQL mterface the query author isnot aware of query compilation asas
bm query execution, but the DBMS and the PTF do perceive query compilation and query executi
Darate steps. This section will talk about query compilation.

Calling the describe component procedure

pile aPTF invocation, the DBM Swill invoke the PTF describe component procedure. The DBM
following:

eate a private data area for the invocation. The private data area consists of one variable for each
the PRIVATE declaration of the CREATE FUNCTION statement that created the PTF.

eate PTF descriptor areas for the input tables Each input table has afull row type descriptor anc
[uested row type descriptor. The full row.type descriptor describes SELECT * from the input tab
[juested row type descriptor is empty se:that the describe component procedure can populate it. |
put table with set semantics, two additional PTF descriptor areas are required, one for the partiti
d one for the ordering.

eate the PTF descriptor areafor theinitial result row type. If the PTF was created with a known
oper result columns using(<table function column list>, then theinitial result row type descriptor de

ve all of these PTE descriptor areas PTF extended names in the PTF name space.

eate a statusvariable (type CHAR(5)) initialized to '00000'.

pument:fist must conform to the algorithm described in Subclause 5.2.4, “ Component procedure
Any-scalar arguments that are not compile-time constants (for example, columns) are treated as

S must

item

| a

e. The
For an
bning

list of
cribes

e proper result columns'specified in DDL. Otherwise, theinitial result row type descriptor is empty.

his datain place, the DBM Sisready to assembl e the argument list for the describe component progedure.

signa
null.

9.2

| nside the describe component procedure

Primary audience: PTF author

The PTF author supplies the logic of the PTF describe component procedure. The PTF describe component
procedure has four tasks:

©ISO/IEC 2017 — All rights reserved

Compilation 75

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
9.2 Insidethedescribe component procedure

1) Validatetheinput arguments. If the input arguments are not acceptable, then the PTF describe component
procedure returns an error code in the SQL status argument. Returning an error to the DBM S will cause a

syntax error.

2) If theinput arguments are acceptable, populate the requested row type descriptor areafor each input table.

3) If the PTF was not created with either a <table function column list> or RETURNS ONLY PASS
THROUGH, then the PTF describe component procedure must populate the initial result row type
descriptor area.

4) Iffthereis private data, the PTF describe component procedure can set values in the private data th
be passed to the later run-time PTF component procedures.

9.3 | Using theresult of describe

Primaiy audience: DBM S devel oper

The PTF describe component procedure returns control to the DBMS. H-the status code is not success,
the DBM S quits with a syntax error. Otherwise, the DBM Sinspects therequested row type descriptors
initial fesult row type descriptor for validity. Requested row type deseriptors must satisfy the following
straints:

1) The number of columns must be a positive integer.

ot will

then
bnd the
con-

2) The NAME components of the top-level item descriptors must be mutually distinct and equal to cglumn

names of the input table.
Theinjtia result row type descriptor must satisfythe following:

e number of columnsin the result row-type must be a positive integer, unless the PTF was creaté
ETURN ONLY PASS THROUGHK(in which case there are no proper result columns).

3)
4)

T
R
2) Eyery column must have aname{(not null or a zero-length string).
There must be no duplicate'eolumn names.

E

ery column must have avalid data type, that is, the components of the column's SQL item desci
arpa must describeadata type.

If the DBM S does ot detect any errors, then the DBM S saves the private data area and the PTF descri
areas for use during execution.

ed with

i ptor

btor

76 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

10 Optimization

Primary_audiencer DBMS developer, PTE author

The st
todl t
and th

dard does not specify how a DBM S optimizes a PTF invocation, but this subject is naturallyxim
ree audiences. The query author wants good performance, the DBM Swantsto provide goodperfor
PTF author also wants the query author (the PTF author's customer) to obtain good pérfermang

portant
mance,
e.

Althodgh the standard does not specify how to optimize a PTF invocation, the important’thing to note hereis

that th

First, i
the st

2 T
U

Fourth
cedurg
query

proceg
the PT|
in this

ipns. Evenif the PTF does produce results on an empty partition,the query author can still specify B

standard has left flexibility for the DBMS and the PTF author to achieve this.

aPTF invocation is partitioned, then each partition is executed in a separate-virtual processor. 1
dard's way of saying that these partitions can be executed in parallel on separate processors.

, if the SQL-implementation supports Feature B204, “PRUNE WHEN EMPTY”, then this featu
to eliminate empty partitions. The PTF author can do thisif thePTF does not produce results on

| EMPTY if the query author isnot interested in results from.an empty partition. Pruning empty pal
especialy significant if thereis copartitioning, becauseit.reduces full outer joinsto single sided g

the interface to the describe component procedure supports column projection in two ways:

he describe component procedure can eliminate undesired input columns using the requested row
bSCriptors.

e DBM S can optimize pass-through-c@lumns using column projection. For example, if the pass-t
rrogate is a compressed value, only the columns that are actually referenced need to be compres

, the DBM S can extend its PTR-interface during compilation to support additional PTF compone
s for optimization. For example, query planning frequently attempts to estimate the cost of diffel
plans based on estimates of the size of intermediate tables. A DBM S might support a PTF comp
ure for providing sizeestimates to be used in query planning. The standard permits such extens
F component procedure interface, but they are extensions of the standard and are not discussed f
Technical Report.

Thisis

re can
empty
RUNE
titions
r inner

type

hrough
sed.

nt pro-
ent
bnent
bNs to
urther

©ISO/IEC 2017 — All rights reserved

Optimization 77

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

(Blank page)

78 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
11.1 Partitionsand virtual processors

11 Execution

Now w
the exq

e come to the most complicated part of a PTE life cycle the execution phase We hegin by loaking at

11.1

bcution model in the standard.

Prim

The DBM S begins the execution by partitioning the input tables. Each partition‘isassigned to a separate
proc
semantics, whether they are copartitioned, and whether they are pruned when empty. Here are some of

cases

1
2)

3)

©ISO/IEC 2017 — All rights reserved

If
If

a)

b)

If

there are no input tables, then the DBM'S must execute the RTF in asingle virtual processor.

thereis oneinput table:

there-is one input table with row semantics and one table with set semantics, then essentially the

m|

ust.perform across product of the virtual processorscaled for by item 1) and item 2) above. For ex

Partitionsand virtual processors

audience: DBM S devel oper

r. There are nuances depending on the number of input tables, whether'they have row semantic

at can arise;

If theinput table has row semantics, then the DBM S can create an arbitrary number of virtua pro
and assign each input row to any virtual processor using any algorithm of its choosing. At one €
would beto create avirtual processor for each row; at the other extreme would be to process al
rows on the same virtual processor.

If the input table has set semantics.and is not partitioned, then the DBM S will first check to s¢f
input table is empty and PRUNE'WHEN EMPTY was specified. In this case, the DBM S does
need to invoke the PTF at all;'the result is empty. Otherwise (either there are rows, or KEEP V]
EMPTY was specified), theDBM S must create a single virtual processor to process the entirg
table. If the query has erdered the data, then the DBM S must sort the data before presenting it
PTF fulfill component procedure.

If the input tablehas set semantics and is partitioned, then again the DBM S will first check to

virtual
5 0r set
the

CESS0rs
Xtreme
| input

b if the
not
VHEN
input
to the

seeif

the input tablé isempty and PRUNE WHEN EMPTY is specified. In this case, the DBM S dogs not

need to invoke the PTF, since the result is empty. Otherwise, the DBM S partitions the data acd
to the partitioning columns, creating one virtual processor for each partition. The DBM S sorts
partition' if requested by the query.

ording
each

DBMS

ample,

b)

If the tablewith set semanticsis not partitioned, then the DBM S could choose to use an implementation-
dependent algorithm to partition the input table with row semantics, creating one virtual processor for
each implementation-dependent partition, and “broadcast” the entire table with set semanticsto each

virtual processor.

If thetable with set semanticsis partitioned, then the DBM S could set up virtual processors correspond-
ing to the partitions of that table, broadcasting the entire table with row semantics to each virtual

jprocessor.

Execution 79

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
11.1 Partitionsand virtual processors

4)

5)

6)

Note that the scenarios that involve cross products of partitions are permitted only if Feature B207, “Ci
produgts of partitionings’, is supported; otherwise, these cross product scenarios cannot arise because the
that lepds to them is prohibited. See Subclause 8.14, “Cross products of partitions’, foradiscussion of
of the pyntactic restrictions that a DBM S might adopt to avoid having to create cross'products of partiti

On eagh virtual processor, the DBMS instantiates the PTF private variables using the values that were ¢
from the PTF describe component procedure. Note that the PTF private variables are local to each virty
cessor| so they cannot be used to share information between virtua processors.

On eagh virtual processor, the DBMS also instantiates all the PTF deSeriptor areas that it had after the
deﬁcriIe component procedure exited. The DBM S must also create the following new PTF descriptor g

1)

2)

Each RTF descriptor areareceives a PTF extended name in the PTF namespace. The PTF extended narn
not negd to be the same as used with theé.describe component procedure, but they might as well be, and
assume that convention in our examples.

The DBMS also needs to allocatea CHAR(5) variable for a status code, initialized to ‘00000’ for succel
our expmples we let ST be the name of this status code variable.
11.2 | Callingithe start component procedure

Primarly audience: DBM S developer
On

See Subclause 12.4.9, “Virtual processors for Score”, for examples of these scenarios.

If there are two input tables with set semantics, then by default the cross product of partitions of one table
with partitions of the other table is formed, with one virtual processor for each combination of partitions.
This default is overridden if copartitioning is specified. Copartitioning is best understood by looking at

the example in Subclause 12.7.9, “Virtual processors for Similarity”.

If thereisoneinput tablewith row semantics and two input tables with set semantics, then the DBM S must

create virtual processorsthat are essentially the cross product of item 1) and item 4).

With more input tables, the possible configurations grow by generalizing the preceding points.

For each input table, the cursor row type descriptor. Thisisthe same as the requested row type dest
plus one additional column for the pass-through input.surrogate column if the input table has pass-t
cqlumns.

one additional column (the pass-through output surrogate column) for each input table with pass-t
cqlumns.

0SS
syntax
some
ons.

putput
al pro-

PTF
reas.

Criptor,
hrough

The intermediate result row type descriptor. This I's the same as the initial result row type descriptar, plus

nrough

hes do
we

5S. |n

h'virtual processor, the DBM S invokes the start component procedure (if any). The technique for

gener-

ating the parameter list is shown in Subclause 5.2.4, “ Component procedure signatures’. In our examples, only
two PTFs have start component procedures: CSVreader (see Subclause 12.2, “CSVreader”) and ExecR (see
Subclause 12.6, “ExecR”).

80 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
11.3 Insidethe start component procedure

11.3 Insidethe start component procedure

Primary audience: PTF author

Thetypical task for the PTF start component procedureisto initialize anon-DBM S resource for the PTF fulfill
component procedure. In our examples, CSVreader_start opens afile (Subclause 12.2.12, “Inside
CSVreader_start”) and ExecR attachesto an R engine (see Subclause 12.6.11, “Inside ExecR_start”. If the PTF
start component procedure is unable to access the resource, the procedure returns an error code to the DBMS.
Otherwise, a“handle” in the private datais typically used to pass the resource from the PTF start component
procedure to the PTF fulfill component procedure. It is also possible that a PTF start componentprocegiure
might generate output row(s), for example, if there are “header” rows for the complete output'onavirtual pro-
cessor{ However, the PTF start component procedure cannot set any pass-through columnstbécause it dpes not
have alcursor to supply avalid value for a pass-through surrogate.

11.4 | Calling the PTF fulfill component procedure

Primarly audience: DBM S devel oper

On eagh virtual processor, if the start component procedure has been invoked, the DBM S checks the status
code.

Assuning the status code was success, the DBM S opens afead-only nonscrollable cursor for each inpu table.
The cyrsor ranges over just the rows of the partition assigned to the virtual processor. The DBMS giveg the
cursor|an extended name in the PTF namespace.

11.5| Insidethe PTF fulfill component procedure

Primarfy audience: PTF author

Thetagk of the PTF fulfill component procedure isto generate the output rows. Each output row is passed to
the DBM S using the PIPE ROW command, described in Subclause 7.6, * Outputting arow”. If there arg input
rows, the PTF fulfill compenent procedure will generally read them from the PTF dynamic cursors.

11.6| Closing cursors

Primarfy-addience: DBM S devel oper

When the PTF fulfill component procedure finishes on avirtua processor, the DBMS can closetheinput cursors
on that virtual processor.

11.7 Calling the PTF finish component procedure

Primary audience: DBM S devel oper

©ISO/IEC 2017 — All rights reserved Execution 81

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
11.7 Calling the PTF finish component procedure

On each virtual processor, the DBMS invokes the finish component procedure (if any). In our examples, only
two PTFs have finish component procedures. CSVreader and ExecR.

11.8 Insidethe PTF finish component procedure

Primaiy audience: PTF author

Thetypical task for the PTF finish component is to perform any finishing activity on any non-DBMS resource
that was obtained in the PTF start component procedure. In our examples, CSVreader_finishes closes gfile

(Subclpuse 12.2.12, “Inside CSVreader_start”) and ExecR rel eases an R engine (see Subclause 12.6.11, | Inside
ExecR start”). A PTF finish component procedure might also output rows, for example, *summary” or “footer”
rows.

11.9| Coallecting the output

Primatly audience: DBM S devel oper

Whengver a start, fulfill, or finish component procedure performs.a PIPE ROW command, the DBMS must
place the row into the result of the <table primary>. If the virtual processors are running concurrently, thiswill
require aggregating the output rows across the servers on which the virtual processors are running.

11.1¢ Cleanup on a virtual processor

Primaiy audience: DBM S devel oper

When @virtual processor has finished,.the DBMS can dedllocate all the PTF descriptor areas on that viftual
processor.

11.11 Final result

Primaiy audiencéxDBMS devel oper

When @l virtua processors have finished, the DBMS has the complete result of the PTF invocation, as|the
union pfherows that were output on each virtual processor by the PTF fulfill component procedure. I there

are pattitioning columns, the result rows are prefixed with the partitioning columns. |

82 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

12 Examples
The examples were chosen ta exemplify the following scenarios:

Example Input scenario Output scenario Other characterigtic

Projegtion One input table with row Row type provided by Fully worked.code examles.
semantics. query author; pass-through

columns.
CSVreader No input tables. Row type determined by Startzand finish componerit pro-
reading afile. cedures, using private datafor a
file handle.

Pivot One input table with row Proper result columns
semantics and pass-through | determined from deseriptor
columns. arguments suppliedby

query.

Score One input table with row One properresult column
semantics and pass-through | declarediin DDL.
columns, one input table
with set semantics and no
pass-through columns,

TopNplus One input table with set Result row typeissame as | Private datato communicgte
semantics, sorted. T he input row type (if rewritten | between describe comporjent
example does natse pass- | with pass-through columns, | procedure and fulfill component
through columns; but could | there is one proper result procedure.
be rewritten to use pass- column, declared in DDL).
through-columns.

ExecRR One input table with set Row type provided by Start and finish componeryt pro-
semantics and no pass- query (rather than inferred | cedures, using private data for a
through columns. by PTF). handle to an R engine.

Similgrity Two input tables with set Fixed row type declared in
semantics and no pass- DDL.
through columns, sorted.

UDjoin Two input tableswith set [Only pass-through columns.
semantics, both with pass-
through columns.

Nested PTF Nested PTF invocation.

invocation

©ISO/IEC 2017 — Al rights reserved Examples 83

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IE

C TR 19075-7:2017(E)

12.1 Projection

12.1

Proj ection

12.1.1 Overview

This example shows how a PTF could perform a column projection of itsinput table. Of course, column pro-

jectior]isabasic capability of SQL, so there is no need to write such a PTF. The main point to this ex
that it (s fully worked, showing every line of code that the PTF author must write, and every descripter that the

DBM$ or the PTF must generate.

The eampl e also demonstrates the use of pass-through columns, which in this example will.replicate ¢

pleis

very

input golumn. Again, thisis not an interesting use of pass-through columns, but it demonstrates the technique,

including the handling of the input and output surrogate columns.

Using

SELEC]
FROM 1

In thisg
CHAR
table h
Theq
issim
inthe

12.1.2

The P]
1) A
2) A

The P]
the PT

These

Projection, the query author will be able to write a query such as the foll owing:

[P. Enpno, E. Enpno, E. Enane
[ABLE (Projection (
| nput => TABLE (Enp) AS E,
Col utms => DESCRI PTOR (Enpno)
AS P

query, the input table is Emp; let us assume that it hasfeur columns (Empno INTEGER, Ename
(30), Salary INTEGER, Manager INTEGER). The input table has correlation name E. Becauseth
as pass-through columns, al columns of Emp are:available in the output of Projection, qualified
ery has chosen to access E.Empno and E.Ename’Projection also has one proper result column,

ly a copy of Empno. The proper result column is qualified by the correlation name P, seen as PE
SELECT list.

Functional specification.of Projection

[author decides that Projection will have two parameters:
N input table.
descriptor that lists the columns of the input table to be projected as proper result columns of Proj

[F can operate on arow-by-row basis; therefore, the input table will have row semantics. In addi
F author'decides to permit pass-through columns.

decisions lead to the following skeleton DDL for Projection:

VAR-
e input
by E.
vhich
EMmpno

ection.

tion,

CREATE FUNCTI ON Proj ection (
I nput TABLE PASS THROUGH W TH ROW SEMANTI CS,
Col umms DESCRI PTOR

) RETURNS TABLE

DETERM NI STI C

READS

84 Po

SQL DATA

lymor phic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.1 Projection

12.1.3 Design specification for Projection

The design specification provides the details that are private to the PTF (not visible to the query author). For
the design specification, the PTF author decides:

1) Whether start and finish component procedures are required.

jures

be
nisfact
bment,

CREATIEE FUNCTI ON Proj ection (
| mput TABLE PASS THROUGH W TH ROW SEMANTI CS;
¢l ums DESCRI PTOR
) RETURNS TABLE
DETERM NI STI C
READS| SQL DATA
DESCR| BE W TH PROCEDURE Pr oj ecti on_dese¢xi be
FULFI IL W TH PROCEDURE Proj ecti on_f uldi |l |

12.1.4 Projection component-procedures

The DBMS should provideatool for the PTF author that will generate the signatures of the PTF comppnent
procedures from the skeleton PTF definition.

A key decision for the DBMS is the maximum length of descriptor and cursor names. These names willl be
automgtically gefierated and can be meaningless, other than the fact that they must be unique. As explajned in
Subclguse 7.2, *PTF extended names’, these names can be short. Using just the uppercase Latin letters|aone-
charadter name can support up to 26 different descriptor names, and up to 26 different cursor names. A(two-
charactefname usi ng Latl n Ietters or digitsin the second character can support up to 26* 36 936 dlfferent

the Iehgth of parameter listsin the examples

The DBM S tool will generate parameter definitions for the PTF component procedures that are derived from
PTF parameters. The DBM S should document its conventions for generating the parameters of the PTF com-
ponent procedures. The conventions used in this Technical Report are as follows:

1) Scaar parametersaresimply copied from the PTF parameter definition to the corresponding PTF component
parameter definition.

©ISO/IEC 2017 — All rights reserved Examples 85

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.1 Projection

2) A descriptor parameter of a PTF generates a VARCHAR(2) parameter of the PTF component procedures.
To highlight that the parameter is a descriptor name, “_descr” is appended to the parameter name in the
PTF component procedure.

3) A tableparameter requires several descriptorsand one cursor, asenumerated in Subclause 5.2.4, “ Component
procedure signatures’. Each of theseisa VARCHAR(2) parameter in the PTF component procedures. The
names of these parameters are derived by appending specific stringsto the PTF parameter name, asfollows:

Descriptor or cursor Suffix on the parameter name

Full row type _row_descr

Partitioning (set semanticsonly) | _pby descr

Ordering (set semanticsonly) | _order_descr
Requested row type _request_descr
Cursor row type _cursor_descr
Cursor _cursor_name

4) Tlhere are two result row descriptors; this Technical Regortcalls these the Initial_result_row and the
Intermediate_result_row, both of type VARCHAR(2):

5) Thereisastatus parameter of type CHAR(5) named Status.
6) The describe component procedure is always DETERMINISTIC.

7) Tlpe other component procedures copy either DETERMINISTIC or NOT DETERMINISTIC fromthe PTF
dgfinition.

8) Thefulfill component procedureicopies the SQL-data access (either CONTAINS SQL or READSSQL)
frpm the PTF definition.

9) The other component procedures have SQL-data access CONTAINS SQL.
Using the DBM S tool asspecified above, the output of the tool might look like this:

F PROCEDURE-Pr oj ecti on_descri be (

N | nput _rlew-descr VARCHAR(2),

N | nput \request _descr VARCHAR(2),

N Colunms_descr VARCHAR(2),

N I'ni~t’i al _resul t _row VARCHAR(2),

NOUT St at us CHAR(5)

) LANGUAGE SQ. DETERM NI STI C CONTAI NS SQL
SQ. SECURI TY DEFI NER

BEG N

END

CREATE PROCEDURE Projection_fulfill (
I N I nput _cursor_descr VARCHAR(2),
I N I nput _cursor_name VARCHAR(2),
I N Col ums_descr VARCHAR(2),
IN Internedi ate_resul t _row VARCHAR(2),

86 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

I NOUT Status CHAR(5)

) LANGUAGE SQL DETERM NI STI C READS SQL DATA

SQL SECURI TY DEFI NER
BEG N
END

ISO/IEC TR 19075-7:2017(E)
12.1 Projection

12.1.9 TnvoKing Projection

The query author writes the following query:

SELECT P. Enpno, E. Enpno, E. Enane
FROM TABLE (Projection (

) AS P

12.1.4 Calling Projection_describe

I nput => TABLE (Enp) AS E,
Col utms => DESCRI PTCR (Enpno)

Given the query, the DBM S must assembl e the arguments to Projection_describe. There are five arguments:

1) Input_row_descr, the descriptor of the input table's row type. Emp has the following signature:

TABLE Emp (

Enmpno | NTECER,
Enane VARCHAR(30),
Sal ary | NTEGER,
Manager | NTEGER)

Tlhe DBMS builds a descriptor for.Emp's row type, naming it 'l 1', with the following contents:

Content
Header | COUNT =4
TOP_LEVEL_COUNT =4
Other components unspecified
[tem 1 NAME ="EMPNO'

LEVEL =0
TYPE = 4 (for INTEGER)
Other components unspecified

©ISO/IEC 2017 — All rights reserved

Examples 87

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.1 Projection

Content

Item 2 NAME ='ENAME'

LEVEL =0

TYPE = 12 (for VARCHAR)

LENGTH =30

CHARACTER SET CATALOG, CHAR-
ACTER SET SCHEMA, and CHARAC-

TER_SET_NAME arethe catalog, schema,
and local name of the default character set.
Other components unspecified

Item 3 NAME ='SALARY'

LEVEL =0

TYPE =4 (for INTEGER)
Other components unspecified

Item 4 NAME ='MANAGER'
LEVEL =0

TYPE =4 (for INTEGER)
Other components unspegified

2) Input_request_descr, the input table's requested row type’ The DBM S assigns this descriptor the P[TF
eqtended name 'Al'. Thisis an empty descriptor, likethis:

Content

Header | COQUNT =0
TOP_LEVEL_COUNT =0
Other components unspecified

3) Cplumns_descr, the descriptor generated from the query's argument. The DBM S assigns thisthe name'Q’,
w|th the following contents:

Content

Header | COUNT =1
TOP_LEVEL_COUNT =1
Other components unspecified

Hemt NAME=—EMPNO
LEVEL =0

TYPE =0 (for unspecified type)
Other components unspecified

4) Initial_result_row, the descriptor of the proper result columns. The DBMS assigns this the name 'R'. This
is another empty descriptor:

88 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.1 Projection

Content

Header | COUNT =0
TOP_LEVEL_COUNT =0
Other components unspecified

5) StLaIus, the status argument. The DBMS allocates a CHAR(5), initializes it '00000" (success).

After gassembling these arguments, the DBMS can call Projection_describe like this:

CALL fprojection_describe (

| pput _row_descr => '[|1",

| pput _request _descr => "'Al',
| ums_descr VARCHAR => '@,

Ipitial _result_row=> "R,

Sfatus => ST

12.1.7 Inside Projection_describe

Thetapks for Projection_describe are:

1) Examine the arguments for validity, returning ancecror if they are not valid.

2) pulate the requested row type descriptor with-the names of the columns that Projection wishesto feceive

during execution.

3) pulate the initial result row type with'the names and data types of the proper result columns.

The cqde for Projection_describe might-be:

F PROCEDURE Proj ecti on_gdescri be (

N | nput _row_descr VARCHAR(2),

N | nput _request _deser VARCHAR(2),

N Col umms_descr (VARCHAR(2) ,

N I nitial _resulf_row VARCHAR(2),

NOUT St at us..CHAR(5)

) LANBUAGE SQL{DETERM NI STI C CONTAI NS SQL
SQ SECURI TY\DEFI NER

/* llogah~variabl es used to scan Col unmms_descr
** (CoMumsl, C1, Nanel) and | nput_row descr

** (Colums2, C2, Nane2)
*/
DECLARE Col ums1, Col umms2 | NTEGER;
/* nunber of columms */
DECLARE Cl1, C2 INTEGER, /* current colum nunber */
DECLARE Nanel, Nanme2 VARCHAR(128);
/* current columm nane */
DECLARE Found BOCLEAN; /* flag set to TRUE if a
** mat ching colum nane is found */
/* Copy Col um_descr to |nput_request_descr.

©ISO/IEC 2017 — All rights reserved

Examples 89

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.1 Projection

** Note that the DBMS only requires the col um
** nanmes in |nput_request_descr, not their types.
** |t is an error if a colum nanme in

** | nput _request _descr is not a colum in

** | nput _row_descr, but the DBVMS will perform

** that check so Projection_describe does not

** need to */

COPY DESCRIPTOR PTF Col umms_descr
TO PTF | nput _request _descr;

/* Populate Initial _result_row Each colum

** manmed i n Col ums_descr provides the nanme

** of a proper result columm, because this is

** jnpl ementing a projection operation. W need

** §o find the colum in Input_row descr and

** g¢opy the type information to Initial_result_row
*/

GET|DESCRI PTOR PTF Col um_descr
lumsl = TOP_LEVEL_COUNT;
GET|DESCRI PTOR PTF | nput _r ow_descr
lums2 = TOP_LEVEL_COUNT;

/* Quter |oop scans the colum nanes
** jn Col utms_descr

*/
SET|C1 = 1;

Qut ¢rl oop: WHILE (Cl <= Colummsl1) DO

GET DESCRI PTOR PTF Col um_descr VALUE-CL
Nanel = NAME;

/1 Inner | oop scans the colum nanes

*1 in | nput_row_descr

*

SET @ = 1,

SET Found = FALSE;

I mnerl oop: WHI LE (C2 .<=“Col um2) DO

GET DESCRI PTOR RTE, I'nput _row descr VALUE C2
Narme2 = NAME;

/* Check for a match */
| F (Namel)="Nanme2) THEN
COPY(DESCRI PTOR PTF | nput _row_descr
VALUE C2 (NAME, TYPE)
TO PTF Initial _result_row VALUE C1,;
SET Found = TRUE;
HEAVYE—+Tmertoop;
END | F;
SET C2 = C2+1;
END VWHI LE | nnerl oop;

/* If no match was found, return an error */
| F (Found = FALSE) THEN
SET Status = '42000'; /* syntax error */
RETURN;
END | F;

90 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.1 Projection

/* go to next proper result colum */
SET C1 = Ci1+1;
END WHI LE Qut erl oop;

/* Success! just return; Status is already success */
RETURN;
END

12.1.9 Result of Projection_describe

In thislexample, Projection_describe populates the Input_request_descr descriptor as fatlows:

Content

Header | COUNT =1
TOP_LEVEL_COUNT =1
Other components unspecified

Item 1 NAME ='EMPNCO'

LEVEL =0

TYPE = 0 (for unspecified type)
Other components Unspecified

The DBMS checks that thisis a non-empty list of.distinct column names of the input table Emp.

Projection_describe populates the Initial _result:“row descriptor asfollows:

Content

Header”| COUNT =1
TOP_LEVEL_COUNT =1
Other components unspecified

Item 1 NAME ='EMPNO'

LEVEL =0

TYPE = 4 (for INTEGER)
Other components unspecified

The DBMS checks this descriptor for validity as an output row type: at least one column, acceptable distinct
column names (not zero-length or null), and valid data types.

12.1.9 Virtual processorsfor Projection

Thereisasingleinput table with row semantics; therefore, the DBMS is free to create any number of virtual
processors and assign rows to them in an implementation-dependent fashion (round robin, random, etc.)

©ISO/IEC 2017 — All rights reserved Examples 91

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.1 Projection

Prior to starting any virtual processors, the DBMS can determine the row type of the input table cursor, since

that will be the same on all virtual processors. Since the input table has pass-through columns, the cursor row
typeistherequested row type plusone additional column, the pass-through input surrogate column. TheDBMS
gives this column an implementation-dependent name and data type.

12.1.10Calling-Projectionfulfill
On eagh virtual processor, the DBMS calls Projection_fulfill. Recall that its signatureis:

PROCEDURE Proj ection_fulfill (

N | nput _cursor_descr VARCHAR(2),

N | nput _cur sor _name VARCHAR(2),

N Col ums_descr VARCHAR(2),

N | nternedi ate_result_row VARCHAR(2),
NOUT St at us CHAR(5)

)
This requires three descriptors, a cursor, and a status variable, as follows:

1) Input_cursor_descr describes the input cursor's row type. This consists of the columns that Projec-
tion_describerequested inusing Input_request_descr, plus onecolumn for the pass-through input surrogate.
T}e DBM S namesthe pass-through input surrogate colum$surrl’ (this nameisimplementati on-dependent,
byt must not be equivalent to any column name of theequested row type or the intermediate resulft row

type). The DBMS builds a descriptor and names it ‘€R"; the contents look like this:

Content

Header | COUNT =2
TOP_LEVEL_COUNT =2
Other components unspecified

Item:l NAME ='EMPNO'

LEVEL =0

TYPE =4 (for INTEGER)
Other components unspecified

Item 2 NAME = "$surrl’
LEVEL =0
TY PE = implementation-dependent

2) ThéDBMS opens acursor and givesit the PTF extended name 'CN'.

3) The DBMS builds a descriptor from the Columns argument in the PTF invocation, naming it 'Q'. This has
the same contents as previously seen in Subclause 12.1.6, “Calling Projection_describe”.

4) The DBMS builds a descriptor of the intermediate result row type, caling it 'MR'. The intermediate result
row consists of the initial result row plus the pass-through output surrogate column. The name and type
of the pass-through output surrogate column must be the same as the name of the pass-through input sur-
rogate column.

5) The DBMS allocatesa CHAR(5) variable called ST for the status variable.

92 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.1 Projection

After creating and naming these things, the DBMS calls Projection_fulfill like this:

CALL Projection_fulfill (
| nput _cursor _descr => "'CR,
I nput _cursor _name => 'CN ,
Col ums_descr => 'Q,
Internmediate_result_row => "M,
Status => ST

12.1.11Inside Projection_fulfill

Thetagk for Projection_fulfill isto read theinput cursor and write output rows. Note that the input cursoy's row
type igprecisely the same as the intermediate output row. This means that Projection_fulfill'slogic can be very
simplg: read arow from the cursor; test for end of data; if data was read, then copy the input row to theinter-

mediale output row and repeat.

F PROCEDURE Projection_fulfill (

N | nput _cursor_descr VARCHAR(2),

N | nput _cur sor _name VARCHAR(2),

N Col ums_descr VARCHAR(2),

N I nternedi ate_result_row VARCHAR(2),
NOUT St at us CHAR(5)

) LANBUAGE SQL DETERM NI STI C CONTAI NS SQL
SQ. SECURI TY DEFI NER

/* ¢ondition handler for the subsequent | oop.

** When the input cursor is exhausted this

** Mmandl er will be invoked, causi-ng

** Projection fulfill to exit.

** There is no other task for_the condition handler
** ¢§0 a no-op woul d be sufficient. SQ. does not

** have a no-op, SO we sket)'Status to success */
DECLARE EXI T HANDLER FOR NOT FOUND

SET|Status = ' 00000's

/* loop until there is no nore data */
Loop: WH LE TRUE DO
FETCH PTE d«amput _cursor _nane
| NTO BESCRI PTOR PTF | nput _cursor _row,
COPY BPESCRI PTOR PTF I nput _cursor_row (DATA)
TO,PTF I nternedi ate_result_row
Pl PEYROW PTFE | nternedi ate result row,
END WHI LE Loop;
END

12.1.12Coallecting theresults

Each time that Projection_fulfill executes a PIPE ROW statement, the DBM S builds arow of output. The
intermediate result row that is delivered to the DBM S has two columns:

©ISO/IEC 2017 — Al rights reserved Examples 93

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.1 Projection

1) The proper result column EMPNO. This column can be copied into the complete result row, whereit is
qualified by the correlation name P.

2) The pass-through output surrogate column $surrl. This column must be expanded into the columns of
Emp, qualified by E.

12.1.13Cleanup

When Projection_fulfill finishes on avirtual processor, the DBMS can destroy the virtual processor.

94 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

12.2

ISO/IEC TR 19075-7:2017(E)

122 CSV

CSVreader

This example was introduced in Subclause 3.2.1, “CSVreader”.

12.2.1 Overview

A spre
alistg
large \

The di

12.2.2

The P
) T
2) A
3) A
Thust

FUNCT
Fi
Fi

RETUR
NOT Df
CONTA

Notet
depen
param

12.2.3

Dat es DESCRI PTOR DEFAULT NWLL)

f column names, and subsequent lines of the file contain data. The datain general can be treated

5tinguishing feature of this example isthat there are no input tables.

Functional specification of CSVreader

[author decides that CSVreader have the following inputs:
ne file name, a character string.

n optional list of column names to be treated as REAL™

n optional list of column names to be treated as DATE.

ne signature that is visible to the query authorwill be:

ON CSVreader (
| e VARCHAR(1000),
oats DESCRI PTOR DEFAULT NULL),

\S TABLE
ETERM NI STI C
NS SQL

hat this example hasno input table. This example is non-deterministic because the results will va
ing on the contents of the file. The SQL-data accessis CONTAINS SQL because there are no tg
bters and no side'tables that are read by the PTF.

Besign specification for CSVreader

reader

bdsheet can generally output acomma-separated list of values. Generally, thefirst line of thefilé cgntains

asa

ARCHAR. However, some of the fields may be numeric or datetime. The PTF author has proviged a
PTF clled CSVreader designed to read afile of comma-separated values and interpret thisfile as atab

€.

ry
ble

For the design specification, the PTF author decides:

1) Whether PTF start and/or finish component procedures are required.

The PTF author decides to have a PTF start component procedure to open the input file, and a PTF finish
component procedure to close the input file.

©ISO/IEC 2017 — All rights reserved

Examples 95

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.2 CSVreader

An aternative design would be to simply open and close the file in the PTF fulfill component procedure.
This design has been chosen to illustrate the technique, without recommending or discouraging this tech-
nigue.

2) The names of the PTF component procedures.

The PTF author decides to name the PTF component procedures CSVreader_describe, CSVreader_start,
CSVreader fulfill and CSVreader finish.

3) The private datafor the PTF component procedures..
The PTF start component procedure will open the file and pass a handle to subsequent runtime stages.

After making these decisions, the PTF author writes the following skeleton definition of €SV reader:

CREATIE FUNCTI ON CSVr eader (

Fifl e VARCHAR(1000),

Flf oat s DESCRI PTOR DEFAULT NULL,

Dat es DESCRI PTOR DEFAULT NULL)
RETURNS TABLE

NOT DETERM NI STI C

CONTAINS SQL

PRI VATE DATA (

Fif| eHandl e | NTEGER)

DESCRI BE W TH PROCEDURE CSVr eader descri be
START|W TH PROCEDURE CSVr eader _start
FULFI LL W TH PROCEDURE CSVreader _ful fill
FI NI SH W TH PROCEDURE CSVreader fi ni sh

12.2.4 CSVreader component proceduré&s

The DBMS should provide atool that tekes the preceding skeleton DDL for CSVreader and generates the fol -
lowing skeleton signatures for the PTEcomponent procedures. We are assuming that the PTF author wijll
implerent the PTF in SQL/PSM-

CREATIE PROCEDURE CSVreader_describe (
NOUT Fi | eHandl e T"\NTEGER,

N Fi | e VARCHAR(1000),

N Fl oat s_deser. VARCHAR(2),

N Dat es_descr VARCHAR(2),

N I nitialyresult_descr VARCHAR(2),
NOUT St-at'us CHAR(5)

) LANGUACGE)SQL DETERM NI STI C CONTAI NS SQL
SQ SECURFTY DEFI NER

BEG N
END

CREATE PROCEDURE CSVreader_start (
I NOUT Fi |l eHandl e | NTEGER,
IN File VARCHAR(1000),
IN Fl oat s_descr VARCHAR(2),
I N Dat es_descr VARCHAR(2),
IN I nternediate_result_descr VARCHAR(2),
I NOUT Status CHAR(5)

96 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

) LANGUAGE SQL NOT DETERM NI STI C CONTAI NS SQL
SQL SECURI TY DEFI NER
BEG N

END

CREATE PROCEDURE CSVreader _ful fill (

I NOUT Fil eHandl e | NTECER,
IN File VARCHAR(1000),

ISO/IEC TR 19075-7:2017(E)
12.2 CSVreader

N FT oat s_descr VARCHAR(Z2),

N Dat es_descr VARCHAR(2),

N | nternedi ate_result_descr VARCHAR(2),
NOUT St at us CHAR(5)

) LANBUAGE SQL NOT DETERM NI STI C CONTAI NS SQL

SQL
BEG
END

SECURI TY DEFI NER
N

F PROCEDURE CSVr eader _fi ni sh (

N Fi | eHandl e | NTEGER,

N Fi |l e VARCHAR(1000),

N Fl oat s_descr VARCHAR(2),

N Dat es_descr VARCHAR(2),

N | nternedi ate_result_descr VARCHAR(2),
NOUT St at us CHAR(5)

) LANBUAGE SQL NOT DETERM NI STI C CONTAI NS SQL

SECURI TY DEFI NER

NQTE2 —

language.
2)
3

intermediate result Tow type descriptor.
4)

body‘of-the PTF component procedures.

DBMS tool output should go to one or two files, [f-the PTF author will be writing in SQL/PSM, then the output canp go to a
single file with the preceding contents. If the PTF author will be writing in an external language such as C, then thg output
should go to two files, one for the SQL DD &imilar to the above and another with askeleton procedure header in thejexternal

The names of the parameters are arbitrary asfar asthe DBMS is concerned; actually, they are not even required for the DDL
to accompany an external language’However, the PTF author will want the parameter names of the PTF component prgcedures
to besimilar to the parameter names of the PTF itself. The DBM Stool should have some predictable algorithm for gegnerating
the parameter names. In this example, the DBM Stool has added _descr to the names of the PTF descriptor area parpmeters.

The penultimate parameter is the extended name of the descriptor area for the result row type of the PTF. For the dgscribe
component procedure; thisisthe initial result row type descriptor, and for the run-time component procedures this is the

Thefinal pafameter is an SQLSTATUS code. Thisisan INOUT parameter which the DBM Sinitializes to success (‘P0000");
the PT.E.component procedure must change this value to indicate failure. Later, we will consider how to write the rgutine

12.2.5 Implementation of CSVreader

Next the PTF author must write the bodies of the PTF component procedures. We discuss the logic of each
PTF component procedure below at the point where the procedure isinvoked, to provide context to understand
the logic of each component procedure.

©ISO/IEC 2017 — All rights reserved

Examples 97

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.2 CSVreader

12.2.6 Invoking CSVreader

The query author can see the following signature:

FUNCTI ON CSVr eader (

Fi |l e VARCHAR(1000),

Fl oat s DESCRI PTOR DEFAULT NULL,
T€S DESCRIPTOR DEFAULCT NULCL)

— Fije: acharacter string containing the name of afile. Thefile should contain text farmatted into lines. Each

es. Each remaining line of the table produces one row of output.

ats: by default, afield of theinput file isregarded as a character string—-However, this argument [can be
uged to declare the names of columns that are to be interpreted as floating point.

— Dates: this argument can be used to declare the names of columnsithat are to be interpreted as dates
aqcording to some format.

Using thisinformation, the query author writes the followingfvocation of CSVreader PTF:

SELECT *
FROM TABLE (CSVreader (
Fijl e => 'abc.csv',

Flloats =>

DESCRI PTOR ("principle", "interest")
Dat es => DESCRI PTOR ("due_date")

) AS S

To run|successfully, there must be anloperating system file named abc.csv. Thefirst line of the file musf have
acom{a-separated list of column.names, among which must be principle, interest, and due_date. Each

remairning line of the file must, be-a comma-separated list of values; the fields for the principle and intefest
columps must be formatted humerically; the field for due_date must be formatted as a date.

12.2.1 CallingCSVreader_describe

CSVrgader, describe. As stated in Subclause 12.2.4, “CSVreader component procedures’, the parametéy list

of CSVreadet _dcau tbets:

In ord@o compile the preceding query, the DBMS calls the PTF describe component procedure,

PROCEDURE CSVr eader _descri be (

I NOUT Fi |l eHandl e | NTECER,

IN File VARCHAR(1000),

IN Fl oats_descr VARCHAR(2),

I N Dat es_descr VARCHAR(2),

IN Initial _result_descr VARCHAR(2),
I NOUT Status CHAR(5)

)

98 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — Al rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.2 CSVreader

The private datais:

PRI VATE DATA (Fil eHandl e | NTEGER)

The DBMS must allocate the private variable shown above, initialized to null. Thiswill be passed as the first
argument of CSVreader_describe.

The next argument, File, isascalar that is simply copied from the invocation of CSVreader.

The ngxt two arguments, Floats descr and Dates_descr, correspond to Floats and Dates, respectively,\i the
invocgion of CSVreader. The query author has passed the following two DESCRIPTOR constructersin the
invocgion of CSVreader:

DESCR| PTOR ("principle", "interest")
DESCR| PTOR (" due_date")

The cqrresponding arguments in CSVreader_describe are character strings holding the PTF extended names
of the IPTF descriptor areas. The DBM S might name these PTF descriptor areas Ql.and Q2. Q1 hasthefol|owing
contens:

Content

Header | COUNT =2
TOP_LEVEL_COUNT.=2
Other components unspecified

Item 1 NAME = "principl€e

LEVEL =0

TYPE=0

Other components unspecified

Item 2 NAME = "interest’

LEVEL =0

TYPE=0

Other components unspecified

Q2 has the following contents:

Content

Header | COUNT =1
TOP_LEVEL_COUNT =1
Other components unspecified

Item 1 NAME = 'due_date'

LEVEL =0

TYPE=0

Other components unspecified

The DBMS must also allocate an empty read-write PTF descriptor areafor theinitial result row type. Let this
PTF descriptor area be named R. R has the following contents:

©ISO/IEC 2017 — Al rights reserved Examples 99

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.2 CSVreader

Content

Header | COUNT =0
TOP_LEVEL_COUNT =0
Other components unspecified

Note that although R has no SQL item descriptor areas, the describe component procedure can (and.mu
more, Pp to some implementati on-defined maximum number of columns.

Finally the DBMS must alocate a CHAR(5) variable for the status code, initialized to ‘00000 Let ST
status code variable.

Now the DBM S makes the following invocation:

CALL CSVreader _describe (

Fi|| eHandl e => Fi | eHandl e,

Fijle => 'abc.csv',

Flloats_descr => 'Ql',

DIt es_descr => 'Q@',
itial _result _row=>"'R

Sfatus => ST

12.2.94 Inside CSVreader_describe

The b
Initial |

100 Polymorphic Table Functionsin SQL

es not contain the name of afile that' CSVreader_describe can open, then CSVreader_describe r

us argument.
the firstine of the input file. If the file is empty, return an error.
tialize avariable Colno = 0;

adoop, parse thefirst line into tokens delimited by commas. For each token:

sic objective of CSVreader_describe istepopul ate the PTF descriptor area whose nameis passe
[result_row argument. If CSVreader .describeis unable to do this, for example, if the input argur

5t) add

be the

| inthe
nent
Bturns
cate no

a) Increment Colno.

b) Increase the number of item descriptor areasin the result row type descriptor area:

SET DESCRI PTOR I nitial _result_row COUNT = Col no;

This has the side effect of adding an empty SQL item descriptor area at the end of the result row

descriptor area.

¢) Placethetokenin avariable, Colname.

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2

017(E)

12.2 CSVreader
d) Set the name of the new column to Colname:
SET DESCRIPTOR Initial _result_row
VALUE Col no NAME = Col nane;
€) Determine the datatype of the column, asfollows:
i) If the column nameis found in the input PTF descriptor area Floats descr, then the column
typeis REAL,
i) If the column nameisfound in theinput PTF descriptor area Dates_descr, then the.column type
isDATE.
iii) Otherwise the column typeis VARCHAR(100).
f)] Use SET DESCRIPTOR to set the type of the column. For example, if the eofumn typeis VAR-
CHAR(100), this statement could be used:
SET DESCRIPTCOR Initial _result_row
VALUE Col no TYPE = 12, LENGTH = 100;
5) Closetheinput file.
If CS\reader_describe wished to communicate with the run-time PTF component procedures, it could|do so
by setting valuesin the private variables. In this example, therelis no information to convey that won't e con-
veyed |n theresuult row type descriptor area. Therefore, CSVreader can simply |eavethe private data (FileHandle)
untoughed.
12.2.9 Result of CSVreader _describe
The result of CSVreader_describe will,depend on the first line in abc.csv. We are assuming that the firg line
is.
docnoj}nane, due_dat e, pri nci'ple, i nt er est
Then €SVreader describewilt populatetheinitial result row type descriptor to describe five columns, ashamed
above|The columns named "principle” and "interest" will be of type REAL and the column named "dug_date"
will be of type DATE. The other columns will be of type VARCHAR(100). Therefore, the descriptor 1qoks
liketh|s:
Content
Header | COUNT =5
TOP_LEVEL_COUNT =5
Other components unspecified
©ISO/IEC 2017 — All rights reserved Examples 101

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.2 CSVreader

Content

Item 1 NAME = 'docno’

LEVEL =0

TYPE=12

LENGTH =100

CHARACTER SET CATALOG, CHAR-
ACTER _SET SCHEMA, and CHARAC-
TER_SET _NAME arethe catalog, schema,
and local name of the default character set.
Optionally, COLLATION_CATALOG,
COLLATION_SCHEMA, and COLLA-
TION_NAME may specify a collation.
Other components unspecified

Item 2 NAME = 'name'

LEVEL =0

TYPE=12

LENGTH =100
CHARACTER_SET_CATALQG, CHAR-
ACTER_SET_SCHEMA ,and CHARAC-
TER_SET_NAME arethecatalog, schema,
and local name of the default character set.
Optionally, COLLATION_CATALOG,
COLLATION . SCHEMA, and COLLA-
TION_NAME may specify a collation.
Other components unspecified

Item 3 NAME = 'due_date’

LEVEL =0

TYPE=9
DATETIME_INTERVAL_CODE =1
Other components unspecified

ltem 4 NAME = "principle

LEVEL =0

TYPE=7

Other components unspecified

Item 5 NAME = "interest’

LEVEL =0

TYPE=7

Other components unspecified

Then the row type looks like this:

Correlation S
name

Column name | docno name due date | principle | interest

102 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.2 CSVreader

Datatype VARCHAR(100) | VARCHAR(100) | DATE REAL REAL
The query was:
SELECT *
FROM TABLE (CSVreader (
Fl oat; => DEéCRI PlI'O? ("principle", "interest")
Dat es => DESCRI PTOR ("due_date")
)) AS S

Based|on the row type generated by CSVreader_describe, the SELECT * is equivalent to;

SELECT S."docno", S."nane", S. "due_date", S."principle", S "interest"

12.2.10Virtual processor for CSVreader

To execute the invocation, the DBM S uses a single virtual processorsirice there are no input tables.
The prjvate datafor CSVreader is.

PRI VATE DATA (Fil eHandl e | NTEGER)

The DBMS must allocate memory on the virtual processor for this private variable, plus a CHAR(5) for the
SQL gjatus code. We will portray the private variable with the same name as shown in the PRIVATE DATA
declargtion above; we give the status code variabl€ the name ST.

The DBM S must a so instantiate copies of the SQL descriptor areasthat were present after CSVreader_describe
compl eted. We assume that they have beengiven the same PTF extended names as before; they were 'Q1' and
'Q2' far the two SQL descriptor areas provided by the query, and 'R’ for the SQL descriptor area of the fesult
row type. The contents of these SQLdescriptor areas are found in Subclause 12.2.7, “Calling
CSVrdader_describe”, and Subclause 12.2.9, “Result of CSVreader _describe”.

12.2.11 Calling CSVreader _start

The signature for:CSVreader_start is given in Subclause 12.2.4, “CSVreader component procedures’, §s:

PROCEDURE CSVr eader _start (

NOUT , Fi | eHandl e | NTEGER,

| N—Eil e VARCHAR(1000)

IN Fl oats_descr VARCHAR(2),

I N Dat es_descr VARCHAR(2),

IN Internedi ate_resul t _row VARCHAR(2),
I NOUT Status CHAR(5)

)

Sincethereare no input tables, thisisalmost identical to the signaturefor CSVreader_describe, the one difference
being that the describe component procedure populatestheinitial result row descriptor, whereas CSVreader_start
has the intermediate result row descriptor asinput. This example has no pass-through columns, so the interme-

©ISO/IEC 2017 — All rights reserved Examples 103

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.2 CSVreader

diateresult row descriptor isidentical to theinitial result row descriptor asit was output by CSVreader _describe.
The other descriptors are the same as on input to CSVreader_describe. Assuming the PTF descriptor areas have

the same names as during compilation, the DBM S calls CSVreader_start as follows:

CALL CSVreader_start (
Fi | eHandl e => Fi | eHandl e,
File => '"abc.csv',
Floats descr => 'Ql'

tes_descr => 'Q@',
Imtermediate_result _row => 'R
Sfatus => ST

Inside CSVreader_start

ler_start must initialize the processing on the virtual processor. The file named by the File argu
) should be opened, and afile handle placed in the FileHandle argliment. As a safety check,
er_start should read thefirst line of the file and confirm that the'column names are correctly des

r can be returned in the status code argument.

12.2.13Calling CSVreader_fulfill

The DBMS checks the status code that was returned from CSVreader_start. If it is not '00000' (succesy
the DBM S terminates the virtual processor.*Otherwise, the DBM S proceedsto call the next stage,
CSVrdader_fulfill.

The signature for CSVreader fulfillis given in Subclause 12.2.4, “ CSVreader component procedures’,

PROCEDURE CSVr eader _ful il (

NOUT Fi | eHandl e NNTEGER,

N Fi | e VARCHAR(1000),

N Fl oat s_deser. VARCHAR(2) ,

N Dat es_descr VARCHAR(2),

N | nt er medi at e_resul t _r ow VARCHAR(2),
NOUT St.at'us CHAR(5)

ment

cribed
‘medi-

| then

then

12.2.14Inside CSVreader_fulfill

CSVreader_start has aready read the first line of the input file whose handle is in the parameter FileHandle.
CSVreader_fulfill should now read the remaining lines of theinput file. Each lineis parsed by commadelimiters,

104 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.2 CSVreader

and the fields are mapped to columns of the output row. The values of the columns should be written (using
SET DESCRIPTOR) to the DATA component of the PTF descriptor areawhose name is passed in the Interme-
diate result_row argument. After setting the DATA component for every column of aresult row,
CSVreader_fulfill uses PIPE ROW to send the row to the DBMS.

For example, suppose the following lineis read:

123, ry, 01/01/2014 234 56 345 67

CSVraader_fulfill then performs SET DESCRIPTOR commands equivalent to the following:

SET DESCRI PTOR PTF Internediate _result_row VALUE 1

DATA = ' 123';
SET DESCRI PTOR PTF Internediate_result_row VALUE 2
DATA = "Mary';

SET DESCRI PTOR PTF Internediate_result_row VALUE 3
DATA = CAST (' 2014-01-01' AS DATE);

SET DESCRI PTOR PTF Internediate_result_row VALUE 4
DATA = CAST ('234.56" AS REAL);

SET DESCRI PTOR PTF Internediate_result_row VALUE 5
DATA = CAST (' 345.67' AS REAL);

After getting all columns of the output row, CSVreader fulfill sendsthe row to the DBMS using a PIPE ROW
command:

Pl PE ROW PTF I nternedi ate_result_row,

CSVragader_fulfill should do this repeatedly until the end-of fileis reached, calling PIPE ROW once for| each
input [jne. CSVreader_fulfill should also incorporate |ogic to check that the input is correctly formed; if an
error i$ encountered, then an error code can be retrned in the Status argument.

12.2.16Coallecting the output

The DBMS collects the output that it receives via PIPE ROW commands performed within CSVreader [fulfill.

12.2.16Calling CSVreader_finish

When [CSVreaden fulfill completes, the DBM S checks the status code.

Next the DBMS calls CSVreader_finish to perform final cleanup. The signature for CSVreader_finishiggiven
in Subpladse 12.2.4, * CSVreader component procedures’, as.

PROCEDURE CSVr eader _finish (
I NOUT Fil eHandl e | NTECGER,
IN File VARCHAR(1000),
I N Fl oat s_descr VARCHAR(2),
I N Dat es_descr VARCHAR(2),
IN I nternediate_result _row VARCHAR(2),
I NOUT Status CHAR(5)

©ISO/IEC 2017 — All rights reserved Examples 105

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.2 CSVreader

The input arguments are the same as the preceding stage, CSVreader_fulfill, and can ssmply be maintained by

the DBM S without change. Therefore, the DBM S uses the following invocation:

CALL CSVreader _finish (

F
F
F

| eHandl e => Fi |l eHandl e,
le => "abc.csv',
oats_descr => 'Ql',

Dat es_descr => 'Q' .

I
S

t er medi at e_result_row =>

atus => ST

12.2.171nside CSVreader_finish

'R

CSVrgader_finish closes the input file indicated by FileHandle.

12.2.18Cleanup

After CSVreader_finish completes, the DBMS may do any final cleanup, such as deallocating the PTF

descriptor areas.

106 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

12.3

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

Pivot

This example was introduced in Subclause 3.2.2, “Pivot”.

12.3.1 Overview

Ingen
and th

type, ghone number), and the user wishes to normalize this into a table with two columns.

12.3.4 Functional specification of Pivot

The functional specification specifies the interface that is visible to the query author.

Pivot needs the following inputs:

— A
in
in

— A

n
— S

) RETL

syggests a PTF descriptor area. In general, we don'tknow how many pivots the query author will v
dag, so the technique will be to just declare alarge number of PTF descriptor areas, which can defa

al, apivot isan operation that reads arow and outputs severa rows. Generally, theinput is denorn
 output is normalized. For example, maybe an input table has six columns, forming threg pairs of

N input table. Since a pivot can be performed on a single row, this input table has row semantics.
put tablewill use Feature B205, “ Pass-through columns’; making all columns of the input table av
the output, qualified by the input table argument's range variable.

list of the input columnsthat will go into the first-Qutput row, alist for the second row, etc. Each o

II. The query author will supply as many, as'desired.

ce the columns to be pivoted will allhave distinct names, such as (Phtypel, Phnumberl), (Phty
number2), ..., the PTF will not know Wwhat the desired output column names are for the pivoted co
erefore, the PTF will require a PTF descriptor areafor these output column names.

ameter list looks like this:

FUNCTI ON Pi vot

put TABLE PASS(THROUGH W TH ROW SEMANTI CS,
t put _pi vot _cal yrms DESCRI PTOR,

put _pi vot _columms1l DESCRI PTCR,

put _pi vot’2col uimms2 DESCRI PTOR DEFAULT NULL,
put _pi vot® col uims3 DESCRI PTOR DEFAULT NULL,
put _pi-vot _col ums4 DESCRI PTOR DEFAULT NULL,
put' pi vot _col ums5 DESCRI PTOR DEFAULT NULL
URNS” TABLE

halized
phone

This
bilable

f these
Vant to
ult to

pe2,
umns.

DETER
READS

VI NI STT T
SQL DATA

This shows the capability to pivot at most 5 sets of columns. Of course, the PTF author could support many

more.

©ISO/IE

C 2017 — All rights reserved Examples 107

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

12.3.3 Design specification for Pivot

The design specification specifies detailsthat are private, that is, not visible to the query author. For the design
specification, the PTF author decides:

1) Whether PTF start and/or finish component procedures are required.

Pi 0t does not need-anv-resources-not-nrovided-byv-tha DRMS cn thaera arano-start or finich compeonent
IME-EEESHEREeEtaRY+HESBHHEESHEPHOVHEEGRBYHEe T Brvo-SotHere are HAFSA-EORAPYI

priocedures. T

2) The names of the PTF component procedures.

The PTF author decides to name the PTF component procedures Pivot_describe and Rivot fulfill.
3) The private data for the PTF component procedures.

Pijvot does not need any private data.

This Igads to the following skeleton DDL.:

CREATIEE FUNCTI ON Pi vot (

I pput TABLE PASS THROUGH W TH ROW SEMANTI CS,
t put _pi vot _col ums DESCRI PTOR,

I pput _pi vot _col uims1l DESCRI PTOR,
| pput _pi vot _col utms2 DESCRI PTOR DEFAULT NULL,
I pput _pi vot _col utms3 DESCRI PTOR DEFAULT NULLy
I pput _pi vot _col utms4 DESCRI PTOR DEFAULT NULLS
| pput _pi vot _col utms5 DESCRI PTOR DEFAULT ,NukL

) RETURNS TABLE

DETERM NI STI C

READS|SQL DATA

DESCR| BE W TH PROCEDURE Pi vot _descri bée

FULFI EL W TH PROCEDURE Pi vot _ful fi Ll

12.3.4 Pivot component pracedures

The DBM S tool should generate something like this:
CREATE PROCEDURE Rjvot _descri be (
N | nput _row~descr VARCHAR(2),
N | nput (request _descr VARCHAR(2),
N Qut put._pi vot _col ums_descr VARCHAR(2),
N Lnput _pi vot _col ums1_descr VARCHAR(2),
N“I‘gput _pi vot _col ums2_descr VARCHAR(2),
put _pi vot _cot ums3_descr VARCHAR(2),
N | nput _pivot _col ums4_descr VARCHAR(2),
N | nput _pi vot _col ums5_descr VARCHAR(2),
IN Initial_result_row VARCHAR(2),
I NOUT Status CHAR(5)
) LANGUACGE SQ. DETERM NI STI C CONTAI NS SQL
SQL SECURI TY DEFI NER
BEG N
END

108 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

CREATE PROCEDURE Pivot_fulfill (

I N I nput _cursor_row VARCHAR(2),

I N I nput _cursor_name VARCHAR(2),

I N Qut put _pi vot _col utms_descr VARCHAR(2),
I nput _pi vot _col ums1_descr VARCHAR(2),
I nput _pi vot _col ums2_descr VARCHAR(2),
I nput _pi vot _col ums3_descr VARCHAR(2),
I nput _pi vot _col ums4_descr VARCHAR(2),
N Tnput _pi vot _col utms5_descr VARCHAR(Z2),
N | ntermedi ate_result_row VARCHAR(2),
NOUT St at us CHAR(5)
) LANBUAGE SQL DETERM NI STI C READS SQL DATA
SQ SECURI TY DEFI NER

12.3.5 Invoking pivot

The DPL visibleto the query author isthis:

CREATE FUNCTI ON Pi vot (
I mput TABLE PASS THROUGH W TH ROW SENMANTI CS,
t put _pi vot _col ums DESCRI PTOR,
| pput _pi vot _col utms1 DESCRI PTOR,
I pput _pi vot _col utms2 DESCRI PTOR DEFAULT NULL,
I pput _pi vot _col utms3 DESCRI PTOR DEFAULT *NWLL,
I pput _pi vot _col utms4 DESCRI PTOR DEFAULT NULL,
I pput _pi vot _col utms5 DESCRI PTOR DEFAULT NULL
) RETURNS TABLE

Here i$ an example of an invocation of Pivet:

SELECT D.I1d, D.Name, P.Phonetype, P. Phonenunber

FROM TABLE (Pivot (Input =>)TABLE (Joe.Data) AS D,
Qut put “pi vot _col utms => DESCRI PTCR (Phonet ype, Phonenunber),
I nput ‘pi vot _col utms1 => DESCRI PTOR (Phtypel, Phnumnber1l),
Imput _pi vot _col utms2 => DESCRI PTOR (Phtype2, Phnunber 2)

)) AS(P

To sucreed, Joe.Dataimust be atable having columns called 1d, Name, Phtypel, Phnumberl, Phtype2, and
Phnumber2. Thethird, fourth, and fifth set of pivot columns are unused; these will default to null value

(]

12 3 Callina Pivat doceribho
J. A\ CInpp] |u 1 |VUL_UC\1’| LY AY3

To compile the query, the DBM S calls Pivot_describe. The signature of the describe component procedure (see
Subclause 12.3.4, “Pivot component procedures’) is as follows:

PROCEDURE Pi vot _descri be (

I N I nput _row descr VARCHAR(2),

I N I nput _request _descr VARCHAR(2),

I N Cut put _pi vot _col utms_descr VARCHAR(2),
I N I nput _pi vot_col umsl_descr VARCHAR(2),

©ISO/IEC 2017 — All rights reserved Examples 109

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

I N I nput _pi vot _col ums2_descr VARCHAR(2),
I N I nput _pi vot _col ums3_descr VARCHAR(2),
I N I nput _pi vot _col uims4_descr VARCHAR(2),
I N I nput _pi vot _col ums5_descr VARCHAR(2),
IN Initial_result_row VARCHAR(2),
I NOUT Status CHAR(5)

)

The qyery hassupptiedJdoeDataastheinput tabte-Therearetwodescriptorsassociatedwithrthis tabte-the full
row type, and the requested row type. The full row type descriptor describes every column of the input|table.

Let us|suppose that the DBMS callsit | 1. Let us also suppose that Joe.Data has the following columns:

TABLE|Joe. Dat a (

| NTEGER PRI MARY KEY,
me VARCHAR(30),

Pt ypel VARCHAR(5),
Phnumber 1 VARCHAR(15),
Pt ype2 VARCHAR(5),
Phnunber 2 VARCHAR(15)

)

This rgw type has the following PTF descriptor area (called 11):

Content

Header

COUNT =6
TOP_LEVEL_COUNT =6
Other components unspecified

Item 1

NAME =D’

LEVEL=0

TYPE = 4 (for INTEGER)
QOther components unspecified

Item 2

NAME = 'NAME'

LEVEL =0

TYPE = 12 (for VARCHAR)

LENGTH =30
CHARACTER_SET_CATALOG, CHAR-
ACTER_SET_SCHEMA, and CHARAC-
TER_SET_NAME arethe catalog, schema,
and local name of the default character set.
Other components unspecified

ltem 3

NAME ="PHTYPE]1"

LEVEL =0

TYPE = 12 (for VARCHAR)

LENGTH =5
CHARACTER_SET_CATALOG, CHAR-
ACTER_SET_SCHEMA, and CHARAC-
TER _SET NAME arethecatalog, schema,
and local name of the default character set
Other components unspecified

110 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

Content

Item 4

NAME = 'PHNUMBERY'

LEVEL =0

TYPE =12 (for VARCHAR)

LENGTH =15

CHARACTER SET CATALOG, CHAR-

12.3 Pivot

ACTER _SET SCHEMA, and CHARAC-

TER_SET _NAME arethe catalog, schema,
and local name of the default character set
Other components unspecified

Item 5

NAME = 'PHTYPE2

LEVEL =0

TYPE =12 (for VARCHAR)
LENGTH=5

CHARACTER_SET CATALOG, CHAR-
ACTER_SET_SCHEMA, and CHARAC-
TER_SET_NAME arethe catal 0g) schema,
and local name of the default.character set
Other components unspecified

Item 6

NAME ="'PHNUMBER2

LEVEL =0

TYPE = 12 (for VARCHAR)

LENGTH =15
CHARACTER_SET_CATALOG, CHAR-
ACTERASET SCHEMA, and CHARAC-
TER.SET NAME arethe catalog, schema,
andtocal name of the default character set
©ther components unspecified

The DBMS must also create an empty descriptor areafor the requested row type; let us supposethat the PBMS
calsitAl. An empty descriptor arealooks like this:

Content

Header

COUNT =0
TOP_LEVEL_COUNT =0
Other components unspecified

There are three query-specified PTF descriptor areas; let them be named Q1, Q2, and Q3. Thefirst (named Q1)
isfor this argument in the query invocation of Pivot:

Qut put _pi vot _col uims => DESCRI PTOR (Phonet ype, Phonenunber),

The contents of Q1 are:

©ISO/IEC 2017 — All rights reserved

Examples 111

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

Content

Header

COUNT =2
TOP_LEVEL _COUNT =2
Other components unspecified

ltem 1

NAME ="PHONETYPE
LEVEL =0

TYPE=0

Other components unspecified

Item 2

NAME = 'PHONENUMBER'
LEVEL =0
TYPE=0

The second (named Q2) is for this argument in the invocation of Pivot:

I nput | pi vot _col utms1 => DESCRI PTOR (Phtypel, Phnunber 1)

The cqntents of Q2 are:

Content

Header

COUNT =2
TOP_LEVEL, COUNT =2
Other components unspecified

Item 1

NAME ="PHTYPEL

LEVEL =0

TYPE=0

Other components unspecified

Item 2

NAME ='PHNUMBERY'
LEVEL =0
TYPE=0

The thjrd (named-Q3) is for this argument in the invocation of Pivot:

| nput | pi vot,~col utms2 => DESCRI PTOR (Phtype2, Phnunber 2)

The cantents of Q3 are;

Content

Header

COUNT =2
TOP_LEVEL_COUNT =2
Other components unspecified

112 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

Content

Item 1 NAME = "'PHTY PE2

LEVEL =0

TYPE=0

Other components unspecified

Item 2 NAME ="'PHNUMBER?2'
LEVEL =0
TYPE=0

The DBMS must also allocate an empty read-write PTF descriptor areafor theinitial result Tow type. Liet the

initial fesult row type PTF descriptor area be named R. R has the following contents:

Content

Header | COUNT =0
TOP_LEVEL_COUNT =0
Other components unspecified

Finally the DBMS must alocate a CHAR(5) variable for the-status code, initialized to '00000'. Let ST be the

status fode variable.

Now the DBM S makes the following invocation:

CALL IPivot describe (
| pput _row descr => "11",
| pput _request _descr => 'Al',

t put _pi vot_col ums_descr => "@Ql',
I pput _pivot _col ums1_descr = @',
I pput _pi vot _col ums2_descrin=> "' @',
I pput _pi vot _col uims3_deser => NULL,
|
|
|

put _pivot_col ums4_descr => NULL,
put _pivot_col ums&_descr => NULL,
itial _result_rows=>"'R,

Sfatus => ST

12.3.7 Inside Pivot_describe

The tasks of Pivot_describe are:

1) To validate theinput arguments.

2) To populate the requested row type descriptor (named A1).
3) To populate theinitia result row type descriptor (named R).

In our example, the input table has the following row type:

©ISO/IEC 2017 — All rights reserved

Examples 113

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

TABLE

Joe. Data (

| D | NTEGER PRI MARY KEY,
Name VARCHAR(30),

Pht ypel VARCHAR(5),
Phnumber 1 VARCHAR(15),
Pht ype2 VARCHAR(5),
Phnumber 2 VARCHAR(15),

)

The query author has written the following query:

SELEC]
FROM 1

To sati
these

[D.1d, D.Nane, P.Phonetype, P. Phonenunber
[ABLE (Pivot (Input => TABLE (Joe.Data) AS D,
Cut put _pi vot _col uims => DESCRI PTCR (Phonet ype, Phodnenunber),
I nput _pi vot _col ums1 => DESCRI PTOR (Phtypel, Phnumberl),
I nput _pi vot _col ums2 => DESCRI PTOR (Phtype2, Phnunber 2)
)) ASP

Sfy the query, the PTF will need to read the columns Phtypel, Phnumerl, Phtype2, and Phnumb:
re the columns that Pivot_describe must request by placing their names in the requested row typ

descriptor.

The ca

PHONE]
PHONE

Notet
handlg

lumns of theinitial result row type are:

'YPE VARCHAR(5),
NUVBER VARCHAR(15)

nat the PTF is not responsible for placing any celdmns of the input table in the result row; thisw
d using pass-through columns. Thus, the PTEmust only describe the two columns PHONETY P

PHONENUMBER.

Thelo

1) C
5
th
€g

SH
Cq

N
m
2) C

pic might look like this:

ppy the column names from Input-pivot_columnsl, ... Input_pivot _columns5 to Input_request_d

B argument is null, there is'hothing to do. Otherwise, get the number of columns and, in aloop, ¢

ich column name, appending it to Input_request_descr with logic like this:
T rcol = rcol _+ 1;
DPY DESCRI PTOR_PTF | nput _pi vot _col uims1 VALUE i col (NAME)

1O PTF | nput _request _row VALUE (rcol)

pte that it is'only necessary to set the name component in the requested row type descriptor, sinc
List all'be columns of the input table and the DBM S aready knows their data types.

by 2:

Il be
E and

ESCr.

Nis can be done by looking ateach of Input_pivot_columnsl through Input_column_descr5in tufn. If

opy

b these

COPY DESCRI PTOR PTF Qut put _pi vot _col uimms_descr

TO PTF Initial _result_row

bpy the PTF descriptor areawhose name is passed in Output_pivot_columns_descr to the PTF alea
desc_—hh—m“_l—'m_rt—allnp Or WhoSE name 1S p inTnitial_Tesult_Tow:

Note that the source PTF descriptor areaonly hasthe column names, so it isstill necessary to set the column
datatypes.

3) Determine the type of each result column as the union type of all corresponding columnsin the PTF
descriptor areas named by arguments Input_pivot_columnsl_descr through Input_pivot_columns5_descr.

114 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

(Computing the union type for the general case can require some elaborate logic, so the PTF author might
require that the pivot columns have the same type. The query author can work around this limitation by
using casts to massage the input table.)

12.3.8 Result of Pivot_describe

Pivot_pescribe populates the requested row type descriptor, named A1, as follows:

Content

Header | COUNT =4
TOP_LEVEL_COUNT =4
Other components unspecified

Item 1 NAME = 'PHTYPEY'

LEVEL =0

TYPE=0

Other components unspecified

Item 2 NAME = 'PHNUMBERY'
LEVEL =0
TYPE=0

Item 3 NAME = "PHTYPE2

LEVEL =0

TYPE=0

Otherceomponents unspecified

Item 4 NAME ="'PHNUMBER2'
LEVEL =0
TYPE=0

Pivot_escribe popul atesthe PTF descriptor areafor the initial result row type, named R, as follows:

Content

Header | COUNT =2
TOP_LEVEL_COUNT =2
Other components unspecified

©ISO/IEC 2017 — All rights reserved Examples 115

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

Content

Item 1

NAME ='PHONETY PE'

LEVEL =0

TYPE =12 (for VARCHAR)

LENGTH =5

CHARACTER SET CATALOG, CHAR-

ACTER _SET SCHEMA, and CHARAC-

TER_SET _NAME arethe catalog, schema,
and local name of the default character set
Other components unspecified

Item 2

NAME = 'PHONENUMBER'

LEVEL =0

TYPE = 12 (for VARCHAR)

LENGTH =15

CHARACTER_SET CATALOG, CHAR-
ACTER_SET_SCHEMA, and CHARAC-

TER_SET_NAME arethe catal 0g) schema,
and local name of the default.character set

The cglumns of the result have correlation name P, so thefow type can be portrayed like this:

Other components unspecified

Correlation name | Column hame Datatype

D 1D INTEGER
NAME VARCHAR(30)
PHTY PE1 VARCHAR(30)
PHNUMBER1 VARCHAR(15)
PHTY PE2 VARCHAR(30)
PHNUMBER2 VARCHAR(15)

P PHONETY PE VARCHAR(30)
PHONENUMBER | VARCHAR(15)

Note that all columns of the input table are accessible using correlation name D. The example query has only
asked for ID and NAME.

116 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

12.3.9 Virtual processorsfor Pivot

Pivot has one input table with row semantics. The DBMS can create an arbitrary number of virtual processors,
and partition the input table arbitrarily among the virtual processors.

Prior to starting the virtual processors, the DBMS can do the following:

SHLECT PHTYPE1l, PHNUMBER1, PHTYPE2, PHNUMBERZ,
EncodeSurrogate (1D, NAME) AS "$surrl"
FROM Joe. Dat a

Nptethat thisisthe requested row type with one additional column, the pass-through input surrogate cplumn.
Here, EncodeSurrogate is an implementati on-dependent function that encodesthe.¢olumns ID and NAME
inlthe pass-through input surrogate column named "$surrl”. In this example the DBM S only needs to
represent 1D and NAME in the surrogate because those are the only columns‘of the table argument that

2) termine the intermediate result row type; thisistheinitial result row'type plus one additional cglumn,
pass-through output surrogate column. The data type and name-of the output surrogate must be the

1) TheDBMSopensaPTF dynamic cursor that reads thé partition assigned to that virtual processor; stippose
the PTF extended name of the cursor is CN (theisame PTF extended name can be used on al yirtual
processors because each has its own address space).

2) The DBMS creates the requisite descriptors.“The descriptors that were supplied by the query are the same
aq they were for Pivot_describe. We will assume that they have the same PTF extended names as }ey did
result

descriptor are determined by theyDBMS prior to starting the virtual processor; we assume that| they

are named 'CR' and 'MR' respectively.
3) Pipot has no private data to(@|ocate on any virtual processor.

4) Tihe DBMS must however allocate memory on each virtual processor for the SQL status code, a CHAR(5)
variableinitialized t0 '00000". We portray this status code as a variable named ST.

12.3.1pCalling Pivot_fulfill

After ipitializi ng avirtua processor, the DBMS is ready to invoke Pivot_fulfill asfollows:

CALL Pivot _fulfill (

IN I nput_cursor_row => 'CR,

I N I nput_cursor_nanme => 'CN ,

Qut put _pi vot _col ums_descr => 'Ql',
I nput _pi vot _col ums1_descr => 'Q@',
| nput _pi vot _col uims2_descr => ' @',
I nput _pi vot _col uimms3_descr => NULL,
| nput _pi vot _col uimms4_descr => NULL,
I nput _pi vot _col uimms5_descr => NULL,

©ISO/IEC 2017 — All rights reserved Examples 117

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

Intermediate_result_row => "M,
Status => ST

12.3.111nside Pivot_fulfill

The tapk of Pivot_fulfill isto process the rows of the input table and generate the output rows. Eaching
resultqin multiple output rows. This task is distributed over the virtual processors, which each see'a pal
of the [nput table.
Thelogic of Pivot_fulfill might be:
1) Intiaization:
a)| Locate the pass-through input surrogate column in the cursor row type desceriptor. It is always
column.
b)| Locate the pass-through output surrogate column in the intermediate result row descriptor. Sir
example has only one pass-through table, the surrogate is thelast column of the intermediate
row type.
2) Fetch arow of theinput cursor, like this:
FETCH FROM PTF | nput _cursor _name
I NTO DESCRI PTOR PTF | nput _cur sor _r oW
3) Ifjthe FETCH encounters the end of the cursor4eturn with successin the status code.
4) If|[FETCH encounters an error, set the Status argument to that error code and return.
5) Coppy the pass-through input surrogate eolumn from the input cursor row to the pass-through output su
cqlumn in the intermediate result row.
6) If|lnput_pivot columnsl is natiAull, then copy the input columns listed in this PTF descriptor areg
cqrresponding columns of the result PTF descriptor area
7) S¢nd the result row tothe DBM S with:
PIlPE ROW PTF knt€rnediate _result _row,
8) P;loceﬁs Inputt pivot_columns 2, Input_pivot_columnsg, ..., Input_pivot_columns5 the same way. B
one thatds:not null causes a separate output row from the same input row.
9) Loopback to step 2.

ut row
tition

helast

cethis
esult

'rogate

to the

Fach

12.3.12Coallecting theresults

The DBMS collects the result rows that are sent via PIPE ROW commands on all virtual processors. For each
row, the DBM S must expand the output pass-through surrogate column to recover the values of ID and NAME.
The union of these rows constitutes the overall result of the invocation of Pivot.

118 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.3 Pivot

12.3.13Cleanup

After avirtual processor completes, the DBMS closes the input cursor, deallocates its data structures (such as
PTF descriptor areas), and terminates the virtual processor.

©ISO/IEC 2017 — All rights reserved Examples 119

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.4 Score

12.4 Score

This example was introduced in Subclause 3.2.3, “ Score”.

12.4.1 Overview

Score

nas two input tables:

1) Opeinput table contains rows to be scored according to some agorithm.

2)

Theod

T

pe other input table contains the parameters for the algorithm that is used to scorearow.

by the|parameter table. The original input row is available as well, via the pass-through mechanism, as
partitigning column of the parameter table.

12.4.4 Functional specification of Score

Score

1)

2)

For

O
s

T

S§

in

has two input tables:

put table.

CREATE FUNCTI ON Score, (

~

DH

Data TABLE PASS\THROUGH W TH ROW SEMANTI CS,
Model TABLE NO,PASS THROUGH
W TH SET (SEMANTI CS PRUNE WHEN EMPTY
RETURNS TABLE. {Score REAL)
-TERM NI STHC
ADS SQ/ DATA

h row of thefirst input table, Score usesthe model supplied by the second input table to compute

in a cglumn called Score of type REAL. Since the proper result column is fixed, it can be specified int
CREATE FUNCTTON staiement as shown above.

tput of Scoreisthe score computed for each input row according to the scoring algorithm as parameterized

isthe

ne input table contains rows to be scored according to some agorithm. This table has row semartics
nce each row can be processed separately. The RTF will make the contents of an input row availdbleto
the query using the pass-through mechanism.

he other input table contains the parameterstor the algorithm that is used to score arow. Thistaljle has
[semantics since the entire table is requited to specify the algorithm. An empty table does not specify

ar) algorithm, so thisinput table is prunable (there is no result if the input table is empty). Sincear
nqt associated with a particular row/af this table, the PTF does not provide pass-through columns for this

bsult is

hvalue

12.4.3 Design specification for Score

The design specification specifies detailsthat are private, that is, not visible to the query author. For the design
specification, the PTF author decides:

120 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.4 Score
1) Whether PTF start and/or finish component procedures are required.

Score does not need any resources not provided by the DBMS, so there are no start or finish component
procedures.

2) The names of the PTF component procedures.

The PTF author decides to name the PTF component procedures Score_describe and Score fulfill.

3) The private datafor the PTF component procedures.
Sgore does not need any private data.
This Igads to the following skeleton DDL.:

CREATIEE FUNCTI ON Score (
ﬁt a TABLE PASS THROUGH W TH ROW SEMANTI CS,
del TABLE NO PASS THROUGH
W TH SET SEMANTI CS PRUNE WHEN EMPTY
) RETURNS TABLE (Score REAL)
DETERM NI STI C
READS| SQL DATA
DESCRI BE W TH PROCEDURE Scor e_descri be
FULFI LL W TH PROCEDURE Score_ful fill

12.4.4 Score component procedures

The DBMStool should generate something like this:

F PROCEDURE Scor e_descri be (

N Dat a_r ow_descr VARCHAR(2),

N Dat a_r equest _descr VARCHAR(?2),

N Model _row_descr VARCHAR(2)

N Model _pby_descr VARCHAR(?2),

N Model _order _descr VARCHAR(2),

N Model _request _descr, VARCHAR(2),
NOUT St at us CHAR(<5)

) LANGUAGE SQ. DETERM NI STI C CONTAI NS SQL
SQ. SECURI TY DEFI NER

F PROGCEDURE Score_ful fill (

N Dat-a_cursor_descr VARCHAR(2),
N ‘Dat a_cursor_nanme VARCHAR(2),
N Model _cursor_descr VARCHAR(2),
N

N

Model _pby_descr VARCHAR(2),
Model _order _descr VARCHAR(2),
I N Model _cursor _nane VARCHAR(2),
IN Internedi ate_resul t _row VARCHAR(2),
I NOUT Status CHAR(5)
) LANGUAGE SQ. DETERM NI STI C READS SQL DATA
SQ. SECURI TY DEFI NER
BEG N
END

©ISO/IEC 2017 — All rights reserved Examples 121

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.4 Score

NOTE 3 —

1

2)

Thefirst table parameter has row semantics; therefore, it requires the following parameters in the component procedures:

a) Inthe describe component procedure, the full row type (Data_row_descr), and the requested row type
(Data_request_descr).

b) Inthefulfill component procedure, the cursor row type (Data_cursor_descr), and the cursor name (Data_cursor_name).

The second table parameter has set semantics, s it reg iresthe followi ng-parameters. inthe component Inrnm:dl res;

12.4.5

TheD

CREAT

) RETL

Herei

SELEC]
FROM 1

12.4.6

Thes

PRCCE

at a TABLE PASS THROUGH W TH ROW SENMANTI CS,

a) Inthe describe component procedure, the full row type (Model_row_descr), the partitioning (Model_pby~des
ordering (Model_order_descr), and the requested row type (Model_request_descr).

b) Inthefulfill component procedure, the cursor row type (Model_cursor_descr), the partitioning (Model* pby dd
ordering (Model_order_descr), and the cursor name (Model_cursor_name).

Invoking Score

DL visible to the query author is:
F FUNCTI ON Score (

del TABLE NO PASS THROUGH
W TH SET SEMANTI CS PRUNE WHEN EMPTY
JRNS TABLE (Score REAL)

5 the example invocation initially shown in Subgclatise 3.2.3, “ Score”:

[D.Id, DS, DT, M Mdelid, T.Scorg
[ABLE (Score (Data => TABLE (MyData) AS D
Mdel => TABLE (Nbdels) AS M
PARTI'TI ON BY Mbdelid)
) AS T

Calling Score_describe

Jnature of Score_describe, previously shown in Subclause 12.4.4, “ Score component procedures

DURE Score/~descri be (

N Dat a.fow descr VARCHAR(2),

N Dat-a.request _descr VARCHAR(2),
N Model _row descr VARCHAR(2),

N ‘Wbdel _pby_descr VARCHAR(2),

cr), the

iscr), the

I N Model _order_descr VARCHAR(2),
I N Model _request _descr VARCHAR(2),
I NOUT Status CHAR(5)

)

Before calling Score_describe, the DBMS must create PTF descriptor areas for the first six input parameters.
Asoriginally presented in Subclause 3.2.3, “ Score”, thefirst input table Data has thisrow type: (ID INTEGER,
SREAL, T REAL). Therefore, the DBMS can create a PTF descriptor areafor the full row type (let us call it
11" asfollows:

122 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

Content

Header

COUNT =3
TOP_LEVEL_COUNT =3
Other components unspecified

12.4 Score

ltem 1

NAME="TD

LEVEL =0

TYPE =4 (for INTEGER)
Other components unspecified

Item 2

NAME ='S

LEVEL =0

TYPE = 7 (for REAL)

Other components unspecified

Item 3

NAME="T'

LEVEL =0

TYPE =7 (for REAL)

Other components unspecified

The DBMS also needs to create an empty PTF descriptor aseafor the requested row type of Data; let ug call it

‘Al

Content

Header

COUNF=0
TORLEVEL_COUNT =0
Other components unspecified

Thetaple called Models has this row type: (MODELID VARCHAR(10), PNAME VARCHAR(10), PVMALUE
REAL). The DBMS createsa PTF descriptor area (call it '12") asfollows:

Content
Header | COUNT =3
TOP_LEVEL_COUNT =3
Other components unspecified
ltem 1 NAME = 'MODELID'

LEVEL =0

TYPE = 12 (for VARCHAR)

LENGTH =10
CHARACTER_SET_CATALOG, CHAR-
ACTER_SET_SCHEMA, and CHARAC-
TER_SET_NAME arethe catalog, schema,
and local name of the default character set.
Other components unspecified

©ISO/IEC 2017 — All rights reserved

Examples 123

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.4 Score

Content

Item 2 NAME = 'PNAME'

LEVEL =0

TYPE = 12 (for VARCHAR)

LENGTH =10

CHARACTER SET CATALOG, CHAR-
ACTER _SET SCHEMA, and CHARAC-

TER_SET _NAME arethe catalog, schema,
and local name of the default character set.
Other components unspecified

Item 3 NAME ='PVALUE'

LEVEL =0

TYPE =7 (for REAL)

Other components unspecified

The MIODEL Stableis partitioned on MODELID. The DBMS creates aRTF descriptor area (call it 'P2'} of the
partitipning, listing just the names of the partitioning columns, as follews:

Content

Header | COUNT =1
TOP_LEVEL,COUNT =0
Other components unspecified

Item 1 NAME = 'MODELID'
LEVEL=0
Other components unspecified

The MIODEL S table is unordered;.so'the DBM S creates an empty PTF descriptor areafor this ordering|(call it
'S2Y):

Content

Header | COUNT =0
TOP_LEVEL_COUNT =0
Other components unspecified

The DBMS must alsocreate an empty PTE descri ptor-area forthe reg lested row type of Models-letudcall it

'‘A2'.

The proper result columns have been declared in the DDL as (Score REAL), which can be described in the
initial result row type descriptor like this:

124 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.4 Score

Content

Header | COUNT =1
TOP_LEVEL_COUNT =0
Other components unspecified

tem I NAME ="SCORE

LEVEL =0

TYPE =7 (for REAL)

Other components unspecified

Sincetheinitial result row typeisfixed, this descriptor isnot passed to the describe compenent procedufe, and
does npt really need to be constructed.

Finally, the DBMS creates a variable for the status code, a CHAR(5) value initialized to '00000"; let usicall it
ST.

After ¢reating and initializing the preceding, the DBM S isready to call"Score_describe like this:

CALL $core_describe (

ta_row descr => "I1'
ta_request _descr => "'Al'

del _row _descr => "12",

del _pby_descr => 'P2',

del _order_descr => 'S82',
del _request _descr => 'A2',
Sfatus => ST

12.4.1 Inside Score describe

Thetapks for Score describe are:
1) Validate the input.

Obrr example has.not mentioned any requirements on the input data and model tables, though an agtual
implementation'would have some. Any static requirements, such as column names and types, can be
checked by using GET DESCRIPTOR, returning an error condition if the requirements are not met.
Requirements based on the contents of the model data cannot be checked until run-time since ther¢ is no
cuyrsor ‘open to read the data.

2) Request columnsTor the input tables by populaiing their requested row descripiors.

In this example, let us assume that the PTF requests columns S and T from Data, and columns Pname and
Pvalue from Models. Therefore, Score _describe must populate Data request_descr like this:

©ISO/IEC 2017 — All rights reserved Examples 125

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.4 Score

ar

T

12.4.§

TheD
Otherv

Content

Header

COUNT =2
TOP_LEVEL _COUNT =2
Other components unspecified

ltem 1

NAME="5
LEVEL =0
Other components unspecified

Item 2

NAME ='T'
LEVEL =0
Other components unspecified

d populate Model_request_descr like this:

Content

Header

COUNT =2
TOP_LEVEL _COUNT=2
Other componentsurispecified

Item 1

NAME = "'PNAME'
LEVEL =0
Other components unspecified

Item 2

NAME ='PVALUE'
LEVEL =0
Other components unspecified

Result of Scoré describe

the cufser.row types later).

BM S first checks the status code variable for success; if not, the query has a syntax error.

Jise,the DBM S savesthe requested row type descriptorsfor use at run-time (they will be used to co

hese descriptors can be set using techniques discussed in Subclause 7.4, “Writing a PTF descriptol area’ .

nstruct

The DBMS can also save theinitial result row type descriptor, or wait till run-time to build the intermediate
result row type (thisinformation is already saved in the metadata for Score, since it was declared in DDL).

At this point the DBM S can determine the complete result row type, since that is needed to finish analyzing
the query. The query author has written the following query (initially presented in Subclause 3.2.3, “ Score”):

SELECT D.1d, D.S, D.T, MMdelid, T.Score
FROM TABLE (Score (Data => TABLE (MyData) AS D
Mbdel => TABLE (Mbdels) AS M

126 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

) AS T

PARTI TI ON BY Modelid)

ISO/IEC TR 19075-7:2017(E)

12.4 Score

The result row type of the PTF invocation has three correlation names: D, M, and T. Using D, the query can
access al columns of thefirst input table, since it has pass-through columns. Using M, the query can access
the partitioning column, Modelid, of the second input table. Finally, using T, the query can access the proper
result column computed by the PTF, in the column called SCORE. Thus the row type of the PTF invocation

looks like this:
Correlation D M T
name
Column name | ID S T MODELID SCORE
Datatype INTEGER REAL REAL VARCHAR(10). -] REAL
12.4.9 Virtual processorsfor Score

The qyery author has written the following query (initially presented in Subclause 3.2.3, “ Score”:

SELEC| D.1d, D.S, D.T, M Mdelid, T.Score

FROM TABLE (Score (Data => TABLE (MyData) AS.D

Thisg

) AS T

ample has one input table with row semantics and one with set semantics. The latter is partitiong

Model

sampl ¢ data for the second input tableis:

=> TABLE (Model s),.AS M
PARTI TI ON BY“*Mbdel i d)

id. The

Modelid | Pname | Pvalue
wet X 19

wet y 28

wet z 37

dry X 4

dry y 5

dry z 6

This has two partitions when partitioned on Modelid, “wet” and “dry”.

The DBM S must ensure that each partition is used to score each row of the first input table (since that table
has row semantics). This might be done by creating a virtual processor for each partition and “ broadcasting”
the entire first input table to each virtual processor. It could also be done by subdividing the Data input table

arbitrarily within each partition of Models. For example, the sample data for thefirst input tableis:

©ISO/IEC 2017 — All rights reserved

Examples 127

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.4 Score

Id S T
122 0.5 34
233 8.4 6.5
74! 102 93
455 11.0 8.8
Then the DBM S might create four virtual processors, with cursorsto read each input table'as follows:
Virtual | Cursor for Datatable Cursor for Modelstable
pr 0oessor
1 SELECT ... SELECT .
FROM MyData FROM*Models
WHERE ID = 122 OR ID = 233 WHERE Modelid = 'wet'
2 SELECT ... SELECT ...
FROM MyData FROM Models
WHERE ID =344 OR ID =455 WHERE Modédlid = 'wet'
3 SELECT ... SELECT ...
FROM MyData FROM Models
WHERE ID = 122 OR ID =455 WHERE Modelid = 'dry"'
4 SELECT ... SELECT ...
FROM MyData FROM Models
WHERE ID =233 0R ID =344 WHERE Modelid = 'dry'

(We have omitted the SELECT lists for now, which will be determined later.)

Virtual processors 1 and 2 handle the “wet” model, whereas virtual processors 3 and 4 handle the “ dry”

The rows of MyData arepartitioned arbitrarily for the “wet” model, and arbitrarily for the “dry” model
that the same partitioning of MyDatais not used in each model. Thisisafreedom that the DBM S has; hd
the DBM S might a'so choose to use the same partitioning of MyData in each model.

Beforg starting the virtual processors, the DBMS can compute the following descriptors:

model.
. Note
\Wwever,

t table

1) Thegursor row type for MyData. Score_describe has requested columns named Sand T. Thisinpu

has pass-through columns, so the DBMS adds a pass-through input surrogate column; Tet us supposeitis
named "$surrl". Thus, the SELECT list for the cursors for MyDatain every partitionis SELECT S, T,

"$surrl”.

2) The cursor row type for Models. Score_describe has requested columns named Pname and Pvalue. This
input table does not have pass-through columns; therefore, the SELECT list for the cursors for Modelsis

SELECT Pname, Pvalue.

3) The partitioning and ordering descriptors for Models; these are the same as were input to Score_describe.

128 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

124

Score

4) Theintermediate result row type. This has two columns: the proper result columns declared in DDL as
(Score REAL), plus the pass-through output surrogate column named "$surrl".

On each virtual processor, the DBMS does the following initialization:

1) For eachinput table, the DBMS opensaPTF dynamic cursor that readsthe partition assigned to that virtual
processor. There are two input tables, so there are two PTF cursors. Let the PTF extended names of these
cursorsbe'C1' and 'C2.

2T

3
4 T

12.4.1

On eaq

CALL

Imes.
Cursor row type of MyData: 1.
Cursor row type of Models: |2.
Partitioning of Models: P2.
Ordering of Models: S2.
Intermediate result row: R.
ore has no private data to allocate on any virtual processor.

e DBM S must allocate memory on each virtual processor for the SQL status code, aCHAR(5) v
tialized to '00000'. We portray this status code as a variable named ST.

DCalling Score_fulfill

h virtual processor, the DBMS calls Scere fulfill likethis:

bcore_ful fill (

12.4.

ta_cursor_descr => '11",
ta_cursor_nane => 'Cl',

del _cursor_descr => (712",

del _pby_descr => 'P2']

del _order_descr &>\"' S2',

del _cursor_nane > 'C2',
ternediate_result_row => 'R,
atus => ST

he DBMSS creates copies of the PTF descriptor areas mentioned above, and gives them PTF exterLded

ariable

lhside Score fulfill

Thelogic for Score_fulfill might look like this:

1) Read all of the Model table into memory by performing the following in aloop until no more rows are
available:

FETCH FROM PTF Model _cursor

©ISO/IEC 2017 — All rights reserved

I NTO DESCRI PTOR PTF Model _cursor_descr;

Examples 129

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.4 Score
2) Build the model detemined by the rows that are read. If thereisany error, return an error codein ST.

3) Get the number of columnsin the cursor for MyData:

CGET DESCRI PTOR PTF Dat a_cursor _descr
Ncol s = TOP_LEVEL_COUNT;

Note that thefirst (Ncols-1) columns are the requested data, and the last column (index Ncols) isthe pass-
thfough Input surrogate corumn.

4) Inaloop until the Datatable is exhausted:
a)| Read arow of the Datatable:

FETCH FROM PTF Dat a_cur sor
I NTO DESCRI PTOR PTF Dat a_cur sor_descr;

b) Using the datamodel, compute the scorein S.

¢)| Placethe scorein the result row:

SET DESCRI PTOR PTF Internediate_result_row
VALUE = 1 DATA = S;

d) Copy the pass-through input surrogate column to thelPass-through output surrogate column:

COPY DESCRI PTOR PTF Dat a_cursor_descr VAKUE Ncol s (DATA)
TO PTF I nternediate_resultyrow VALUE 2;

e)| Pipetherow tothe DBMS:

Pl PE ROW PTF | nternedi ate_result _row,

12.4.1PCollecting the output

On eagh virtual processor, the DBMS collects the output rows that are sent via PIPE ROW statements firom
Score [fulfill. Note that-the Pl PE ROW command only sends two columns to the DBMS (Score and "$qurrl"),
but thg complete result'row type has the following columns: D.Id, D.S, D.T, M.Modelid, and T.Score. The
DBM $ assemblesthe complete result row from the intermediate result row as follows:

1) D|ld, D.Sand D.T are obtained by expanding the pass-through output surrogate column "$surrl".

2) M|.Modelid is the partitioning key, which is an invariant on the virtual processor.

3) T.Scoreisderived from Score in the intermediate result row.

The union of the complete result rows is the result of the invocation of Score.

130 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.4 Score

12.4.13Cleanup

When avirtual processor completes, the DBM S does cleanup tasks such as closing the input cursors and deal-
locating the PTF descriptor areas.

©ISO/IEC 2017 — All rights reserved Examples 131

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
125 TopNplus

12.5 TopNplus

This example was introduced in Subclause 3.2.4, “TopNplus’.

12.5.1 Overview

TopNplus takes an input table that has been sorted on a numeric column. It copiesthe first n rowsthrod

gh to

the output table. (However, any partitioning columns are not copied, since those are available to the query

through the range variable for the input table.) Any additional rows are summarized in a single output
whichithe sort column has been summed and all other columns are null.

12.5.24 Functional specification of TopNplus

TopNplus requires two input parameters:

1)

2)

The PTF author can write the following public DDL(visible to the query author viathe Information Sc

CREATIEE FUNCTI ON TopNpl us (

RETURNS TABLE
NOT DETERM NI STI C
READS| SQL DATA

TopNplusisnot deterministic, because there may betieswhen aninput partition is sorted. If aset of tieso
the cutoff specified by Hawmany, then it is not deterministic which rowswill be copied to the output and
rows will be summafized.

12.5.3 Design specification for TopNplus

Aninput table. Since the algorithm is defined on a set of rows, this input table has set semantics. T
algorithm could reasonably be specified to produce no rows en.empty input, or it could produce a
symmary row with atotal of 0. We will show the PRUNEWHEN EMPTY choice.

Tlhe number of rows to be copied from input to output/(Any remaining input rows will be summari
a single output row.)

put TABLE NO PASS THROUGH
W TH SET SEMANTI CS PRUNE WHEN EMPTY,
whany | NTEGER)

e —

oW in

he
single

zedin

hema):

erlaps
which

The design specification specifies detailsthat are private, that is, not visible to the query author. For the design
specification, the PTF author decides:

1) Whether PTF start and/or finish component procedures are required.

TopNplus does not need any resources hot provided by the DBM S, so there are no start or finish com
procedures.

2) The names of the PTF component procedures.

132 Polymorphic Table Functionsin SQL

ponent

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.5 TopNplus

The PTF author decidesto name the PTF component procedures TopNplus_describe and TopNplus _fulfill.
3) The private datafor the PTF component procedures.

TopNplus will require that the input be ordered on a single column, which must be numeric. The describe
component procedure will locate this column. The fulfillment component procedure will need to know
which column is the ordering column. The fulfillment component procedure could figure this out on its
own, but sincethe describe component procedure must |ook for it anyway, the describe component procedure
can save the value to a private variable, thereby passing it to the fulfill component procedure.

Based|on these decisions, we have the following skeleton DDL.:

CREATIEE FUNCTI ON TopNpl us (

I fput TABLE NO PASS THROUGH

W TH SET SEMANTI CS PRUNE WHEN EMPTY,

wrany | NTEGER)
RETURNS TABLE
PRI VATE DATA (

Ofder_col _no | NTEGER)
NOT DETERM NI STI C
READS| SQL DATA
DESCR| BE W TH PROCEDURE TopNpl us_descri be
FULFI ILL W TH PROCEDURE TopNpl us_ful fill

12.5.4 TopNplus component procedures

The DBMS tool should generate something like this:

CREATIE PROCEDURE TopNpl us_descri be (
NOUT Order _col _no | NTECGER;

I nput _row_descr VARCHAR(2);

I nput _pby_descr VARCHAR(2)

I nput _order _descr VARCHAR(2),

I nput _request _descr("VARCHAR(2),
Howrany | NTEGER,

Initial _result_grow VARCHAR(2),
NOUT St at us CHAR('S)

) LANGUAGE SQ. DETERM NI STI C CONTAI NS SQL
SQ. SECURI TY DEEINER

I

I N
I N
I N
I N
I N
I N
I

CREATE PROCEDURE TopNplus_ful fill (
| NQUT” Or der _col _no | NTEGER;
| N Thput _r ow_descr VARCHAR(Z),
I N I nput _pby_descr VARCHAR(2)
I N I nput _order_descr VARCHAR(2),
I N I nput _cursor VARCHAR(2),
I N Howrany | NTEGER,
IN Internedi ate_resul t _row VARCHAR(2),
I NOUT Status CHAR(5)
) LANGUACGE SQ. NOT DETERM NI STI C READS SQ. DATA
SQ SECURI TY DEFI NER

©ISO/IEC 2017 — All rights reserved Examples 133

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
125 TopNplus

BEG N
END

NOTE 4 —
1) The parameter lists begin with the private data (Order_col_no).

2) Next come the parameters corresponding to the input table.

Q_type),
onefor the partitioning columns(lnput Joby descr), onefortheordenng (Input order_descr), and onefor the réquested
row type (Input_request_descr). In the fulfill component procedure, thereis also a parameter for the cursor.
(Input_cursor).

b) Forthefulfill component procedure, three PTF descriptor areas are required, onefor the cursor row,type (Input_rogv_type),
one for the partitioning columns (Input_pby_descr), and one for the ordering (Input_order_descr). Thereisago a
parameter for the cursor name (Input_cursor).

3) | Next comesthe scalar parameter Howmany, which is copied from the signature of TopNplus.

4) | Nextisthe parameter for the PTF descriptor areafor the result row type (called Initial_festlt_row in the describe component
procedure and intermediate result row in the fulfill component procedure).

5)| Finaly thereisaparameter for the SQL status code.

12.5.5 Invoking TopNplus

The DPL visible to the query author is:

CREATIEE FUNCTI ON TopNpl us (

H:I:put TABLE W TH SET SEMANTI CS PRUNEWHEN EMPTY,
wrany | NTEGER
) RETURNS TABLE

Here i$ an example of an invocation:

SELECT S.Region, T.*
FROM TABLE (TopNpl us (
I nput => TABLE (M/. Sal es) AS S
PARTI TI ON BY Regi on
ORDER BY Sal es DESC,
Howrany => 3)
) AS.T

Note that only, the partitioning column can be accessed using correlation name S, because the input table has
set semantics:

12.5.6 Calling TopNplus describe

The signature of TopNplus_describe as stated in Subclause 12.5.4, “TopNplus component procedures’, is

PROCEDURE TopNpl us_descri be (
| NOUT Order_col _no | NTEGER;
I N I nput _row descr VARCHAR(2),
I N I nput _pby_descr VARCHAR(2)

134 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)

I N I nput _order_descr VARCHAR(2),
I N I nput _request _descr VARCHAR(2),

I N Howrany | NTECER,

IN Initial _result_row VARCHAR(2),
I NOUT Status CHAR(5)

)

The input table My.Sales has the following columns:

12.5 TopNplus

CREATE TABLE M. Sal es (
R¢gi on VARCHAR(20) ,
Pfoduct VARCHAR(20)

| esmanl D | NTEGER,
| es FLOAT)

TopNplus has one private variable, an integer named Order_col_no. The DBM S must,alfocate thisand injtialize

it tonull.

The signature of TopNplus_describe will require that the DBMS create five PTF descriptor areas. Thefirstis

the ful] row type PTF descriptor area. Let it be named 'I1'; it has the foll owing contents:

Content

Header

COUNT =3
TOP_LEVEL_COUNT'=3
Other componentsunspecified

Item 1

NAME = 'REGION'

LEVEL =0

TYPE =12 (for VARCHAR)

LENGTH =20
CHARACTER_SET_CATALOG, CHAR-
ACTER SET SCHEMA, and CHARAC-
TER_SET NAME arethe catalog, schema,
and local name of the default character set.
Other components unspecified

Mem 2

NAME ='PRODUCT"

LEVEL =0

TYPE =12 (for VARCHAR)

LENGTH =20

CHARACTER_SET CATALOG, CHAR-
ACTER_SET_SCHEMA, and CHARAC-

TER_SET_NAME arethe catalog, schema,

PN

andl ool af tha-dafarils ~l +. <t
AU TULAl TIATIC Ul tTiC ucicault Ulicr Aol oct.

Other components unspecified

Item 3

NAME ="'SALES

LEVEL =0

TYPE =7 (for REAL)

Other components unspecified

Next the DBM S must also create a PTF descriptor area of the partitioning; call this P1. The contents of P1 are:

©ISO/IEC 2017 — All rights reserved

Examples 135

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
125 TopNplus

Content

Header | COUNT =1
TOP _LEVEL _COUNT =1
Other components unspecified

ltem 1 NAME ="REGION
LEVEL =0
Other components unspecified

Since fhe input table has set semantics, the DBM S must a so create a PTF descriptor ared of-the ordering. Call
this PTF descriptor areas S1. The contents of S1 are:

Content

Header | COUNT =1
TOP_LEVEL_COUNT =1
Other components unspecified

Item 1 NAME ="'SALES

LEVEL =0

LENGTH=0

TYPE=0

SORT_DIRECTION =1 (for ASC)
NULL_ORBERING =1 (for NULLS
LAST)

Othergcomponents unspecified

(This gssumes an implementation-defined default to NULLS LAST).
The DBMS must also create an@mpty PTF descriptor areafor the requested row type; let it be called AlL:

Content

Header | COUNT =0
TOP_LEVEL_COUNT =0
Other components unspecified

The DBMS must also allocate an empty read-write PTF descriptor area for the intermediate result row type.
L et the Tntermediate result row type PTF descriptor area be named R. R has the folfTowing contents.

Content

Header | COUNT =0
TOP_LEVEL_COUNT =0
Other components unspecified

136 Polymorphic Table Functionsin SQL ©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.5 TopNplus

Finally the DBMS must allocate a CHAR(5) variable for the status code, initialized to '00000'. Let ST be the
status code variable.

Now the DBM S makes the following invocation:

CALL TopNpl us_descri be (
Order _col _no => Order_col _no;
I nput _row descr => "11",

I
St

12.5.7

Theta)
1) C
T
2) P
T

put _pby_descr => 'P1',

put _order_descr => 'S1',
put _request _descr => 'Al",
wrany => 3,

itial _result_row => "R,
atus => ST

Inside TopNplus_describe

5ks of TopNplus are:

neck the inputs for validity.

ne validity check isthat thereis asingle ordering column.of numeric type.
pulate the requested row type descriptor.

he requested row descriptor is a copy of the full input row descriptor.

3) Populate theinitial result row type descriptor:

T
4)
TopNg
) G

(€:

2) If
3 G

neinitial result row descriptor isacopy-of the full input row descriptor.
bt the value of the private data.
lus can use the following logic:

bt the number of ordering columnsin local variable OrderColumns:

T DESCRI PTOR PTF | nput _or der _descr
Or der Col umms, =7 COUNT;

OrderColumnsis not 1, return an error in the status code parameter.

bt theé'name of the ordering column in local variable OrderColumnName:

C_‘r_—r NECCRLPDTOR-PTFE 1 n l l
T ULOoUNT T TuN T rr TITpgut __Urh ucth UtToUld

VALUE 1 Order Col uitmNanme = NAME;

4) Get the number of input columnsin InputColumns:

GET DESCRI PTOR PTF | nput _r ow _descr

5 In

I nput Col utms = COUNT;

aloop setting | from 1 to InputColumns:

©ISO/IEC 2017 — All rights reserved

Examples 137

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
125 TopNplus

a)

b)

Get the input column name in ColumnName.

GET DESCRI PTOR PTF | nput _r ow_descr
VALUE | Col umName = NAME;

If ColumnName equals OrderColumnName, exit the loop.

6) If noinput column has the same name as OrderColumnName, return an error. (If this happens, it indicates

a
7 G

(€:

pug in the DBMS, since the ordering column must be a column of the input table.)

bt the data type of the ordering column:

ET DESCRI PTOR PTF | nput _r ow_descr
VALUE | OrderType = TYPE;

8) Check that OrderTypeisanumeric type (see Subclause 7.1.2, “ SQL item descriptor areas for row fypes’,
far alist of al type codes). If the ordering column is not numeric, return an-égror.
9) Populatethe PTF descriptor areafor theinitial result row type asacopy,of theinput table's row type| minus
anly partitioning columns.
a)| Initialize OutputColumnsto 0 and Found to O.
b) Inaloop, setting Jfrom 1 through InputColumns:
i) Get the J-th column name:
GET DESCRI PTOR PTF | nput _r ow_descr
VALUE J Col ummName = NAME
i) Search through the PTF descriptor area named by Input_pby descr, looking for amatch to
ColumnName. If the columngame matches a partitioning column, continue theloop at the next
J.
iii) If ColumnName doesnot match any namein Input_pby _descr, then increment OutputColumns
and append the J-thitem descriptor from Input_row_descr to Initial_result_row:
Qut put Col uams = CQut put Col utms + 1;
SET DESCRRPTOR PTF Initial _result_row COUNT = J;
COPY DESCRI PTOR PTF I nput _row _descr
VALUE'J (NAME, TYPE)
TO PTF Initial _result_row VALUE Cut put Col umms;
10) The requested row descriptor area can be a copy of theinitial result row:
CORY/DESCRI PTOR PTF Initial _result_row

IEN-NET 3 oo + 2| r:
TPt _Tr egoutst _UtsStT

11) Search the requested row descriptor for a column with the same name as the ordering column. If thereis
no such column, return an error (the ordering column must have been a partitioning column, but ordering
on a partitioning column will not order a partition). Otherwise, save the column number in the private
variable Order_col_no.

138 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.5 TopNplus

12.5.8 Result of TopNplus _describe

The DBMS checks the status code for success. Then the DBM S saves the private data, requested row type
descriptor, and the initial result row type descriptor for use a run time.

The complete result row typeis:

Correlation name S T
Column name REGION PRODUCT SALES
Datatype VARCHAR(100) | VARCHAR(100) | VARCHAR(100)

12.5.9 Virtual processorsfor TopNplus

The qyery (first presented in Subclause 12.5.5, “Invoking TopNplus’) is:

SELECT S.Region, T.*

FROM TABLE (TopNpl us (

mput => TABLE (My. Sales) AS S
PARTI TI ON BY Regi on
ORDER BY Sal es DESC,
Hpwmany => 3)

)y AS T

This example has one input table; it has set semantics and is partitioned and ordered. Therefore, the DBM S
creates one virtual processor for each partitionof theinput table. The DBM S must sort the dataiin each partition.

The sgmple data presented in Subclause22.5.1, “ Overview”, is:

Region Product Sales

East A 1234.56
East B 987.65
East C 876.54
East D 765.43
East E 654.32
West E 2345.67
West D 2001.33
West C 1357.99
West B 975.35

©ISO/IEC 2017 — All rights reserved Examples 139

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
125 TopNplus

Region Product Sales

West A 864.22

There are two partitions; therefore, the DBM S must create two virtual processors, one for region “East” and
one for region “West”. The data above has been sorted on Sales in descending order; thisis the order required

for thecursor I each partition.

Before creating the virtual processors, the DBM S can determine the following PTF descriptor areas:

1)

2)
3)

The DBMS creates the virtual processors, assigning each of them a partitiofof the input data. On each
processor, the DBM S opens a cursor to read the virtual processor's partition, with row type as described
cursor [row type descriptor. Let the cursor be named 'C1' in each partition (there is no name conflict beg
each v|rtual processor isits own name space). Thus, on region “East” the cursor is:

SELECT Product, Sales
FROM M. Sal es

VWHERE| Regi on = ' East'
CORDER|BY Sal es DESC

and the cursor of the virtual processor for region*West” is:

SELECT Product, Sales
FROM M. Sal es

VWHERE| Regi on = ' Wést'
CORDER|BY Sal es DESC

The prjvate data for TopNplusis:

PRI VATE DATA (

This pfivate datawasinitialized by TopNplus_describe and is simply maintained by the DBMS.

On eagh virtual\processor, the DBM S does the following initialization:

1)

2)

140 Polymorphic Table Functionsin SQL

Tlhe cursor row type descriptor. This example does not use pass-through columns; therefore, thisig
sgme as the requested row type descriptor that was produced by TopNplus_describe,

Tihe partitioning and ordering descriptors. These are the same as were input to TOpNplus_describe

Ofder_col _no | NTEGER)

the

Tlhe intermediate result row type descriptor. Since there are no pass-through‘eotumns, thisis the sgme as
theinitial result row type descriptor populated by TopNplus_describe.

virtual
by the
ause

TheDBMS opens a PTF dynam C cursor that reads the partition assigned to that Vi rtual procr
SE)

cursor isC1 (the same PTF extended name can be used on aII Vi rtual procrs because each isitsown

address space).

The DBMS creates a copy of the PTF descriptor areas as determined above, and gives them namesin the

PTF extended name space. We will assume the following names:
a) Cursor row type descriptor: 11

b) Partitioning descriptor: P1

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

¢) Ordering descriptor: S1

d) Intermediate result row descriptor: R

ISO/IEC TR 19075-7:2017(E)
12.5 TopNplus

3) The DBMSinstantiates a copy of the private data as it was output from TopNplus_describe. We show it

as avariable named Order_col_no (the same as the parameter name).

4) The DBMS allocates memory on each virtua processor for the SQL status code, aCHAR(5) variable ini-

12.5.10Calling TopNplus_fulfill

The signature of TopNplus_fulfill isfound in Subclause 12.5.4, “ TopNplus component procedures’, asfgllows:

PROCEDURE TopNpl us_ful fill (

NOUT Order _col _no | NTECGER;

N | nput _row_descr VARCHAR(2),

N | nput _pby_descr VARCHAR(2)

N | nput _order _descr VARCHAR(2),

N | nput _cursor VARCHAR(2),

N Howrmany | NTECER,

N | ntermedi ate_result_row VARCHAR(2),
NOUT St at us CHAR(5)

Then the invocation looks like this;

CALL TopNplus_fulfill (

Ofder _col _no => Order_col _no;
put _row descr => '11",

put _pby_descr => 'P1',

put _order_descr => 'S1',

put _cursor => 'Cl',

wrany => 3,
Iptermediate_result_row=> "R,
Sfatus => ST

12,5111 nsideTopNplus fulfill

1) Inadoop:

a) Read at most Howmany rows of the input cursor:

FETCH FROM PTF | nput _cursor
I NTO DESCRI PTOR PTF | nput _row _descr;

b) Copy the nonpartitioning columnsto Intermediate_result_row.

¢) Output the row in Intermediate result_row:

Pl PE RON PTF I nternedi ate_result_row,

©ISO/IEC 2017 — All rights reserved

Examples 141

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
125 TopNplus

2) Initializelocal variable Sumto O:

LET Sum = 0. 0O;

3) Inaloop:

a)

Read all remaining rows of the inpuit.

b)

4) If

b)

12.5.1

there were any remaining rows.

P Collectingthe output

FETCH FROM PTF | nput _cur sor
I NTO DESCRI PTOR PTF | nput _r ow_descr;

Get the value of the sort column. Note that the position of this column in Input_row-destr wag deter-

mined by TopNplus_describe and placed in Order_col_no:

GET DESCRI PTOR PTF | nput _row _descr VALUE Order_col _no
Val = DATA;

Add the value to SUM:

LET Sum = Sum + Val ;

Letting | range over all columns of the result, set the DATA component of the I-th column of the result

row descriptor areato null:

SET DESCRI PTOR PTF | nt er medi at e_r esu] ts"ow
VALUE | DATA = NULL;

Set the order column's DATA to Sum:

SET DESCRI PTOR PTF Internedilate_result_row
VALUE Order_col _no DATA(S Sum

Send the summary row to.the DBMS:

Pl PE ROW PTF | ntier nedi ate_resul t _row,

On eagh virtual processor, the DBM S collectsthe rowsthat are sent from TopNplus_fulfill. The complete
row isfformed from the intermediate result row (p| ped out of TopN plus_fulfill) plusthe part|t|0n| ng col
(invarig : ‘ SH s i :
procr

12.5.13Cleanup

b result
umns
virtua

After avirtual processor completes, the DBM S performs any cleanup for that virtual processor, such asclosing
the input cursor and deallocating the PTF descriptor areas.

142 Polymorphic Table Functionsin SQL

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
12.5 TopNplus

12.5.14TopNplus using pass-through columns

The preceding example can also be done using pass-through columns, if Feature B205, “ Pass-through columns”,
is supported by the DBMS, with a slight modification to the functional specification. The modification is that

Feature B205, “ Pass-through columns’, is used to provide the columns of theinput tablein the result. The only
proper result column isacopy of the ordering column in the first Howmany rows, and the sum of the remaining
rowsinasummary row. Sincethereis no specific input row to associate with the summary row, the pass-through
columfis in the summary row are set to null.

The DPL becomes:

CREATIE FUNCTI ON TopNpl us (
H:[put TABLE PASS THROUGH

W TH SET SEMANTI CS PRUNE WHEN EMPTY,
wrany | NTEGER)
RETURNS TABLE
NOT DETERM NI STI C
READS| SQL DATA
DESCR| BE W TH PROCEDURE TopNpl us_descri be
FULFI LL W TH PROCEDURE TopNpl us_ful fill

The differences from Subclause 12.5.3, “ Design specification for TopNplus’, are:
1) PASSTHROUGH instead of NO PASS THROUGH.

2) Np private data (the requested row will only have the‘arder column, so thereis no problem finding

f).

Conseqiuently, the component procedure signatures are:
CREATIE PROCEDURE TopNpl us_descri be (

N | nput _row_descr VARCHAR(2),

N | nput _pby_descr VARCHAR(2)

N | nput _order _descr VARCHAR(.2),

N | nput _request _descr VARCHAR(2),

N Hownany | NTEGER,

N I nitial _result_row WARCHAR(2),

NOUT St at us CHAR(5)

) LANBUAGE SQL DETERM NMSTI C CONTAI NS SQL
SQ. SECURI TY DEFI NER

F PROCEDRURE TopNplus_fulfill (
I N | nputycursor _row VARCHAR(2),
I N [nput_pby_descr VARCHAR(2)
| NoMput _order _descr VARCHAR(2),
I L
I N

1 + MARCLIARL 2N
Pt _—_Cutr—Sot— et —vARCIARC=Z)

Howmany | NTEGER,
IN I nternediate_result_row VARCHAR(2),
I NOUT Status CHAR(5)
) LANGUAGE SQ. NOT DETERM NI STI C READS SQL DATA
SQ. SECURI TY DEFI NER
BEG N
END

The tasks of TopNplus_describe are:

©ISO/IEC 2017 — All rights reserved Examples 143

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

ISO/IEC TR 19075-7:2017(E)
125 TopNplus

1)

2)
3)

Validate the input (Input_order_descr must have a single column name, identifying a numeric column in
Input_row_descr).

Populate Input_request_descr (with the name of the ordering column).

Populate Initial_row_descr (with asingle column, whose description can be copied from the order column
in Input_row_descr).

The DBM S constructs the intermediate result row descriptor from theinitial result row descriptor by appending

consisting of the sort column and the surrogate column.

2)
3)

ntents,

Fetch the first Howmany rows from the cursor into the cursor row descriptor. For each of these rows, copy
the cursor row descriptor to the intermediate result row descriptor, and pipe the intermediate result row

After reading all rows, assign the sum to the first column-of the intermediate result row descriptor,|/and a

The DBMS receives the intermediate result row descriptors that TopNplus fulfill pipes out and expands them

2)

3)

144 Polymor phic Table Functionsin SQL

Tlphe partitioning columns are copied from invariant values on the virtual processor receiving the rgsult

Tihe pass-through output surrogate column is expanded to obtain the non-partitioning columns of the input
table. On the last row, when the output surrogate is null, this expands into null valuesfor all the non-parti-
tigning columns of theiinput table.

©ISO/IEC 2017 — All rights reserved

https://iecnorm.com/api/?name=a91b0f5561476f36f86ef8c70158a615

	Contents
	Tables
	Figures
	Foreword
	Introduction
	1 Scope
	2 Normative references
	2.1 ISO and IEC standards

	3 Introduction to Polymorphic Table Functions
	3.1 Audiences
	3.2 Motivating examples
	3.2.1 CSVreader
	3.2.2 Pivot
	3.2.3 Score
	3.2.4 TopNplus
	3.2.5 ExecR
	3.2.6 Similarity
	3.2.7 UDjoin
	3.2.8 MapReduce

	3.3 The life cycle of a PTF

	4 PTF processing model
	4.1 Processing phases
	4.2 Virtual processors
	4.3 PTF component procedures
	4.4 Input table characteristics
	4.5 Partitioning and ordering
	4.6 Flow of control
	4.7 Flow of information
	4.8 Flow of row types
	4.9 Pass-through columns
	4.10 Security model
	4.11 Conformance features

	5 Specification
	5.1 Functional specification
	5.1.1 Parameter list
	5.1.2 Input table semantics
	5.1.3 Prunability
	5.1.4 Pass-through columns
	5.1.5 Result row type
	5.1.6 Determinism
	5.1.7 SQL-data access
	5.1.8 Documenting the PTF to the query author

	5.2 Design specification
	5.2.1 Name the component procedures
	5.2.2 Private data
	5.2.3 Routine characteristics of the component procedures
	5.2.4 Component procedure signatures

	6 Data definition language
	6.1 PTF creation
	6.2 PTF component procedures
	6.3 Altering PTF component procedures and PTFs
	6.4 Dropping a PTF and its component procedures

	7 Implementation
	7.1 PTF descriptor areas
	7.1.1 PTF descriptor area header
	7.1.2 SQL item descriptor areas for row types
	7.1.3 SQL item descriptor areas for partitioning
	7.1.4 SQL item descriptor areas for ordering

	7.2 PTF extended names
	7.3 Reading a PTF descriptor area
	7.4 Writing a PTF descriptor area
	7.4.1 Using DESCRIBE to populate a PTF descriptor area
	7.4.2 Using SET DESCRIPTOR to populate a PTF descriptor area
	7.4.3 Using COPY DESCRIPTOR to populate a PTF descriptor area

	7.5 Reading a PTF input cursor
	7.6 Outputting a row

	8 Invocation
	8.1 <table primary>
	8.2 <PTF derived table>
	8.3 Proper result correlation name and proper result column naming
	8.4 <routine invocation>
	8.5 <table argument>
	8.6 <table argument proper>
	8.6.1 <table or query name>
	8.6.2 <table subquery>
	8.6.3 Nested table function invocation

	8.7 Table argument correlation name
	8.8 Table argument column renaming
	8.9 Range variables and column renaming in nested PTF
	8.10 Partitioning
	8.11 Pruning
	8.12 Ordering
	8.13 Copartitioning
	8.14 Cross products of partitions
	8.15 <descriptor argument>

	9 Compilation
	9.1 Calling the describe component procedure
	9.2 Inside the describe component procedure
	9.3 Using the result of describe

	10 Optimization
	11 Execution
	11.1 Partitions and virtual processors
	11.2 Calling the start component procedure
	11.3 Inside the start component procedure
	11.4 Calling the PTF fulfill component procedure
	11.5 Inside the PTF fulfill component procedure
	11.6 Closing cursors
	11.7 Calling the PTF finish component procedure
	11.8 Inside the PTF finish component procedure
	11.9 Collecting the output
	11.10 Cleanup on a virtual processor
	11.11 Final result

	12 Examples
	12.1 Projection
	12.1.1 Overview
	12.1.2 Functional specification of Projection
	12.1.3 Design specification for Projection
	12.1.4 Projection component procedures
	12.1.5 Invoking Projection
	12.1.6 Calling Projection_describe
	12.1.7 Inside Projection_describe
	12.1.8 Result of Projection_describe
	12.1.9 Virtual processors for Projection
	12.1.10 Calling Projection_fulfill
	12.1.11 Inside Projection_fulfill
	12.1.12 Collecting the results
	12.1.13 Cleanup

	12.2 CSVreader
	12.2.1 Overview
	12.2.2 Functional specification of CSVreader
	12.2.3 Design specification for CSVreader
	12.2.4 CSVreader component procedures
	12.2.5 Implementation of CSVreader
	12.2.6 Invoking CSVreader
	12.2.7 Calling CSVreader_describe
	12.2.8 Inside CSVreader_describe
	12.2.9 Result of CSVreader_describe
	12.2.10 Virtual processor for CSVreader
	12.2.11 Calling CSVreader_start
	12.2.12 Inside CSVreader_start
	12.2.13 Calling CSVreader_fulfill
	12.2.14 Inside CSVreader_fulfill
	12.2.15 Collecting the output
	12.2.16 Calling CSVreader_finish
	12.2.17 Inside CSVreader_finish
	12.2.18 Cleanup

	12.3 Pivot
	12.3.1 Overview
	12.3.2 Functional specification of Pivot
	12.3.3 Design specification for Pivot
	12.3.4 Pivot component procedures
	12.3.5 Invoking pivot
	12.3.6 Calling Pivot_describe
	12.3.7 Inside Pivot_describe
	12.3.8 Result of Pivot_describe
	12.3.9 Virtual processors for Pivot
	12.3.10 Calling Pivot_fulfill
	12.3.11 Inside Pivot_fulfill
	12.3.12 Collecting the results
	12.3.13 Cleanup

	12.4 Score
	12.4.1 Overview
	12.4.2 Functional specification of Score
	12.4.3 Design specification for Score
	12.4.4 Score component procedures
	12.4.5 Invoking Score
	12.4.6 Calling Score_describe
	12.4.7 Inside Score_describe
	12.4.8 Result of Score_describe
	12.4.9 Virtual processors for Score
	12.4.10 Calling Score_fulfill
	12.4.11 Inside Score_fulfill
	12.4.12 Collecting the output
	12.4.13 Cleanup

	12.5 TopNplus
	12.5.1 Overview
	12.5.2 Functional specification of TopNplus
	12.5.3 Design specification for TopNplus
	12.5.4 TopNplus component procedures
	12.5.5 Invoking TopNplus
	12.5.6 Calling TopNplus_describe
	12.5.7 Inside TopNplus_describe
	12.5.8 Result of TopNplus_describe
	12.5.9 Virtual processors for TopNplus
	12.5.10 Calling TopNplus_fulfill
	12.5.11 Inside TopNplus_fulfill
	12.5.12 Collecting the output
	12.5.13 Cleanup
	12.5.14 TopNplus using pass-through columns

	12.6 ExecR
	12.6.1 Overview
	12.6.2 Functional specification of ExecR
	12.6.3 Design specification for ExecR
	12.6.4 ExecR component procedures
	12.6.5 Invoking ExecR
	12.6.6 Calling ExecR_describe
	12.6.7 Inside ExecR_describe
	12.6.8 Result of ExecR_describe
	12.6.9 Virtual processors for ExecR
	12.6.10 Calling ExecR_start
	12.6.11 Inside ExecR_start
	12.6.12 Calling ExecR_fulfill
	12.6.13 Inside ExecR_fulfill
	12.6.14 Collecting the output
	12.6.15 Calling ExecR_finish
	12.6.16 Inside ExecR_finish
	12.6.17 Cleanup

	12.7 Similarity
	12.7.1 Overview
	12.7.2 Functional specification of Similarity
	12.7.3 Design specification for Similarity
	12.7.4 Similarity component procedures
	12.7.5 Invoking Similarity
	12.7.6 Calling Similarity_describe
	12.7.7 Inside Similarity_describe
	12.7.8 Result of Similarity_describe
	12.7.9 Virtual processors for Similarity
	12.7.10 Calling Similarity_fulfill
	12.7.11 Inside Similarity_fulfill
	12.7.12 Collecting the output
	12.7.13 Cleanup

	12.8 UDjoin
	12.8.1 Overview
	12.8.2 Functional specification of UDjoin
	12.8.3 Design specification for UDjoin
	12.8.4 UDjoin component procedures
	12.8.5 Invoking UDjoin
	12.8.6 Calling UDjoin_describe
	12.8.7 Inside UDjoin_describe
	12.8.8 Result of UDjoin_describe
	12.8.9 Virtual processors for UDjoin
	12.8.10 Calling UDjoin_fulfill
	12.8.11 Inside UDjoin_fulfill
	12.8.12 Collecting the output
	12.8.13 Cleanup

	12.9 Nested PTF invocation
	12.9.1 Nested PTF syntax and semantics
	12.9.2 Nested PTF compilation
	12.9.3 Nested PTF execution
	12.9.4 The PTF author's view of nested PTF invocations

