INTERNATIONAL STANDARD

ISO 15118-8

First edition 2018-03

Road vehicles — Vehicle to grid communication interface —

Part 8:

Physical layer and data link layer requirements for wireless communication

Véhicules routiers lnterface de communication entre véhicule et réseau électrique

Partie 8: Exigences relatives à la couche physique et à la couche liaison de données pour la communication sans fil

STANDARDSISO.COM. Click to view the full POF of 150 151 1885.2018

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office CP 401 • Ch. de Blandonnet 8 CH-1214 Vernier, Geneva Phone: +41 22 749 01 11 Fax: +41 22 749 09 47 Email: copyright@iso.org Website: www.iso.org

Published in Switzerland

Coı	ntent	S	Page
Fore	word		iv
Intro	oductio	n	v
1	Scon	e	1
2	-	native references	
		ns and definitions	
3			
4	Abbi	reviated terms	2
5	Conv	entions Definition of OSI based services Description of the structure	3
	5.1 5.2	Definition of OSI based services	3 2
,	5.Z	Requirement structure 6	
6	Syste	m architecture	3
7		less communication requirements	4
	7.1 7.2	Overview SECC requirements 7.2.1 General 7.2.2 WLAN technology	4 5
	7.2	7.2.1 General	5
		7.2.2 WLAN technology	5
		7.2.3 WLAN frequency and channel 7.2.4 SECC channel scanning and selection	6
		7.2.4 SECC channel scanning and selection	8
		7.2.5 Quality of service	9
		7.2.6 Association support	10
		7.2.7 Layer 2 interfaces	14
	7.3	7.2.5 Quality of service 7.2.6 Association support 7.2.7 Layer 2 interfaces 7.2.8 Pairing EVCC requirements 7.3.1 Conoral	14 1 r
	7.3	7.3.1 General	15 15
		7.3.2 WLAN technology	
		7.3.3 WLAN frequency and channel	
		7.3.4 Quality of service	
		7.3.5 Association support	
		7.3.6 Layer 2 interfaces	
	7.4	Security	
Ann	ex A (in	formative) Mounting location of wireless communication module and antenna	20
Ann	ex B (in	formative Interference scan and auto channel selection example	24
Ann	ex C (in	formative) Introduction of service available area	27
Ann	ex D (in	formative) National regulations in usage of U-NII bands	29
Bibl	iograpi	y	34

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following URL: www.iso.org/iso/foreword.html.

This document was prepared jointly by Technical Committee ISO/TC 22, *Road vehicles*, Subcommittee SC 31, *Data communication*, and Technical Committee IEC/TC 69, *Electric road vehicles and electric industrial trucks*. The draft was circulated for voting to the national bodies of both ISO and IEC.

A list of all parts in the ISO 15118 series cap be found on the ISO website.

iv

Introduction

The pending energy crisis and necessity to reduce greenhouse gas emissions has led the vehicle manufacturers to a very significant effort to reduce the energy consumption of their vehicles. They are presently developing vehicles partly or completely propelled by electric energy. Those vehicles will reduce the dependency on oil, improve the global energy efficiency and reduce the total CO_2 emissions for road transportation if the electricity is produced from renewable sources. To charge the batteries of such vehicles, specific charging infrastructure is required.

Much of the standardization work on dimensional and electrical specifications of the charging infrastructure and the vehicle interface is already treated in the relevant ISO or IEC groups. However, the question of information transfer between the EV and the EVSE has not been treated sufficiently.

Such communication is necessary for the optimization of energy resources and energy production systems so that vehicles can recharge in the most economic or most energy efficient way. It is also required to develop efficient and convenient billing systems in order to cover the resulting micropayments. The necessary communication channel may serve in the future to contribute to the stabilization of the electrical grid, as well as to support additional information services required to operate electric vehicles efficiently and economically.

In ISO 15118-3, the messages exchanged between the vehicle and the infrastructure are transported by the cable used for power transfer. With the inception of wireless power transfer technologies and the tremendous development of wireless communication in our societies, the need for a wireless communication between vehicle and charging infrastructure becomes imperative. This is the main focus of this document. The relevant information on use case definitions and network and application protocol requirements can be found in ISO 15118-11) and ISO 15118-22), respectively.

STANDARDSISO. COM. Click to view

¹⁾ Under development. Stage at time of publication: ISO/DIS 15118-1:2018.

²⁾ Under development. Stage at time of publication: ISO/CD 15118-2:2018.

STANDARDS SO. COM. Click to view the full PDF of ISO 161 18 82.2018

Road vehicles — Vehicle to grid communication interface —

Part 8:

Physical layer and data link layer requirements for wireless communication

1 Scope

This document specifies the requirements of the physical and data link layer of a wireless High Level Communication (HLC) between Electric Vehicles (EV) and the Electric Vehicle Supply Equipment (EVSE). The wireless communication technology is used as an alternative to the wired communication technology as defined in ISO 15118-3.

It covers the overall information exchange between all actors involved in the electrical energy exchange. ISO 15118 (all parts) are applicable for conductive charging as well as Wireless Power Transfer (WPT).

For conductive charging, only EVSEs compliant with "IEC 61851-1 modes 3 and 4" and supporting HLC are covered by this document. For WPT, charging sites according to IEC 61980 (all parts) and vehicles according to ISO/PAS 19363 are covered by this document.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 15118-1, Road vehicles — Vehicle to grid communication interface — Part 1: General information and use-case definition

ISO 15118-2:2014, Road vehicles — Vehicle-to-Grid Communication Interface — Part 2: Network and application protocol requirements

ISO 15118-3:2015, Road vehicles — Vehicle to grid communication interface — Part 3: Physical and data link layer requirements

ISO/PAS 19363, Electrically propelled road vehicles — Magnetic field wireless power transfer — Safety and interoperability requirements

IEEE Std $802.11^{\text{\tiny M}}$ -2012, IEEE Standard for Information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — specific requirements: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 15118-1, ISO 15118-2 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- IEC Electropedia: available at http://www.electropedia.org/
- ISO Online browsing platform: available at http://www.iso.org/obp

ISO 15118-8:2018(E)

3.1

access point

AP

wireless communication device that allows the user to connect to other wireless or wired communication devices

Note 1 to entry: See IEEE Std 802.11[™]-2012.

3.2

charging site

CS

area with one or more EVSEs controlled by one SECC

3.3 station

STA

logical entity that is a singly addressable instance of a medium access control and physical layer interface to the wireless medium which does not act as an *access point* (3.1)

3.4

IEEE 802.11n

IEEE Std 802.11 where the instances are HT APs or HT STAs

Note 1 to entry: The features of an HT STA are summarized in IEEE Std 802.11-2012, 4.3.10. An HT AP is an access point implementing the same set of features as an HT STA.

3.5

layer 2 link establishment

connection establishment indicated by a successful association/reassociation process as described in IEEE Std 802.11-2012, 10.3.5.2 and 10.3.5.3

3.6

service available area

restricted area around a charging station in which an SECC provides a connecting service with an ensured quality

4 Abbreviated terms

AP Access Point

AWC Automotive Wireless Communication

CS Charging Site

DFS Dynamic Frequency Selection

EDCA Enhanced Distributed Channel Access

EID Element Identifier

EMC Electromagnetic Compatibility

ETT Energy Transfer Type

EV Electric Vehicle

EVCC Electric Vehicle Communication Controller

EVSE Electric Vehicle Supply Equipment

HLC High Level Communication

HLE Higher Layer Entities

HT High Throughput

ISM Industrial, Scientific and Medical

MAC Medium Access Control

SAP Service Access Point

SECC Supply Equipment Communication Controller

SSID Service Set Identifier

TPC Transmit Power Control

U-NII Unlicensed National Information Infrastructure

VSE Vendor Specific Element

WLAN Wireless Local Area Network

WPT Wireless Power Transfer

5 Conventions

5.1 Definition of OSI based services

This document is based on the OSI Service Conventions (see ISO/IEC 10731) for the individual layers specified in this document.

5.2 Requirement structure

Each individual requirement included in this document has a unique code, as follows:

"[V2G8-XXX] Requirement text"

- where "V2G8" represents this document,
- where XXX represents the individual requirement number, and
- where "requirement text" includes the actual text of the requirement.

EXAMPLE [V2G8-999] This shall be an example requirement.

6 System architecture

This document is organized along architectural lines, same as in ISO 15118-3 emphasizing the large-scale separation of the system into two parts: the MAC sub layer of the Data Link Layer and the Physical Layer. These layers are intended to correspond closely to the lowest layers of the ISO/IEC Model for Open Systems (see ISO/IEC 7498-1). Figure 1 shows the relationship of this document to the OSI reference model.

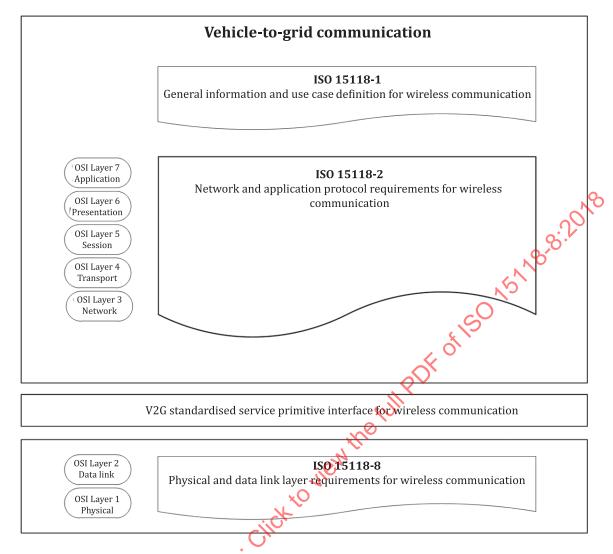


Figure 1 — Overview of ISO 15118-1, ISO 15118-2, and this document in the ISO/IEC OSI reference model

This document defines requirements applicable to layer 1 and 2, including the V2G Standardized Service Primitive Interface for wireless communication, according to the OSI layered architecture. Layers 3 to 7 are specified in ISO 15118-2.

This document covers both conductive charging and WPT use-cases using wireless communication. If not defined differently, requirements apply for both conductive charging and WPT.

7 Wireless communication requirements

7.1 Overview

This clause gives requirements for the wireless communication module on both the EVCC and the SECC side. EVCC and SECC make use of Wireless Local Area Network (WLAN) as specified in IEEE Std 802.11-2012 for wireless communication. More specifically, they implement the feature set of an HT STA or HT AP (which were originally specified in IEEE 802.11n-2009 and are thus commonly referred to as IEEE 802.11n), and operate in the 2,4 GHz and 5 GHz bands.

These frequency bands are ISM and U-NII bands where both other wireless communication technologies (e.g. Bluetooth®3), ZigBee®4), baby phone), and non-communication systems (e.g. microwave ovens, radar systems) can cause interference with the WLAN communication channels. Therefore, the requirements in this document are designed in a way where not only system interoperability is ensured, but also the communication robustness is hardened. In addition, manufacturers and operators need to make sure that the system is configured for robustness. For example, particular care has to be given to selecting an appropriate operating channel to avoid the above mentioned interference.

This document covers various use-cases in relationship to wireless communication for conductive charging and WPT, considering different range requirements for the communication channel:

- Discovery: The EVCC has entered the communication range of the SECC(s), then associates to an appropriate SECC to start HLC for further steps (typically 5 m to 30 m range);
- Fine Positioning: Alignment of the primary and secondary devices for efficient power transfer in case of WPT and alignment of the connectors of EV and EVSE for power transfer in case of automatic connection for conductive charging (typically 10 cm to 5 m range);
- Charging Control: For example, Power Request from vehicle to EVSE (typically 5 cm to 5 m range).

Use-case details are given in ISO 15118-1.

The distance between EVCC and SECC for Charging Control depends on the installation location of the wireless communication modules and antennae. This is out of scope of this document and vendor specific. As the distance influences the reliability of the communication link, manufacturers are encouraged to pay particular attention to the choice of mounting location. Additional parameters to be considered and some example setups are given in Annex A.

For testing and evaluating an installed system, a concept of service available area has been developed and detailed in Annex C.

7.2 SECC requirements

7.2.1 General

The wireless communication module of the SECC shall fulfil the requirements described in this subclause to ensure interoperability between the SECC and EVCC with adequate communication robustness for V2G applications.

7.2.2 WLAN technology

[V2G8-001] The wireless communication module of the SECC shall use IEEE 802.11 (see IEEE Std 802.11-2012) compliant wireless communication technology.

[V2G8-002] The wireless communication module of the SECC shall be configured as Access Point (AP) according to IEEE 802.11.

[V2G8-003] The wireless communication module of the SECC shall support the mandatory feature set of an HT AP according to IEEE Std 802.11-2012 on all the channels that it supports.

NOTE 1 An HT AP is an access point implementing the same set of features as an HT STA (see IEEE Std 802.11-2012, 4.3.10).

³⁾ Bluetooth® is the trademark of a product supplied by Bluetooth Special Interest Group. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

⁴⁾ ZigBee® is the trademark of a product supplied by Zigbee alliance. This information is given for the convenience of users of this document and does not constitute an endorsement by ISO of the product named. Equivalent products may be used if they can be shown to lead to the same results.

ISO 15118-8:2018(E)

The SECC may support other variants of IEEE 802.11 technology, as long as EVCCs can always establish connections via IEEE 802.11n. An example of such a technology is the Very High Throughput PHY (see IEEE 802.11ac-2013).

[V2G8-004] The beacon period of the SECC shall not exceed T_beacon = 105 ms.

NOTE 2 The beacon period is the time between two successive transmissions of the beacon frame. It is measured in Time Units (1 TU = $1024 \mu s$). A typical value would be T_beacon = 100 TU.

NOTE 3 T_beacon is the value of the Beacon Interval field as described in IEEE Std 802.11-2012, 8.4.1.3.

7.2.3 WLAN frequency and channel

There are two frequency bands with up to 35 channels which the SECC and EVCC can use to compunicate. The SECC is responsible for choosing the channel for operation. SECCs supporting simultaneous dual band operation are able to offer two operating channels for EVCCs to connect, while SECCs supporting selectable dual band operation are only able to offer a single operating channel. The SECC for wireless communication may be responsible for one or more power outlets as described in ISO 15118-1, which is different from the SECC using powerline communication which controls only a single power outlet as described in ISO 15118-3. Due to the possible drastic difference in the spectral environmental conditions among the EVCCs in the case of SECCs controlling multiple power outlets, offering two operating channels would let the EVCCs choose the channel which is less affected by its local interferences (e.g. from in-car infotainment system) and thus increase the communication robustness. For SECCs installed in an uncontrolled environment where the spectrum will not be monitored professionally, e.g. typically envisioned for WPT systems, it is also advisable to offer simultaneous dual band support.

[V2G8-005]	If the SECC supports WPT, the wireless communication module of the SECC shall
	support operation at both the 2,4 GHz and 5 GHz frequency bands in parallel.
[V2G8-006]	If the SECC controls two or more power outlets at a time, the wireless
	communication module of the SECC shall support operation at both the 2,4 GHz and
	5 GHz frequency bands in parallel.
[V2G8-007]	If the SECC controls only one power outlet at a time, the wireless communication
_	module of the SECC shall support operation at both the 2,4 GHz and 5 GHz
	frequency bands but not necessarily in parallel, unless [V2G8-005] applies.
[V2G8-008]	The wireless communication module of the SECC shall support a minimum of three

channels per frequency band at the operating site among the channels listed in Table 1 and Table 2.

NOTE 1 Depending on the location of the SECC, not all the channels listed in Table 1 and Table 2 may be allowed to be used (see Figure 2): V2G8-027 and V2G8-008 refers to the common subset of these two groups.

NOTE 2 A collection of national regulations in usage of the U-NII band channels is listed in Annex D.

NOTE 3 Depending on local regulations, the implementation of DFS and/or TPC might be required. The DFS mechanism is described in IEEE Std 802.11-2012, 10.9. The TPC mechanism is described in IEEE Std 802.11-2012, 10.8.

Table 1 — Channels allowed to be used for ISO 15118 (all parts) in the 2,4 GHz band

Channel ID	Centre frequency (MHz)
1	2 412
2	2 417
3	2 422
4	2 427
5	2 432
6	2 437
7	2 442
8	2 447
9	2 452
10	2 457
11	2 462

Table 2 — Channels allowed to be used for ISO 15118 (all parts) in the 5 GHz band

Channel ID	Centre frequency (MHz)
36	5 180
40	5 200
44	5 220
48	5 240
52	5 260
56	5 280
60	5 300
64	5 320
100	5 500
104	5 520
108	5 530
112	5 560
116	5 580
120	5 600
124	5 620
128	5 640
132	5 660
136	5 680
140	5 700
149	5 745
153	5 765
157	5 785
161	5 805
165	5 825

Figure 2 — Illustration of a subset of ISO 15118 (all parts) channels and channels allowed by local regulation

7.2.4 SECC channel scanning and selection

Since SECCs operate using unlicensed shared spectrum, the spectrum environment at the operation site of the SECC should be taken into account when selecting the operating channel in order to improve robustness of the communication link between the SECC and EVCC(s). The SECC may perform automatic channel scanning and selection to choose an appropriate channel. The effectiveness of the automatic channel selection is dependent on the channel selection algorithm, which is out of scope of this document. Alternatively, the operator may analyse the operating environment through a spectrum site survey and select the most suitable channel/list of channels for the SECC. These two methods are not mutually exclusive to each other and may be used in combination depending on the needs of the SECC operator. The requirements in this subclause are formulated as the basic requirements to ensure a good level of confidence for smooth operation.

[V2G8-009] Channel selection of the SECC shall be done by an automatic channel scanning and channel switching algorithm.

NOTE 1 Channel scanning refers to an SECC scanning a list of channels which it may operate in.

NOTE 2 Channel switching refers to the change of the current operating channel of the SECC to a different and more preferred channel after channel scanning.

[V2G8-010]	If a site spectrum survey for channel selection is done by the operator, automatic channel scanning and channel switching shall be optional.
[V2G8-011]	If an automatic channel scanning is implemented, the wireless communication module of the SECC shall scan the spectrum after power-on.
[V2G8-012]	If an automatic channel scanning is implemented, the wireless communication module of the SECC shall scan the spectrum after ending the V2G communication session, when there is no other associated EVCC.
[V2G8-013]	The spectrum scan shall be started within 5 s after the last V2G communication session is finished.

NOTE 3 The term V2G communication session is defined in ISO 15118-2.

[V2G8-014]	Channel scanning and channel sw	ritching shall be done within 30 s after startii	ng
	the channel scanning.	` `	

[V2G8-015] If an automatic channel scanning is implemented, the wireless communication module of the SECC shall scan the spectrum at least every 60 min when there is no associated EVCC and use the results of the scan as the input to its channel selection algorithm.

NOTE 4 The channel selection algorithm is out of scope of this document. The implementation of the algorithm is up to the provider of the SECC. Refer to Annex B for examples of the parameters and environmental conditions which may be taken into account by such an algorithm.

7.2.5 Quality of service

Enhanced Distributed Channel Access (EDCA) is a mechanism specified in IEEE 802.11 to support applications with Quality of Service requirements. EDCA delivers traffic based on differentiating IEEE 802.11 Access Categories. Traffic with higher access categories such as Voice (AC_VO) or Video (AC_VI) has a higher chance to gain the right to access the medium than traffic with lower access categories such as Best Effort (AC_BE) or Background (AC_BK). IPv6 Traffic Classes can be mapped to IEEE 802.11 Access Categories. Therefore, by assigning tags to application traffic with different IPv6 traffic classes, it is possible to prioritize the transmission of certain application data. For example, for V2G application, a higher traffic class can be assigned to the V2G traffic than to the VAS traffic.

The mapping of LPy6 traffic classes to Access Categories is defined in this subclause. Traffic class assignment for V26 application is defined in ISO 15118-2.

The wireless communication module of the SECC shall support the Enhanced Distributed Channel Access mechanism (EDCA) as defined in IEEE Std 802.11.

NOTE The EDCA mechanism is described in IEEE Std 802.11-2012, 9.2.4.2.

[V2G8-017] The wireless communication module of the SECC shall map IPv6 Traffic Classes to IEEE 802.11 Access Categories according to Table 3.

Table 3 —	- Mapping table of IP	v6 traffic classes to	o IEEE 802.11 a	ccess categories
-----------	-----------------------	-----------------------	-----------------	------------------

IPv6 traffic class	IEEE 802.11 access category
0 – 31	AC_BE
32 - 95	AC_BK
96 – 127	AC_BE
128 - 191	AC_VI
192 – 255	AC_VO

7.2.6 Association support

An SECC is, from the perspective of the EVCC, indistinguishable from any other WLAN AP. A specific SECC can be identified by its SECC ID as described in ISO 15118-1. In the case of WLAN, the SECC ID is the SSID. It is recommended to use a prefix with "AWC" (Automotive Wireless Communication) in the SSID, e.g. "AWC-xyz123", "AWC-Provider-XYZ", etc. However, even if the SECC ID is known beforehand, another AP with the same SSID (but which is not the right SECC or not an SECC at all) might be present. To support the association process, it is thus required to transmit some basic information about the CS without the necessity to establish a connection on layer 3 or higher layer. For WLAN, the preferred way to do this is the inclusion of a so called Vendor Specific Element (VSE) into the management frames transmitted by the SECC (see IEEE Std 802.11-2012, 8.4.2.28 for a description of the general structure of a VSE). This subclause details how this mechanism is to be used in the context of ISO 15118 (all parts).

[V2G8-018] The SECC shall include a Vendor Specific Element as specified in <u>Table 4</u> in its Beacon frames.

NOTE 1 The Beacon frame is described in IEEE Std 802.11-2012, 8.3.3.2.

[V2G8-019] The SECC shall include a Vendor Specific Element as specified in <u>Table 4</u> in its Probe Response frames.

NOTE 2 The Probe Response frame is described in IEEE Std 802.11-2012, 8.3.3.10.

Table 4 — Vendor Specific Element fields for SECC

Field	Octet no.	Field size (octets)	Value	Description
Element ID	0	1	0xDD	Fixed value as defined in IEEE Std 802.11–2012, Tables 8 - 54.
Length	AND	1	Length of the payload, ranging from 0x11 to 0xFF	The payload consists of all fields of the VSE except the Element ID and the Length itself.
Organization ID	2 to 6	5	0x70B3D53190	A context-dependent identifier consisting of the public organizationally unique identifier (0x70B3D5319) assigned by the IEEE to ISO/TC 22/SC 31 and a four bit extension identifier (0x0) indicating its usage in the context of ISO 15118 (all parts) (IEEE Std 802.11–2012, 8.4.1.31).

The value of the field Element Type will not be modified in future revisions of this document, unless the format or the meaning of the content of the VSE changes.

b An example of such a national authority is the "Energie Codes und Services GmbH" in Germany.

The Charging Site ID is the unique identifier for the SECC. It may be used for reservation or any other purposes.

Table 4 (continued)

Field	Octet no.	Field size (octets)	Value	Description
Element Type	7	1	0x01	This field is used to distinguish between multiple types of VSEs using the same Organization ID. A value of 0x01 identifies the VSE transmitted by an SECC as defined in this document ^a .
Energy Transfer Type	8	1	Bitfield indicating the energy transfer types supported by the CS, ranging from 0x01 to 0x0F	Bitfield describing the energy transfer types supported by the CS. The meaning of the single bits is given below in order from the least (bit 0) to the most significant bit (bit 7). All energy transfer types supported by the CS shall be set to 1, otherwise to 0. Bits 4 to 7 are reserved for future use and shall always be set to zero. Bit 0 – AC support
				Bit 1 – DC support
				Bit 2 – WPT support
				Bit 3 – ACD support
				Bit 4 – reserved
				Bit 5 reserved
				Bit 6 – reserved
			(1)	Bit 7 – reserved
Country Code	9 to 10	2	Country code of the operator of the CS	Two character country code according to ISO 3166-1.
Operator ID	11 to 13	3	ID of the operator of the CS	Operator ID as defined in ISO 15118-2:2014, Annex H. The ID is typically issued by a national authority ^b . If the operator of the CS has no Operator ID, the value shall be set to ""(0x2D2D2D).
Charging Site ID	14 to 18	5 ON.	ID of the CS	Unique identifier of the CS, to be defined by the operator ^c . The Charging Site ID is a numerical value and in general not a valid UTF-8 string.
Additional information	19 et sqq.	0 to 238	A UTF-8 encoded string	This field is optional; see [V2G8-020] and Table 5 for details.

The value of the field Element Type will not be modified in future revisions of this document, unless the format or the meaning of the content of the VSE changes.

b An example of such a national authority is the "Energie Codes und Services GmbH" in Germany.

^c The Charging Site ID is the unique identifier for the SECC. It may be used for reservation or any other purposes.

[V2G8-020] If Additional Information is included into the VSE of the SECC, this shall be done as

a UTF-8 encoded string of the form

<ETT>:<parameter>=-value>:<parameter>=<value>,<value>|<ETT>: etc.

where

<*ETT>* signifies the energy transfer type as defined in <u>Table 5</u>,

<parameter> signifies the parameter as defined in Table 5,

<value> signifies the value as defined in Table 5,

: (0x3A) is used to separate the ETT and the parameters, = (0x3D) is used to separate the parameter from its values,

, (0x2C) is used to separate multiple values for one parameter, and

(0x7C) is used to separate multiple parameter sets (one per ECT).

Table 5 — Optional information for inclusion into the Vendor Specific Element for both SECC and EVCC

ETT	Parameter	Value	Description
AC	С	1	AC Charging Connector Type 1 (IEC 62196-2)
		2	AC Charging Connector Type 2 (IEC 62196-2)
		3	AC Charging Connector Type 3 (IEC 62196-2)
	M	1	AC single phase charging [IEC 62196 (all parts)]
		3	AC three phase charging [IEC 62196 (all parts)]
	S	С	AC Charging Service
		В	AC Bidirectional Power Transfer Service
		I	AC Island Operation Service
DC	DC C		DC Charging connector Type 1 [IEC 62196 (all parts)]
		2	DC Charging Connector Type 2 [IEC 62196 (all parts)]
	M	1	DC charging on the core pins [IEC 62196 (all parts)]
		2	DC charging using the extended pins of a Configuration EE or Configuration FF connector (IEC 62196-3)
		30	DC charging using the core pins of a Configuration EE or Configuration FF connector (IEC 62196-3)
		4	DC charging using a dedicated DC coupler
S C DC Charging Service H DC High Power Charging Service B DC Bidirectional Power Transfer Service		DC Charging Service	
		DC High Power Charging Service	
	X PL	В	DC Bidirectional Power Transfer Service
	5	I	DC Island Operation Service

Table 5 (continued)

ETT	Parameter	Value	Description
WPT	Z	1	Gap Class Z1 (IEC 61980-3)
		2	Gap Class Z2 (IEC 61980-3)
		3	Gap Class Z3 (IEC 61980-3)
	P	1	Power Class MF-WPT1 (IEC 61980-3)
		2	Power Class MF-WPT2 (IEC 61980-3)
		3	Power Class MF-WPT3 (IEC 61980-3)
		4	Power Class MF-WPT4 (IEC 61980-3)
	F	M	Manual/proprietary positioning without parameters
		A1	Fine Positioning signal from EV to EVSE using low frequency antenna
		A2	Fine Positioning signal from EVSE to EV using low frequency antenna
		V1	Fine Positioning signal from EV to EVSE using magnetic vectoring
		V2	Fine Positioning Signal from EVSE to EV using magnetic vectoring
		Е	Fine Positioning Signal from EVSE to EVusing low power excitation
	A	Е	Alignment check using low power excitation
		P	Alignment check using point-to-point signal from EV to EVSE
	P	Е	Pairing using low power excitation from EVSE to EV
		P	Pairing using point-to-point signal from EV to EVSE
		V	Pairing using magnetic vectoring
		A	Pairing using low frequency antenna
	G	С	Geometry of the primary device is Circular (IEC 61980-3)
		D	Geometry of the primary device is Double D (IEC 61980-3)
		P	Geometry of the primary device is Polarized (IEC 61980-3)
ACD	ID		EVID which may be used to support association. The format of EVID is not defined in this document. This field is only applicable for VSEs for EVCCs.

EXAMPLE 1 This is the VSE transmitted by a German CS (Operator ID: XYZ) which supports DC and AC charging.

EID	Length	Organizational ID	Туре	ETT	Country	Operator ID	Charging Site ID
0xDD	0x11	0x70B3D53190	0x01	0x03	Code	0x58595A	0x0123456789
		> '			0x4445		

EXAMPLE 2 This is the VSE transmitted by a Japanese CS (Operator ID: ABC) which supports AC and WPT charging and includes additional information (AC:C=1|WPT:Z=2:P=1,2).

EID	Length	Organizational ID	Туре	ETT	Country	Operator ID	Charging Site ID			
0xDD	0x25	0x70B3D53190	0x01	0x05	Code	0x414243	0x0123456789			
					0x4A50					
Additional information										
	0x41433A433D317C5750543A5A3D323A503D312C32									

It is up to the EVCC to utilize the information provided via the VSE. An EVCC could, for example, ignore all APs that do not include the VSE into their management frames or (if the VSE is included) that do not offer a compatible energy transfer type.

13

7.2.7 Layer 2 interfaces

7.2.7.1 Overview

This subclause describes the terminology primitives used within this document. It is for explanation and for definition of a unique terminology only. This terminology is implementation independent. The Data Link Layer provides two interfaces to higher layers: Data Service Access Point (SAP) for data unit interfaces and Data Link Control SAP for link status information, error information, and control functionalities.

7.2.7.2 Data SAP

J/IECO 151/8-8:12 The network layer/logical link control sublayer data service primitives are defined in ISO/IEC8802-2.

7.2.7.3 Data Link Control SAP

The primitives for Data Link Control SAP to layer 3 are:

- D-LINK_READY.indication,
- D-LINK_TERMINATE.request,
- D-LINK_ERROR.request, and
- D-LINK_PAUSE.request.

Primitive details are given in ISO 15118-3:2015, 12.3.

[V2G8-021]

The wireless communication module of the SECC shall inform HLE through the D-LINK_READY.indication = link established within T_conn_max_D-Link when the layer 2 link to the wireless communication module of the EVCC is established.

Table 6 — Timing and constant values

Parameter	Description	Min	Typical	Max	Unit
T_conn_max_D-Link	Time for D-Link_READY.indication to higher layers after a layer 2 link is established			1	S
T_conn_max_comm	The duration between when the EVCC has detected an SECC for initiation of the association procedure for the charging application and when the D-Link_READY.indication is sent to HLE.			5	S

Pairing 7.2.8

7.2.8.1 General

Pairing is a process that correlates an EV with a unique EVSE (plug/primary device). The EVSE to which the EV is connected transfers the power either through a cable or through a WPT technology. If pairing is required, different mechanisms are described in 7.2.9.2 and 7.2.9.3, respectively.

For wireless communication, pairing might take place at a different point of time as compared to wired communication (known as matching as described in ISO 15118-3) due to the fact that the capability to transfer power is not necessarily given at the beginning of the communication.

7.2.8.2 Pairing with conductive charging

Pairing for conductive charging is done by toggling the Control Pilot line according to ISO 15118-3:2015, 9.4.

7.2.8.3 Pairing with WPT

Pairing mechanisms for WPT are given in IEC 61980 (all parts) and ISO/PAS 19363. Pairing related messages are given in ISO 15118-2.

7.3 EVCC requirements

7.3.1 General

The wireless communication module of the EVCC shall fulfil the requirements described in this subclause to ensure interoperability between the SECC and EVCC with adequate communication robustness for V2G applications.

7.3.2 WLAN technology

[V2G8-022] The wireless communication module of the EVCC shall use IEEE 802.11

compliant wireless communication technology.

[V2G8-023] The wireless communication module of the EVCC shall be configured as STA.

[V2G8-024] The wireless communication redule of the EVCC shall support the mandatory

feature set of an HT STA according to IEEE Std 802.11-2012 on all the channels

that it supports.

NOTE The feature set of an HT STA is described in IEEE Std 802.11-2012, 4.3.10.

The EVCC should select any available newer variant of IEEE 802.11 which is supported by the SECC. The selection of newer IEEE 802.11 features is assumed to improve spectral efficiency.

The EVCC can apply any additional feature set of IEEE 802.11, compatible to the available feature set of the SECC, to improve the reliability of the communication. Examples of these features are the intelligent choice of antennae, other modulation schemes or modulation rates, and the ability to handle spatial streams for advanced multiplexing.

In the event the link quality deteriorates, the most robust modulation should be used.

The present document does not limit the usage of any other technologies that may be available in future releases of IEEE 802.11, as long as support for IEEE 802.11n is ensured.

[V2G8-025] The wireless communication module of the EVCC shall use active and/or passive scanning.

Active scanning allows the EVCC to send Probe Request frames to the SECC instead of passively waiting for Beacon frames broadcasted by the SECC. Refer to IEEE Std 802.11-2012, 10.1.4. If the EVCC would like to achieve fast association, active scanning is recommended.

7.3.3 WLAN frequency and channel

Since SECC selects the operating channel, it is necessary for the EVCC to scan and operate on all allowed channels so that the EVCC will be able to associate and communicate with the SECC on the channel the SECC is operating in.

ISO 15118-8:2018(E)

[V2G8-026] The wireless communication module of the EVCC shall support operation at

both the 2,4 GHz and 5 GHz frequency bands, but not necessarily in parallel.

[V2G8-027] The wireless communication module of the EVCC shall support all channels in

both the 2,4 GHz and 5 GHz bands, which are listed in Table 1 and Table 2.

NOTE 1 A collection of national regulations in usage of the U-NII band channels is listed in Annex D.

NOTE 2 Depending on the location of the EVCC, not all of the channels listed in Table 1 and Table 2 may be allowed to be used (see Figure 2). V2G8-027 and V2G8-028 refers to the common subset of these two groups.

[V2G8-028] The wireless communication module of the EVCC shall scan all channels in both

the 2.4 GHz and 5 GHz bands, which are listed in Table 1 and Table 2.

NOTE 3 Active scanning may be prohibited on certain channels.

NOTE 4 Depending on local regulations, the implementation of DFS and/or TPC might be required. The DFS mechanism is described in IEEE Std 802.11-2012, 10.9. The TPC mechanism is described in IEEE Std 802.11-2012, 10.8.

7.3.4 Quality of service

[V2G8-029] The wireless communication module of the EVCC shall support EDCA as de-

fined in IEEE 802.11.

NOTE The EDCA mechanism is described in IEEE Std 802.11-2012, 9.2.4.2.

[V2G8-030] The wireless communication module of the EVCC shall map IPv6 Traffic Classes

to IEEE 802.11 Access Categories according to <u>Table 3</u>.

7.3.5 Association support

The EVCC is, from the perspective of the SECC, indistinguishable from any other WLAN STA. To support the association process, it is thus required to transmit some basic information about the EV without the necessity to establish a connection on layer 3 or higher layer. The mechanism used is identical to the one described in 7.2.6.

[V2G8-031]

The EVCC shall include a Vendor Specific Element as specified in <u>Table 7</u> in its Association Request frames.

NOTE 1 The Association Request frame is described in IEEE Std 802.11-2012, 8.3.3.5.

[V2G8-032] The EVCC shall include a Vendor Specific Element as specified in <u>Table 7</u> in its

Reassociation Request frames.

NOTE 2 The Reassociation Request frame is described in IEEE Std 802.11-2012, 8.3.3.7.

[V2G8-033] If active scanning is used, the EVCC shall include a Vendor Specific Element as

specified in <u>Table 7</u> in its Probe Request frames.

NOTE 3 The Probe Request frame is described in IEEE Std 802.11-2012, 8.3.3.9.

Table 7 — Vendor Specific Element fields for EVCC

Field Name	Octet no.	Field size (octets)	Value	Description
Element ID	0	1	0xDD	Fixed value as defined in IEEE Std 802.11–2012, Tables 8 - 54.
Length	1	1	Length of the payload, ranging from 0x07 to 0xFF	The payload consists of all fields of the VSE except the Element ID and the Length itself.
Organization ID	2 to 6	5	0x70B3D53190	A context-dependent identifier consisting of the public organizationally unique identifier (0x70B3D5319) assigned by the FEE to ISO/TC 22/SC 31 and a four bit extension identifier (0x0) indicating its usage in the context of ISO 15118 (all parts) (see IEEE Std 802.11–2012, 8.4.1.31).
Element Type	7	1	0x02	This field is used to distinguish between multiple types of VSEs using the same Organization ID. A value of 0x02 identifies the VSE transmitted by an EVCC as defined in this documenta.
Energy Transfer Type	8		Bitfield indicating the energy transfer types supported by the EV, value ranging from 0x01 to 0x0F	Bitfield describing the energy transfer types supported by the EV. The meaning of the single bits is given below in order from the least (bit 0) to the most significant bit (bit 7). All energy transfer types supported by the EV shall be set to 1, otherwise to 0. Bits 4 to 7 are reserved for future use and shall always be set to zero. Bit 0 – AC supports Bit 1 – DC support Bit 2 – WPT support Bit 3 – ACD support Bit 4 – reserved Bit 5 – reserved
	5).		Bit 6 – reserved Bit 7 – reserved
Additional	9 et sqq.	0 to 248	A UTF-8 encoded string	This field is optional; see
information	8-			[V2G8-034] and <u>Table 5</u> .

The value of the field Element Type will not be modified in future revisions of this document, unless the format or the meaning of the content of the VSE changes.

[V2G8-034] If Additional Information is included into the VSE of the EVCC, this shall be done as a UTF-8 encoded string of the form

<ETT>:<parameter>=<value>;<parameter>=<value>,<value>|<ETT>: etc.

where signifies the energy transfer type as defined in <u>Table 5</u>,

<*ETT>* signifies the parameter as defined in <u>Table 5</u>,

<parameter> signifies the value as defined in Table 5,

<value> (0x3A)is used to separate the ETT and the parameters,

17

ISO 15118-8:2018(E)

(0x3D) is used to separate a parameter from its values, :

(0x2C) is used to separate multiple values for one parameter, and

(0x7C) is used to separate multiple parameter sets (one per ETT).

This is the VSE transmitted by an EV which supports AC and WPT charging. **EXAMPLE**

EID	Length	Organizational ID	Туре	ETT
0xDD	0x07	0x70B3D53190	0x02	0x05

It is up to the SECC to utilize the information provided via the VSE. An SECC could, for example, genore connection requests from STAs that do not include the VSE into their management frames or, if the VSE is included, do not support a compatible energy transfer type.

It is recommended for an SECC installed at charging areas where it potentially receives a lot of association requests from non EVCC STAs, e.g. at public places, to utilize the information provided via the VSE and to accept only connection requests from STAs with a valid VSE.

7.3.6 Layer 2 interfaces

7.3.6.1 Overview

This subclause describes the terminology primitives used within this document. It is for explanation and for definition of a unique terminology only. This terminology is implementation independent. The Data Link Layer provides two interfaces to higher layers: Data Service Access Point (SAP) for data unit interfaces and Data Link Control SAP for link status information, error information, and control functionalities.

7.3.6.2 Data SAP

The network layer/logical link control sublayer data service primitives are defined in ISO/IEC 8802-2.

7.3.6.3 **Data Control SAP**

The primitives for Data Link Control SAP to layer 3 are

- D-LINK READY.indication
- D-LINK_TERMINATE request,
- D-LINK ERROR request, and
- D-LINK_PAUSE.request.

Primitive details are given in ISO 15118-3:2015, 12.3.

To ensure a fast HLC establishment, the wireless communication module shall fulfil the following timing requirements where the timing values are defined in <u>Table 6</u>.

[V2G8-035] The wireless communication module of the EVCC shall inform HLE through the

> D-LINK_READY.indication = link established within T_conn_max_D-Link when the layer 2 Link to the wireless communication module of the SECC is established.

The HLE shall receive the D-LINK_READY.indication = link established within [V2G8-036]

> T conn max comm after the EVCC has detected an SECC with which the EVCC would initiate association procedure for the charging application, and starts

the layer 2 association process.

7.4 Security

Security measures at layer 3 and above are defined in ISO 15118-2 for wireless vehicle to grid communication. No additional layer 2 security measures are necessary for both SECC and EVCC.

STANDARDS SO. COM. Click to view the full POF of 150 15/18-8:20/8

Annex A

(informative)

Mounting location of wireless communication module and antenna

A.1 Overview

Charging of electric vehicles requires a stable and reliable communication link. This is especially critical in the case of wireless communication. Any reduction of the quality of service, be it a decreased throughput, an increased latency or even an interruption or loss of connection could affect the charging process and thus lead to a negative user experience.

There are several options to improve the robustness of Wireless LAN: transmission power, modulation scheme, bandwidth, dedicated Quality of Service management (e.g. EDCA), and many more. But the ones which are probably the most important are the type and mounting location of the antenna. Manufacturers of EVs as well as EVSEs should pay particular attention to these aspects.

The various types of WLAN antennae differ mainly in their directivity. An omnidirectional antenna allows covering an area around its position in all directions. A directional antenna, in contrast, can only cover a limited zone but will typically allow achieving a higher range.

The antenna does not necessarily need to be integrated into the wireless communication module itself. A spatial separation can be achieved with the help of suitable cabling. This leads to a certain flexibility when choosing the mounting location, which is especially important if the requirements for the positioning of the communication module are contradictory to the ones for the antenna (e.g. operating temperature vs. integration into the ground pad).

The propagation characteristics of electromagnetic radiation in the Ultra High (UHF) and Super High Frequency (SHF) band implicate that transmission works best, when there is a direct line of sight between transmitter and receiver.

The charging infrastructure side needs to be optimised for a certain area to provide its services. This area may be as small as a couple of square meters for a single inductive ground pad for use at home up to a hectare for a public charging park. Therefore, very different implementations are possible, from integration of the antenna into the ground pad to the installation of multiple external WLAN devices.

The vehicle, on the other hand, should be able to handle the home garage use case as well as the large public charging installations (although it is up to the manufacturer to optimize it for a specific use case). Therefore, an antenna configuration which covers all directions would be desirable. This may even require the use of multiple antennae to satisfy all possible scenarios.

A.2 Examples

A.2.1 General

This subclause gives an overview of possible mounting locations of the wireless communication module and antenna in the vehicle and at the charging site (which is unrelated to the location of the communication controllers). These are examples that impose no requirements on the EV and CS setup.

A.2.2 Shortest possible distance for WPT

Figure A.1 shows the shortest possible distance between the wireless communication modules and antennae (WLAN module/Antenna) in vehicle and at the charging spot. This type of installation is typically envisioned for WPT only. In this case, the WLAN module/Antenna is located below the vehicle

(e.g. part of Car Pad). The WLAN module/Antenna of the charging spot is located in the Ground Pad. Minimum distance is defined by air gap class in ISO/PAS 19363 and IEC 61980 (all parts).

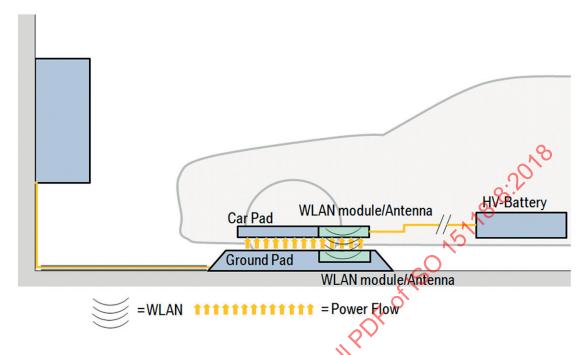


Figure A.1 — Shortest possible distance between wireless communication module/antennae in case of WPT

Motivation for choosing this configuration could be that the ground pad does not have an external, wall-mounted control unit, but is only connected to the power supply. Special care needs to be taken on the vehicle side to satisfy this use case. One possible solution would be to integrate the WLAN antenna into the car pad of the vehicle.

A.2.3 Typical distance for WPT

Figure A.2 provides an example of the typical distance between the WLAN module/antenna in vehicle and at the charging spot In this case, the WLAN module/Antenna is located inside the vehicle (e.g. part of infotainment system). The WLAN module/Antenna of the charging spot is located in the wall box (e.g. payment terminal).

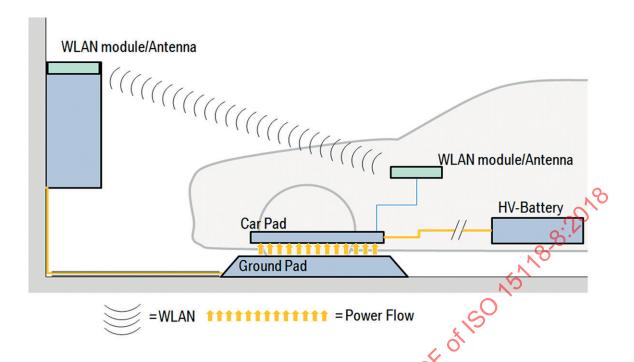


Figure A.2 — Typical distance between wireless communication modules/antennae in case of WPT

This configuration has the advantage that the charging infrastructure covers a wider area with its WLAN AP. On vehicle side, the use of an internal WLAN device is not optimal to establish external connections, but may be justified as it allows using the same WLAN device for multiple applications, which are not necessarily related to charging communication.

A.2.4 Typical distance for AC/DC charging

In the case where wireless communication is used to replace powerline communication for AC/DC charging, Figure A.3 shows a typical case for installation setup in a public charging spot. A wireless SECC may be used to control and communicate to multiple EVCCs. It is also worth noting that wireless communication can substitute to PLC communication with no change in the ISO 15118-2 upper layer messages.

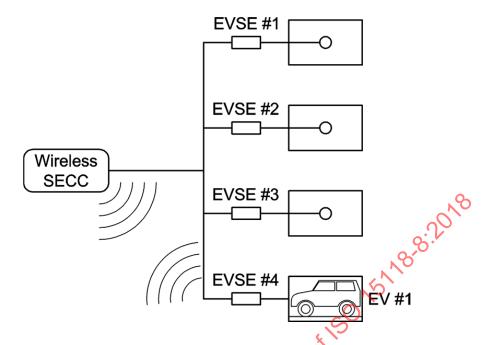
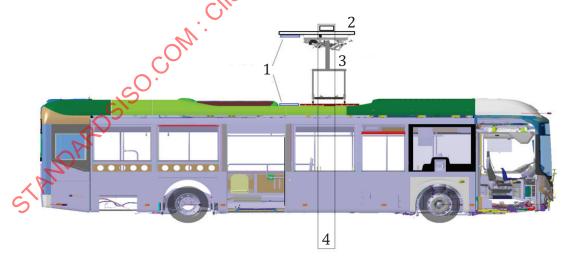



Figure A.3 — Typical distance between wireless communication modules/antennae in case of AC/DC charging in public charging spot.

A.2.5 Typical distance for Automatic Connection Device bus charging

Automatic connection device may be used for conductive charging in the case of on-route electric bus charging using inverted pantograph.

Figure A.4 shows the possible location of the patch antenna for both the SECC and the EVCC. Wireless communication is used for automatic connection cases since communication is necessary to be active to control the automatic connection process.

Key

- 1 patch antenna
- 2 pantograph mounting adapter
- 3 inverse pantograph
- 4 post

Figure A.4 — Typical distance between wireless communication modules/antennae in case of electric bus charging using Automatic Connection Device and patch antennae

Annex B

(informative)

Interference scan and auto channel selection example

B.1 Overview

Wireless communication according to IEEE 802.11 is heavily used by mobile phones, computers and tablets today. Especially the unlicensed 2,4 GHz band is extremely crowded with its overlapping WLAN channels. Additional interferers like microwave ovens, baby phones or Bluetooth devices also reduce the performance of WLAN networks in the 2,4 GHz band.

The IEEE 802.11ax High Efficiency WLAN study group is working on improvements for high density WLAN networks in the 2,4 GHz and 5 GHz bands. It is expected to be published in 2019. For details, see http://www.ieee802.org/11/Reports/tgax_update.htm.

However, this is not available today but proprietary auto channel selection mechanisms are available in various WLAN Access points on the market.

Interference can cause degradation in throughput, link quality, range, jitter, and latency/roundtrip time up to loss of communication.

How auto channel selection is implemented is out of scope of this document.

This annex will give an example of an auto channel selection algorithm to choose a channel which is least influenced by WLAN interference. There are many different approaches to measure interference. Some are given below:

- interference detection based on energy detection. Energy detection identifies all interferers including non WLAN devices such as baby phones;
- interference detection based on WLAN preamble;
- interference detection based on WLAN preamble and time on air (physical and virtual carrier sense).

Figure B.1 shows WLAN channels 1 to 14 in 2,4 GHz band. Channel usage is limited by national limitations (e.g. in US channel 1 to 11 is allowed, in most EU countries channels 1 to 13 can be used, in JP channels 1 to 14 can be used). Additional national limitations like maximum transmission power or outdoor usage should be considered. It also shows overlapping of each channel with other channels. Only three non-overlapping channels are available (e.g. 1, 6 and 11). A simple channel selection mechanism can be implemented by detecting WLAN beacons and choosing a free one.

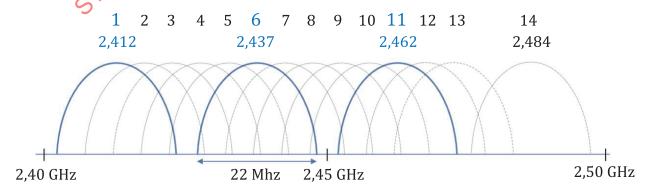


Figure B.1 − 2,4 GHz WLAN channels/frequencies

B.2 Example with one WLAN interferer

<u>Figure B.2</u> shows a WLAN environment where channel 3 is already used. The WLAN Access point setting up a new network should choose a channel in the range 8 to 14 for WLAN interference free communication.

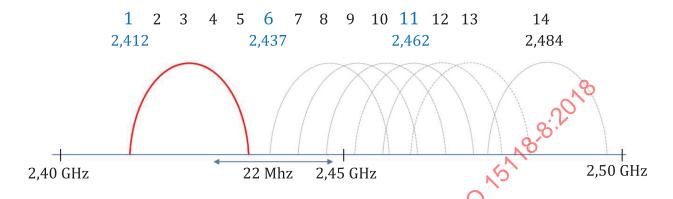


Figure B.2 — One WLAN Interferer is on channel 3 while channels 8 to 14 are interference free

B.3 Example with three WLAN interferers

Figure B.3 shows a WLAN environment with channels 1, 4 and 6 already used by existing WLAN networks. The WLAN Access point setting up a new network should choose one channel in the range 11 to 14 for WLAN interference free communication.

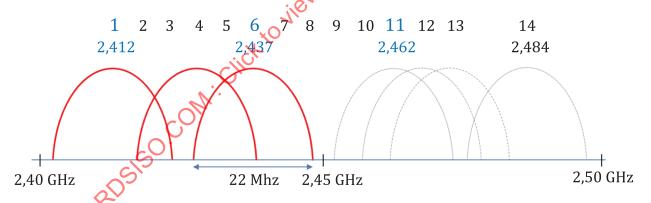


Figure B.3 — WLAN Interferers exist on channel 1, 4 and 6 while channels 11 to 14 are interference free

B.4 Summary

Previous subclauses show examples of low density 2,4 GHz WLAN networks where interference free channels are available. In high density WLAN areas there might be no interference free channels. Selection of least overlapping channels is one possibility to increase performance of the WLAN network. However, using the same channel as an interferer might also increase the performance because medium access can include Request-To-Send/Clear-To-Send information instead of energy detection only.

<u>Table B.1</u> gives an example of a simple weighting algorithm based on channel overlap. Note that channels 12 to 14 are not to be used for implementation of this document. These are included in this annex to give the reader a complete overview of the channels in the 2,4 GHz band.

ISO 15118-8:2018(E)

For example, in first row: If there is already an existing WLAN network on channel 1, the highest priority for a new network would be channels 6 to 14. If these are also used Priority 2 would be channel 5 because this is least overlapping with channel 1. Next priority would be channel 4, then channel 3 and 2. Channel 2 would have lowest priority since it is most overlapping with channel 1.

Table B.1 — 2,4 GHz channel selection priority

	Priority 1	Priority 2	Priority 3	Priority 4	Priority 5
Channel 1	6 to 14	5	4	3	2
Channel 2	7 to 14	6	5	4	3, 1
Channel 3	8 to 14	7	6	5, 1	4, 2
Channel 4	9 to 14	8	7,1	6, 2	5,3
Channel 5	10 to 14	9,1	8,2	7, 3	6,40
Channel 6	1, 11 to 14	10, 2	9, 3	8, 4	7.5
Channel 7	1, 2, 12 to 14	11, 3	10, 4	9, 5	8,6
Channel 8	1, 2, 3, 13 to 14	12, 4	11, 5	10, 6	9, 7
Channel 9	1 to 4, 14	13, 5	12, 6	11,7	10, 8
Channel 10	1 to 5	14, 6	13, 7	12,8	11, 9
Channel 11	1 to 6	7, 14	8	13, 9	12, 10
Channel 12	1 to 7	8	9, 14	10	11, 13
Channel 13	1 to 8	9	10	11, 14	12
Channel 14	1 to 9	10	11	12	13
	ARDSIS). OW. Clic		12 ribed in various I	

Annex C

(informative)

Introduction of service available area

C.1 Overview

A charging station providing a wireless communication service for conductive charging or WPT has a restricted area in which the EVCC can use its service. It is defined as the service available area of an SECC.

This annex gives an outline of a possible introduction of the service available area concept. It is recommended to introduce into the communication system concept in order to minimize the level of interferences.

C.2 Dimensions of the service available area

An SECC will provide the connecting service for EVCC within the defined area around the charging station. Dimensions of this area will be defined by a charging service provider according to the providing connection service. The dimensions of the service available area are defined according to service contents.

EXAMPLE 1 $5 \text{ m (L)} \times 2 \text{ m (W)}$ for conductive charging service.

EXAMPLE 2 15 m (L) \times 15 m (W) for park assistance service.

C.3 Quality of service within service available area

The SECC will ensure a service quality of providing a wireless connection service within the service available area. In other words, SECC will ensure enough traffic rate of communication with the EVCC. If it does not, the service will be interrupted or stopped.

An SECC providing a wireless connecting service should keep the designed communication traffic rate high enough to ensure the designed performance of service sequences.

Enough traffic rate will be designed by a charging service provider according to sequences of a providing service.

EXAMPLE 1 For the conductive charging service, round trip time will be kept less than 250 ms.

EXAMPLE2 For the fine positioning service, round trip time will be kept less than 100 ms.

In order to maintain the service quality within the service available area, the service provider should check the traffic rate regularly and if an interferer to the traffic rate is found, necessary counter measures will be taken by the service provider.

The service quality of an SECC is checked and kept by a regular maintenance by the service provider.

Service provider will check the communication traffic rate within all points of service available area with testing tool.

NOTE 1 The communication traffic rate measured by a testing tool will never ensure the traffic rate of a connected vehicle around a measured point.

NOTE 2 Service provider will take counter measures such as remove interferers or install shields to maintain the quality of connection services.