INTERNATIONAL

ISO

STANDARD 18441

First edition
2013-06-01

Space data and information.transf;
systems — Space Link Extension -
Application Program Interface for

Transfer Services —Core Specific

Systemes de transfert des ififormations et données spatialg
Extension de liaisons spatiales — Interface du programme
pour les services de trahsfert — Spécification de base

114
q

ation

S —_—
d'application

e Reference number
= — ISO 18441:2013(E)

©1S0 2013

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

COPYRIGHT PROTECTED DOCUMENT

© 1802013

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form or by any
means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission.
Permission can be requested from either ISO at the address below or ISO’s member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax +41 2274909 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and

The |
in the
ISO

I1ISO/I

Atten
rightg
rightg
pater

Any

constitute an endorsement.

I1SO 1
CCS
this |
SC 1

[EC Directives, Part 2. www.iso.org/directives

ational Electrotechnical Commission (IEC) on all matters of electrotechnical standardization

procedures used to develop this document and those intended for its further maintehance 4
ISO/IEC Directives, Part 1. In particular the different approval criteria needed for\the diffe
Hocuments should be noted. This document was drafted in accordance withithe editorial

tion is drawn to the possibility that some of the elements of this document may be the sub
. ISO shall not be held responsible for identifying any or all such¢patent rights. Details g

t declarations received. www.iso.org/patents

frade name used in this document is information givenxfor the convenience of users g

8441 was prepared by the Consultative Committee for Space Data Systems ((
DS 914.0-M-1, October 2008) and was adopted (without modifications except those stated i
hternational Standard) by Technical Committee’ISO/TC 20, Aircraft and space vehicles, S
B, Space data and information transfer systems.

ely with the

re described
rent types of
rules of the

ect of patent
f any patent

identified during the development of the document will be in the (ntroduction and/or on the ISO list of

nd does not

CCSDS) (as
h Clause 2 of
ubcommittee

©1SO

2013 — All rights reserved

http://www.iso.org/directives
http://www.iso.org/patents
https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

INTERNATIONAL STANDARD

ISO 18441:2013(E)

Space data and information transfer systems — Space Link
Extension — Application Program Interface for Transfer
Services — Core Specification

1

This

Extension (SLE) Transfer Services, which is independent of any specific technology-used for corn

betw

This
a

o

G

d

It dod

3
b

G

This
all Sl
servi
spec
link s

This
such

International*Standard was released.

Bcope

International Standard defines a C++ Application Program Interface (API) for CCSDS
ben an SLE service user and an SLE service provider.

nternational Standard defines the Application Program Interface in termis/of:

) the components that provide the services of the API;

) the functionality provided by each of the components;

the interfaces provided by each of the components; ahd

s not specify:
) individual implementations or products;

) the internal design of the components; and

the technology used for communications.

nternational Standard defines those aspects of the Application Program Interface which arg
LE service types or for-a subset of the SLE service types, e.g. all return link services or al
Ces. It also defines @-framework for specification of service type-specific elements of the

fic aspects of theZAPI| are defined by supplemental Recommended Practice documents fqg
ervices and SLE forward link services.

International Standard for the Application Program Interface responds to the requirements
an APl-by the CCSDS SLE transfer service Recommended Standards that were availak

The

) the externally visible behavior associated with the.interfaces exported by the components|.

Space Link
hmunications

common for
forward link
\PI. Service-
r SLE return

imposed on
le when this

[0

fiald frarth aroa e datailad—in cubalalic
o Tt TeT T ToTre— O tancu— I Suotraudst

fetosed CCSDS

PoV-v=N an
OSLUMPL ditl

publication.

2 Requirements

Requirements are the technical recommendations made in the following publication (reproduced on the
following pages), which is adopted as an International Standard:

CCSDS 914.0-M-1, October 2008, Space Link Extension — Application Program Interface for Transfer

Servi

©1SO

ces — Core Specification.

2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

For the purposes of international standardization, the modifications outlined below shall apply to the specific
clauses and paragraphs of publication CCSDS 914.0-M-1.

Pagesitov
This part is information which is relevant to the CCSDS publication only.
Page 1-10 and 1-11

Add the following information to the reference indicated:

[1] DocumentCCSDS 301.0-B-3_January 2002 is eguivalenttc 1SO 11104:2014
- 7 J 7 bl * °

[3] Document CCSDS 910.4-B-2, October 2005, is equivalent to ISO 15396:2007.
[4] Document CCSDS 911.1-B-2, December 2004, is equivalent to ISO 22669:2007.
[5] Document CCSDS 911.2-B-1, December 2004, is equivalent to ISO 22670:2006.
[6] Document CCSDS 911.5-B-2, December 2004, is equivalent to ISO 26143:2007.
[7] Document CCSDS 912.1-B-2, December 2004, is equivalent to ISO 22679:2011.
[8] Document CCSDS 912.3-B-1, December 2004, is equivalent to ISO 22672:2011.
[9] Document CCSDS 913.1-B-1, September 2008, is equivalent¢e’{SO 18440:2013.
[10] Document CCSDS 915.1-M-1, October 2008, is equivalent to ISO 18442:2013.
[11] Document CCSDS 915.2-M-1, October 2008, is equivalent to ISO 18443:2013.
[12] Document CCSDS 915.5-M-1, October 2008, is-equivalent to ISO 18444:2013.
[13] Document CCSDS 916.1-M-1, October 2008, is equivalent to ISO 18445:2013.

[14] Document CCSDS 916.3-M-1, Octeber 2008, is equivalent to ISO 18446:2013.

3 Revisipn of publication CCSDS 914.0-M-1

It has been agreed with{the Consultative Committee for Space Data Systems that Subcommittee
ISO/TC 20/SC 13 will be eonsulted in the event of any revision or amendment of publication CCSDS 914.0-
M-1. To this end, NASAWill act as a liaison body between CCSDS and ISO.

2 © ISO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

=SS
The Consultative Committee for Space Data Systems

Recommendation for Space Data System Practices

SPACE LINK EXTENSION—

APPLICATION PROGRAM

INTERFACE FOR TRANSFER
SERVICES-=CORE
SPECIFICATION

RECOMMENDED PRACTICE
CCSDS 914.0-M-1

Magenta Book
October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2

013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

AUTHORITY
Issue: Recommended Practice, Issue 1
Date: October 2008

Location: Washington, DC, USA

THis document has been approved for publication by the Management Council

Cd

of the

nsultative Committee for Space Data Systems (CCSDS) and represents: the congensus

teghnical agreement of the participating CCSDS Member Agencies., Dhe procedyre for

re

Cd

iew and authorization of CCSDS documents is detailed in the Procedures Manual

the authorization of this document can be obtained from theSCCSDS Secretariat

ad

Hress below.

ThHis document is published and maintained by:

CCSDS Secretariat

Space Communications and Navigatiepy Office, 7L70
Space Operations Mission Directorate

NASA Headquarters

Washington, DC 20546-0001;-USA

or the

nsultative Committee for Space Data Systems, and the record gfZAgency participation in

at the

CCSDS 914.0-M-1 Page i October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially
established by the management of its members. The Committee meets periodically to address
data systems problems that are common to all participants, and to formulate sound technical
solutions to these problems. Inasmuch as participation in the CCSDS is completely

voluntary, the results of Committee actions are termed Recommendations and are not in
themsel\ves_considered hinrling on any Agency

CCSOS Recommendations take two forms: Recommended Standards that are prescript{ve
the formal vehicles by which CCSDS Agencies create the standards that specify hpw
elemepts of their space mission support infrastructure shall operate and interoperate wjith
othersj and Recommended Practices that are more descriptive in nature anddare intended| to
provide general guidance about how to approach a particular problem agsociated with space
missign support. This Recommended Practice is issued by, and represents the consensus pf,
the CCSDS members. Endorsement of this Recommended Practice is entirely voluntary
and does not imply a commitment by any Agency or organization to implement [its
recommendations in a prescriptive sense.

No later than five years from its date of issuance, this:Recommended Practice will |be
reviewed by the CCSDS to determine whether it should(1) remain in effect without change;
(2) be changed to reflect the impact of new technologies, new requirements, or new
directions; or (3) be retired or canceled.

In thgse instances when a new version.of+a Recommended Practice is issued, existing
CCSDS-related member Practices and implementations are not negated or deemed to be ngn-
CCSDS compatible. It is the responsibility of each member to determine when such Practi¢es
or implementations are to be madified. Each member is, however, strongly encouraged|to
direct|planning for its new Practices and implementations towards the later version of the
Recommended Practice.

CCSDS 914.0-M-1 Page ii October 2008
© 1SO 2013 — Al rights reserved 5

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or
modification of this document may occur. This Recommended Practice is therefore subject
to CCSDS document management and change control procedures, which are defined in the
Procedures Manual for the Consultative Committee for Space Data Systems. Current
versions of CCSDS documents are maintained at the CCSDS Web site:

hffp'//\l\l\l\/\/\/ cesds nrg/

Questions relating to the contents or status of this document should be addressed |to the
CCSDS Secretariat at the address indicated on page i.

CCSDS 914.0-M-1 Page iii October 2008

6 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies

— Agenzia Spaziale Italiana (ASI)/Italy.

— British National Space Centre (BNSC)/United Kingdom.

— Canadian Space Agency (CSA)/Canada.

— _Centre National d’Ftudes Spatiales (CNES)/France

— | China National Space Administration (CNSA)/People’s Republic of China.
— | Deutsches Zentrum flr Luft- und Raumfahrt e.VV. (DLR)/Germany.
— | European Space Agency (ESA)/Europe.

— | Federal Space Agency (FSA)/Russian Federation.

— | Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

— | Japan Aerospace Exploration Agency (JAXA)/Japan.

— | National Aeronautics and Space Administration (NASA)/USA.

Obseryer Agencies

— | Austrian Space Agency (ASA)/Austria.

— | Belgian Federal Science Policy Office (BFSPO)/Belgium.

— | Central Research Institute of Machine Building~(TsNIIMash)/Russian Federation.
— | Centro Tecnico Aeroespacial (CTA)/Brazil.

— | Chinese Academy of Sciences (CAS)/China.

— | Chinese Academy of Space Technology (CAST)/China.

— | Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australig.
— | Danish National Space Center (DNSC)/Denmark.

— | European Organization for the-Exploitation of Meteorological Satellites
(EUMETSAT)/Europe.

— | European Telecommunications Satellite Organization (EUTELSAT)/Europe.

— | Hellenic National Space Committee (HNSC)/Greece.

— | Indian Space Research Organization (ISRO)/India.

— | Institute of Spaee'Research (IKI)/Russian Federation.

— | KFKI Resgarch Institute for Particle & Nuclear Physics (KFKI)/Hungary.

— | Korea Aérospace Research Institute (KARI)/Korea.

- | MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

— | Ministry of Communications (MOC)/Israel.

— | National Institute of Information and Communications Technology (NICT)/Japan.
— ~National Oceanic and Atmospheric Administration (NOAA)/USA.

— National Space Organization (NSPO)/Chinese Taipei.

— Naval Center for Space Technology (NCST)/USA.

— Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.

— Swedish Space Corporation (SSC)/Sweden.

— United States Geological Survey (USGS)/USA.

CCSDS 914.0-M-1 Page iv October 2008
© 1SO 2013 — All rights reserved 7

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

DOCUMENT CONTROL

Document Title Date Status
CCsSDS Space Link Extension—Application October Original issue
914.0-M-1 Program Interface for Transfer 2008

Services—Core Specification,

Recommended Practice, Issue 1
EC1 Editorial Change 1 December Updates referenceg to

2008 recent puplications

CCSDS 914.0-M-1 Page v December 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CONTENTS

Section Page
1 INTRODUCTION.....coitiiiiite ettt et e e e e be e st e e be e sneaanbeeareas 1-1
1.1 PURPOSE OF THIS RECOMMENDED PRACTICEcccoooiiiiiiiiiiecieeiee s 1-1
1.2 SCOPE ...ttt enre e 1-1
1. APPl ICABILITY -2
1.4 RATIONALE.. ..ot sre e sba e ae e reennn e b 1-3
1.5 DOCUMENT STRUCTURE ...ttt e 1-3
1.6 DEFINITIONS ...t sre e s o e 1-7
1T REFERENCESoo oottt b b 1-9
2 DESCRIPTION OF THE SLE AP .oooiiieeceece el 2-1
2.1 INTRODUCTION ...ttt b e s te e e 2-1
2.2 SPECIFICATION METHOD AND NOTATIONc.ifderiiininiiiininnie e 2-2
2.3 LOGICAL VIEW ..ottt Mt 2-7
2.4 SECURITY ASPECTS OF CORE SLE API CAPABILITIES..........cccovvevieeen. 2158
3 SHECIFICATION OF API COMPONENTS.. 0 e 3-1
3.1 INTRODUCTION ..ottt 3-1
B N ol o 2 {0) SRR 3-1
3.3 APISERVICE ELEMENT ..ottt 3427
3.4 SLE OPERATIONS ... sttt st snes 362
3.5 SLE UTILITIES ... 5ttt sttt 3456
3.6 SLE APPLICATION ..t iie e eiee sttt et sae et sae e sbae et e snnaenneeaneas 3463
3.1 HANDLING OF IN.PROCESS THREADS AND EXTERNAL EVENTS........ 3470
A ST ATE TABLES. . e ettt nree s 4-1
4.1 INTRODUWETIONooiiiiiie ittt e sta e ssaesbe e aeeree s 4-1
4.2 NOTATHON ..o et e e e s e e sbe e saee s sreesreeereeas 4-1
4.3 GENERAL ERROR HANDLING CONVENTIONS.......c.cccooeiiieiie i 4-2
4.4 STATE TABLE FOR ASSOCIATIONSooooiieie et 4-2
4% CSTATE TABLES FOR SERVICE INSTANCES ...t 4415
ANNEX A SPECIFICATION OF COMMON INTERFACES (Normative)............. A-1
ANNEX B RESULT CODES (NOFMALIVE)......cceiiveiieieiiesie e esie et see e B-1

ANNEX C STRUCTURE OF THE SERVICE INSTANCE IDENTIFIER FOR

VERSION 1 OF THE SLE SERVICES RAF, RCF, AND CLTU

(NOFMALIVE). ...ttt ettt ae e C-1
ANNEX D SIMPLE COMPONENT MODEL (NOrmative).........cccccveveriveriverieseennnnn, D-1
CCSDS 914.0-M-1 Page vi October 2008

© IS0 2013 — Al rights reserved 9

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

10

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CONTENTS (continued)

Section Page
ANNEX E CONFORMANCE (NOIrMAtiVe)ccoerierieiirieiisiesicsieeiesiesie e E-1
ANNEX F INTERACTION OF COMPONENTS (Informative)ccccccccovvnvrnnnnnne. F-1
ANNEX G INTERFACE CROSS REFERENCE (Informative)........c.ccccoovvvivrieiennen, G-1
ANNEX H INDEX TO DEFINITIONS (INnformative)ccccooeviienenininisieee e, H-1
ANNEX |1 ACRONYMS AND ABBREVIATIONS (Informative) v d-1
ANNEX J INFORMATIVE REFERENCES (Informative)........c.ccccoovnivnininnnc i wnd-1
Figure

1-1 SLE Services and SLE API Documentation...........cccevveveneeneniene e Gafer e e 1-5
2-1 UML Stereotypes Used in This Recommended Practice............ e teeieicicnienen, . 2-3
2-2 Top Level Decomposition of the APL..........cccoveveiieieeieiece e o e 2-7
2-8 Structure of the Package APl ProXYcccoceiiiriienenienees St ...2-9
2-4 Reporting and Tracing by the ProxXy........ccccovininiceeme i, . 2-10
2-5 Configuration Database 0f the ProXY........cccccciveiiioimmbeskeniee i .. 2-20
2-p Structure of the Package API Service Element 2-23
2-f Reporting and Tracing by the Service Element.. o oo . 2-24
2-8 Sequential Control Interface Component Class€Controlled Component................. .. 2-39
2-9 Concurrent CoNtrol INTEITACEooviiiei i e e . 2-43
2-10 Structure of the Package SLE ApPPlICAtIONccoovvieiiieniiiisieeeeeeese e . 2-44
2-11 Reporting and Tracing Interfaces Provided by the Applicationccccccovenee. .. 2-45
2-12 OPeration ODJECLSeiiiiieeiieee e ettt .. 2-49
2-13 Operation Object Interfaces far.Common Association Management...................... ..2-53
2-14 Common SLE Operation ODJECTScc.ccveiieiiiiieciecie s .. 2-54
2-15 SLE ULIITIES ..oveieeieie ittt sttt ene e e e e e .. 2-56
4-1 Processing Context for the Association State Table..........ccocooviiiiiiiiine e d-3
4-2 Processing Context fer the Service Instance State Tableccccccevvvevviieiiecnenn, .. 4-16
Bl Structure of RESUHCOUEScoiiiiiiiiciieieee e ...B-1
F-L Configuration-of COMPONENTSc.eiviiiiiieieierie et . F-3
F-R Configuration of Interfaces for Service Provisioning...........ccccoevevvvieiiecciiesnennn, -3
F-B Interaction of API COMPONENTScciiiiieiiiiieiieiee e ...F-4
F-f1 Initialization and SNULAOWNcouviiiiiie s ... F-5
F-b Coltaboration Diagram for Use of Operation Objects........c.ccccevvevevieivecc i, ...F-8
F-p C-Sequence Diagram for Use of Operation ODJectS.........ccccvveiiiiiiineniesieiceie e .. F-9
F-7 User Side Binding (User Tnifiated BIN).........cocooiiriieieceeesees e F-12
F-8 User Side Unbinding (User Initiated Bind)c.ccoevviiiiicii e F-13
F-9 Provider Side Binding (User Initiated Bind)ccoooeiiiiniinniiiesieneee e F-14
F-10 Provider Side Unbinding (User Initiated Bind)c.ccooiiiiiiiiiiiie F-16
CCSDS 914.0-M-1 Page vii October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

CONTENTS (continued)
Table Page
C-1 Identifiers and Abbreviations for AMIDULES..........ceveiieiieie s C-3
E-1 Optional Features for the AP PrOXYccooioiiiiiiieiesie e E-3
E-2 Optional Features for the API Service Element.........cccooviiiiiiiiiiieeee, E-6
E-3 Parameters That May Be Constrained by @ ProXy........ccccccveveiiviiisiesinese e E-9
E-4 Parameters That May Be Constrained hy a Service Element E-9
CCSDS 914.0-M-1 Page viii October 2008

© 1SO 2013 — Al rights reserved 11

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

12

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1 INTRODUCTION
1.1 PURPOSE OF THIS RECOMMENDED PRACTICE

The purpose of this Recommended Practice is to define a C++ Application Program Interface
(API) for CCSDS Space Link Extension (SLE) Transfer Services, which is independent of
any specific technology used for communications between an SLE service user and an SLE
service provider.

THis APl is intended for use by application programs implementing SLE services. dt,fan be
copfigured to support SLE service user applications or SLE service provider applications.

THis API is also intended to simplify the implementation of gateways that are required to
achieve interoperability between SLE service provider and SLE serviceyuser appligations
us|ng different communications technologies.

Uding this Application Program Interface Recommended Pragtice, APl implementations
(sqftware packages) able to run on specific platforms can he developed. Once developed,
sugch a package can be supplied to new users of SLE services for integration with their liser or
production facilities, thus minimizing their investment to.buy into SLE support.

=

1.2 SCOPE
1.2.1 ITEMS COVERED BY THIS RECOMMENDED PRACTICE

This Recommended Practice defines the-Application Program Interface in terms of:
a) the components that provide’the services of the API;

b) the functionality provided by each of the components;

c) the interfaces provided by each of the components; and

d) the externally” visible behavior associated with the interfaces exported Qy the
COMPONERSS.

It gloes notspecify:

ay<.ndividual implementations or products;

D) the Internal design oT the components; and

c) the technology used for communications.

This Recommended Practice defines those aspects of the Application Program Interface,
which are common for all SLE service types or for a subset of the SLE service types, e.g., all
return link services or all forward link services. It also defines a framework for specification
of service type-specific elements of the API. Service-specific aspects of the API are defined

CCSDS 914.0-M-1 Page 1-1 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

by supplemental Recommended Practice documents for SLE return link services (references

[10], [

11], and [12]) and SLE forward link services (references [13] and [14]).

This Recommended Practice for the Application Program Interface responds to the
requirements imposed on such an API by the CCSDS SLE transfer service Recommended
Standards that were available when this Recommended Practice was released.

1.2.2

CONFORMANCE TO CCSDS RECOMMENDED STANDARDS

This v
Stand:
follow

a)

b)

1.3

For th

Forward CLTU, the API specifiedsn this document supports two versions, namely:

a)
b)

Suppog
limite
versio
specif
specif

ersion of the SLE API Recommended Practice conforms to the CCSDS Recommieng
irds for Space Link Extension Services, referenced in 1.7, with the exception of {
ing optional features:

supported. If the responder does not support the version number identified in {
BIND Invocation, it responds with a BIND Return containing.a negative result g
the diagnostic “version number not supported’. The responder does not propose
alternative version number.

Provider-initiated binding, specified by CCSDS Recommended Standards for rett
link services is not included in this Recommended Practice. The managemq
parameters that specify the bind initiative arecsapported to simplify addition of t
procedure in later versions.

APPLICABILITY

e SLE transfer services Return All'Frames (RAF), Return Channel Frames (RCF), g

version 1 as specified by-references [C1], [C2], and[C3]; and

version 2 as specified by references [4], [5], and [7].

rt for versiond of these services is included for backward compatibility purposes fo
I time andvmay not be continued in future versions of this specification. Support
n 1 of the RAF, RCF and CLTU services implies that SLE APl implementations of t
cation—are able to interoperate with peer SLE systems that comply with f
cation of the Transport Mapping Layer (TML) in “‘Specification of a SLE API Pro

ed
he

The negotiation procedure for version numbers in the BIND operation is ot

he
nd
an

irn
Nt
his

d

>

I a
for
Nis
he
Xy

DD L AQALA4I oA Ol E0 VAL AN NNANAD TG M~y) 4.4 r—_1 laYaYa¥|
fOI‘ TCI"III" dlfu AoIN.1L , EOUL, OLEO~OVV-AFT-UUUZ=TUOOULT, To5UT 1.1, Feuludly ZUUL.

Version dependent provisions within this Recommended Practice are marked as follows:

[\V1:] for provisions specific to version 1 of RAF, RCF, or CLTU; and
[\V2:] for provisions specific to version 2 of RAF, RCF, or CLTU.

CCSDS 914.0-M-1 Page 1-2 October 2008
© 1SO 2013 — All rights reserved

13

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1.4 RATIONALE

This Recommended Practice describes the services provided by a software package
implementing the API to application software using the API. It specifies the mapping of the
SLE Transfer Services specifications to specific functions and parameters of the SLE API. It
also specifies the distribution of responsibility for specific functions between SLE API
software and application software. The distribution of responsibility has been defined with
due consideration for reusability of software packages implementing the SLE API.

THe goal of this Recommended Practice is to create a guide for interoperability between
a) software packages implementing the SLE API; and
b) application software using the SLE API.

TRis interoperability guide also allows exchangeability of different(products implementing
the¢ SLE API, as long as they adhere to the interface specification of this Recomnjended
Practice.

1.% DOCUMENT STRUCTURE
151 OVERVIEW

THis Recommended Practice is organized in.two parts and a set of annexes.

1.5.1.1 Part I—The Descriptive Part

THe descriptive part presents the” APl Model in section 2 using the Unified Madeling
Language (UML), see reference'[J6].

1.5.1.2 Part II—ThePrescriptive Part

The prescriptiyé.part contains the specification of the API. In case of any discrepancies
befween the descriptive part and the prescriptive part, the specifications in the lattef shall

apply.

Sertion 3 contains detailed specifications of the APl components and of the interfaces that

et bha nrevadad by tha ol Aot o~
mustoe MIUVIUTU Uy UiIC dyprativlt.

Section 4 defines the state tables that must be implemented by the API.

CCSDS 914.0-M-1 Page 1-3 October 2008
14 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1.5.1.3 Annexes

Annex A contains the detailed declaration of the C++ interfaces, which are common for all
SLE service types.

Annex B lists the result codes that are used by the API.

[V1:] For version 1 of the services RAF, RCF, and CLTU, annex C defines a standard ASCII
representation for the service instance identifier and lists the attribute identifiers and
abbreyiations that are valid for the service instance identifier.

[V2:] |[For later versions of these services and all other services, these specifications are
provided by the applicable CCSDS Recommended Standards.

AnneX D describes the design patterns and conventions that shall be“applied to API
companents. The specifications in this annex are also relevant for the-application software
using the API.

AnneX E defines requirements for software products claiming conformance with this
Recommended Practice.

Annex F describes the interaction of APl components, showing several use cases.

AnnexX G provides cross-references between interfaces provided by APl components and
interfgces used by APl components.

AnnexX H contains an index to definitions.
Annex | explains all acronyms used inthis Recommended Practice.

AnneX J lists informative referen¢e documents.

1.5.2 | DOCUMENTATHION TREE FOR SLE SERVICES AND SLE API

This Recommended- Practice is based on the cross support model defined in the SLE
Refergnce Madel‘(reference [3]). The SLE services constitute one of the three types of Crgss
Suppagrt Services:

a)| Part 1: SLE Services;

b) Part 2: Ground Domain Services; and

c) Part 3: Ground Communications Services.

The SLE services are further divided into SLE Service Management and SLE Transfer
Services.

CCSDS 914.0-M-1 Page 1-4 October 2008
© 1SO 2013 — All rights reserved

15

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

16

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - In reference [3], SLE transfer services are identified; however, the complete
service specifications will be provided in separate Recommended Standards.

This Recommended Practice describes how the functions of an SLE transfer service provider
or user can be implemented in a software package for the purpose of providing or using one
or several SLE transfer services. It is part of a suite of documents specifying the API for
SLE transfer services:

a) Core Specification of the Application Program Interface for Transfer Services (this
Recommended Practice);

b) a set of Application Program Interfaces for specific Transfer Services; and

c) Internet Protocol for Transfer Services.

The basic organization of the SLE services and SLE API documentation is shown in
figqure 1-1. The various documents are described in the following paragraphs.

Space Link Extension

Cross Support
Reference Model
Part 1: SLE Services

SLE Executive
Summary

Cross Support Concept
Part 1: SLE Services.

SLE Transfer Services

SLE Service
Management Suite

Internet Protocol for
Transfer Services

Return SLE Service
Specifications

Forward SLE Service
Specifications

SLE APIfor Transfer Services
—————————— !
| €ore Specification | Summary of
: | Concept and
| I Rationale
' I
' I
e a
TN e N oo h
Forward] Return kg -
I SLE Service | : | I SLE Service | : | ngprlal(lfrtrg:’s
i Specifications | il Specifications | il gran
| | | : | | | Guide
|
. . H
| _________ d I | | _________ d I |
TT____________ - TT___________________J J
e [Eom T | [| reperveion] | e
~egend. Standard (Blue) p ' p ! L Practice (Magenta) |

Figure 1-1: SLE Services and SLE APl Documentation

CCSDS 914.0-M-1

Page 1-5

October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

9)

h)

)

K)

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Cross Support Reference Model—Part 1: Space Link Extension Services,

a

Recommended Standard that defines the framework and terminology for the

specification of SLE services.

Cross Support Concept—Part 1: Space Link Extension Services, a Report introduci
the concepts of cross support and the SLE services.

ng

Space Link Extension Services—Executive Summary, an Administrative Report

providing an overview of Space Link Extension (SLE) Services. It is designed

to

-y R l N | - - £ P | Y l Iy N
asSslst Ireducts WILT I TEVIEVW Ul TAISUTY allu TUture SLE UOCUITICTILAUIOIT.

Forward SLE Service Specifications, a set of Recommended Standards that(prov
specifications of all forward link SLE services.

Return SLE Service Specifications, a set of Recommended Standards*that prov
specifications of all return link SLE services.

Internet Protocol for Transfer Services, a Recommended Standard providing {
specification of the wire protocol used for SLE transfer services.

SLE Service Management Specifications, a set of /Recommended Standards t
establish the basis of SLE service management.

Application Program Interface for TransfercServices—Core Specification, t
document.

de

de

he

hat

his

Application Program Interface for Transfer Services—Summary of Concept gnd

Rationale, a Report describing theCconcept and rationale for specification 3
implementation of a Application Pregram Interface for SLE Transfer Services.

Application Program Interface-for Return Services, a set of Recommended Pract

nd

ce

documents specifying the Service-type specific extensions of the API for return link

SLE services.

Application Program Interface for Forward Services, a set of Recommended Pract

ce

documents specifying the service-type specific extensions of the API for forward link

SLE services;

Application Program Interface for Transfer Services—Application Programme
Guide,a’Report containing guidance material and software source code examples
software developers using the API.

I’s
for

CCSDS 914.0-M-1 Page 1-6 October 2008
© 1SO 2013 — All rights reserved

17

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1.6 DEFINITIONS
1.6.1 DEFINITION OF TERMS USED IN THIS DOCUMENT
1.6.1.1 Definitions from the SLE Reference Model

This Recommended Practice makes use of the following terms defined in reference [3]:

a) invoker;

b) offline delivery mode;

c) online delivery mode;

d) operation;

e) performer;

f) service provider (provider);

g) service user (user);

h) SLE protocol data unit (SLE-PDU);

i) SLE transfer service instance (service instance);

J) SLE transfer service production (servicesproduction);
k) SLE transfer service provision (service provision);

I) SLE transfer service provision-period (provision period).

1.6.1.2 Definitions from the:lSO Abstract Service Definitions and Conventions

THis Recommended Praetice makes use of the following terms defined in reference [19]:
a) Initiator;

b) responder.

1.6.1,3 \"Definitions from SLE Transfer Service Specifications

This Recommended Practicé makes use of the Tollowing terms defined in references [4], [5],
[6], [7], and [8]:

a) association;
b) communications service;
c) confirmed operation;

d) invocation;

CCSDS 914.0-M-1 Page 1-7 October 2008
18 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

€)
f)

9)
h)

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

parameter (of an operation);
port identifier;
return;

unconfirmed operation.

1.6.1.4 Additional Definitions

1.6.1.4

For th

1.6.1.4

A soft
the te
Recon

1.6.1.4

.1 General

b purpose of this Recommended Practice, the following definitions also apply:

1.2 Component

ware module, providing a well-defined service via a set of interfaces. In this documg
rm component is used only to refer to the APl camponents defined by t
nmended Practice.

|.3 Component Interface

An interface exported by a component.

1.6.1.4

|.4 Component Object

An object within a component that can be accessed by one or more interfaces exported by {

compd
interfa

1.6.1.4

nent. Objects providing-more than one interface support navigation between the
Ces.

1.5 Client

A sof

are entityzthat uses the services of a component or of an object by invocation of 1

methofds of anvinterface provided by the component or object. In this Recommended Pract
the qyalified-term ‘local client’ is used to stress the difference between an interface t
softwgre-entity on the same computer and the interface between an SLE service user and

Nt
his

pSE

ce

an

SLE service provider.

1.6.1.4.6 Interface

The abstraction of a service that only defines the operations supported by that service, but not
their implementations. The specification of an operation is referred to as a method.

CCSDS 914.0-M-1 Page 1-8 October 2008
© 1SO 2013 — All rights reserved

19

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

20

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1.6.2 NOTES ON TERMINOLOGY

1.6.2.1 General

The following conventions apply throughout this Recommended Practice:

a) the words ‘shall’ and ‘must’ imply a binding and verifiable specification;

b) the word ‘should’ implies an optional, but desirable, specification;

1.6

In
pr
an
the
ga
wh

W
the

client’ is used.

1.4

Th
be
Fo
ca
de

1.

T REFERENCES

c) the word ‘may’ implies an optional specification;

d) the words ‘is’, ‘are’, and ‘will” imply statements of fact.

2.2 Use of the Term ‘Client’

a complete SLE API, the API Proxy interacts with the API Setvice Element in the
pcess and with a peer proxy across the network. However, the-proxy might also be
environment where some other software entity interfaces lacally to the proxy and sy
interfaces defined for the APl Service Element. An example for such a configurati

ich the proxy interacts locally.

here it is necessary to explicitly distinguish between interaction with the peer proxy
network and interactions with the client-on the local computer, the qualified term

2.3 Use of the Term ‘Release’

e term ‘release an object’(or a resource) must be understood to mean that all action
taken that are required.to free the allocated memory or other operating system resg
r interfaces defined in'this specification, this means that the method Release() m
led for every reference to an interface that a component holds. (See annex D
scription of the method Release () and of the reference counting scheme.)

TH

same
sed in

pplies
DN is a

feway. Therefore, this specification uses the term ‘client” when referring to the entity with

across
‘local

5 shall
urces.
ust be
for a

stitute

e following documents contain provisions which, through reference in this text, con

provisions of this Recommended Practice. At the time of publication, the editions indicated
were valid. All documents are subject to revision, and users of this Recommended Practice
are encouraged to investigate the possibility of applying the most recent editions of the
documents indicated below. The CCSDS Secretariat maintains a register of currently valid
CCSDS documents.

NOTE - A list of informative references is provided in annex J.

CCSDS 914.0-M-1 Page 1-9 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Time Code Formats. Recommendation for Space Data System Standards, CCSDS
301.0-B-3. Blue Book. Issue 3. Washington, D.C.: CCSDS, January 2002.

Cross Support Concept — Part 1: Space Link Extension Services. Report Concerning
Space Data System Standards, CCSDS 910.3-G-3. Green Book. Issue 3. Washington,
D.C.: CCSDS, March 2006.

Cross Support Reference Model—Part 1: Space Link Extension Services.
Recommendation for Space Data System Standards, CCSDS 910.4-B-2. Blue Book.
ssue 2. Washington, D.C.: CCSDS, October 2005.

pace Link Extension—Return All Frames Service Specification. Recommendation for
pace Data System Standards, CCSDS 911.1-B-2. Blue Book. Issue 2. \Washington,
.C.: CCSDS, December 2004.

pace Link Extension—Return Channel Frames Serviee Specification.
ecommendation for Space Data System Standards, CCSDS 911.2-B-1. Blue Bogk.
ssue 1. Washington, D.C.: CCSDS, December 2004.

pace Link Extension—Return Operational Contral*<Fields Service Specificatipn.
ecommendation for Space Data System Standards,»CCSDS 911.5-B-1. Blue Book.
ssue 1. Washington, D.C.: CCSDS, December 2004.

pace Link Extension—Forward CLTU Service Specification. Recommendation for
pace Data System Standards, CCSDS 912.1-B-2. Blue Book. Issue 2. Washington,
.C.: CCSDS, December 2004.

pace Link Extension—Forward-Space Packet Service Specification. Recommendation
or Space Data System Standards, CCSDS 912.3-B-1. Blue Book. Issue |1.
ashington, D.C.: CCSDS;:December 2004.

pace Link Extension=-Internet Protocol for Transfer Services. Recommendation for
pace Data SystemYy-Standards, CCSDS 913.1-B-1. Blue Book. Issue 1. Washington,
.C.: CCSDS, September 2008.

pace Lipk\Extension—Application Program Interface for Return All Frames Servige.
pecification Concerning Space Data System Standards, CCSDS 915.1-M-1. Magenta
ook.(Tssue 1. Washington, D.C.: CCSDS, October 2008.

Space Link Extension—Application Program Interface for Return Channel Frames
Service. Specification Concerning Space Data System Standards, CCSDS 915.2-M-1.
Magenta Book. Issue 1. Washington, D.C.: CCSDS, October 2008.

Space Link Extension—Application Program Interface for Return Operational Control
Fields Service. Specification Concerning Space Data System Standards, CCSDS
915.5-M-1. Magenta Book. Issue 1. Washington, D.C.: CCSDS, October 2008.

CCSDS 914.0-M-1 Page 1-10 October 2008
© 1SO 2013 — All rights reserved

21

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

22

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

[13] Space Link Extension—Application Program Interface for the Forward CLTU Service.
Specification Concerning Space Data System Standards, CCSDS 916.1-M-1. Magenta

[14]

[1

[16

[1

1

[1

2

[2

Book. Issue 1. Washington, D.C.: CCSDS, October 2008.

Space Link Extension—Application Program Interface for the Forward Space Packet
Service. Specification Concerning Space Data System Standards, CCSDS 916.3-M-1.

Magenta Book. Issue 1. Washington, D.C.: CCSDS, October 2008.

Information Technology—Abstract Syntax Notation One (ASN.1): Specificat

ion of

Basic Notation. International Standard, ISO/IEC 8824-1:2002. 3rd ed. Geneva
2002.

Information Technology—ASN.1 Encoding Rules: Specification of Basic En
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding
(DER). International Standard, ISO/IEC 8825-1:2002. 3rd ed. Geneva: 1SO, 20

Information Technology—Open Systems Interconnection«The Directory: M
International Standard, ISO/IEC 9594-2:1998. 3rd ed. Geneva: 1SO, 1998.

Information Technology—Open Systems Interconnection—The Directory: Publ
and Attribute Certificate Frameworks. International Standard, 1ISO/IEC 9594-8
4th ed. Geneva: 1SO, 2001.

Information Technology—Text Communication—Message-Oriented Text Interg

ISO,

coding
Rules

D2.
odels.

c-Key
:2001.

hange

Systems (MOTIS)—Part 3: AbstractService Definition Conventions. International

Standard, ISO/IEC 10021-3:1990 [Withdrawn]. Geneva: 1SO, 1990.

Programming Languages—C++. International Standard, 1SO/IEC 14882:2003.

ed. Geneva: 1SO, 2003.

Secure Hash Standard:” Federal Information Processing Standards Publication
Gaithersburg, MDNIST, 1995.

2nd

180-1.

CCSDS 914.0-M-1 Page 1-11 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2 DESCRIPTION OF THE SLE API
2.1 INTRODUCTION
2.1.1 SCOPE OF THE MODEL

The intention of this section is to provide a high-level yet precise description of the API
covering all APl components and their interaction. For this purpose, the section uses an
object model presented in the Unified Modeling Language (UML). Detailed specifications
for each of the components are provided in section 3, which references the concepts;epjects,
an interfaces described by this model.

Note that the material presented here is an API design, to the extent that the. API is lbroken
down into components and the interfaces and interactions of these compenénts are specified.
However, this model (i.e., design) is restricted to what must be,-defined to ensure co-
operation between components and excludes specification ofCthe internal design of
components.

ThHe model defines:

a) the runtime components, from which the API js ¢onstructed;

b) the externally visible logical architecture of the API in terms of:
1) the interfaces that are exposed by the' components;
2) the functionality to which theseinterfaces provide access; and

3) the behavior of the operations defined by the interfaces.

Injorder to specify the externally visible architecture, the model defines logical entities|{below
the level of runtime components. These entities are to be understood as abstract amalysis
objects. It is not the intention to prescribe the structure defined by these objects [for an
implementation in any;way. The only requirement for an implementation is to provide the
interfaces specified-with the functionality and the behavior described by the analysis oljjects.

Sgme minorssemantic extensions to UML have been defined to highlight the difference
befween thoese aspects of the model that must be implemented as specified and those gspects
that aretrequired only for a complete and unambiguous description. Subsection 2.2 prpvides
details of how UML is used in this model.

This section contains only a summary description of interfaces. A complete specification of
the methods and types is provided in annex A for all interfaces that are not service type
specific. Service type-specific interfaces are detailed in supplemental Recommended
Practice documents defining service-specific APIs.

CCSDS 914.0-M-1 Page 2-1 October 2008
© 1SO 2013 — Al rights reserved 23

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.1.2 PRESENTATION OF THE MODEL
The API model is presented as follows:

Subsection 2.2 describes how UML is used for this model. It does not provide an
introduction to UML. For a description of UML, the reader is asked to refer to the UML
specification (see reference [J6]), or to one of the textbooks on the subject (see references
[J7] and [J8]).

Subsegtion 2.3 describes the ‘logical view’. It contains a subsection for each of the~API
compgnents:

a) [API Proxy (see 2.3.2);

b)[API Service Element (see 2.3.3);
c)| SLE Operations (see 2.3.6); and
d)| SLE Utilities (see 2.3.7).

Subsegtion 2.3.4 describes interfaces that must be implemented by more than one compongnt
and dgscribes the application interface to the API. The logical view is complemented by
annex|F providing an overview of how the components interact.

2.2 BPECIFICATION METHOD AND NOTATION
2.2.1 | INTRODUCTION

The afchitectural model for the SLE'API is defined using the Unified Modeling Langugge
(UML) as defined in reference [J6}. This subsection describes some specific aspects of hpw
UML |s used in this Recommended Practice.

A component in UML meodels a runtime object, e.g., an executable file, a dynamically linked
library, or similar operating system objects. Therefore, the relationships that can be defined
for a gomponent in UML are limited:

a) | a component can implement (‘realize’) and export an interface;

b)[a eomponent can depend on another component (more precisely on the interfgce
exported by another component).

In this Recommended Practice, the UML component is used to refer to a component that:
a) is delivered as one or more linkable libraries;
b) is instantiated by a global ‘creator function’ defined in annex D;

c) is substitutable by a different component providing the same interfaces.

CCSDS 914.0-M-1 Page 2-2 October 2008
24 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

This specification requires these characteristics only for the top-level components API Proxy,

APl Service Element, SLE Operations, and SLE Utilities.

These components are

considerably complex and provide a rather large number of interfaces. In order to specify

these interfaces, additional model constructs are needed.

Following the general UML

approach, this Recommended Practice uses UML classes with specific stereotypes to define
special model objects. The specialized model objects are:

a) Interface;

Th
thi
no

by —Component Ctass (CoClass);
c) Component Internal Class; and

d) Entity.

t bound to any specific class.

ClassUtility

<<Entjty>>
Entity

instantiates

<<CoClass>>
Component Class

generalisation /
specialisation
relationship

<<CoClass>>
Specialised Class

containment / aggregation

implements / ;
exports interface !

uses interface

I

v
<<Interface>>

Component Interface

<<Interface>>
Interface

<<Inheritance>>

ey are shown in figure 2-1 together with some important relationships addressed |
S section. In addition, the model uses the UML utility class to represent functions t

ater in
nat are

interface
Inheritance

<intermat>>
Component Internal Class

<<interface>>
Derived Interface

Figure 2-1: UML Stereotypes Used in This Recommended Practice

CCSDS 914.0-M-1
© 1SO 2013 — All rights reserved

Page 2-3

October 2008

25

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.2.2 INTERFACE

The stereotype ‘Interface’ is defined by the UML specification. In this model it is used to
identify a component interface. In C++ an interface is implemented as a class containing no
data members and only public, pure virtual function members. According to the simple
component model defined in annex D, all interfaces inherit the interface lUnknown. This
fact is not explicitly shown in the diagrams.

Wherg explicit public interface inheritance is required, this is indicated by the Stereotype
<<Inhpritance>>. Generalization relationships that do not show this stéfeotype do mot
requirg an implementation using inheritance.

2.2.3 | COMPONENT CLASS

A component class is a model object that specifies some functionality to be provided by a
compgnent. It is also used to describe navigational relationships between interfaces. The
only implementation requirements related to component classes are the following. (Fof a
description of the interface 1Unknown and the method Querylnterface() see the
‘Simple Component Model’ in annex D.)

a)| A component must export all interfaces specified for a component class| it
implements.

b)| It must be possible to navigate-between all interfaces specified for a component cl@ss
and for component classes to which a generalization interface exists using
Querylnterface(.

c)| For every non-abstract component class (except the “‘main’ class for a component) the
model definesone” (or more) interfaces by which a new instance can be obtaingd.
These interfaces must be supported.

d)| When maore than one instance of a component class exist, distinct references for the
associated interfaces must be provided. The general requirement of the compongnt
medel, that a query for the interface lUnknown on the same instance always retufns
the same pointer, applies.

Beyond these requirements, this Recommended Practice does not prescribe how the
functionality defined for component classes is implemented. In particular, the generalization
relationships shown in the model do not require implementation via inheritance. In fact,
there need not be any equivalence between the classes within a component and the
component classes shown in this model.

CCSDS 914.0-M-1 Page 2-4 October 2008
26 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A component class is defined as abstract, when no instances of the class are created. Such
component classes define common functionality, behavior, and interfaces that are provided
by more than one derived class.

A runtime component contains a single ‘main’ class and exposes a special ‘creator function’
that can create an instance of that class. This creator function must be a global symbol in the
library that implements the component. In the diagrams of this model the creator function is
represented by a UML Utility Class, which has an association ‘instantiates’ to the ‘main’
class

THe model uses the UML dependency (or ‘uses’) relationship between component ¢lasses
anf interfaces to describe how components are linked via their interfaces."” The only
requirement for an implementation is that the component implementing, the functignality
asgociated with the component class use the specified interfaces for the purpose identified in
the model.

Inja few cases, attributes are shown for component classes. Attributes are strictly anplysis-
ma@del constructs to highlight characteristics of a class or options provided by a class.| They
ar¢ not to be understood to define data. Attributes shown in the model may not eyen be
acgessible at all.

A |component class is displayed as a UML class with the stereotype <<CoClass>>. |If the
component class is abstract, its name is displayed in italic typeface.

2.24 COMPONENT INTERNAL CLASS

Cagmponent internal classes are usedto describe features that are expected from a component,
but which do not result in any externally visible interface. Component internal clasges are
pure model objects. This specification does not prescribe how the features presented by
th¢se objects are implemented.

A lcomponent internat’class is presented as a UML class with the stereotype <<Interpal>>.
An internal class-does not implement an interface. Beside this constraint, all relationshjips for
clgsses can beused.

225 ENTITY

In SOMe cases, 1T IS necessary 1o Identity USe of an interface by some entity, which is
otherwise unspecified. For this purpose, the model object ‘Entity” is used. An entity is
displayed as a UML class with the stereotype <<Entity>>. The only relationship an entity
can have is a dependency relationship to an interface. No further semantics are associated
with an entity.

CCSDS 914.0-M-1 Page 2-5 October 2008
© 1SO 2013 — Al rights reserved 27

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

28

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.2.6 NAMING CONVENTIONS
2.2.6.1 Component Classes

Because component classes are not expected to be visible in source code, their names do not
adhere to the syntax of identifiers in programming languages.

The names of component classes that are independent of service types are not specifically
prefixed. Names of classes for which a special version must be provided for every service
type afe prefixed with ‘<SRV>’.

2.2.6. Interfaces

Interfgces adhere to the syntax of C/C++ identifiers. Except for diagramsj.interface names
and method names are displayed in mono-space font.

Following Component Object Model (COM) conventions (see reference [J5]), the name of|an
interfgce always starts with a capital ‘I’. Interfaces that are ifependent of specific SLE
service types are prefixed with ISLE_. Names of interfaces,/which are specific for servjce
types,| are prefixed with I<SRV>. These interfaces are defined in supplemental
Recommended Practice documents for service-specific’APIs, where <SRV> is replaced [by
reviation for the service type. Readability of>the name following the prefix can [be
improyed using upper and lower case letters. ~Fhe underscore character is reserved for
ion of prefixes from the name. It is not used in the name itself.

Examples: ISLE_ProxyAdmin
ISLE_Servicelnform
I<SRV>_SI1Admin becomes, e.g., IFSP_SIAdmin or IRAF_SIAdmin

2.2.6.3 Entities and Component Internal Classes

Becaupe the objects arepure modeling constructs and are not expected to be visible in source
code, their names do-not adhere to the syntax of identifiers in programming languages and [no
special naming-eanventions are applied.

2.2.7 | DYNAMIC MODELING

The API requires implementation of a number of state machines. Because these comprise a
considerable number of states and events, this Recommended Practice uses state tables
instead of the state diagrams foreseen by UML. Because implementation of these state tables
is mandatory, they have been placed in the prescriptive part of this Recommended Practice.

CCSDS 914.0-M-1 Page 2-6 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3 LOGICAL VIEW

2.3.1 STRUCTURE

The logical view of the API is partitioned into the packages shown in figure 2-2, which also
displays the dependencies between these packages. Dependencies on the package SLE
Utilities are not shown in order to avoid overloading of the diagram.

| |

SLE Application SLE Utilities

. \ \
/’ \ N
’ \ \\
. \ / N
.
- \ / AN
. 3 / N
—‘ A / A*‘

Common Control API Service SLE Operatiohs
Interfaces SR e Element AR LR
%
API Proxy

Figure 2-2: Top Level Decomposition of the API

The following packages exist:

a)< API Proxy
The package contains the component classes that define the component API Prpxy as

WeIT as interfaces exported only by the Proxy.

b) API Service Element
The package contains the component classes that define the component API Service

Element as well as interfaces exported only by the API Service Element.

c) Common Control Interfaces
The package specifies some interfaces that are supported by the API Proxy and the

API Service Element.

CCSDS 914.0-M-1 Page 2-7 October 2008

© 1SO 2013 — Al rights reserved 29

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

d) SLE Application
The package defines component classes that are assumed to be part of the application
software. These component classes export the interfaces that must be made available
by the application.

e) SLE Operations
The package specifies the interfaces for operation objects implemented by the
associated component and used for SLE transfer service interfaces.

f) rStEUtitities
The package defines a small set of generally useful classes and their interfaces.. -jhe
interfaces of these utility classes are used by interfaces throughout the model.

2.3.2 | PACKAGE API PROXY

2.3.2.1 Overview

The API Proxy provides all functionality that must be implemented-in a technology-specific
manngr and shields its clients from all technology-specific aspects. In addition, the Prgxy
implements access control on system level and authentication of the peer identity. |Its
structdre is shown in figure 2-3.

The ¢omponent class APl Proxy is responsible “for configuration, initialization, gnd
managdement of the Proxy component and dhe data communication system. The
configuration and initialization is performed using the interface 1SLE_ProxyAdmin.

Comnjunication between an SLE servicecuser and an SLE service provider is handled by the
class |Association via the exported)interface ISLE_SrvProxylnitiate and the
complementary interface 1SLE__SrvProxylnform supplied by the client. Associatigns
can bg created via the interface(l SLE_AssocFactory.

Assocjations are distinguished according to the role they play in the BIND and UNBIND
operation. Initiating:-~associations invoke BIND and UNBIND operations, whergas
resporjding associations accept incoming BIND and UNBIND invocations. Thgse
specialized classes-differ in their behavior but do not expose any interfaces in addition|to
those {nherited from the abstract class Association.

The PDU Translator is respon5|ble for translation of the operatlon parameters between the

PDU Translator handles common PDUs for association management Whl|e a service- speC|f|c
translator handles service-specific PDUs. It is the only element in the proxy that depends on
the SLE service type.

The proxy and associations support logging and diagnostic traces using the interfaces
ISLE_Reporter and ISLE_Trace provided by the application. Diagnostic traces can be
switched on and off via the interface 1ISLE_TraceControl exported by the APl Proxy
and by the class Association.

CCSDS 914.0-M-1 Page 2-8 October 2008
30 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - All classes in the package APl Proxy use the interfaces of operation objects and
of utility objects. This fact is not specifically mentioned in the following
description.

At least one of these interfaces
and the associated behaviour
must be supported

API Proxy Creator

<Product> createProx
instantiates

<<Interface>>

<<Interface>>

ISLE_SrvProxylnitiate [~

<<Internal>>
Initiating.Association

<<Interface>>
ISLE_Sequential

(from Common Control Interfaces)

<<Interface>>
ISLE_Concurrent
(from Common Control Interfaces)

I

ISLE_ProxyAdmin N <<CoClass>>
‘ API Proxy
<<Interface>> kK | E'rgctjosgllelg Supported
ISLE_AssocFactory
1
manages
Q&

<<CoClass>>
Association

Service Type

1

uses
1

<<Internal>>
PDU Translator

<<lnternal>>

<<Interface>>

—————— = ISLE_SrvProxylnform

(from API Service Element)

<<Internal>>
Responding Association

V

<<Interface>>

<SRV> PDU Translator

ISLE_Locator

(from API Service Element)

Figure 2-3: Structure of the Package API Proxy

CCSDS 914.0-M-1
© 1SO 2013 — All rights reserved

Page 2-9

October 2008

31

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

32

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

<<CoClass>> <<Interface>>
APl Proxy | T~ ISLE_Reporter
(from SLE Application)
A
1 |
I
AN |
A\ |
I
<<Interface>> <<Interface>> !
ISl E TracalCaontral manaagac Il L Tracn 1
ISt=—HaceConrtror AaRages tSt=—Haee ‘
(frgm Common Control Interfaces) (from SLE Application) !
7 |
7 ‘
:
. 1
’ L
0.x . :
‘ |
I
|
I

2.3.2.2

2.3.2.2

The 4
associ
servic
availa

In gen

<<CoClass>>
Association

Figure 2-4: Reporting and Tracing by.the Proxy

Component Class APl Proxy
.1 General

APl Proxy provides management, of the communications infrastructure and
ations. The communications technology and the specific mapping of SLE trans
bs to that technology by a prexy implementation is identified by a ‘Protocol Il
ple via the interface 1SLE .RroxyAdmin.

eral, a proxy supports_initiating associations and responding associations. However,

implementation may support only one of these roles. The *bind roles’ actually supported

define
respor

A sing

d by the attribute~“Bind Roles Supported’. A proxy supporting associations in {
der role listegs for incoming connection requests on the network interface.

le instanice of this class exists within one instance of the component API Proxy.

2.3.2.2

of
fer
)’l

an
hre
he

2~ Responsibilities

2.3.2.2.2.1 Configuration and Initialization of the Proxy Component

After

creation the proxy must be configured and initialized using the interface
ISLE_ProxyAdmin. This action includes configuration and initialization of the
communications infrastructure. All static configuration parameters needed for this purpose
are specified in the configuration database, defined in 2.3.2.8.

CCSDS 914.0-M-1 Page 2-10 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

An implementation may require that part of the required infrastructure has already been
initialized, e.g., at system start-up, or that a global infrastructure exists, e.g., for access to a
directory system. Such prerequisites must be documented for every implementation.

2.3.2.2.2.2 Dynamic Port Registration and De-registration

The proxy performs dynamic registration of responder ports on request of a client via the
interface 1SLE_ProxyAdmin. Port registration includes all actions that may be required
byl a technology to register addresses, export address related information to a difectory
system, or publish a port by other means. Port registration has the effect that requests $ent to
the port are correctly routed to the proxy that registered it.

If port registration is not needed for the technology used, or for the current configuration of
the proxy, the proxy ignores the request.

2.3.2.2.2.3 Management of Initiating Associations

THe proxy creates and initializes initiating associations fof.a Specified service type on request
of|its client via the interface 1SLE_AssocFactory. If the proxy does not support the
reiuested service type or does not support associations in the initiator role, it reje¢ts the
request.

THe proxy keeps a reference to the associations until the client requests it to destrpy the
asgociation. If the association is not if_an unbound state, the proxy rejects this request.
Otherwise, it releases all resources that-may be allocated to the association and performs all
actions required to delete the association.

(@]

2.3.2.2.2.4 Management'of Responding Associations

A |proxy that supports-associations in the role of a BIND responder starts listenipg for
ingoming BIND invecations as soon as the start method of one of the control interfades has
bepn called, or, when the port has been registered. When the proxy receives a |BIND
inyocation, it\ereates a new responding association to process the BIND invocation.

When, responding association terminates (following UNBIND, PEER-ABORT, or after a

faillure “reported by the data communication service), the proxy releases all respurces
allmmmmwxmmm—' i rati ject.

2.3.2.2.2.5 Logging and Notification

The proxy generates log records for important events and enters them to the system log using
the interface ISLE_Reporter provided by the application. For specific events that require
immediate attention, the proxy notifies the application using the method Notify() in the
interface ISLE_Reporter.

CCSDS 914.0-M-1 Page 2-11 October 2008
© IS0 2013 — Al rights reserved 33

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.2.2.6 Diagnostic Traces

The proxy generates trace records for events that are not related to any particular association
and passes them to the interface 1SLE_Trace provided by the application. It supports the
interface 1SLE_TraceControl to switch tracing on and off. The proxy forwards all
requests received via this interface to all associations currently managed.

2.3.2.2.3 Attributes

2.3.2.2.3.1 Protocol ID

Identities the technology and specific mapping of SLE transfer services to that technology.

2.3.2.2.3.2 Bind Roles Supported

INITIATOR the proxy is capable to support associations in the rgle of a bind initiator;
RESPPONDER the proxy is capable to support associations inthé role of a bind responde
ALL the proxy is capable to support associatioris in the role of an initiator|as
well as associations in the role of a responder.

=

2.3.2.2.4 Behavior and Use

When| the method Configure() is called on the interface 1SLE_ProxyAdmin, the
proxy [checks the information passed and performs all actions required for configuration|of
the prpxy and the communications serviee. Errors are logged and result in an error cqde
returngd to the caller. When the component has been configured successfully, the proxy
return$ a positive result code, indicating that it is ready for operation. However, it starts
procegsing only when the start method is called on one of the control interfages
ISLE[Sequential or ASEE _Concurrent (see 2.3.4). This implies that a proxy
suppofting associations.if-the responder role starts listening for incoming BIND invocatigns
only affter call of the start' method.

When|the terminate method of the control interface is called, the proxy terminates all threafls,
if apglicable,xsuch that an orderly termination of the application is possible. If any
associptions~are still active when termination is requested, the proxy aborts thgse
associptions. A proxy must expect that other proxies using the same communicatqon
infrastructure exist on the system and must make sure that their operation 1S not atfected by
termination activities.

NOTE - The terminate method is either TerminateSequential () of the interface
ISLE_Sequential, or TerminateConcurrent() of the interface
ISLE_Concurrent, depending on the behavior supported by the proxy.

CCSDS 914.0-M-1 Page 2-12 October 2008
34 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The proxy provides the method ShutDown () to shut it down on its administrative interface
ISLE_ProxyAdmin. When that method is called it releases all interfaces of other
components it still holds, frees all resources, and deletes all internal objects.

2.3.2.2.5 Exported Interfaces

Interface Defined in Package Purpose
1S ; ; it
registration, and shutdown
ISLE Concurrent Common Control start and termination of operations-for
Interfaces concurrent behavior
ISLE Sequential Common Control start and termination of aperations for
Interfaces sequential behavior
ISLE_AssocFactory API Proxy creation and deletion of associations in[the
initiator role
ISLE_TraceControl Common Control start and step of diagnostic traces
Interfaces

2.3.2.2.6 Dependencies

Interface Defined in Package Purpose

ISLE_Reporter SLE Application logging and notification

ISLE_Trace SLE Application tracing

ISLE Locator API Service Element indication of an incoming BIND invocation to
the client (not shown in the diagram)

IS|LE_OperationFactory-_SLE Operations creation of operation objects (not shown in the
diagram)

ISLE_UtilFactory SLE Utilities creation of utility objects (not shown in the
diagram)

2.3.2.3 .Component Class Association

2.3.231 General

An object of a class derived from the abstract class Association handles a single data
communication association between an SLE service user and an SLE service provider. The
class Association defines those aspects of an association, which are independent of the role it
plays in the BIND and UNBIND operation. An association is independent of the SLE
service type. Service type-specific aspects are handled by the class PDU Translator, to which
the association passes all operation invocations and returns for checking and for encoding
and decoding.

CCSDS 914.0-M-1 Page 2-13 October 2008

© 1SO 2013 — All rights reserved

35

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

An association object does not distinguish between the SLE service user role and the SLE
service provider role and accepts any PDU that is defined for a given SLE service type.
Checking for validity of PDUs for a given role must be performed by the client of the
association.

2.3.2.3.2 Responsibilities

2.3.2.3.2.1 Mapping of Port Identifiers

The apssociation maps the logical port identifiers defined by the CCSDS Recommended
Standards for SLE transfer services to technology-specific addresses. The mapping| is
defined in the configuration database.

2.3.2.3.2.2 Processing of SLE Protocol Data Units

Assocjations accept operation objects holding SLE invocation and return parameters via the
interfgce ISLE_SrvProxylnitiate, pass them to the PDU-Translator for checking and
encod|ng, and transfer the encoded PDU to the peer proxy.<THhey receive SLE PDUs from
the pepr proxy, pass them to the PDU Translator for checking and decoding, and forward the
resulting operation object to the client via the interface ESLE_SrvProxy Inform.

2.3.2.3.2.3 Basic SLE Protocol Execution

Assocjation objects implement a basic subset of the state tables defined for SLE servicgs.
The sthte table for associations is specified in section 4.

2.3.2.3.2.4 Authentication

For incoming PDUs, the-association determines the required authentication mode defined| in
the configuration database for the peer application. If authentication is required it uses the
interfgce 1SLE_SeCAttributes provided by the component SLE Utilities to check the
credentials transmitted in the PDU. If authentication fails the association ignores the POU.
For oytgoing PDUs, the association generates the credentials using the security attributes|of
the logal application in its configuration database.

2.3.2.3.2.5 Monitoring of the State of the Data Communication Connection

The association monitors the state of the data communication connection it uses and informs
its client if the connection breaks down. The maximum delay between the failure and the
report is specified in the proxy configuration file.

CCSDS 914.0-M-1 Page 2-14 October 2008
36 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.3.2.6 Queuing of Outbound PDUs

The association queues a maximum number of PDUs if these cannot be transmitted
immediately. A positive response to a transmission request by the client guarantees that the
PDU has been queued for transmission. The maximum size of the queue is defined in the
proxy configuration file. If requested by the client (see the interface
ISLE_SrvProxylInitiate) the association notifies the client when a PDU has actually

been transmitted. If the queue of outgoing PDUs is full, the association rejects further
transmission requests

2.3.2.3.2.7 Removal of Transfer Buffer PDUs

On request by the client, the association removes all PDUs of the type TRANSFER-BUFFER
for which transmission has not yet started from the queue and releases associated resqurces.
It {(nforms the client whether such PDUs have been discarded.

2.3.2.3.2.8 Limiting Inbound Data Traffic

THe association ensures that the number of PDUs received from the network and rnot yet
papsed to its client does not exceed a maximym number N1 defined in the |proxy
copfiguration file. Of these a maximum number N2 < N1 are allowed to be PDUs of the type
TRANSFER-DATA invocation or TRANSEER-BUFFER invocation. The number|N2 is
al§o defined in the proxy configuration file. If either of these limits is exceedg¢d the
asgociation does not accept further data<from the network making sure that back-presgure is
buplt up.

2.3.2.3.2.9 Logging and Netification

The association and its-derived classes generate log records for important events and enter
them to the system logusing the interface ISLE_Reporter provided by the appligation.
Far specific eventsZthat require immediate attention, the association notifies the application
us|ng the method*Notify() in the interface ISLE_Reporter.

[%2]

2.3.2.3.2:10 Diagnostic Traces

TheTlassAssociationmand - its derived tlasses generate trace Tecords and pass thenT to the
interface ISLE_Trace provided by the application. It supports the interface
ISLE_TraceControl to switch tracing on and off.

CCSDS 914.0-M-1 Page 2-15 October 2008
© 1SO 2013 — Al rights reserved 37

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.3.3 Exported Interfaces

Interface
ISLE_SrvProxylnitiate
ISLE_TraceControl

Defined in Package
API Proxy

Common Control
Interfaces

Purpose
passing of SLE PDUs for transfer

start and stop of diagnostic traces

2.3.2.3.4 Dependencies

Interface

ISLE_SrvProxylnform

ISLE_Reporter
ISLE [Trace

Defined in Package

API Service Element

SLE Application
SLE Application

Purpose

passing of SLE PDUs received froam the
network

logging and notification

tracing

2.3.2.4 Internal Class Initiating Association
2.3.24.1 General

An inftiating association accepts requests to invoke the BIND operation and the UNBIND
operation from its local client. If the associatiof’receives a BIND or UNBIND invocation
PDU from the peer proxy, it aborts the dataccommunication association with the diagnostic
‘protogol error’.

2.3.2.4.2 Responsibilities
2.3.2.4.2.1 Association Establishment

When(receiving a BIND-~invocation from its local client, the initiating association establishes
a datal communicatién association with the peer proxy using technology-specific means gnd
transmits the BIND-. invocation. It completes the association establishment procedure when it
receivpes the BIND return from the peer proxy. If the BIND return PDU contains a positjve
result,[the association is established and the state is set to ‘bound’. If the BIND return PIDU
carrie§ a_negative result, the association is not established and the state is set to ‘unboungd’.
The assoetation—tnforms—its—chent—byforwarding—the—operation—object—with—the—rettrn

parameters received from the peer proxy.

The association ensures that the BIND operation is not performed on an established
association or during association release and is not re-invoked during association
establishment. It also ensures that the BIND operation is performed according to the
protocol defined by the CCSDS Recommended Standards for SLE transfer services.

CCSDS 914.0-M-1 Page 2-16 October 2008
38 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.4.2.2 Association Release

When receiving an UNBIND invocation from its local client, the association object forwards
the invocation to the peer proxy and initiates termination of the data communication
association by technology-specific means. It completes the association release procedure
when receiving the UNBIND return, by setting its state to ‘unbound’ and forwarding the
return to its client.

The_association ensures that the UNBIND operation is performed only on an established
asgociation and is not re-invoked during association release. It also ensures that UNBIND
opgration is performed according to the protocol defined by the CCSDS Recoemmnended
Standards for SLE transfer services.

2.3.2.4.2.3 Access Control

Aq part of the BIND operation the initiating association locates. the peer application|in the
copfiguration database of the proxy using the responder identifier in the BIND opegration
object. When receiving the BIND return it verifies that the,responder identifier is the one
expected and aborts if that is not the case. This test is performed before authenticafion, if
authentication is required for the peer application.

2.3.2.5 Internal Class Responding Association

2.3.25.1 General

A |responding association processes~BIND invocations received from the peer proXy and
regponds to UNBIND invocations‘issued by the peer proxy. It rejects any BIND or UNBIND
inyocations that might be requested by its local client.

2.3.2.5.2 Responsibilities

2.3.25.2.1 Association Establishment

An object<of'the class Responding Association is created by the APl Proxy in onder to
process-a-received BIND invocation (see 2.3.2.2.2.4). It performs all initial checks pn the
Dinvocation defined in this section. It then informs its client via the interface

1S o orprovvided-aspart of the bro onfic oR—p als eference to its

interface ISLE_SrvProxylnitiate and to the operation object holding the BIND
invocation parameters.

If the locator interface returns a reference to the interface 1SLE_SrvProxyInform, the
association forwards the BIND invocation via that interface. If the locator returns an error,
the association generates a BIND return PDU with a negative result and a diagnostic
corresponding to the error. It transmits the PDU to the peer proxy and terminates the data
communication association.

CCSDS 914.0-M-1 Page 2-17 October 2008

© 1SO 2013 — All rights reserved

39

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

40

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The association completes the association establishment procedure when it receives the
BIND return from its local client. If the BIND return PDU contains a positive result, the

association is established and the state is set to ‘bound’.

If the BIND return PDU carries a

negative result, the association is not established. In both cases, the association forwards the

BIND

return to the peer proxy.

If the association receives a BIND invocation from the peer proxy on the data
communication association it handles, it aborts the association with the diagnostic “protocol

error’

The association also ensures that the BIND nppratinn is Im:rfnrmpd ar‘r‘nrding to

he

protoc

2.3.2.5

When
invocg
UNBI

The a
associ
operat
Standg

2.3.2.9

When
peer a
with a

2.3.2.5

When
define
can b
negati

ol defined by the CCSDS Recommended Standards for SLE transfer services.

2.2 Association Release

receiving an UNBIND invocation from the peer proxy, the association forwards {
tion to its client. It completes the association release procedure-when it receives {
ND return from its local client.

5sociation ensures that the UNBIND operation is perfarned only on an establish
ation and is not re-invoked during association release.< It also ensures that UNBIN
jon is performed according to the protocol defined by the CCSDS Recommeng
irds for SLE transfer services.

2.3 Access Control

receiving a BIND invocation, the association verifies that the initiator is defined a
pplication in the configuration database of the proxy. If that is not the case, it respor
BIND return containing a negative result and the diagnostic ‘access denied’.

2.4 Handling of Service Types and Version Numbers

receiving a BINDinvocation, the association checks that the requested service typg
0 in the configuration database of the proxy and that the version number for that ty
b supported= If that is not the case, it responds with a BIND return containing
ve result:and the appropriate diagnostic.

he
he

ed
1D
ed

ds

S
pe

2 3 2 L2 Nanandanciac
. . adaNJ IJ\dr.l\dl LAY A2 B AV AvI>)

Interface Defined in Package Purpose

ISLE_

Locator API Service Element indication of an incoming BIND invocation to

the client

CCSDS 914.0-M-1 Page 2-18 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.6 Internal Class PDU Translator
2.3.2.6.1 General

The class PDU Translator translates SLE operation parameters between the syntax used in
the API and the syntax required for communication with the peer proxy. The base class
handles the SLE operations BIND, UNBIND, and PEER-ABORT, which are identical for all
service types. Service-specific operations are handled by the derived classes.

2.3.2.6.2 Responsibilities
2.3.2.6.2.1 Association of Returns with Invocations

The PDU Translator receives operation objects from the association. For invocatipns of
copfirmed operations by the local client, it stores a reference to the operation object until the
refurn from the peer proxy arrives or the association is aborted. \When receiving a PDU that
coptains a return, the PDU Translator locates the operation object holding the invocatjon by
means of the invocation identifier. The PDU Translator~verifies that the invocatign and
return are of the same operation type. If it cannot locaté the invocation, it informs the
asgociation, which aborts with the diagnostic ‘unsolicitedrinvocation identifier’.

NOQTE - The processing of invocations of corfirmed operations received from the peer
proxy is described in 2.3.2.6.2.3.

It is noted that the confirmed operationsH)BIND and UNBIND do not carry an invdcation
identifier. Because only a single returh-can be outstanding for these operations at any time,
asgociation of the return with the invocation is possible without the invocation identifief.

2.3.2.6.2.2 Encoding of RDUs

A |PDU Translator exfracts the invocation or return parameters from the operation gbjects
paksed by the assaciation, encodes them as required by the technology mapping, builds the
prptocol data unit,/and passes it back to the association for transmission.

2.3.2.6.2.3 Decoding of PDUs

The_PDU Translator decodes PDUSs received from the peer proxy and exiracts the apération
parameters. For invocations, the PDU Translator creates an operation object using the
interface ISLE_OperationFactory, stores the invocation parameters to this object, and
passes it to the association for further processing. For returns, it stores the return parameters
to the operation object, which holds the associated invocation.

CCSDS 914.0-M-1 Page 2-19 October 2008
© 1SO 2013 — Al rights reserved 41

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.7 Internal Class <SRV> PDU Translator

A class <SRV> PDU Translator exists for every SLE service type supported by the proxy.
For operation objects and PDUs passed to the PDU Translator, the class checks whether
these are defined for the service type. If the operation is defined for the service type, the
class performs encoding and decoding for these operations as described in 2.3.2.6.

2.3.2.8 Proxy Configuration Database

2.3.2.8.1 General

Operation of the API Proxy in a specific deployment environment is controlled [by
paramgters in a configuration database. The structure of this database isAmplementation
speciflc. It could consist of one or more files or could be implemented-using directgry
systenmis or some management database. The configuration file passed to\the proxy as part|of
the cgnfiguration can contain the complete database or only a reference that enables the
proxy [to access the database.

Also, the content of the database is largely implementationdspecific. Information, which
must e part of the configuration database, is presented infigure 2-5. The objects shown|in
the figure are not complete. Information objects not shewn in the figure are represented by
the attribute ‘Configuration Parameters’ of the class RProxy Config Database. A complete [ist
of reqlired objects may be found in section 3.

<<Internal>> <<Internal>>

& . <<Internal>> o
$upported Servcie Proxy Config Database LocalApplication

Servcie Type " . . Identifier
VErsion List 1. 1 |Configuration Parameters 1 Password
1 1
1
1.*
1.* local port
<<Internal>> <<Internal>>
L N
Pe(.ar Application Responder Port 1.
Identifier et
Identifier
Password Address
Authentication Mode

Figure 2-5: Configuration Database of the Proxy

CCSDS 914.0-M-1 Page 2-20 October 2008
42 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.2.8.2 Local Application

The database contains information concerning the local SLE application. The information
includes the identifier (user name) and a password for authentication. For proxies supporting
associations in the responder role, the database also holds information related to local ports,
on which the proxy shall accept incoming BIND invocations. The number of ports that can

be

supported is implementation defined.

2.3

Th
Th
wh
idg
au

2.3

Fo

the

2.3

Th
a
co

>

2.3

N3
IS

.2.8.3 Peer Application

e database contains a list of peer applications, which are allowed to access|the s
e list includes service users that may access a service provider and setvice pro
ich the local application may use. For every peer application, the database conta
ntifier, the required authentication mode (no authentication, authentication for BINL
thentication of all PDUs) and a password for authentication.

2.8.4 Port

technology-specific address information associated with that name.

.2.8.5 Supported Services

e database contains a list of the service types that are supported by all API compon

mponents.

.2.8.6 Interfaces Defined by the Package

me Description

| E_ProxyAdmin The interface is provided to configure and initialize the proxy

needs operationally. In addition, the interface comprises the m
for port registration and de-registration and for shutting down of

proxy.

IC

ystem.
/iders,
ns the
D only,

r all responder ports (local and remote) the database.contains a logical port identifier and

bNts in

installation, and for each type, the-list of version numbers that are supported by all API

component passing it the pointers to interfaces of other components it

pthods
the

IS

Accocelaeceto L Tk Lot £ 4, 1 £ Loti ot e ot +.
__MooUutLil UL Tur y T TIMTTTaLt SUPPUTLS LTITaAliulm Ul irtiatliy doosvutiatult UJJTLLlo

ora

specified SLE transfer service type. A pointer to the client interface

must be passed to the creation function. The interface also provides a
method to request the proxy to destroy an association object that is no

longer needed.

LE_SrvProxylnitiate The interface provides methods to pass SLE operation invocations and
returns for transmission. In addition, it supports the features to request

reporting of actual transfer of a PDU, and to discard PDUs of th

TRANSFER-BUFFER. The interface is identical for all association roles

(initiator and provider) and all SLE service types.

e type

CCSDS 914.0-M-1 Page 2-21 October 2008
© 1SO 2013 — All rights reserved

43

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

44

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3 PACKAGE API SERVICE ELEMENT

2.3.3.1 Owverview

The API Service Element implements functionality related to SLE transfer service
provisioning, which can be clearly separated from service production. It provides support for
SLE service provider applications and for SLE service user applications. The structure of the
API Service Element is shown in figure 2-6.

The component class API Service Element is responsible for configuration, initialization;gnd
It provides an interface to the application to create gnd
delete|service instances (ISLE_SIFactory) and to the proxy to locate service instanges

manadement of the component.

when feceiving a BIND invocation (ISLE_Locator).

CCSDS 914.0-M-1

Page 2-22

October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

At least one of these interfaces and
API Service Element Creator the associated beavhiour must be
<Product>_createServiceElement() supported
instantiates
<<Interface>> <<Interface>>
ISLE_Sequential ISLE_Concurrent
(from Common Control Interfaces) (from Common Control Interfaces)
<<Interface>> | e
ISLE_SIFactory | _ : .
~N T~ COLIdSS
APl Service Element | <<Interface>>
<<Interface>> || ---1 Roles Supported ISLE_Locator
ISLE SEAdmin Provider Initated Bind Supported
1
<<Interface>>
ISLE_SIAdmin RN
\\ mankaes <<Interface>>
<<Interface>> \\ g ,-s> ISLE_AssocFactory
ISLE_SIOpFactory [~~~ \\\ \\\ ,’/ (from API Proxy)
<<Interface>> \\\\\ 0% & <<Interface>>
ntertace>> AN ISLE_SrvProxylnitiate
ISLE_Servicelnitiate 3
ﬂ“\~~;; <<CoClass>> L---—7~ (from API Proxy)
API Service Instance |
<<Interface>> L7 Ty <<Interface>>
ISLE_Servicelnform $ ISLE_SrvProxylInform
(from SLE Application)
<<Ihternal>> <<Internal>>
SLProvider Sl User
<<Interface>>
I<SRV>_SIAdmin
N i
<<CoClass>> <<Internal>>
<<Interfaces> ___-| <SRV> Sl Provider <SRV> S| User
I<SRV>_SIUpdate
Figure 2-6: Structure of the Package API Service Element
Inglividual service instances are handled by the class API Service Instance. During perfods in
which'an SLE service user and an SLE service provider communicate, the service instance is

linked with an association object in the component API Proxy. It communicates with the
association via the interface ISLE_SrvProxylInitiate and the complementary interface
ISLE_SrvProxylnform. With the application it communicates via the interface
ISLE_Servicelnitiate and the complementary interface ISLE_Servicelnform.

Service instances are distinguished according to the application role they support. The class
Sl Provider supports SLE service provider applications and the class SI User supports SLE

CCSDS 914.0-M-1 Page 2-23 October 2008
© 1SO 2013 — Al rights reserved 45

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

46

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

service user applications. While the behavior of these classes and the operations they support
differ, the externally visible interfaces are identical.

The classes APl Service Instance, SI Provider, and SI User are abstract. Service instance
objects support a specific SLE service type represented by the classes <SRV> Sl Provider
and <SRV> S| User. The class <SRV> SI User does not export any new interfaces, while
service instances in the provider role support additional service type-specific interfaces for

configuration (I<SRV>_SI1Admin) and for update of service parameters
(I<SRV=—SlUpdate).

<<CoClass>> <<Interface>>
API Service Element [~~~ > ISLE_Reporter
(from SLE Application)

1. N
A 3 |
<<|nterface>> mangages <<Interface>> !
ISLE_TraceControl |S|-E_TF§C€_ |
(from Common Control Interfaces) (from SLE Application) 3
s !
0.x |

<<CoClass>>
API Service Instance

Figure 2-7: Reporting/and Tracing by the Service Element

The sg¢rvice element and service instances support logging and diagnostic traces using the
interfgces ISLE_Reporter and I1SLE_Trace provided by the application. Diagnostic
Traceg can be switched on’and off via the interface ISLE_TraceControl exported by the
API Service Element and by the API Service Instance.

NOTH - Alkclasses in the package API Service Element use the interfaces of operation
objects and of utility objects. This fact is not specifically mentioned in the
following description.

CCSDS 914.0-M-1 Page 2-24 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.2 Component Class API Service Element
2.3.3.2.1 General

The component class API Service Element provides management of service instances. An
implementation of the component can support service instances for the SLE service provider
role and for the SLE service user role or only for one of the roles as indicated by the attribute
‘Roles Supported’. Support for user-initiated binding of service instances is mandatory,
while support for provider-initiated binding is an option. Its support is indicated by the
attribute ‘Provider Initiated Bind Supported’.

NOTE - This version of the Recommended Practice does not support provider-initiated
binding, see 1.2.2 item b). The option and the attribute ‘Provider Initiated Bind
Supported’ are foreseen to allow later extension.

Alsingle instance of this class exists within an instance of the;-APl Service Element
component.

2.3.3.2.2 Responsibilities
2.3.3.2.2.1 Configuration and Initialization of the API Service Element Compongnt

Aﬂter creation, the API Service Element must be configured and initialized usipg the
interface ISLE_SEAdmin. All static configuration parameters needed for this purpgse are
specified in the configuration database defined in 2.3.3.8.

2.3.3.2.2.2 Control of Proxies

THe service element can usé several proxies distinguished by the ‘Protocol ID’ of the proxy.
The interface 1SLE_SEAdmin provides a method to link proxies to the service element after
copfiguration. The service element starts and terminates operation of all linked proxieg when
itslown operation iS-started or terminated.

o

Far service instances that initiate the BIND operation, the service element selects the|proxy
to luse by atable in its configuration database, which associates the peer port identifigr with
the¢ Protoeol ID supported by the proxy.

2.3.3.2.2.3 Management of Service Instances

The service element creates and initializes service instances for a specified service type and a
specified role on request of the application via the interface 1SLE_SIFactory. If the
service element does not support the requested service type or role, it rejects the request. |If
the service instance shall initiate binding, the application must additionally specify the
version number of the service type.

CCSDS 914.0-M-1 Page 2-25 October 2008
© 1SO 2013 — Al rights reserved 47

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The service element keeps a reference to the service instances created until the application
requests it to destroy the service instance. If the service instance is still bound at that time,
the service element rejects the request. Otherwise, it releases all resources that are allocated
to the service instance and performs all actions required to delete the service instance.

2.3.3.2.2.4 Location of Service Instances

The service element provides the interface ISLE Locator to the proxy to locate requested
service instances when the proxy receives a BIND invocation from the peer system. Ituses
the sefvice instance identifier in the BIND invocation passed by the proxy to find the-servjce
instange. If the service instance has been created by the application, the service lelemgnt
verifigs that this service instance is not already bound and that the BINDx invocation
paramgters are consistent with the configuration of the service instance. I¥-all checks are
passed, it links the service instance with the association and returns-a reference to the
interfgce 1SLE_SrvProxylInform of the service instance to the @roxy. Otherwise) it
returng an error, instructing the proxy to reject the BIND invocation,

2.3.3.2.25 Access Control

For inpoming BIND invocations the service element verifies that the initiator identifier in the
BIND|invocation matches the peer identifier defined-for this service instance. If that is pot
the cage, it rejects the request and generates an acgess violation alarm.

2.3.3.2.2.6 Logging and Notification

The sgrvice element generates log records for important events and enters them to the systgm
log uging the interface ISLE_Reporter provided by the application. For events that
requirg immediate attention, (the’service element notifies the application using the method
NotifFy() in the interface 1SLE_Reporter.

2.3.3.2.2.7 Diagnostic Traces

The sgrvice elément generates trace records for events that are not related to any particuflar
service instance and passes them to the interface ISLE_Trace provided by the applicatipn.
It supports the interface ISLE_TraceControl to switch tracing on and off. The servjce
element forwards all requests received via this interface to all service instances currently
managed, and, if requested by the caller, to all proxies that it controls.

NOTE - The interface ISLE_TraceControl of the service element allows setting of
the trace level on a global scope. Individual setting of the trace level of each
service instance is possible using the interface ISLE_TraceControl of the
service instance.

CCSDS 914.0-M-1 Page 2-26 October 2008
48 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.2.3 Attributes

2.3.3.2.3.1 Roles Supported

USER the service element supports service instances in the role of an SLE service
user;

PROVIDER the service element supports service instances in the role of an SLE service
provider;

ALL the service element supports service instances in the role of a user as well

as service instances in the role of a provider.

2.3.3.2.3.2 Provider Initiated Bind Supported

Inglicates whether the service element supports provider-initiated "“binding of dervice
ingtances.

NOTE - This version of the Recommended Practice does not support provider-injitiated
binding; see 1.2.2 item b). The option and thecattribute ‘Provider Initiated Bind
Supported’ are foreseen to allow later extension.

2.3.3.2.4 Behavior and Use

When the method Configure() is called er'the interface ISLE_SEAdmin(), the gervice
element checks the information passed, and performs all actions required for configuration of
the component. Errors are logged and-result in an error code returned to the caller. When the
component has been configured successfully, the service element returns a positive| result
cofe. Following configuration of the component, the service element must be linked wjith the
proxies it will use. For this purpose, the service element provides the method AddPraxy ()
in fits administrative interface:

THe service elementdtarts processing when the start method is called on one of the ¢ontrol
interfaces I1SLE_-Sequential or ISLE_Concurrent (see 2.3.4). It then also| starts
prpcessing of all-linked proxies using the interface selected for control of the proxy.

=

When the-terminate method is called via the control interface, the service element terminates
all| threads, if applicable, such that an orderly termination of the application is possible. If
any‘service instances are still active when termination is requested, the service element
instructs them to abort the association. Finally the service element terminates processing of
all linked proxies.

NOTE - The terminate method is either TerminateSequential () of the interface
ISLE_Sequential, or TerminateConcurrent() of the interface
ISLE_Concurrent, depending on the behavior supported by the service
element.

CCSDS 914.0-M-1 Page 2-27 October 2008
© 1SO 2013 — Al rights reserved 49

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

The service element provides the method ShutDown () to shut it down on its administrative
interface 1SLE_SEAdmin. When that method is called it releases all interfaces of other
components it still holds, frees all resources, and deletes all internal objects.

2.3.3.2.5 Exported Interfaces

Interface

ISLE

ISLE_[Concurrent

ISLE_[Sequential

ISLE_SIFactory
ISLE |Locator

ISLE [TraceControl

2.3.3.2

Interfg
ISLE |
ISLE |
ISLE_|

ISLE |

ISLE |

ISLE |

ISLE |

ce
Reporter

Trace

UtilFactory

Concurrent

Sequential

TraceControl

.6 Dependencies

PDperationFactory

Defined in Package

Common Control
Interfaces

Common Control
Interfaces

API Service Element

API Service Element

Common Control
Interfaces

Defined in Package
SLE Application
SLE Application
SLE Qperations

SLE Utilities

Common Control
Interfaces

Common Control
Interfaces

Common Control
Interfaces

Purpose

SE A : qTatior—initiafization

start and termination of operations for
concurrent behavior

start and termination of operations for
sequential behavior

creation and deletion of Service instances

location of service ipstances requested by
incoming BIND invocations

start and stop Of 'diagnostic traces

Purpose
logging and notification
tracing

creation of operation objects (not shown in
diagram)

creation of utility objects (not shown in the
diagram)

the

start and termination of proxies for concurrent

behavior (not shown in the diagram)

start and termination of proxies for sequent|
behavior (not shown in the diagram)

start and stop of diagnostic traces of proxie
(not shown in the diagram)

al

CCSDS 914.0-M-1

50

Page 2-28

October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.3 Component Class API Service Instance
2.3.3.3.1 General

An object of a class derived from the abstract class API Service Instance handles a single
SLE transfer service instance. The class API Service Instance defines those aspects of a
service instance, which are independent of the user and provider role and independent of a
specific service type.

2.3.3.3.2 Responsibilities
2.3.3.3.2.1 Configuration of the Service Instance

THhe service instance exports the interface 1SLE_SIAdmin to set comimon configyration
pafameters after creation. When all parameters have beéen set, the method
CanfigCompleted() must called. The service instance then.checks its configuratjon for
completeness and consistency.

o

2.3.3.3.2.2 Control of Initiating Associations

If the service instance initiates binding, it createscthe initiating association via the interface
ISLE_AssocFactory exported by the component API Proxy. It selects the |proxy
ingtance from the mapping table in the configuration database of the service element| using
the responder port identifier as a key. The service instance requests the proxy to destroy the
asgociation when it is no longer needed:

Implementations might create the association after configuration and keep it for the complete
lifetime of the service instance-or create a new association for every BIND invocation.

2.3.3.3.2.3 Processing’of SLE Protocol Data Units

THe service instance receives operation objects holding SLE PDUs from the application via
the interface §SLE_Servicelnitiate. It verifies that the PDUs are valid in the gurrent
stgte and ehecks the parameters for completeness, consistency, and range. If all chegks are
papsed, the service instance passes the operation objects to the association for transfer yia the
interface ISLE_SrvProxylnitiate. With a positive result code returned o the

The service instance receives operation objects holding SLE PDUs from the association via
the interface ISLE_SrvProxyInform. It verifies that the PDUs are valid in the current
state and checks the parameters for completeness, consistency, and range. If all checks are
passed and the operation is not handled by the service instance itself, it passes the operation
objects to the application via the interface ISLE_Servicelnform.

CCSDS 914.0-M-1 Page 2-29 October 2008
© 1SO 2013 — Al rights reserved 51

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.3.2.4 SLE Protocol Execution

The service instance enforces conformance to the state tables defined for SLE services to the
extent that these are independent of service production. The state tables processed by service
instances are specified in section 4.

2.3.3.3.2.5 Management of Invocation Identifiers

The s¢TVICE MStANTE assigns UMique mvocation Taentifiers to operation objects for confirmed
SLE o¢perations. For invocations of confirmed operations received from the proxy,-the
serviceg instance verifies that the invocation identifier is unique for all operations to which the
applicption has not yet responded. If the service instance detects a duplicate invocation
identifier, it responds with a return containing a negative response and the approprigte
diagngstic.

It is rjoted that the confirmed operations BIND and UNBIND do mnot-carry an invocation
identifier and must be excluded from these checks.

2.3.3.3.2.6 Timeout Monitoring for Operation Returns

For cgnfirmed operations invoked by the local application or by the service instance itself, the
servicg instance ensures that a return is received within a timeout defined as a configuratjon
paramegter. If no return arrives within the specifiedimeout, it aborts the association.

2.3.3.3.2.7 Pre-setting of Operation Object Parameters

The sgrvice instance provides an .interface for creation of operation objects for the servjce
type s$upported. It uses the-interface ISLE OperationFactory exported by the
component SLE Operations(to create these objects and initializes the parameters of the
operatjon objects according to its own configuration.

2.3.3.3.2.8 Logging’and Notification

The class APL: Service Instance and its derived classes generate log records for important
eventy and ‘enter them to the system log using the interface ISLE_Reporter provided oy
the applieation. For events that require immediate attention, the service instance notifies the
application using the method No€i1 ¥y () in the interface TSLE_Reporter.

2.3.3.3.2.9 Diagnostic Traces

The class API Service Instance and its derived classes generate trace records and pass them
to the interface I1SLE_Trace provided by the application. It supports the interface
ISLE_TraceControl to switch tracing on and off. If requested by the caller, the service
instance forwards the request to the associations, which it is using.

CCSDS 914.0-M-1 Page 2-30 October 2008
52 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.3.3 Behavior

For handling of errors, the service instance applies the following rules:

a) If SLE PDUs received from the application are not valid in the current state or fail to

b)

pass any of the other checks the service instance applies, it returns an error ¢
the method that passed the PDU.

ode to

If a PDU received from the application is rejected by the association, the service

robirne tha voaclld ~anAA rananad Framn thn aAconniatinn +0 thn ~Annl

cation.

ctana
IIIQLMII\JU reiuriio triv IUQUIL CUUL TUULULUTVUOU T1TITUINIT U1 doovuuTrauivitn tu uiv U.'J'JII

If the result code indicates that the queuing capacity of the association is gxe
the service instance aborts the association. Because of the flow control-mech:
built into the API, queue overflow cannot be caused by transfer of space lin
units. It can only happen because of excessive generation of otherevents reld
the production process or excessively high status reporting freguencies. In
cases the application would have no other option to handle the problem.

If SLE PDUs received from the association are not valid-in the current state or
pass any of the other checks the service instanceapplies, the service in
proceeds as follows:

1) if the problem is due to a misbehavior of ke association, it returns an errg
to the method that passed the PDU;

2) if the PDU is an invocation of a confirmed operation, the service instance s
result of the operation object to_‘negative’, inserts the appropriate diagnost
forwards it to the association.for transfer;

3) otherwise, the service-instance aborts the association with the appr
diagnostic.

2.3.3.3.4 Exported Intérfaces

Interface Defined in Package Purpose

ISLE_SI1Admin API Service Element configuration of the service instance

ISLE_SI10pFactory API Service Element creation and initialization of operation o

peded,
ANiSMS
k data
ited to
these

fail to
stance

r code

bts the
¢, and

Dpriate

bjects

ISLE_Servicelnitiate API Service Element passing of SLE PDUs from the applicatjon to

the service instance

I SCE_STVPTOXYITTTOTM APT Service Element passing of SLE PDUS received from the
association
ISLE_TraceControl Common Control start and stop of diagnostic traces
Interfaces
CCSDS 914.0-M-1 Page 2-31 October 2008

© 1SO 2013 — All rights reserved

53

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

54

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.3.5 Dependencies

Interface Defined in Package Purpose

ISLE_AssocFactory API Proxy creation and deletion of associations in the
initiator role

ISLE_Servicelnform SLE Application passing of SLE PDUs to the application

ISLE_SrvProxylnitiate API Proxy passing of SLE PDUs to the association for
transfer

ISLE_PperationFactory SLE Operations creation of operation objects (not shown'inthe
diagram)

ISLE [TraceControl Common Control start and stop of diagnostic traces of the

Interfaces association (not shown in the diagram)

2.3.3.4 Internal Class SI User
2.3.34.1 General

The class SI User defines those aspects of a service instarce”in the user role, which gre
indepgndent of a specific SLE service type. This class does netexport any additional interfaces.

2.3.3.4.2 Responsibilities
2.3.3.4.2.1 Processing of SLE Protocol Data\Units

The sgrvice instance verifies that PDUs received from the association or from the applicatjon
are compatible with the user role, the setvice type supported, and with the version number|of
the sefvice.

2.3.3.4.2.2 Buffering for Return Services

For return services, the.Service instance accepts the TRANSFER-BUFFER operation object
from [the association,~extracts the TRANSFER-DATA and SYNC-NOTIFY operation
objectp, and passes-them to the application in the sequence they have been stored in the
TRANSFER-BUFFER operation object. The service instance verifies that the buffer
received only-eontains PDUs for which buffering shall be applied.

2.3.3.423 Flow Cantrol for Forward Services

For forward services, the service instance provides flow control for TRANSFER-DATA
invocations. When a maximum number of TRANSFER-DATA invocations have been
queued by the association and not yet transmitted, the service instance returns a code to the
application requesting it to suspend data transfer. It informs the application when data
transmission can be resumed via the method ResumeDataTransfer () of the interface
ISLE_Servicelnform. The number of invocations that can be queued is defined by the
implementation or can be set in the configuration database of the service element.

CCSDS 914.0-M-1 Page 2-32 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.5 Internal Class SI Provider
2.3.3.5.1 General

The class SI Provider defines those aspects of a service instance in the provider role, which
are independent of a specific SLE service type. This class does not export any additional
interfaces.

2.3-:3.5:2Responsibilities

TOTONT

2.3.3.5.2.1 Processing of SLE Protocol Data Units

The service instance verifies that PDUs received from the association or from-the application
ar¢ compatible with the provider role, the service type supported, ardywith the \ersion
number of the service. It extracts the applicable version number from, the BIND invqgcation
regeived from the proxy.

2.3.3.56.2.2 Buffering for Return Services

Far return services the service instance handles the:transfer buffer defined by CCSDS
Rqcommended Standards for return link services. _For this purpose, it uses the opgration
object for the TRANSFER-BUFFER operation. JThe service instance adds invocations|of the
opgrations TRANSFER-DATA and SYNC-NOTIFY received from the application |to the
TRANSFER-BUFFER operation object, and-ferwards it to the association when the byffer is
full. The size of the buffer is a parameter passed to the service instance as part|of its
copfiguration.

2.3.3.5.2.3 Buffering in the Delivery Modes Timely Online and Complete Online

Far the delivery modes ‘timely online’ and ‘complete online’, the service instance handles the
ase timer as defined by the CCSDS Recommended Standards for return link services. The
sefvice instance starts_the release timer when inserting the first PDU into the transfer puffer.
When the bufferds full, when the release timer expires, or when the last PDU appended| to the
buﬁer is an ‘end-of data” SYNC-NOTIFY operation, the service instance forwards the tfansfer
bufffer content‘to the association for transfer in the form of a TRANSFER-BUFFER invogation.

NOTE = The term ‘TRANSFER-BUFFER invocation’ corresponds to a transnjission
request for the transfer buffer, not an SLE operation.

2.3.3.5.2.4 Buffering in the Delivery Mode Timely Online

For the delivery mode timely online the service instance additionally handles discarding of
buffers as defined by the CCSDS Recommended Standards for SLE return link services.
When a transfer buffer is due for transmission, it performs the following steps:

CCSDS 914.0-M-1 Page 2-33 October 2008
© 1SO 2013 — Al rights reserved 55

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

a) If the association did not yet notify transmission of the previous TRANSFER-
BUFFER invocation, the service instance requests the association to discard the
queued (previous) TRANSFER-BUFFER invocation.

b) If the result returned by the association confirms that the association has actually
discarded a TRANSFER-BUFFER invocation, the service instance inserts a
notification “‘data discarded due to excessive backlog’ at the beginning of the transfer
buffer before forwarding it to the association.

2.3.3.%.2.5 Flow Control for Complete Online and Offline Delivery Modes

In the [delivery modes complete online and offline, the service instance provides flow contfol
for TRANSFER-DATA invocations. If the transfer buffer fills up and a previously sent
TRANSFER-BUFFER invocation has not yet been transmitted by the association, the servjce
instange returns a code to the application requesting it to suspend data transfer. It informs the
applicption when data transmission can be resumed .“via the method
ResumeDataTransfer () of the interface ISLE_Servicelnform.

2.3.3.5.2.6 GET-PARAMETER Operation

The sprvice instance performs the operation GET-PARAMETER without involving the
applicption. It stores the current value of the requested parameter into the operation objgct
and forwards it to the association for transfer. .t is noted that the GET-PARAMETER
operation is service specific and the derived service-specific class must be involved.

2.3.3.9.2.7 Status Reporting

The dervice instance performs the operation SCHEDULE-STATUS-REPORT withgut
involving the application. It handles the report timer, generates status reports when needed,
and fgrwards them to the assaciation for transfer. The status reports contain the current
valueg of the service parameters. It is noted that the STATUS-REPORT operation is servjce
specif|c and the derived-service-specific class must be involved.

2.3.3.%.2.8 Serwite Provisioning Period

The sdrvice-Instance accepts a BIND invocation only within the scheduled provision perigd.
If the ptateof the service instance is not ‘unbound’ at the end of the provision period it abgrts
the assectatton—Hinforms—the—appheation—efthe—end-—oftheprovisioning—pertod—via—the

interface ISLE_Servicelnform.

For special purposes, the service provision period can be declared as infinite by setting the
start and end times to NULL. If that is done, the service instance assumes that the provision
period starts as soon as configuration is completed and never terminates.

CCSDS 914.0-M-1 Page 2-34 October 2008
56 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.6 Internal Class <SRV> Sl User

A class <SRV> SI User exists for every service type supported by the service element. It
ensures that the SLE PDUs passed by the application and by the association are supported by
the service type and handles the service-specific operation objects.

2.3.3.7 Component Class <SRV> Sl Provider

Nt.

Dy the
bjects.

ration
ractice

c API,
ed for

status

23371 General

A rlass <SRV> Sl Provider exists for every service type supported by the service elemg
2.3.3.7.2 Responsibilities

2.3.3.7.2.1 Processing of SLE Protocol Data Units

The service instance ensures that the SLE PDUs passed by -the application and
asgociation are supported by the service type and handles the service-specific operation o
2.3.3.7.2.2 Service Specific Configuration

The service instance provides an interface to_define the service-specific configy
pafameters. This interface is defined by the relevant supplemental Recommended P
for the service-specific API.

2.3.3.7.2.3 Update of Service Parameters

If defined by the relevant supplemental Recommended Practice for the service-specifi
th¢ service instance provides an interface to update the values of service parameters ug
the GET-PARAMETER retufi'and for status reports.

2.3.3.7.2.4 GET-PARAMETER and Status Reporting

THe service instance generates the service-specific GET-PARAMETER returns and
reports.

2.3.3.7.2.5x“Handling of Service Parameters after UNBIND or Abort

F0|IIowing completion of the UNBIND operation with the unbind-reason ‘suspend’ or

er an

abort, The Service Instance Sets the configuration parameters as defined Tor the SPeCITiC Service type.

2.3.3.7.3 Exported Interfaces

Interface Defined in Package Purpose

I<SRV>_ SIAdmin Service Supplement Configuration of the service instance
I<SRV>_SlUpdate Service Supplement Update of service parameters

CCSDS 914.0-M-1 Page 2-35 October 2008

© 1SO 2013 — All rights reserved

57

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.3.8 Service Element Configuration Database

The execution of the API Service Element is controlled by parameters in a configuration
database. The structure of this database is implementation specific. It could consist of one or
more files or could be implemented using directory systems or some management database.
The configuration file passed to the service element as part of the configuration can contain the
complete database or only a reference that enables the service element to access the database.

Also the content of the database is largely implementation specific. Elements required by
this Recommended Practice include

a)| a table associating port identifiers with protocol identifiers to select the proxy for
outgoing BIND invocations;

b)[for a service element supporting the provider role, the minimum‘and maximym
reporting cycle supported.

2.3.3.9 Interfaces Defined by the Package

Name Description

ISLE [SEAdmin The interface is provided to copfigure and initialize the service element
component passing it the poifters to interfaces of other components |t
needs. In addition, the interface comprises the methods for linking pfoxy
components and for shutting down the service element.

ISLE SlFactory The interface allows creation of service instances for a specified service
type and with a.gpecified role (service user or service provider). It also
provides a method to request deletion of a service instance object that is
no longer needed.

ISLE_|Locator The lacator interface is used to locate a service instance, using the
parameters of a BIND invocation, and to link it with an association
object.

ISLE_SIAdmin The interface provides the methods needed to set common configurgtion

parameters for a service instance and to complete configuration.
Service type-specific configuration parameters must be set by the
interface specified for that type.

ISLE_S10pFactory The interface allows creation of operation objects for the service type
supported by the service instance, and initialization of invocation
parameters according to the configuration of the service instance.

ISLE_SrvProxytmform The terface provides the methods 10 pass SLE operation invocatons
and returns received from the peer proxy. In addition, it supports
reporting of actual transfer of a PDU.

ISLE_Servicelnitiate The interface provides the methods to pass SLE operation invocations
and returns from the application to a service instance and to read the
state of the service instance.

CCSDS 914.0-M-1 Page 2-36 October 2008
58 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4 PACKAGE COMMON CONTROL INTERFACES
2.3.41 Overview

In order to ensure substitutability, handling of multiple flows of control must be well d
at interfaces between components. This specification defines two behaviors:

a) sequential behavior, in which a single flow of control at a time may pass an inte

h)__concurrent hehavior —1n which mulfipla flows of cantral can pacc an _in
coRGHHFesR+—e e -—H—A A CR—RUHHPHE—HOWS—OH—CORHOH—GaRl—pPass—all—ih

efined

rface;

erface

~7
concurrently.
NOTES

1 Multiple flows of control are frequently implemented by in-process threads b
also be provided by interrupt handlers or other operating system features.
Recommended Practice, the term ‘thread’ is used in a broader sense referring
kind of flow of control.

2 The terms ‘sequential” and ‘concurrent’ have beeradopted from the characte
defined in UML for operations. However, the.meaning of ‘sequential’ is s
more restrictive and the term ‘concurrent’ as-used in this Recommended P
maps to ‘concurrent or guarded’ in UML.

These behaviors are defined to more detail ¢1°2.3.4.2 and 2.3.4.3. The behavior m
regpected by the supplier of an interface and by the client of an interface. The same be|
is pssumed for complementary interfaces:-"Components are required to support at least
these behaviors but can support both.

A |lcomponent providing a specific behavior for its interfaces exports an associated (
interface to start and terminate processing of the component. These control interfag
defined by the package Cammon Control Interfaces. The interface ISLE_Sequent
supported by components providing sequential behavior and the inf
ISLE_Concurrentis supported by components providing concurrent behavior.

Far the sequential interface behavior, this Recommended Practice also defines interfa
which the‘client offers means for components to wait for external events and to
timers, -Components providing concurrent behavior are expected to handle external

ut can
n this
to any

ristics

ightly
ractice

ust be
havior
one of

ontrol
es are
jal is
erface

ces by
nandle
events

and timers internally.

In addition, this package defines an interface to start and stop diagnostic traces, which is

implemented by all components providing that option.

CCSDS 914.0-M-1 Page 2-37 October 2008

© 1SO 2013 — All rights reserved

59

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4.2 Sequential Behavior
2.3.4.2.1 Definitions

A component providing sequential behavior on an interface provided to the application or to
a higher layer APl component ensures that methods of the complementary client interfaces
are only called in a thread that originates from a client call. Use of multiple threads by the
component is not excluded, but the component must guarantee that no thread started by the
component itself or by any lower layer component enters client code.

Becauge of these restrictions, components providing sequential interface behavior-canfot
wait for external events or timers without blocking the client. Therefore, the client provides
specif|c interfaces for monitoring of events and handling of timers on behalf of the
compgnent.

The application or APl components using interfaces of lower layer APY¥ components wjith
sequential behavior ensure that methods of these interfaces are invoked sequentially. Use|of
multigle threads by clients is not excluded, but access to theinterface must be strictly
serialiged.

2.3.4.2.2 Sequential Control Interface
2.34.2.2.1 General

The eJements of the sequential control interface are shown in figure 2-8. The interfgce
ISLE[Sequential must be implementéd by the controlled component. The client of the
interfgce, the ‘controller’, provides services to the controlled component to listen for exterpal
eventy and to handle timers. In the model, these services are described by the compongnt
classes Event Monitor and Timer Handler. The controlled component implements the
interfgces that shall be~ called when an external event is detected
(ISLE_EventProcessor) or a timer expires (ISLE_TimeoutProcessor). In the
model}, these interfaces. are provided by the component classes Event Processor and Timegut
Procegsor. The contreled component can use one or more instances of these classes and|of
the asgociated interfaces.

The componentclass ‘Controlled Component’ is actually a placeholder for a component class
that pfovides the interface 1SLE_Sequential. This can be the component class API
Proxylor-the component class API Service Element. Processing of the methods to start and
terminate operation is described in the packages API Proxy and API Service Element.

CCSDS 914.0-M-1 Page 2-38 October 2008
60 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

<<Interface>>

ISLE_TimeoutProcessor

<<CoClass>>
Timer Handler

<<Interface>>

ISLE_TimerHandler <<--------- y

StartTimer()

<<CoClass>>

Timeout Processor

<<Entity>>
Controller

<<CoClass>>
Event Monitor

<<Interface>>
ISLE_Sequential

StartSequential()
TerminateSequential()

<<Interface>>

RegisterEvent()

ISLE_ EventMonitor <-

<<Interface>>
ISLE_EventProcessor

Cantrolled Component

<<GoClass>>

Event Processor

<<CoClass>>

Figure 2-8: Seguential Control Interface Component Class Controlled Component

CCSDS 914.0-M-1

© 1SO 2013 — All rights reserved

Page 2-39

October 2008

61

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4.2.2.2 Exported Interfaces

Interface Defined in Purpose
Package

ISLE_Sequential Common Control start and termination of processing and supply of
Interfaces interfaces for monitoring of external events and

timer handling

2.3.4.2.2.3 Dependencies

Interface Defined in Purpose
Package

ISLE_EventMonitor Common Control monitoring of external events
Interfaces

ISLE [TimerHandler Common Control timer Handling
Interfaces

2.3.4.2.3 Component Class Event Monitor
2.34.23.1 General

The eyent monitor supports registration of external events it shall monitor, together with a
reference to the interface 1SLE_EventProcessor. When a registered event occurs, the
event| monitor calls the method ¥ ProcessEvent() of the interface
ISLE| EventProcessor. Events can’also be removed from the event monitor. If the
event monitor is no longer able to handle an event, it informs the event processor, using the
method MonitorAbort().

2.3.4.2.3.2 Exported Interfaces

Interface Defined in Purpose
Package

ISLE_EventMonitor Common Control monitoring of external events
Interfaces

2.3.4.2.3.3 Dependencies

Interface Defined in Purpose
Package
ISLE_EventProcessor Common Control processing of external events
Interfaces
CCSDS 914.0-M-1 Page 2-40 October 2008

62 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4.2.4 Component Class Event Processor
2.34.24.1 General

The event processor processes an event detected by the event monitor as required for the
component.

2.3.4.2.4.2 Exported Interfaces

Interface Defined in Purpose
Package

ISLE_EventProcessor Common Control processing of external events
Interfaces

2.3.4.2.5 Component Class Timer Handler
2.3.4251 General

The timer handler supports starting of timers, together with a reference to the interface
ISLE_TimeoutProcessor. When the timer expires, the timer handler calls the method
PriocessTimeout() of the interface 1SLE_T4meoutProcessor. Running timgrs can
be[cancelled. If the timer handler is no longer:-able to support a running timer, it informs the
timeout processor, using the method Hand lerAbort().

2.3.4.25.2 Exported Interfaces

Interface Pefined in Purpose
Package

ISLE_TimerHandler Common Control timer handling
Interfaces

2.3.4.2.5.3 ~Dependencies

Interface Defined in Purpose
Package
ISLE_TimeoutProcessor Common Control processing of a timeout
Interfaces
CCSDS 914.0-M-1 Page 2-41 October 2008

© IS0 2013 — Al rights reserved 63

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4.2.6 Component Class Timeout Processor
2.3.4.2.6.1 General
The timeout processor processes a timeout detected by the timer handler as required for the

component.

2.3.4.2.6.2 Exported Interfaces

Interfgce Defined in Package Purpose
ISLE_|TimeoutProcessor Common Control processing of a timeout
Interfaces

2.3.4.3 Concurrent Behavior
2.3.4.3.1 Definitions

Comppnents providing concurrent interface behavior are able to handle concurrent calls|to
the méthods of the interface by several flows of control. .Components can guard methods|of
the interface to achieve sequential semantics, but this fact 1s not visible to clients.

NOTH - When multiple threads access object data or global data within the component| at
least access to these data must be serialized using some kind of guard.

It is ekpected that components providing ¢encurrent interface behavior use multiple threads
of control internally. Therefore, they are able to wait for external events and timers withgut
affecting their clients.

Clients of an interface with-'cancurrent behavior must expect that the methods of the
complementary interface are called by concurrent flows of control.

When|SLE protocol data units are passed across an interface with concurrent characteristigs,
sequemce preservation'’is not guaranteed when PDUs are passed in one direction by more than
one thread. Therefore, this Recommended Practice foresees sequence counts that allow the
receiver to re=sequence PDUs. Although the actual need for sequence counting depends jon
the implementation of a multi-threaded component, this Recommended Practice requires that
sequemce-counts be always used on an interface with concurrent behavior.

CCSDS 914.0-M-1 Page 2-42 October 2008
64 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.4.3.2 Concurrent Control Interface

The concurrent control interface is shown in figure 2-9.

The component class ‘Controlled Component’ in figure 2-9 is actually a placeholder for a

component class that provides the interface ISLE_Concurrent.

This can be the

component class APl Proxy or the component class APl Service Element. Processing of the
methods to start and terminate operation is described in the packages API Proxy and API

Service Element
<<Interface>>
<<Entity>> | ISLE Concurrent <<CoClass>>
Controller StartConcurrent() Controlled Component
TerminateConcurrent()
Figure 2-9: Concurrent Control Interface
2.3.4.4 Trace Control Interface

Cq
to
2.
are

N3
IS

1S

1S

3.4.5

me

| E EventMonitor

| E_ EventProcessor

| E_ TimexHandler

Interfaces Defined by the Package

Description

The interface supports registration of external events, for which
event monitor shall wait together with a reference to the interfag
ISLE_EventProcessor to call when the event is detected.

The interface provides a method to call when an external event|
detected and a method to invoke, if the event monitor aborts.

The interface allows starting of a timer together with a referencs
interface 1SLE_TimeoutProcessor to call when the timer ex

also provides a method to cancel a running

mponents supporting diagnostic traces implement the interface 1SLE_TraceCon
start and stop tracing with a specified trace level.” The interface is shown in figure 3
.5 together with the interface 1SLE_Trace provided by the application. Specifi
described in the sections dealing with the,AP1 Proxy and the API Service Element.

timer.

trol
-11in
C uses

the
e

S

e to the
pires. It

1S

IS

IS

1S

E_TimeoutProcessor

LE Sequential

LE_Concurrent

LE TraceControl

CCSDS 914.0-M-1
© 1SO 2013 — All rights reserved

The interface provides a method to call, when a timer expires, and a
method to invoke, if the timer handler aborts.

The interface provides methods to start and terminate the operation of
a component that can only handle sequential flows of control. It allows

passing of interfaces to an event monitor and a timer handler.

The interface provides methods to start and terminate the operation of
a component supporting concurrent flows of control.

The interface provides methods to start tracing and stop tracing.

Page 2-43

October 2008

65

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

66

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.5 PACKAGE SLE APPLICATION
2.3.5.1 Overview

The SLE Application is not an APl component, but the client of the APl. However, the
application must provide a set of interfaces for use by the API. In addition, the application
must perform configuration, initialization and control of the API.

The obligations of the application and the interfaces it provides are described in this model
by a get of classes that are assumed present in the application program. These classes.gare
pure modeling constructs and do not prescribe the design and implementation~0f the
applicption in any way.

Figurg 2-10 shows the classes provided for actual service provisioning. The:model assumes
that eyery service instance is handled by an instance of the class APl Application Instange.
This dlass defines the functionality that is independent of the user or¢proevider role and the
speciflc SLE transfer service type. Specific derived classes are assumed for every servjce
type gdnd role. These are represented by the classes <SRV> User ‘Application and <SRY>
Provider Application in the figure.

<<Interface>> <<Interface>> <<Interface>>
ISLE_SlIFactory ISLE_SIAdmin ISLE_SIOpFactory
(from API Service Element) (from API Service Element) (from API Service Element)
<<Interface>> <<CoClass>> <<Interface>>
IBLE_Servicelnform [~I""""""" SLE Application Instance [~~~ > |ISLE_Servicelnitiate
(from API Service Element)

]

<<Internal>> <<Internal>>
<SRV> User Application <SRV> Provider Application
<<Interface>> <<Interface>>
I<SRV>_SIAdmin I<SRV>_SlUpdate
(from API Service Element) (from API Service Element)

Figure 2-10: Structure of the Package SLE Application

CCSDS 914.0-M-1 Page 2-44 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Interfaces that must be provided by the application for logging, for notification of events, and
for diagnostic traces, are shown in figure 2-11. The model assumes a class that accepts log
records and notifications (Reporter) and a class that accepts trace records (Trace). The model
does not make any assumptions about the number of objects an application uses.

<<Interface>>

<<CoClass>> ISLE_Reporter
Reporter [

+ |l aaRacaord)
=08+~ e

+ Notify()

<<Interface>>

Controller [~~~ => (from Common Control Interfaces) <} --~~--~1 €ontrolled Component
+ StartTrace()

+ StopTrace()

V
<<CoClass>> <<Interface=>
Trace [ISLE Trace |[&S---------—-—-—mmmmmmmmmmm
+ TraceRecord()

Figure 2-11: Reporting and Tracing Interfaces Provided by the Application

Finally, applications have’the option of supplying an external time source to the API
components. To use\this option, applications must provide an implementation fpr the
interface 1SLE_TameSource (Component Class Time Source) and pass it to the ¢reator
function of the,’component SLE Utilities (see 2.3.7). If the interface is supplied py the
application, the: component uses the interface to retrieve current time. Otherwise, |t uses
system time.

In

co ; attza down-of-APHeompener . S tssed in
more detail in annex F.

CCSDS 914.0-M-1 Page 2-45 October 2008
© 1SO 2013 — Al rights reserved 67

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.5.2 Component Class SLE Application Instance
2.35.2.1 General

The component class SLE Application Instance handles a single service instance. For this
purpose it implements and exports the interface I1SLE_Servicelnform by which it
receives SLE PDUs sent by the peer SLE application. This interface is identical for all
service types and all roles of an SLE Application. The class SLE Application Instance uses
the interface ISLE Servicelnitiate to pass PDUs to the service instance in the
compaonent API Service Element.

The gpplication instance creates the service instance in the service element -using the
interfgce 1SLE_SIFactory and configures the service instance using,.the interface
ISLE[STIAdmin. For invocations of SLE operations, the class uses>the interfgce
ISLE[S10pFactory to create the required operation objects.

2.3.5.2.2 Exported Interfaces

Interface Defined in Package Purpose

ISLE_[Servicelnform SLE Application passing of SLE PDUs to the application

2.3.5.2.3 Dependencies

Interfdce Defined in Package Purpose

ISLE SlFactory API Service'Element creation and deletion of service instances
ISLE_SIAdmin API Service Element configuration of the service instance
ISLE_[S10pFactory API-Service Element creation and initialization of operation objedts

[=]

ISLE_[Servicelnitiate API Service Element passing of SLE PDUs from the application {
the service instance
2.3.5.3 Interndl Class <SRV> User Application

The cJasst <SRV> User Application represents a set of specific classes handling servjce
instangésof a specific service type for an SLE user application.

2.3.5.4 Internal Class <SRV> Provider Application
2.3.5.4.1 General

The class <SRV> Provider Application represents a set of specific classes handling service
instances of a specific service type for an SLE provider application. The class must set
service-specific configuration parameters in the service instance of the service element

CCSDS 914.0-M-1 Page 2-46 October 2008
68 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

component. If specified by the relevant supplemental Recommended Practice for the service-
specific API, it updates the service parameters of the service instance using the interface
I<SRV>_SlUpdate.

2.3.5.4.2 Dependencies

Interface Defined in Package Purpose

1 <SR>—SHAdA Service Supp:cnlcnt \,uuﬁgwatiun of the-service-istance
I<SRV>_SlUpdate Service Supplement update of service parameters
2.3.5.5 Component Class Reporter

Th
ap

.355.1 General

e component class Reporter implements the interface 1SLE:Reporter, by which the
plication receives log messages and notifications. It is assumed that the log messages are

pr. A

stqred to the system log and notifications are brought te,the attention of the operat
reference to the interface is passed to the API Proxy and\the APl Service Element when they
are configured.

2.3.5.5.2 Exported Interfaces

Interface Defined in Rackage Purpose

ISLE Reporter SLE Application logging and notification

2.3.5.6 Component Class Trace

2.3.5.6.1 General

THe component class Trace implements the interface ISLE_Trace, by whigh the
application receives trace records. It is assumed that the class stores the trace records to a
file. A refetence to the interface is passed to the tracing component with the method

StartTrace() inthe interface ISLE_TraceControl.

2.3.5.6.2 Exported Interfaces

Interface Defined in Package Purpose

ISLE_Trace SLE Application Tracing

CCSDS 914.0-M-1 Page 2-47 October 2008

© 1SO 2013 — All rights reserved

69

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.5.7 Component Class Time Source
2.35.7.1 General

The component class Time Source implements the interface ISLE_TimeSource, by which
the component class Time (see 2.3.7.3) can retrieve current time. As all APl components are
obliged to wuse the interface ISLE_Time, the time reference supplied by
ISLE_TimeSource is distributed throughout the API.

The time provided via the interface 1SLE_TimeSource can be offset from the systém
time. [However, APl components can rely on the fact that the offset is constant throughout
the lifetime of an API instance within the limits of the time accuracy defined“by this
Recommended Practice.

2.3.5.7.2 Exported Interfaces

Interface Defined in Package Purpose

ISLE_[TimeSource SLE Application Retrieval ofcurrent time

2.3.5.8 Interfaces Defined by the Package

Name Description

ISLE_PServicelnform The interface provides'the methods to pass on to the application SLE
operation invocations and returns received from the peer application.
addition, it supports resuming of data transfer if that has been suspended.

=]

ISLE_Reporter The reporter-interface provides methods to enter a log record to the
system.Jog and to notify the application of events that require immediate
attention

ISLE_[Trace The tracing interface provides a method to pass a trace record.

ISLE_[TimeSource Supply of current time.

2.3.6 | PACKAGE SLE OPERATIONS

2.3.6.1 ~Overview

Operation objects store the invocation and return parameters of an SLE operation and export
interfaces by which these parameters can be read and written. In addition, the interfaces
provide features to verify completeness and consistency of the parameters.

Operation objects are implemented by a separate component because they must be passed
across component boundaries.

CCSDS 914.0-M-1 Page 2-48 October 2008
70 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ISO 18441:2013(E)

An implementation provides one operation object class for every operation defined for the
SLE transfer service types it supports. All implementations support the common operations

defined in 2.3.6.7 and 2.3.6.8.

In addition, all implementations provide an Operation

Factory, providing the interface ISLE_OperationFactory to create an operation object
with a specified interface, a specified SLE transfer service type and a specified version
number for the service type.

Common characteristics of all operation objects are defined by the abstract component class

Operation—and—its—interface I SLE _Operation—Common—characteristics—of confirmed
opgrations are defined by the abstract component class Confirmed Operation and its’ inferface
ISLE_ConfirmedOperation. All operation objects for unconfirmed SLE operatigns are
defived from Operation and all operation objects for confirmed SLE operations are derived
frgm Confirmed Operation. The same applies to the interfaces exported by these objects
NOQTE - Classes in the package SLE Operations use the interfaces of utility objects| This
fact is not specifically mentioned in the following description.
SLE Operations Creator
<Product>_createOpFactory()
<<CoClass>> <<Interface>>
<SRV> <unconfirmed operation>\[| I<SRV>_<UnconfirmedOperation>
instantiates <<Inher{tance>>
instantiates
<<goclait§s>> <<Interface>>
Servi p:ra fon ISLE_Operation
ervice Type |
Operation Type D b(:\(lzg&
Confirmed Operation . 0 .
<<CoClass>> Invoker credentials VerifylnvocationArguments()
1’ ””” OperationFactory
v <<Inheritance>>
<<Interface>>
ISLE_OperationEactory
<<CoClass>>
Confirmed Operation
Operation Result <<Interface>>
Diagnostic Type ~ [~————=——=—"—- ISLE_ConfirmedOperation
i i Common Diagnostics VerifyReturnArguments()
Instanjtiates Invocation Identifier
Performer Credentials
<<Inheritance>>
<<CoClass>> <<Interface>>
<SRV> <confirmed operation> [~~~ | [>>| 1<sRv>_<ConfirmedOperation>
In this case <SRV> can also be replaced by
"SLE" for common operation classes
Figure 2-12: Operation Objects
CCSDS 914.0-M-1 Page 2-49 October 2008

© 1SO 2013 — All rights reserved

7

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

72

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.2 Component Class Operation Factory

2.3.6.2.1 General

The operation factory provides an interface to create an instance of an operation object by
specification of the desired interface, the operation type, the service type and the version
number of the service type.

2.3.6.2

Interfa

ISLE |

2.3.6.3

2.3.6.3

The class defines common characteristics supported by all.operations objects.

2.3.6.
2.3.6.3

The ¢
ISLE

2.3.6.

An oy
Servic
param

2.3.6.3

Every

3.2 Attributes

3.2.2 Service Type and Qperation Type

.2 Exported Intertaces
ce Defined in Purpose
Package
DperationFactory SLE Operations creation of operation objects
Component Class Operation
1 General

2.1 Common Attributes

pmmon attributes are displayed in figure 2-12. These are accessible via the interfg
| Operation, inherited by all operation objects.

eration object class-is-uniquely identified by the combination of the SLE trans
e type and the operation type, because the same operation can have differg
eters for different-SLE transfer service types.

2.3 Version Number

operation object identifies the version number of the service it supports, because use

the op

|ICE

fer
bnt

of

bration object might differ between the versions.

2.3.6.3.2.4 Confirmed Operation

Identifies whether the operation is confirmed or not.

2.3.6.3.2.5 Invoker Credentials

Holds

the credentials of the invoker.

CCSDS 914.0-M-1 Page 2-50 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.3.3 Behavior and Use

2.3.6.3.3.1 Checking of Invocation Parameters

Interfaces to operation objects provide a method for checking the invocation arguments with

respect to completeness, consistency and range.

Obviously, an operation object cannot

perform checks that require knowledge of the context. The checks performed are defined in
A5 for common operations and in the supplemental Recommended Practice documents for
service-specific APIs for service type-specific operations.

2.3.6.3.3.2 Support for Concurrent Flows of Control
Agcess to operation objects is not safe with respect to concurrent access by>multiple threads.
However, operation objects provide an advisory lock, which can be used to ensure that pccess
to |the object is guarded. The guarding mechanism provided by operation objects prevents
self inflicting locks.
2.3.6.3.4 Exported Interfaces
Interface Defined in Purpose
Package
ISLE_Operation SLE Operations access to common attributes of operation
objects
2.3.6.4 Component Class Confirmed Operation
2.3.6.4.1 General
The class defines common“characteristics supported by all operations objects for confirmed
SLE operations.
2.3.6.4.2 Attributes
2.3.6.4.2.15 _Common Attributes
The common attributes are displayed in figure 2-12.
2.3.6.4.2.2 Operation Result
Operation Result holds the result of the operation when it has been performed.
CCSDS 914.0-M-1 Page 2-51 October 2008

© 1SO 2013 — All rights reserved

73

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.4.2.3 Diagnostic Type

Diagnostic Type identifies whether diagnostics are present and if so, whether the common
diagnostics or special diagnostics have been used.

2.3.6.4.2.4 Common Diagnostics

Common Diagnostics holds the common diagnostics, if present.

2.3.6.4.2.5 Invocation ldentifier

The Irfvocation Identifier holds the invocation identifier defined for SLE services:

2.3.6.4.2.6 Performer Credentials

Performer Credentials holds the credentials of the performer.

2.3.6.4.3 Behavior and Use
2.3.6.4.3.1 Checking of Return Parameters

Interfgces of confirmed operation objects provide a method for checking the retdrn
arguments with respect to completeness, cansistency and range. The checks performed are
defined in A5 for common operations and in the supplemental Recommended Pract|ce
documents for service-specific APIs for service type-specific operations.

2.3.6.4.3.2 Exported Interfaces

Interface Defined in Purpose
Package
ISLE_[ConfirmedOperation SLE Operations access to common attributes of confirmed

operation objects

2.3.6.% ““Component Class <SRV> <Unconfirmed Operation>

An operation object class is provided for every unconfirmed SLE operation of the SLE
transfer service types supported by the component. The interfaces of these classes are
derived from I1SLE_Operation. The names of the interfaces are constructed by replacing
<SRV> by the abbreviation for the service type. For instance, the name of the interface for
the TRANSFER-DATA operation of the RAF service is IRAF_TransferData.

CCSDS 914.0-M-1 Page 2-52 October 2008
74 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.6 Component Class <SRV> <Confirmed Operation>

An operation object class is provided for every confirmed SLE operation of the SLE transfer
service types supported by the component. The interfaces of these classes are derived from
ISLE_ConfirmedOperation. The names of the interfaces are constructed by replacing
<SRV> by the abbreviation for the service type. For instance, the name of the interface for
the TRANSFER-DATA operation of the FSP service is IFSP_TransferData.

2.3.6.7 Operations for Common Association Management

2.3.6.7.1 General

The SLE operations for association management are used for all service types. The int¢rfaces

of|operation objects for common association management are shown in figure 2-13.

<<Interface>>
ISLE_Operation

<<Inheyitance>>
<<Inheritance>>

<<Interface>>
ISLE_PeerAbort

<<Interface>>
ISLE_ConfirmedOperation

<<Interface>>
ISLE_Bind

<<Inheritance>>)
<<Inheritance>>

<<|nterface>>
ISLE_Unbind

Figure 2-13: Operation Object Interfaces for Common Association Management

CCSDS 914.0-M-1
© 1SO 2013 — All rights reserved

Page 2-53

October 2008

75

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

76

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.7.2 Exported Interfaces

Interface Defined in
Package

ISLE Bind SLE Operations

ISLE _Unbind SLE Operations

ISLE_PeerAbort SLE Operations

Purpose

access to parameters of the BIND operation
access to parameters of the UNBIND operation

access to parameters of the PEER-ABORT
operation

2.3.6.8 Other Common SLE Operations

2.3.6.8.1 General

The operations shown in figure 2-14 are identical for all SLE service types that actually use

them. | Therefore, the operation object interfaces are defined in this Recemmended Practice}

The operation TRANSFER-BUFFER s actually not an SLE operation. In the API it is uged
to transfer the contents of the transfer buffer defined for returnsérvices between components.

This opject also provides methods to facilitate buffering of. ether operation objects.

<<Interface>>
ISLE_Operation

<<Inheritance>>

<<Interface>>
ISLE_ConfirmedOperation

<<Inheritance>>

<<Inheritance>>

<<Interface>> <<Interface>> <<Interface>>
$LE_ TransferBuffer ISLE_Stop ISLE_ScheduleStatusReport

Figure 2-14: Common SLE Operation Objects

CCSDS 914.0-M-1 Page 2-54 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.6.8.2 Exported Interfaces

Interface Defined in
Package
ISLE_Stop SLE Operations

ISLE_ScheduleStatusReport SLE Operations

Purpose

access to parameters of the STOP
operation

access to parameters of the
SCHEDULE-STATUS-REPORT operation

ISLE_TransferBuffer SLE Operations

2.3.6.9 Interfaces Defined by the Package

support for handling of the transfer_huffer
for return services

Ngme Description

ISLE OperationFactory Creation of operation objects

ISLE Operation Common characteristics of opération objects

ISLE ConfirmedOperation Common characteristics of\Confirmed operation objects
ISLE Bind BIND operation

ISLE_Unbind UNBIND operation

ISLE_PeerAbort PEER-ABORT operation

ISLE_Stop STOP operation

ISLE_ScheduleStatusReport SCHEBPULE-STATUS-REPORT operation
ISLE_TransferBuffer Support for handling of the transfer buffer for return services
CCSDS 914.0-M-1 Page 2-55 October 2008

© 1SO 2013 — All rights reserved

77

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.7 PACKAGE SLE UTILITIES

2.3.7.1 Overview

The package SLE Utilities defines a small set of utility classes and the associated interfaces.

The utilities defined for the API are shown in figure 2-15.

SLE Utilities Creator

<Product> createUtilFactor

<<CoClass>>
Utility Factory

instantiates | <<CoClass>>
——————————= SLE T Time
Time
instantiates

<<CoClass>>
SLE SlI

Service Instance\dentifier

<<CoClass>>
SLE'Security Attributes

User Name
Password

instantiates

authenticates / generates

<<CoClass>>
SLE Credentials

Generation Time
Random Number

instantiates

<<Interface>>
ISLE_UtilFactory

<<Interface>>
ISLE_TFimeSource
(fram SLE Application)

<<Interface>>
ISLE_Time

<<Interface>>
ISLE_SII

<<Interface>>
ISLE_SecArtributes

<<Interface>>
ISLE_Credentials

Hash Code

<<CoClass>>
Memory Manager

instantiates

Figure 2-15: SLE Utilities

CCSDS 914.0-M-1 Page 2-56

78

<<Interface>>
IMalloc

October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.7.2 Component Class Utility Factory

The Utility Factory provides an interface to create instances of the utility classes, specified
the identifier of the interface. It returns a pointer to the interface exported by the
requested class.

by

2.3.7.3 Component Class Time

TH

supports the CCSDS defined time codes and conversion between these codes and. the
time representation of the platform. Its services are available via the interface LSLE_T|

If
fu
Ot

2.

Th
St
se
Cl
Cl
co

interface ISLE_SI 1.

Th
ac
2.

Th
au

.3.7.5 Component Class €redentials

3.7.6 Component Class Security Attributes

nction of the component, the class Time uses that interface to determine current
herwise it uses system time.

7.4 Component Class Service Instance ldentifier

e class handles the service instance identifier defined by the CCSDS Recomn
indards for SLE transfer services. It supports a standard ASCII representation
vice instance identifier (see annex C for version 1 of the SLE services RAF, RC
[TU, and references [4], [5] and [7] for version 2 of the SLE services RAF, RQ
' TU, and [6] and [8] for the SLE services ROCF and FSP), and verifies th
mponents of the identifier are those defined by CCSDS. Its services are available

e class holds the credentials used for authentication of the peer identity and pr
cess to its attributesvia the interface ISLE_Credentials.

e SLE Time class provides a Timited set of time handling functions. Tt specifically

native
ime.

an external time source interface (ISLE_TimeSource) was supplied to the ¢reator

time.

ended
of the
F and
F and
at the
ia the

pvides

e class holds the user name and password for generation of credentials apd for

m the

thentication of the peer identity. It implements generation of the credentials frg

att

WBitac ctarad and vl oot~ AF Aradantiole yanannad Fran o o naary o liaodi o
ottt S— Storct—arnu—adtrerratatorn— o oreutiaars TeLeTveu— o a peti—apphnitato

services are available via the interface ISLE_SecAttributes.

2.3.7.7 Component Class Memory Manager

. Its

The class provides memory management that must be used for all data structures passed
across component boundaries and between the application and APl components.

CCSDS 914.0-M-1 Page 2-57 October 2008
© 1SO 2013 — All rights reserved

79

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

80

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2.3.7.8 Interfaces Defined by the Package

Name Description

ISLE_UtilFactory Creation of SLE utility objects

ISLE Time Time handling

ISLE_SII Handling of the service instance identifier
ISLE_Credentials Storage and transfer of credentials for authentication

ISLE_SecAttributes Storage of security attributes for authentication, generation of credentielals,

IMall

2.4

The s
Practi
API ¢
as par
not fu

and authentication of credentials

0C Memory management

SECURITY ASPECTS OF CORE SLE API CAPABILITIES

ther addressed in this specification.

ecurity aspects of the core SLE API capabilities specified<in this Recommended
ce are highly dependent upon the specific SLE Transfer Services that use these core
apabilities. Therefore, the security aspects associated with/the SLE API are identified
of the Recommended Practices for each of the specific'SLE transfer services, and are

CCSDS 914.0-M-1 Page 2-58

October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

3

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

SPECIFICATION OF API COMPONENTS

3.1 INTRODUCTION

Th

is section provides detailed specifications for the APl components
— API Proxy (see 3.2);
— API Service Element (see 3.3);

In

— SLE Operations (see 3.4);
— SLE Utilities (see 3.5).

addition, 3.6 specifies what the API expects from an SLE application’both in te

ms of

interfaces that must be implemented and in terms of the tasks the application is expe¢ted to

pe
the
in

thd

As
Se

re
en

ap

Th
se
Se

3.2

3.2

3.2
P

=

inlerfaces exported by a component must be used. Such specifications actually

r'form for control of the API. The specification defines the full scepe of the API, ing
API Service Element. When an application chooses to use the-API Proxy directly
an SLE gateway as outlined in section 2), it must implement-the functionality defir
API Service Element and must export all interfaces needed by API Proxy.

f-contained subsection. In some cases, these subsections comprise specifications 0

uirements on clients of the component. Where this is the case, cross-references hav,
fered to the subsections dealing withiclient components. Common specifig

e specification of APl components in this section is based on the model descri
rtion 2. It is complemented- by state transition tables for the API Proxy and th

rvice Element in section 4.and by the specification of the interfaces in annex A.
API PROXY

.1 FEATURES

.1.1 _The proxy shall implement all aspects of SLE transfer services that need

pvided-by technology-specific means.

blicable to all of the components or on.a’subset of the components are provided in 3.7.

luding

(e.g.,
ed for

far as possible, each of the API components and.the SLE application are specified by a

n how
define
e been

ations
4

bed in
e API

to be

3.21%%

S
the network and operation objects used within the API, see 3.2.2.

Ih nraaar—ehball narfaraas Aot Brareian—lbatiars L DM fromamartd o Al
TS PJTUAY STdim PeiTutiiT Udtd CUTTIVETSTUTT UTTVVETTT T DUS UdArsimmtcyu

aCross

3.2.1.1.2 The proxy shall establish, maintain, and terminate data communication
associations with one or more peer proxies, see 3.2.4.

3.2.1.1.3 The proxy shall configure and initialize the data communication service as part of

its

own configuration and initialization procedure, see 3.2.12.

CCSDS 914.0-M-1 Page 3-1 October 2008
© 1SO 2013 — All rights reserved

81

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

82

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.1.1.4 The proxy shall provide means to dynamically register and de-register responder
ports for SLE service provisioning, see 3.2.5.

3.2.1.2 The proxy shall queue protocol data units and provide flow control features both for
the data received from the network and data sent to the network, see 3.2.3.

3.2.1.3 The proxy shall implement access control on system level, perform authentication
of the peer identity for SLE PDUs received from the network, and generate the credentials
for PDUs sent to the network, see 3.2.6.

3.2.1.4 The proxy shall generate entries to the log of the hosting system for important
eventg, see 3.2.8.

3.2.1.% The proxy shall provide the feature to produce an event trace forthe complgte
proxy fand for individual associations, see 3.2.9.

3.2.1.6 The proxy shall support a range of execution environments with respect to use|of
procegses and in process threads, see 3.2.10.

3.2.1.1 The proxy shall use a configuration database, which shall control its operation
within| a specific deployment environment, see 3.2.11.

3.2.1.8 The proxy shall support a special ‘pass-thteugh’ mode of operation, in which it
does ot modify any parameters in the PDUs but férwards them unmodified to the respect{ve
recipi¢nt.

NOTH - The pass-through mode of opération is further detailed in 3.2.7. Unless stated
otherwise, all other specifications refer to the default mode of operation.

3.2.2 | PROCESSING OF SLE/PROTOCOL DATA UNITS

NOTH - The proxy may-support more than one concurrent bound association (see E5.[1).
In that case“the processing specified in this subsection must me perforned
independently for each association.

3.2.2.1 The-<proxy shall accept operation objects provided by the component SLE
Operationstyia the interface 1SLE_SrvProxylInitiate. With the operation parameters

extracfed-from the operation objects, it shall create SLE protocol data units in the format gnd
encod mmmme ; T :

NOTE - The format and encoding used for transfer are determined by the technology used
by the proxy.

3.2.2.1.1 For invocations of unconfirmed SLE operations and for operation returns, the
proxy shall release the operation object when the parameters have been extracted from the
object.

CCSDS 914.0-M-1 Page 3-2 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - The exact time at which the object is released is not defined by this specification.
The objects might be released immediately or when the PDU has been actually

transmitted.

3.2.2.1.2 For invocations of confirmed operations, the proxy shall memorize the object

un

til the operation return from the peer proxy arrives, or the association is terminated.

3.2.2.1.3 Except for the PEER-ABORT invocation, the proxy shall ensure that PDUs
received from its local client on one association are transmitted to the peer proxy in the

se
N(

3.2
an
as

3.4

co

3.2.2.2.2 For operation returns, the proxy shall~associate the PDU received from th

pr

identifier. If no corresponding invocation can be found, the proxy shall abort the asso

with PEER-ABORT and the diagnostic “unsolicited invoke ID’.

NOTES

1 The invocation identifier of a return must match the invocation identifier
invocation for the same operation type. It is noted that invocation identifier
also be unique(across all operations. This requirement is handled by the s
element.

2 It is further noted that the confirmed operations BIND and UNBIND do not ca

3.2.22.3 The proxy shall release an operation object passed to its client when the fu

ISLE_SrvProxylnform.

juence received.
DTE — Handling of the PEER-ABORT invocation is defined in 3.2.4.4.

.2.2 The proxy shall receive SLE protocol data units from the peer proxy in the
d encoding used for transfer. It shall decode the operation parameters, store them
ociated operation object and forward the operation object to its.elient via the inf

hfiguration.

DXy with the operation object of the cerresponding invocation using the invg

any*time, such that association of the return with the invocation shall be possibl

format
to the
erface

.2.2.1 For operation invocations, the proxy shall createtaynew operation object, using the
interface 1SLE_OperationFactory, which is supplied to the proxy as part

of its

e peer
cation
Ciation

of an
5 must
ervice

rry an

invecation identifier. For these operations, only a single return can be outstanding at

13”4

nction

passing that object has returned.

NOTE - The specification implies that the proxy does not memorize invocations of
confirmed operations it passes to its local client. It is considered the
responsibility of the client not to send any returns for which no invocation has

been received.

CCSDS 914.0-M-1 Page 3-3 October 2008
© 1SO 2013 — All rights reserved

83

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

84

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.2.2.4 If there is a decoding error, the proxy shall abort the association using the
PEER-ABORT operation.

3.2.2.2.5 Except for the PEER-ABORT invocation, the proxy shall ensure that PDUs
received from the peer proxy on one association are delivered to its client in the sequence
received.

NOTE - Handling of the PEER-ABORT invocation is defined in 3.2.4.4.

3.2.3 | FLOW CONTROL

NOTH - The proxy may support more than one concurrent bound association (see E5.[1).
In that case the processing specified in this subsection must,me performed
independently for each association.

3.2.3.1 Incoming Traffic

The proxy shall limit the number of protocol data units received-from the peer proxy and not
yet forwarded to its client to a configurable maximum iumber N1 per association. |In
additipn, the proxy shall ensure that a maximum. number N2 < N1 of these are
TRANSFER-BUFFER invocations. When either of:these limits is reached the proxy shall
not regd any further data from the network such thata backlog is built up.

NOTHS

1 The objective of this specification-is to ensure that incoming traffic is controlled and
backpressure is actually built up when needed. An implementation may restrict the
number of PDUs it accepts\from the network per association or for all associations} it
must not accept more-than defined by the configuration parameters. When a prgxy
limits the number of.incoming PDUs that it can process in parallel, the limits shall|be
clearly documentéed.

2 TRANSFER-BUFFER is not defined as an SLE operation but refers to the PDU uged
for transmission of the transfer buffer used by return link services. For a specificatjon
of the “pseudo-operation” TRANSFER-BUFFER within the API, see 3.4.

3.2.3.2—0utgoingTraffic

3.2.3.2.1 The proxy shall queue a configurable maximum number of PDUs for transfer per
association.

CCSDS 914.0-M-1 Page 3-4 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - This specification does not prescribe what the proxy actually queues. Whether it
queues the operation object, a data structure ready for transmission, or any other
object depends on the implementation. For a technology based on remote
procedure calls, the ‘queue’ might also consist of procedure calls that have not
yet been completed.

3.2.3.2.2 When the proxy accepts a transfer request by a result code indicating success, it

shall guarantee that the associated PDU has been queued for transmission. The positive
result code does not imply that the PDU has heen transmitted

3.2.3.2.3 When the client requests to be informed on transmission of a PDU ((settipg the
argument reportTransmission in the interface ISLE_SrvProxylnrktiage to
true), the proxy shall inform the client by:

a) returning the appropriate result code of the function if the ‘PDU can bg sent
immediately; or

b) calling the function PDUTransmitted() in the interface
ISLE_SrvProxylInform when that PDU hascheen transmitted if immediate
transfer is not possible.

NOTE - The exact meaning of ‘transmitted’-depends on the technology used py the
proxy. As a minimum, the communications system must have been requested
to initiate transfer of the data.

3.2.3.2.4 When the maximum queue size has been reached, the proxy shall reject further
transfer requests with a result code indicating ‘overflow’ until the queue size drops belpw the
thieshold again.

NOTE - It is expected that.the client will abort the association in such a case. Hqwever
this decision must be taken by the client and not by the proxy.

3.2.3.2.5 The proxy-shall provide a method to discard TRANSFER-BUFFER invogations
that have been queued for transmission and for which data transfer has not yet started.

NOTE - _Invether respects, the proxy shall handle the TRANSFER-BUFFER invocation as
any other PDU. It shall queue more than one TRANSFER-BUFFER invdcation
if so requested. This is necessary in some cases, e.g., for support of 3.3.5.3.5.1
item b). Buffering for return services is the responsibility of the service insfance.

3.2.3.2.6 When discarding of queued buffers is requested (using the method
DiscardBuffer() in the interface ISLE_SrvProxylnitiate), the proxy shall
search the queue and release all resources allocated for all TRANSFER-BUFFER PDUs on
the queue.

3.2.3.2.7 The result code returned by the method shall indicate whether one or more
TRANSFER-BUFFER PDUs have been actually discarded.

CCSDS 914.0-M-1 Page 3-5 October 2008

© 1SO 2013 — All rights reserved

85

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4 ASSOCIATION MANAGEMENT
3.2.4.1 General Specifications
NOTES

1 The exact meaning of an association depends on the technology used by the proxy. In
the context of the SLE API, the essentials are:

AN 1AL

a) —amassociation s estattished—when—theBHNDoperatiom—hasteem—compteied
successfully;

b) an association is terminated by one of the operations UNBIND, PEER-ABORT,
or by a protocol abort;

c) other SLE operation invocations and returns can only be-exchanged on [an
established association.

2 This specification makes no assumptions concerningthe’ characteristics of the
technology and its use by the proxy.

3 If the underlying technology is connection oriented,an implementation might:
a) apply a one to one mapping between an association and a connection;
b) use multiplexing of associations on ong,connection; or

c) use more than one connection fora’single association.

4 This specification does not prescribe whether the operations BIND, UNBIND and
PEER-ABORT are implemented by means of specific connection establishment gnd
release procedures provided by the communications technology or by exchange|of
data on an establishedconnection.

5 If the technology<s connectionless, the notion of an association is provided by the
implementatior-of the proxy.

6 In this specification, the term association is also used to refer to the component object
that provides the interface to the ‘real association’. The association object can exist
in<am “unbound’ state; i.e., the association it handles has not yet been established|or
has been terminated. Whether a specification refers to the association object or the
actual association should become clear from the context in most cases. Where there
is a need to explicitly refer to the object, the term “association object’ is used. To
make explicit reference to the association provided by the data communications
service, the term ‘data communication association’ is used.

7 Further details are specified in the state table for associations in section 4. This state
table complements the following specifications.

CCSDS 914.0-M-1 Page 3-6 October 2008
86 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.1.1 The proxy shall establish a data communication association with a peer proxy as
part of the BIND operation.

NOTE - Association establishment by the proxy is specified in 3.2.4.2.

3.2.4.1.2 Associations managed by a proxy are distinguished by the role the proxy plays in
the BIND operation. The role of an association can be either “initiator’ or ‘responder’.

NOTE — The roles ‘initiator’ and ‘responder’ for the BIND operation are defined in
references [4], [5], [6], [7] and [8].

3.2.4.1.3 Animplementation of the APl Proxy may support associations in the initiatpr role
anf associations in the responder role concurrently or may provide associatiens only fpr one
of [these roles.

3.2.4.1.4 Associations in the initiator role shall be created and deleted by the clieng using
the¢ interface ISLE_AssocFactory exported by the proxy.

3.2.4.1.5 If the implementation does not support associations in the initiator role or does
not support the SLE service type requested by the client,the association factory shall| reject
the request.

3.2.4.1.6 Following creation of an association:in the initiator role, its state shall be
‘upbound’.

3.2.4.1.7 Associations in the initiator role shall use the inferface
ISLE_SrvProxylInform passed to‘the factory interface to forward SLE PDUs regeived
frgm the peer proxy.

3.2.4.1.8 The proxy shall release association objects in the initiator role only on requiest of
the¢ client (via the interface FSLE_AssocFactory) or as part of the terminate funct{on. It
shall reject the request to delete the association object if the association is not in the state
‘upbound’.

3.2.4.1.9 Association objects in the responder role shall be created and deleted
autonomously by the proxy as part of the association establishment and release procedyres.

NOTE ‘= Association establishment and release is specified in 3.2.4.2, 3.2.4.3 and 3.2.4.4.

3.Z4 1710 The proxy shall provide Specific assoclations for every SLE Service type it
supports.

3.2.4.1.11 An association shall accept every PDU defined for the supported SLE service
from its local client or the remote proxy. For any other PDU, the proxy shall reject a transfer
request from its local client and abort the association with PEER-ABORT, if it receives the
PDU from the peer proxy.

CCSDS 914.0-M-1 Page 3-7 October 2008
© 1SO 2013 — Al rights reserved 87

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

88

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.1.12 The proxy shall be able to decode PDUs received on an association if the PDUs
are defined for the service type supported by the association object.

NOTE - For other PDUs, decoding is expected to fail. If decoding does succeed, the PDU
must be rejected as ‘unknown’ according to 3.2.4.1.11.

3.2.4.1.13 The proxy and the associations shall not distinguish between the roles SLE
service provider and SLE service user. Associations shall accept every PDU that is defined
for the supported SLE service type from the local client and from the remote proxy.

NOTH - This implies, for instance, that an association might also aceept| a
TRANSFER-DATA invocation for a forward service when that is issued by |an
SLE service provider. It is the responsibility of higher layers to prevent sych
requests. Note that associations do distinguish between the role*initiator’ gnd
‘responder’, and apply the associated rules for the BIND " and UNBIND
operations defined in 3.2.4.

3.2.4.1.14 The proxy shall terminate a data communication assogiation in an orderly manmner
as part of the UNBIND procedure.

NOTH - Orderly association release by the proxy is specified in 3.2.4.3.
3.2.4.1.15 The proxy shall abort an association in thé-following cases:

a) [the local client invokes the PEER-ABORT-0peration;

b)| the remote proxy invokes the PEER-ABORT operation;

c)| abort of the association is explicitly required by any other specification for the praxy
in this document; or

d)| the proxy is affected-by major problems and cannot continue processing of the
association.

NOTH - This specification implies that the proxy might also abort the association in the

case of,a.catastrophic failure when that case is not specified in this documepnt.
Association abort in is specified in 3.2.4.4.

3.2.4.2 ~ Association Establishment

NOTE - This section defines procedures for association establishment without
consideration of security aspects. Specifications related to access control and
authentication, which must be taken into account for association establishment,
are provided in 3.2.6.

CCSDS 914.0-M-1 Page 3-8 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.2.1 Associations in the Initiator Role

3.2.4.2.1.1 For association objects in the initiator role, the proxy shall initiate establishment
of a data communication association when the client requests transfer of a BIND invocation
and the state of the association object is ‘unbound’.

3.2.4.2.1.2 The proxy shall initiate association establishment using the parameters of the
BIND invocation. It shall transmit the BIND invocation PDU to the remote proxy as part of
this procedure.

3.2.4.2.1.3 The proxy shall complete the association establishment procedure“when it
regeives the BIND return from the remote proxy. If the BIND return PDU-contains a
pogitive result, the association shall be established and the state shall be set to‘bound’.| If the
BIND return PDU carries a negative result, the association shall not becstablished and the
stgte shall be set to “‘unbound’. The proxy shall inform its client by forwarding the opération
object with the return parameters received from the peer proxy.

3.2.4.2.1.4 If association establishment fails before the BIND Invocation can be trangmitted
or|before the BIND return is received, the proxy shall ifform its client and perfofm the
clganup actions defined for the PEER-ABORT operation.in 3.2.4.4.

NOTE - This specification does not prescribe_the; means by which the proxy infofms its
client, as the selection of the appropriate method depends on implemeTtation
details. If the connection failure’is detected in the same thread of control in
which the BIND invocation was-passed to the proxy, the proxy may opt to|return
the appropriate error code to-the caller of that method. In all other cases, the
proxy shall use theCmethod ProtocolAbort() of the interface
ISLE_SrvProxylnform.

3.2.4.2.2 Associations in the Responder Role

3.2.4.2.2.1 A proxy-ssupporting associations in the responder role may listen for assogiation
establishment reguests on the network interface using technology-specific means. Whgther a
proxy instance-actually listens for such requests and when it starts listening is defined|in the
copfiguration ‘database.

NOTE. = In a given deployment environment, a proxy may not be supposed to listen for
and respond to BIND invocations from the network interface, although it may be
able to do so. An example of such an environment is an SLE service user system
that does not support the provider-initiated bind option. The configuration
database and the initialization procedures are specified in 3.2.11. Depending on
the technology used, the implementation of the proxy, and the requirements of
the hosting system, a proxy might only start listening when a port has been
registered dynamically. In other environments, the port on which a proxy listens
might be statically defined and the proxy might start listening as soon as its
operation has been started.

CCSDS 914.0-M-1 Page 3-9 October 2008
© IS0 2013 — Al rights reserved 89

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

90

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.24.22.2 A proxy listening for association establishment requests on the network
interface shall process an incoming call as defined by the specifications in 3.2.4.2.2.3 to
3.2.4.2.2.10.

3.2.4.2.2.3 The proxy shall receive a BIND invocation PDU from the remote proxy as part
of the association establishment procedure, and shall perform the checks defined in
3.24.2.243and 3.2.4.2.25.

NOTE__—_ Further checks related to access control and authentication are defined in 3.2.6.

3.2.4.2.2.4 If the SLE service type does not match one entry in the list of supported-serv|ce
types |n the configuration database, the proxy shall respond with a BIND return containing a
negatije result and the diagnostic ‘service type not supported’.

3.2.4.2.2.5 If the version number does not match one entry in the list of-supported versigns
for the service type defined in the configuration database, the proxycshall respond with a
BIND|return containing a negative result and the diagnostic ‘version ot supported’.

NOTH - This version of the API does not support the optionalyversion-number negotiation
procedure defined by the CCSDS Recommended Standards for SLE transfer
services. The responding proxy either acceptsithe proposed version number,|or
responds with a BIND return containing a.negative result. It does not propose a
different version number.

3.2.4.2.2.6 If the BIND invocation is acceptable for the proxy, it shall create an associatjon
object| supporting the SLE service type identified in the BIND invocation. It shall then
inforn its client using the interface ISEE_Locator and pass a reference to interface
ISLE[SrvProxyInitiate of thelassociation as well as to the BIND operation object.

3.2.4.2.2.7 If the locator returns-a positive result code and a pointer to the complementary
interfgce 1SLE_SrvProxy lnTorm, the proxy shall forward the BIND operation object yia
that interface.

3.2.4.2.2.8 If the locator returns an error, the proxy shall send a BIND return containing a
negatiyve result and a diagnostic reflecting the result code returned by the locator to the
remot¢ proxy.< The proxy shall not establish the data communication association and shall
releas¢ the association object.

receives the BIND return from its local client. If the BIND return PDU contains a positive
result, the association shall be established and the state shall be set to “bound’. If the BIND
return PDU carries a negative result, the association shall not be established and the
association object shall be released. In both cases, the proxy shall forward the BIND return to
the peer proxy.

CCSDS 914.0-M-1 Page 3-10 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.2.2.10 If association establishment fails before the call to the locator, the proxy shall
release all resources allocated to the association and shall not inform its client. If association
establishment fails subsequently but before the BIND return can be transmitted, the proxy
shall inform the client and perform the cleanup actions defined for the PEER-ABORT
operation in 3.2.4.4.

3.2.4.2.3 Port Identifiers

3.2.4.2.3.1 The proxy shall map the responder port identifier specified by the~JCSDS
Rqcommended Standards for SLE transfer services to address information as required by the
te¢hnology used.

NOTE - The means by which this mapping is performed is not cpréscribed by this
specification. Options include a local table lookup and-a query to a dirfectory
system. The method used by an implementation must-be’ documented tdgether
with the required configuration.

3.2.4.2.3.2 When a BIND invocation is requested on the ocal interface, the proxy shall
derive the technology dependent information required_.to<establish an association frqm the
pafameter ‘responder port identifier’.

3.2.4.2.3.3 When receiving a BIND invocation-from a peer proxy, the proxy shall pnsure
that the value of the responder port identifier~passed to the local client is identical [to the
vajue that has been passed to the peer proxy-by the client of the peer proxy.

NOTE - An implementation may choose to transmit the original value or to derive it from
technology-specific formats.

3.2.4.2.4 Protocol for the. BIND Operation

The proxy shall ensdre that the BIND operation is not performed on an established
asgociation or during association release and is not re-invoked during assogiation
establishment.~lt-shall also ensure that the BIND operation is performed according|to the
protocol defined by the CCSDS Recommended Standards for SLE transfer services.

=

3.2.43" Orderly Association Release

3.2.4.3.1 The proxy shall enforce the rules defined in the CCSDS Recommended Standards
for SLE transfer services for initiating the UNBIND operation. It shall ensure that the
UNBIND operation is performed only on an established association and is not re-invoked
during association release. It shall also ensure that UNBIND operation is performed
according to the protocol defined by the CCSDS Recommended Standards for SLE transfer
services.

CCSDS 914.0-M-1 Page 3-11 October 2008
© 1SO 2013 — Al rights reserved 91

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.4.3.1.1 When receiving a valid UNBIND invocation from the peer proxy, the proxy
shall remove and discard all operation invocations that are queued for transmission on the
affected association.

NOTE - Following reception of an UNBIND invocation, the responder shall not send any
further invocations. Pending operation returns may still be transmitted.

3.2.4.3.1.2 The proxy shall ensure that the data communication association is terminated as
part of the UNBIND operation.

— The means by which the data communication association is terminated cand the
time at which it is terminated depends on the technology used land the
implementation of the proxy.

3.2.4.3.1.3 Following completion of the UNBIND operation, the proxy shal set the state|of
the aspociation to ‘unbound’, release all resources allocated to the association, discard fall
PDUs|that may still be queued for transmission, and release all operation objects that nay
still bg memorized. If the association object has the responder, role, the proxy shall ajso
releas¢ the association object.

3.2.4.4 Association Abort

3.2.4.4.1 The proxy shall implement invocation 6f'the PEER-ABORT operation as defirled
by the|following specifications.

3.2.4.4.1.1 The proxy shall discard all PDUs that are queued for transmission and all PDJJs
received from the peer proxy that havernot yet been forwarded to its client. It shall a|so
releas¢ all operation objects for which feturns are still pending.

3.2.4.4.1.2 The proxy shall-make sure that the peer proxy recognizes the PEER-ABORT
invocgtion and that the diagnostic parameter of the PEER-ABORT invocation is made knoyn
to the peer proxy.

3.24.4.1.3 The proxy shall abruptly terminate the data communication association using
the most efficient’means available from the data communications technology, which are able
to megt the reqirement stated in 3.2.4.4.1.2.

3.2.4.4.L4" The proxy shall set the state of the association to ‘unbound’. If the association
object has the responder role, the proxy shall alSo release the association object.

3.2.4.4.1.5 If the proxy invokes the PEER-ABORT operation on its own initiative, it shall
also forward a PEER-ABORT operation object to its local client. It shall set the parameter
‘originator’ in this object to “proxy’.

3.2.4.4.2 When the proxy is informed of a PEER-ABORT invoked by the peer proxy, it
shall perform the following steps:

CCSDS 914.0-M-1 Page 3-12 October 2008
92 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.24.42.1 The proxy shall discard all PDUs that are queued for transmission and all PDUs
received from the peer proxy that have not yet been forwarded to its client. It sha
release all operation objects for which returns are still pending.

Il also

3.24.4.2.2 The proxy shall forward a PEER-ABORT operation object containing the
diagnostics set by the peer proxy to its local client. It shall set the parameter ‘originator’ in
this object to ‘peer’.

3.2.4.4.2.3 The proxy shall set the state of the association to ‘unbound’.

ob

NOTE - Depending on the communications technology and its specific use -by the

3.2.4.4.3 Aborting an association shall not affect any other associations that are cu

ha

3.2.45 Failure of the Data Communication Service

3.2.4.5.1 The proxy shall monitor the status of-an association and inform its local ¢
th¢ data communication connection breaks down using the method ProtocolAbor
the¢ interface ISLE_SrvProxyInform.

3.245.1.1 If the communications-‘provider does not signal breakdown of thg

Cco
ad

3.245.1.2 The maximum’ acceptable delay between the time the communig

co

3.1
c

D

3.2

3.25. 1t —Theproxy stattsupport dymarmic Tegrstratiomand de-regrstratiom of portson

iect has the responder role, the proxy shall also release the association object.

the proxy might have to accept and discard data that have already
transmitted by the peer proxy. Associated activities are perfarmed ‘behi
scenes’ and are not visible to clients.

ndled by the proxy.

mmunication connection, the ¢(proxy shall support the requirement by implem
bquate methods.

nnection fails and theassociated call to ProtocolAbort () shall be configurable.

.4.5.1.3 If thedata communication connection breaks down, the proxy shall perfo
anup actions/defined for the PEER-ABORT operation in 3.2.4.4.

.5 - DYNAMIC PORT REGISTRATION

If the association

proxy,
been
nd the

rrently

ient if

() of

 data
enting

ations

rm the

it accepts BIND invocations, according to the following specifications.

which

NOTE - The actions associated with dynamic port registration depend on the technology.
These could include registration of an address, export of information to a
directory service or publishing of a service by any other means. Port registration
is only required for a proxy in the role of a BIND responder. If no actions are

required for a given technology or implementation, the request should simply be
ignored.
CCSDS 914.0-M-1 Page 3-13 October 2008

© 1SO 2013 — All rights reserved

93

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.5.1.1 Port registration has the effect that requests sent to the port are correctly routed to
the proxy that registered it. If the proxy can detect duplicate registration of the same port by
more than one proxy instance, it shall reject the request with an error.

3.2.5.1.2 The information supplied for registration includes the following parameters:
a) responder port identifier; and

b) service instance identifier.

NOTH - The information actually used by the proxy depends on the implementation;

3.2.5.1.3 The proxy shall reject registration if:

a) | the proxy does not support associations in the responder role or the responder rolg is

not enabled in the configuration database;

b

N—r

the responder port identifier is not part of the address mapping information in the
configuration database; or

c) | the responder port identifier is not marked as local port:

3.2.5.1.4 If registration is accepted, the proxy shall returiva registration identifier that mpst
be used for later de-registration.

3.2.5.1.5 The proxy shall de-register ports on client request as required by the technology/.
3.25.1.6 The proxy shall ensure that BIND invocations sent to a registered port are
received by the proxy instance in the period from port registration until de-registration.
3.2.6 | SECURITY

3.2.6.1 Security Information

3.2.6.1.1 The configuration database of the proxy shall contain all information required for
authentication of theidentity of the local SLE application and of peer SLE applications.

3.2.6.1.1.1 _The configuration database shall contain a list of registered peer applicatiops,
and for eachapplication:

a) “thetdentifi
NOTE - The identifier is the name of the authority operating the application (user
name).

b) the authentication mode for communication with the peer application; the
authentication mode defines one of the following:

1) authentication shall not be applied (‘none’);

CCSDS 914.0-M-1 Page 3-14 October 2008
94 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2) authentication shall be applied for the BIND operation only (*bind’); or

3) authentication shall be applied for all operations except for PEER-ABORT (‘all’).

c) the security attributes needed for authentication of the peer application, unless the

authentication mode is set to ‘none’.

NOTE - The security attributes are defined in 3.5.6 for the utility object Security

Attributes, which provides the actual authentication service.

3.2

3.2
im
im
co

N(

3.2

3.2
P

3.4
to

=

3.7
co
co

N(

3.2
if

.6.1.1.2 For the local SLE application, the configuration database shall contain:
a) the identifier of the application as a printable character string; and

b) the security attributes needed for authentication.

.6.1.1.3 Entry and update of the security information in the configuration databas
plementation-specific maintenance activity and is not defined “hy this specificatiot
plementation must document the format of the related entriesiand the means by wh
ntent can be defined and updated.

DTE — This specification implies that it might be necessary to stop and restart the
when this information is modified.
.6.2 Access Control

.6.2.1 When receiving a BIND inyocation from the peer proxy for a new associati
pxy shall perform the following steps:

.6.2.1.1 The proxy shall_use the parameter ‘initiator identifier’ in the BIND invg
locate the initiator in the {5t of registered peer applications.

.6.2.1.2 If the initiator is not registered, the proxy shall respond with a BIND
ntaining a negative fesult and the diagnostic ‘access denied’. This BIND return sh
ntain credentials.” In addition, the proxy shall generate an “access violation alarm’.

DTE —.<{The access violation alarm is defined in 3.2.6.4.

.6:2.1.3 If the initiator is registered, the proxy shall assign the authentication mod

b is an
. An
ch the

proxy

bn, the

cation

return,

all not

e and,

applicable the security attributes specified for the initiator to the association

3.2.6.2.2 When receiving a BIND return from its local client, or when generating a BIND
return, the proxy shall insert the local application identifier stored in its configuration
database into the parameter ‘responder identifier’ of the BIND return PDU.

3.2.6.2.3 When receiving a BIND invocation from its local client for an unbound
association, the proxy shall perform the following steps:

CCSDS 914.0-M-1 Page 3-15 October 2008
© 1SO 2013 — All rights reserved

95

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

96

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - This specification implies that the authentication mode of an association is
always determined by the authentication mode of the peer application.
Therefore, different authentication modes may be specified for different peers,

but the same authentication mode is always used for the same peer.

3.2.6.2.3.1 The proxy shall use the parameter ‘responder identifier’ in the operation object
passed with the BIND invocation request to locate the responder in the list of registered peer
applications.

NOTH

3.2.6.7
code i

3.2.6.7
and, if

3.2.6.1
databg
invocyg

3.2.6.1
‘bind

3.2.6.2
associ

3.2.6.2
associ
ID’ an

3.2.6.3

— Although the BIND invocation PDU defined by the CCSDS Recommeng
Standards for SLE transfer services does not include the responder identifier; t
argument must be passed to the proxy with the BIND invocation request,

insert that argument into the BIND invocation PDU.

.3.2 If the responder is not registered, the proxy shall reject the-tequest with a res
ndicating ‘peer application not registered’.

.3.3 If the responder is registered, the proxy shall assign the authentication mg
applicable, the security attributes specified for the responder, to the association.

se into the parameter ‘initiator identifier’ of-the operation object and the BIN
tion PDU.

.4 When receiving a BIND return from the peer proxy on an association in the st
pending’, the proxy shall perform the-following steps:

.4.1 If the responder identifier in the PDU is not registered, the proxy shall abort {
ation with the diagnostic ‘access denied” and generate an access violation alarm.

.4.2 If the responder- is registered, but differs from the responder assigned to {

d generate an access violation alarm.

Authéntication

NOTH

ed
his
to

enable the proxy to determine the authentication mode. The proxy does not

ult

de

.3.4 The proxy shall insert the local applicationvidentifier stored in its configuration

D

hte

he

he

ption, the proxy shall abort the association with the diagnostic ‘unexpected responder

= "In the following, the term ‘ignore the PDU’ might be interpreted in differ

ENnt

ways, depending on the data communications technology, Ithe proxy
implementation, and the specific SLE operation. 3.2.6.3.2 specifies permissible

interpretations and behaviors.

3.2.6.3.1 The proxy shall perform the following steps for all SLE PDUs received from the

peerp

roxy, immediately after decoding and before any other processing steps.

CCSDS 914.0-M-1 Page 3-16 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTES

1

For a BIND invocation, these steps are performed immediately after location
initiator identifier on the list of registered applications, if the PDU is received

of the
on an

unbound association. For a BIND return, these steps are performed immediately after

location of the responder identifier if the PDU is received on an association
state ‘bind pending’.

in the

The TRANSFER-BUFFER PDU (see 3.3.5.3) does not represent an_invocation or

3.
de

3.2
pe
idg

N(

3.2
by,
ac
da

N(

3.4

return of an SLE operation but is rather used to transmit a number of TRAN
DATA and SYNC-NOTIFY invocations as a single data unit across thecasso
between the SLE Provider and the SLE User. Therefore authentication sh
performed on each of the contained SLE PDUs presenting SLE operation invoq
and not on the TRANSFER-BUFFER PDU.

.6.3.1.1 The proxy shall check the authentication mode assigned to the associat
fermine whether authentication is required.

er’s credentials and the security attributes assigned 1o the association to authenticg
ntity of the peer.

DTE — For invocations the parameter usedvis ‘initiator credentials’ and for |
‘responder credentials’.

.6.3.1.3 For the actual authentication-procedure, the proxy shall use the service pr
the component ‘SLE Utilities’cvia the interface ISLE_SecAttributes.
ceptable delay argument required for authentication is defined in the configy
fabase of the proxy.

DTE — The authentication procedure and the role of the argument “‘acceptable delg
defined in.3.5.6.

.6.3.1.4 If authentication fails, the proxy shall generate an authentication alarn

ignore the PDY.

N(

DTE =—The authentication alarm is defined in 3.2.6.4.

SFER-
Ciation
all be
ations

ion to

.6.3.1.2 If authentication is required, the proxy shall usethe PDU parameter holding the

nte the

eturns

bvided
The
ration

ly’ are

n, and

3.4

.6:3.2 The action to ‘ignore a PDU’ shall be implemented according to the following

specifications:

3.2.6.3.2.1 As a rule, the proxy shall not take any action that could be observed via the

network.

object waiting for a return PDU, such that a subsequent ‘legal’ return will succeed.

3.2.6.3.2.2

In addition, it shall not modify the state of the association or of any operation

In order to prevent permanent blocking of resources, a proxy implementation

may abort the underlying data communication connection and set the state of the association

CCSDS 914.0-M-1 Page 3-17 October 2008
© 1SO 2013 — All rights reserved

97

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

to ‘unbound’ when authentication fails for a BIND invocation, BIND return, or UNBIND
invocation. If this option is selected, the abort procedure shall restrict the information that is
made available to the peer system to the minimum possible. For a BIND return and an
UNBIND invocation, the proxy shall inform its local client using a PEER-ABORT operation
object with the diagnostic ‘other reason’.

3.2.6.3.23 If an implementation uses technology-specific connection termination
procedures for the operation UNBIND, it might not be possible to apply the rule defined in

3.2.6.iMaLaﬂLD_mnm_m&mhﬁLas&m&mw_shﬂumeme&Mmd_peummhe
appropriate actions defined in 3.2.4.3.

NOTH - The proxy shall nevertheless perform authentication and generate the
authentication alarm record, such that the attack can be recognizedv- It is noted
that authentication at application level cannot provide any proteetion against|an
intruder who succeeds in closing the connection of, the underlying
communications service. The case addressed here therefere does not imply a
reduced level of security.

3.2.6.3.3 When receiving a PDU for transfer from its local€lient, the proxy shall perfom
the following steps:

3.2.6.3.3.1 If the authentication mode assigned to the-association requires authentication for
the PDU, the proxy shall insert the credentials_for the local SLE application into the
operation object passed by the client.

NOTH - Inserting the credentials into_the-operation object instead of writing it directly
into the PDU makes sure that the information held by the operation object] is
complete. The credentials "are subsequently inserted into the PDU used for
transfer.

3.2.6.3.3.2 For generation of the credentials, the proxy shall use the service provided by the
compg@nent ‘SLE Utilities’‘via the interface ISLE_SecAttributes.

3.2.6.3.3.3 If authéntication is not required, the proxy shall set the parameter for the
crederjtials of thelacal SLE application in the operation object to ‘not used’.

3.2.6.4 Security Alarms

3.2.6.4.1 For the following security alarms, the proxy shall enter an alarm record into the
system log and notify the application via the interface ISLE_Reporter.

3.2.6.4.1.1 The access violation alarm record shall be generated when a peer identifier is
not registered in the configuration database of the proxy (see 3.2.6.2.4.2) or differs from the
expected one. It shall comprise as much information as possible to allow investigation of the
event. The information entered shall include but not be limited to the following:

CCSDS 914.0-M-1 Page 3-18 October 2008
98 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

a) For access violation associated with a BIND invocation, the alarm record shall
contain the following parameters extracted from the PDU:

1) the initiator identifier; and
2) the service instance identifier.

b) For access violation associated with a BIND return, the alarm record shall contain the

responder identifier extracted from the PDU and the following parameters derived
from the attributes of the association:

1) the responder port identifier; and

2) the service instance identifier.

3.2.6.4.1.2 The authentication alarm record shall be generated whengver authentication
fails. It shall comprise as much information as possible to allow investigation of the|event.
THhe information entered shall include but not be limited to the following:

a) the peer identifier;
b) the credentials for which authentication has failed;and

c) the service instance identifier.

3.2.7 PASS-THROUGH MODE OF OPERATION

3.2.7.1 As an optional feature, the proxy shall support a special ‘pass-through’ mpde of
operation, in which processing of.‘the proxy is modified as defined by the following
specifications. The means by which this mode of operation shall be enabled is defingd and
documented by the implementation.

NOTES

1 The pass-threugh mode is required for a gateway in order to support end-to-end
identification and authentication, and preservation of other parameters set by the
proxy-in.end-systems.

2 An implementation might support enabling and disabling of the pass-through| mode
by a parameter in the configuration database or might provide a special version|of the

fewwayv,
—pmx-y-fgr_use-m-a-ga‘ ey

3.2.7.1.1 The proxy shall not insert the local application identifier into a BIND invocation
or a BIND return received from its local client, but use the parameter in the operation object.
If the proxy needs to generate a BIND return on its own behalf (see 3.2.6.2.1.2), it shall insert
the local application identifier as responder identifier. In these cases, the BIND return shall
not include credentials.

NOTE - This modifies 3.2.6.2.2 and 3.2.6.2.3.4.

CCSDS 914.0-M-1 Page 3-19 October 2008
© IS0 2013 — Al rights reserved 99

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

100

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.7.1.2 When receiving a BIND invocation from its local client, the proxy shall use the
initiator identifier in the operation object, to determine the authentication mode. The peer
identifier for the association shall remain undefined initially.

NOTE - This modifies 3.2.6.2.3. The peer identifier is assigned to the association as
specified in 3.2.7.1.3. The procedure specified here implies that all responders
linked to one initiator must have the same authentication mode. In cases where

this constraint is not acceptable, different initiator identifiers must be used for
different authentication mades

3.2.7.1.3 The proxy shall process a BIND return PDU received from the peer proxy,on|an
associption in the state ‘bind pending’ as defined by the following specifications.

NOTH - This modifies 3.2.6.2.4.

3.2.7.1.3.1 If the responder is not registered, it shall abort the cassociation with the
diagngstic ‘access denied’ and generate an access violation alarm.

3.2.7.1.3.2 If the responder is registered, but the authentication mode differs from the gne
assigned to the association, the proxy shall abort the assogciation with the diagnostic “other
reasor]’.

3.2.7.1.3.3 If the responder is registered and the*authentication mode matches the gne
assigned to the association, the proxy shall assign;the identifier and the security attributes|of
the regponder to the association.

3.2.7.1.4 The proxy shall not generate credentials for PDUs transmitted to the peer praxy
but usg the credentials parameter of the pperation object passed by its client.

NOTH - This modifies 3.2.6.3;3. Note that the proxy shall perform authentication |of
PDUs as defined in 3:2.6.3.1.

3.2.7.2 In the pass-thfeugh mode of operation, dynamic port registration shall not |be
required. The lack-0f>dynamic port registration may imply restrictions, which must |be
clearly documented:for an implementation.

NOTHS

1 This modifies 3.2.5.1.

2 On a gateway, the responder port identifier is not known in advance of an incoming
BIND invocation. An example for restrictions that might be implied is that only a
single instance of the proxy can be used within the gateway and all associations
bound via the same port have to be handled by a single process.

CCSDS 914.0-M-1 Page 3-20 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.8 LOGGING AND NOTIFICATION

3.2.8.1 The proxy shall generate log messages for important events and enter them to the
system log of the hosting system using the interface ISLE_Reporter, passed to its
configuration method.

NOTE - The arguments to be supplied with a log message are specified in A9.2. Specific
requirements and constraints on how this interface must be used are defined in 3.6.2.

3.2.8.2 The log messages generated by the proxy shall include, but not be limitedtq those
explicitly defined in this section.

NOTE - Guidelines for selection of the events that are entered to the log. are defiped in
3.6.2.

3.2.8.3 The proxy shall notify the application of the events defined in'3.6.2.6.

3.2.84 The log messages and notifications shall be defined and documentgd by
plementations of the API Proxy.

3.2.8.4.1 Each log message shall be identified by a ufiique number, which is referenced in
th¢ documentation and passed to the interface 1SLE_Reporter, when the message is
ged.

3.2.8.4.2 Log message identifiers in the range 0 to 999 shall be reserved for use by this
Rqcommended Practice and supplemental Recommended Practice documents for sgrvice-
specific APIs. These log message identifiers shall not be used for messages defined by
implementations.

NOQTE - This version of the specification does not define any log messages. ldentifiers
are reserved for-potential future use. Beside this constraint, each component
implementation can independently assign log message identifiers, as the
componentidentification is also passed to the interface ISLE_Reporter

3.2.9 DIAGNOSTIC TRACES

NOQTE "= Support for diagnostic traces is an optional feature. This subsection cantains
specific requirements for the proxy. Further general specifications concerning
the events that are traced and the information entered in trace records are
provided in 3.6.3.

3.2.9.1 The proxy shall provide a feature to generate trace records for events and to pass
them to the interface ISLE_Trace.

3.29.1.1 A trace for a specific association can be started and stopped via the interface
ISLE_TraceControl provided by association objects.

CCSDS 914.0-M-1 Page 3-21 October 2008
© 1SO 2013 — Al rights reserved 101

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.9.1.2 Traces started via the interface ISLE_TraceControl exported by the proxy
shall include all associations as well as events that cannot be associated with a specific
association. When tracing is stopped via the interface of the proxy, all traces started for
individual associations shall be stopped as well.

3.2.9.1.3 After creation, all traces in the proxy shall be disabled.

3.2.10 EXECUTION CONTEXT

3.2.10[1 Processes

3.2.1011.1 Every instance of the proxy component shall exist within a single_application
procegs and provide interfaces only to other components in the same process.

3.2.10{1.2 For a given proxy implementation, the creator function shall\ensure that a single
instange of the proxy component is created within one process. Proxyimplementations shall
be digtinguished by the protocol they use for communication with the peer proxy. The
protodol identifier shall be available via the administrative interface of the proxy.

NOTH - Several proxies using different communications technologies or differgnt
protocols can exist within one process. The protocol identifier is required|to
distinguish different proxies and to route' outgoing BIND invocations to the
correct proxy instance.

3.2.10/1.3 The proxy is able to support the following configuration of processes, servjce
instanges, and communication ports, for associations in the initiator role and for associatigns
in the yesponder role.

NOTH - The meaning of the tertn communication port depends on the technology. It gan
refer to an end-point-of a transport or session connection, an object reference,|or
any other address or routing information by which PDUs are routed to a given
process.

3.2.10{1.3.1 A proeess shall handle all service instances using one or more communication
ports.

3.2.1011.3:27Service instances using the same communication port may be distributed|to
differgnt-existing processes in a manner defined by the application.

NOTES

1 Depending on the technology and its specific use by the proxy, the configuration
defined in 3.2.10.1.3.2 can require a separate process handling all or part of the
interface to the communications service provider. Such processes are considered part
of the proxy infrastructure. Routing of BIND invocations might be based on
technology-specific addressing or on the service instance identifier. The dynamic

CCSDS 914.0-M-1 Page 3-22 October 2008
102 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

port-registration procedure defined in 3.2.5 can be used to establish the associated

routing path.

Reference [J3] provides examples for architectures that can be supported by a
implementing these specifications.

proxy

This version of the specification does not include launching of application processes
as a result of reception of a BIND invocation. Use of this technique is not excluded,

but cannot be expected from a conforming implementation.

3.4

3.2
be

3.
tha
be

N(

3.2

3.7
a

>

3.4

3.
of

N(

.10.2 In Process Threads

.10.2.1 For the interaction with its client, the proxy shall provide at-least one
naviors defined in 3.7 as well as the control interface associated with thesprovided behg

.10.2.1.1 An implementation may provide more than one of the“specified behavig
it option is selected the implementation shall specify the means by which the g
havior can be selected.

DTE — An implementation may support selection of the behavior by g
configuration, or may support dynamic selection by call of a specific start fur

.10.2.1.2 The proxy shall provide the same-hehavior for all exported interfaces.
.10.2.1.3 The proxy shall expect that the complementary interfaces provided by the
d used by the proxy have the same behavior.

.11 CONFIGURATION

.11.1 The proxy can be’configured for a specific deployment environment by def]
parameters in a configuration database.

DTE — For_the Operation of the proxy, an implementation may additionally requi
supporting programs or external systems have been installed, configure
specific manner, and have been started. Such requirements must be docun
for an implementation together with a reference to the relevant installatic

of the
\vior.

rs. If
esired

ff-line
ction.

client

nition

re that
d in a
hented
n and

operating instructions.

3.2.11.1.1 The detailed content, the structure, and the format of the configuration database
are implementation specific and are documented for an implementation together with the
procedures for entry and update of configuration parameters.

NOTE - This specification does not prescribe how the database is created and how it is
accessed. The configuration database may consist of a simple text file or a set of
files, or it may be distributed to one or more directory systems or management

information databases.

CCSDS 914.0-M-1 Page 3-23 October 2008
© 1SO 2013 — All rights reserved

103

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.11.1.2 Modification of the configuration database shall be considered a maintenance
activity. The procedures for entry and update of configuration parameters may require the
proxy to be terminated and restarted for the modifications to become effective.

3.2.11.1.3 The proxy shall specify a configuration file, which provides all information
required by the proxy to access the configuration database. The full path name of this file
shall be passed to the Configure () method of the administrative interface.

NOTE_—_The configuration file might contain all configuration parameters or might
contain references to other files or information that enables the proxy to, qugry
some database for the configuration parameters.

3.2.112 The information in the configuration database of the proxy shall include but not|be
limited to:

a)| configuration parameters required for configuration and initialization of the data
communications system such as local addresses, operational modes, etc.;

b)[the acceptable delay between failure of the data communication service and the
associated report by the proxy;

c) | a specification whether the proxy shall support assaciations in the responder role,
the initiator role, or both;

n

d)[mapping of the logical responder port identifiers specified by CCSDS to addrgss
information;

e) [one or more local responder port identifiers on which a proxy supporting associatigns
in the responder role shall accept BIND invocations;

f) | the list of SLE service types. supported by all components in the installation, and for
each service type the list efiversion numbers that can be supported,;

NOTE - Version negatien is not supported by this Recommended Practice, see 1.2.2
item a).

g)| the identifiercand security attributes of the local SLE application;

h)| the list of registered peer applications including, for each application, the identifier,
authentication mode, and the security attributes (if used);

1) | the.acceptable delay between the time credentials have been created and the time|of
authentication;

J) the maximum number of incoming PDUs that shall be queued according to the
definitions in 3.2.3.1;

k) the maximum number of PDUs that shall be queued for transmission;

I) the mode of operation, with the possible values ‘default’ and *pass-through’.

NOTE - The pass-through mode of operation is defined in 3.2.7.

CCSDS 914.0-M-1 Page 3-24 October 2008
104 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.12 INITIALIZATION, START-UP, TERMINATION, AND SHUTDOWN

3.2.12.1 The proxy must be initialized by a call to the method Configure() of the
interface ISLE_ProxyAdmin, passing it the name of the configuration file and the
interfaces of other components.

NOTE - The interfaces needed by the proxy and the exact signature are defined in A7.

3.2.12.1.1 When the method Configure() is called, the proxy shall check the
copfiguration on completeness and consistency. If any of the checks fail, the proxy shall
geperate appropriate error messages to the log and return a result code indicating a
copfiguration error.

3.2.12.1.2 If the configuration database is correct, the proxy shall perform all actions
reTuired to configure itself and then any data communication products-it uses. If there gre any
ertors, the proxy shall log errors indicating the reason and return ancrror code to the client.

=

3.2.12.1.3 Only when all initialization procedures have been.completed successfully gnd the
proxy is ready for operation, it shall return a positive result.code.

=

3.2.12.2 Operation of the proxy shall be started by accall to the start method associated with
the behavior selected according to 3.2.10.2.1. The proxy shall only start the operatior] if the
initialization has been completed with success. Otherwise, the method shall return an gror.

NOTES

1 The start method is defined By the control interface associated with the selected
behavior. Control interfaces,are specified in A6.1.1 and A6.1.6.

2 The specification imglies that a proxy supporting associations in the responder role
shall start listening for incoming BIND invocations only after call of the start method.

3.2.12.3 Operation.of) the proxy shall be terminated by a call to the terminate method
asgociated with the“behavior selected according to 3.2.10.2.1. When this method is falled,
the proxy shallstop processing and revert to the state it had after configuration and before the
stgrt method-was invoked.

NOQTE ‘= The terminate method is defined by the control interface associated with the
selected behavior. Control interfaces are specified in A6.1.1 and A6.1.6.

3.2.12.3.1 If any associations are still active, the proxy shall abort these associations.

3.2.12.3.2 The proxy shall stop listening on the network interface, if applicable, and release
all resources it has allocated after the call to the start function.

3.2.12.3.3 A proxy must expect that other proxies using the same communication
infrastructure exist on the system and must make sure that their operation is not affected by
termination activities.

CCSDS 914.0-M-1 Page 3-25 October 2008
© IS0 2013 — Al rights reserved 105

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.2.12.4 The proxy shall be instructed to shutdown by a call to the method ShutDown() in
its administrative interface.

3.2.12.4.1 The proxy shall reject the request when it is still operating.
NOTE - Inthis case, the client shall be required to invoke the terminate method first.

3.2.12.4.2 The proxy shall release all interfaces of other components, to which it still holds
references, delete all internal objects, and release any other resources it has allocated.

3.2.1214.3 The proxy shall ensure that all objects of the component are deleted when-cliepts
holding a reference to interfaces have released these references.

3.2.1204.4 When the method returns with success, the proxy has ceased to exist:

3.2.13 COMPONENT OBJECTS AND INTERFACES

3.2.13l1 The component API Proxy shall implement the following component objects gnd
interfgces:

NOTH - Component objects are defined in annex D_of this specification. As explaired
there, a component object is an externally-wisible entity that may be implemented
by a single object or by several internaliobjects, which co-operate to provide the
required external view. As specified in annex D, every component objgct
supports the interface TUnknown in addition to the interfaces listed in this
subsection. The interfaces referenced in this subsection are specified in annex A.

a)| a single instance of the API Rroxy, which shall export the following interfaces gnd
support navigation between:these interfaces via the method QueryInterface():

1) the interface ISLE_ProxyAdmin;

2) the interface. TSLE_AssocFactory if the proxy supports associations in the
initiator role;

3) the interface ISLE_Sequential if the proxy supports ‘sequential interface
behavior’ as specified in 3.7.2;

4). ‘the interface 1SLE_Concurrent if the proxy supports ‘concurrent interface
betravior—as specified T 3:7.2;arnd

5) the interface 1SLE_TraceControl if the proxy supports diagnostic traces as
specified in 3.2.9;

b) association objects, which shall export the following interfaces and support
navigation between these interfaces via the method QuerylInterface():

CCSDS 914.0-M-1 Page 3-26 October 2008
106 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - A separate object shall be provided for every data communication

association.

1) the interface ISLE_SrvProxylnitiate; and

2) the interface ISLE_TraceControl if the proxy supports diagnostic traces as

specified in 3.2.9;

c) one or more objects for processing of external events, which shall export the interface

E _EyvantPracnconr 1ftha nravas cirinnarte ‘cnrinntial intarfann hahaviine?-

1<
™

Sef

3.3

3.9

3.
co
se

N(

3.1 FEATURES

.3.1.1 The service element shall create, configure, maintain, and delete service insf

3.1.2 The service element shall provide interfaces to generate operation object
initialized parameters according to the configuration of a service instance, see 3.3.3.

.3.1.4 The service element shall enfarce conformance of the protocol data units exch

3.1.5 The service element shall ensure that the parameters of SLE protocol dat

|
C Vet TOCTOoUT T tHC PTOX Yy SUPPUTto LUt iU It T At T oTTIav ToT

d) one or more objects for processing of a timeout, which shall export the ‘int
ISLE_TimeoutProcessor if the proxy supports ‘sequential interface behavior’.

APl SERVICE ELEMENT

 3.3.2.

1.3 The service element shall handle bindirig and unbinding of service instances, see

the state tables defined in the CESDS Recommended Standards for SLE transfer se
far as these do not refer to events’and procedures related to service production.

provided in-seetion 4. These state tables complement the specifications
section. They are considered mandatory for a conforming implementation.

nform to the specification in the CCSDS Recommended Standards for SLE ty
vices.

erface

ances,

5 with

3.3.4.

anged
rvices

DTE - A detailed specification of the state tables processed by the service elenpent is

n this

L units
ansfer

DFE™ — Processing of SLE Protocol Data Units is detailed in 3.3.5.1.

3.3.1.6 The service element shall handle invocation identifiers and timeout monitoring for

op

eration returns, see 3.3.5.2.

3.3.1.7 The service element shall implement the transfer buffer for return link services
including the procedures for discarding of buffered data in the delivery mode timely online
and flow control for the delivery modes complete online and offline, see 3.3.5.3.

CCSDS 914.0-M-1 Page 3-27 October 2008
© 1SO 2013 — All rights reserved

107

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.1.8 The service element shall implement flow control for TRANSFER-DATA
invocations for forward link services, see 3.3.5.4.

3.3.1.9 For an SLE service provider, the service element shall provide an interface for
updating service parameters and status parameters by the client, see 3.3.5.5.

3.3.1.10 The service element shall process GET-PARAMETER and SCHEDULE-STATUS-
REPORT invocations received from the peer, see 3.3.5.5.

3.3.1.11 The service element shall generate entries to the log of the hosting system for [all
imporfant events, see 3.3.6.

3.3.1.12 The service element shall provide a feature to produce an event trace for the
complete service element and for individual service instances, see 3.3.7.

3.3.1.13 The service element shall support a range of execution enviropments with respect to
use of|in-process threads, see 3.3.8.

3.3.1.14 The service element shall use a configuration database;which controls its operation
within| a specific deployment environment, see 3.3.9.

3.3.2 | SERVICE INSTANCE MANAGEMENT
3.3.2.1 Creation of Service Instances

3.3.2.1.1 A service instance shall be created on request of the application via the interface
ISLE| SIFactory.

3.3.2.1.1.1 The request to createva service instance shall identify the service type and the
role (gervice user or service provider). If the service element does not support the servjce
type or the role, it shall reject the request.

NOTH - An implementation may support service instances in the user role and in the
provider-role concurrently. This feature enables an application to act as an SLE
service-user for one service instance and as an SLE service provider for another
instance. However, an implementation may also restrict the role of the servjce
instances supported to either ‘user’ or ‘provider’.

3.3.2. E2—Forservicesinthe-userrolethe-reguestto-createa-servicetnstanceadditional ly
shall identify the version number of the specified service type. If the service element does
not support the specified version, it shall reject the request.

NOTES

1 The service instance shall use the version number to generate the BIND invocation
with the desired version number. Service instances in the provider role shall obtain

CCSDS 914.0-M-1 Page 3-28 October 2008
108 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

the version number from the incoming BIND invocation. Checking of the version
number on the provider side is specified in 3.2.4.2.2.

2 The service types and versions supported by an implementation shall be identified in
the implementation specific documentation.

3.3.2.2 Configuration of Service Instances

3.1.2.2.1 When a service instance has been created, it must be configured usifg the
interface ISLE_SI1Admin.

3.3.2.2.1.1 For service instances in the responder role, additional configuration parameters
mTest be supplied via the service-type specific administrative interfacespecified by the
rellevant supplemental Recommended Practice for the service-specific APL.

.3.2.2.1.2 The configuration parameters that must be “sét via the inferface
SLE_SIAdmin are:

-

a) the service instance identifier;

b) the peer identifier;

NOTE - The peer identifier is either the initiator identifier or the responder identifier.
If the service instance acts -as;an initiator in the BIND operation, the peer
identifier is used to check the parameter ‘responder identifier’ in the [BIND
return PDU. If the service instance acts as a responder, the peer identjfier is
used to check the .parameter ‘initiator identifier’ in the BIND invdcation
PDU.

c) the scheduled provisignperiod defined by the start time and the stop time;
d) the initiator of the BIND operation (Service user or service provider);
e) the responderport identifier; and

f) the valéie-0f the timeout in which returns must arrive for confirmed operations.

NQTE =-=These parameters are defined in the CCSDS Recommended Standards fgqr SLE
transfer services.

3.3.2.2.1.3 Configuration of a service instance shall be terminated by a call to the method
ConfigCompleted() of the interface 1SLE_SIAdmin. This method shall check the
configuration parameters on completeness and consistency and reject the configuration if a
deficiency is detected.

NOTE - Configuration parameters must not be modified after a successful return of the
method ConfigCompleted(). The effect of an attempt to set a parameter
when the initial configuration has completed is undefined.

CCSDS 914.0-M-1 Page 3-29 October 2008
© IS0 2013 — Al rights reserved 109

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.2.2.1.4 The checks performed for the common configuration parameters passed via the
interface 1SLE_S1Admin shall include the following:

a) the service instance identifier must be valid and unique for all service instances
currently handled by the service element;

NOTE - The validity of a service instance identifier is verified by the component ‘SLE
Utilities’ via the interface ISLE_SI 1.

b) (foraservicemstarce T the—provider Totethe—start—and—end-—timmeforthe—scheduled
provision period must be specified or must be set to NULL;

c)| if the start time is set to NULL, the service instance shall assume that the provision
period begins after invocation of the method ConfigCompleted();

d)| if the end time is set to NULL, the service instance shall assume.that the provision
period never expires;

e) | if the start and end time are specified, the start time must be €arlier than the end timg;

f) | if the end time is specified the end time must not be in/the’past;

NQTE — A service instance in the user role shall<not constrain the application wijith
respect to the time the service is requésted. It shall accept the scheduled
provision period parameter if it is supplied, but shall not require it. If if is
supplied, it shall not further process it.

g)| the responder port identifier must be’defined in the configuration database of the
service element, if the service instance initiates the BIND operation.

NOTE - The responder port ‘identifier is used by the service instance to select the
proxy instance te-which the BIND invocation shall be sent.

3.3.2.2.1.5 For service (instances in the provider role, checks performed on the
configuration shall include those defined for the specific service type in the relevant
supplgmental Recommended Practice for the service-specific API.

3.3.2.2.1.6 If~the service element does not support an option related to one of the
configuration—parameters, the configuration shall be considered incorrect and shall [be
rejected.

NOTE - For instance, an implementation might not support provider-initiated binding.

3.3.2.2.1.7 If the service instance responds to BIND invocations, the service element shall
register the responder port as part of the method ConfigCompleted() and reject the
configuration if port registration is not accepted by the proxy.

NOTE - Port registration is defined in 3.2.5.

CCSDS 914.0-M-1 Page 3-30 October 2008
110 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.2.3 Deletion of Service Instances
3.3.2.3.1 A sservice instance shall only be deleted on request of the application.

3.3.2.3.1.1 If the state of the service instance is not ‘unbound’ at the time deletion is
requested, the service element shall reject the request.

NOTE - The application will have to abort the association before deleting the service
instance. The service element does not require that the scheduled provision
period has terminated when a service instance is deleted. (The states of a gervice
instance are defined in section 4.)

3.3.2.3.1.2 If the responder port has been registered at the proxy, the serviceelement shall
request de-registration of the port before the service instance is actually deleted.

3.3.2.3.1.3 When deleting the service instance, the service element shall relegse all
regources allocated to the service instance as well as all interfaces used by the gervice
ingtance.

3.3.2.4 End of Provision Period

When the scheduled provision period of a serviceé instance supporting the provider role
expires, the service element shall inferm the application via the inferface
ISLE_Servicelnform.

NOTES

1 If the end time of the provision period was set to NULL during configuration|of the
service instance, the «service element shall assume that the provision period| never
expires.

2 The service element shall not monitor the provision period for service instanceg in the

user role andhshall not inform the application when the period ends.

3.3.3 CREATION AND CONFIGURATION OF OPERATION OBJECTS

3.3.372." Service instances shall export the interface 1SLE_SI10pFactory to creafe pre-

co hfidiiirad anaratinn ahiactc
llluul v Vrl\dl “ULTuTT U”J\I\JL\JI

3.3.3.1.1 A service instance shall only return operation objects which are defined for the
service type and version it supports, and which are invoked by applications in the role it
implements.

NOTE - This specification implies that a RAF service instance in the user role generates a
START operation but does not generate a TRANSFER-DATA operation.

CCSDS 914.0-M-1 Page 3-31 October 2008
© 1SO 2013 — Al rights reserved 111

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.3.1.2 The service instance shall use the interface ISLE_OperationFactory
exported by the component ‘SLE Operations’ to create the operation object, and set selected
parameters of the operation object according to its own configuration.

NOTE - The parameters that are set by the service instance are defined for each operation
object in annex A or in the supplemental Recommended Practice documents for
service-specific APIs.

3.3.4 | BINDING AND UNBINDING
3.3.4.1 User Initiated Binding

NOTH - Further details of the BIND and UNBIND operations are specified in the state
tables for service instances in section 4. These state tables eomplement the
following specifications. They are considered mandatory—for a conforming
implementation.

3.3.4.1.1 Service Instances in the User Role

3.3.4.1.1.1 A service instance supporting the user role~and the BIND-initiator role shall
initiatg the BIND operation when receiving a BIND-invocation request from the application
in the|state ‘unbound’ via the interface 1SLE_Servicelnitiate. It shall initiate the
UNBIND operation when receiving an UNBINDinvocation in the state ‘bound’.

3.3.4.1.1.2 The service instance shalklicreate an association via the proxy interfdce
ISLE| AssocFactory and use the-ifterface ISLE_SrvProxylnitiate provided by
the asgociation for binding, unbinding and service provisioning.

NOTH - This specification-dees not prescribe when the association object is created. An
implementation~might create a new association when the BIND operation| is
initiated. Alternatively an implementation might create the association objgct
when the-sérvice instance is created and use it throughout the lifetime of the
service instance.

3.3.4.1.1.3 .The configuration database of the service element shall contain a table mapping
port iflentifters to protocol identifiers. The service element shall use this table and the
resporjden port identifier in the service instance to select the proxy instance, from which it
will request creation of the association.

NOTE - The protocol identifier supported by a proxy is specified when the proxy is registered
with the service element. The associated procedures are defined in 3.3.10.

3.3.4.1.1.4 The service element shall insert the peer identifier into the parameter ‘responder
identifier’ of the BIND operation object passed to the proxy.

CCSDS 914.0-M-1 Page 3-32 October 2008
112 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - This parameter is used by the proxy to retrieve information about the responder
from its configuration database. In addition, the proxy shall check the identifier
against the responder identifier in the BIND return PDU and take appropriate
actions if these do not match. See 3.2.6.2 for further details.

3.3.4.1.1.5 The BIND and UNBIND operations shall be performed according to the general
rules specified in 3.3.5.

3.3.4.1.2 Service Instances in the Provider Role

3.3.4.1.2.1 A service element supporting service instances in the responder rolg shall
implement the interface 1SLE_Locator, which shall be used by the proxy: to notify the
sefvice element of a BIND invocation received via the network.

3.3.4.1.2.2 When receiving a notification of a BIND invocation via the method
Lgcatelnstance() of the interface ISLE_Locator, the service element shall aphalyze
the¢ PDU. If the BIND invocation is acceptable, it shall link the requested service instance
with the association using the pointer to the interface ISLE _SrvProxylnitiate, and
refurn a reference to the interface 1SLE_SrvProxy Inform of the service instance.

3.3.4.1.2.3 The service element shall perform theZchecks in 3.3.4.1.2.4 to 3.3.4.1.2{10 on
the BIND invocation in the sequence specified. . If-any of the checks fail, it shall not pass the
BIND invocation to the application, but reject the BIND invocation. If the checks are
pefformed within the method Locatelnstance(), this method shall retuyn an
appropriate error code. If the checks are performed by the service instance after having
re¢eived the BIND invocation via the.interface ISLE_SrvProxy Inform, it shall ggnerate
a BIND return with a negative result and the appropriate diagnostic.

NOTE - This specification does not prescribe whether these checks are performed jpy the
method Locatelnstance() of the interface 1SLE_Locator, or by the
service instance when receiving the BIND invocation via the inferface
ISLE cSrvProxyInform. The checks must be performed before the [BIND
invacation is passed to the application and the appropriate method to reject|errors
must be applied.

3.3.4.1.2:4 The service instance identifier in the BIND invocation must match the idgntifier
of [an-existing service instance. If the check fails, the BIND invocation shall be rejected with
thedragnostic— o suchservice instance™

3.3.4.1.2.5 The initiator identifier in the BIND invocation must match the peer identifier
defined for the service instance. If the check fails, the BIND invocation shall be rejected
with the diagnostic ‘service instance not accessible to this initiator’. In addition, the service
element shall enter an ‘access violation alarm’ in the system log and notify the application
using the interface ISLE_Reporter.

CCSDS 914.0-M-1 Page 3-33 October 2008
© 1SO 2013 — Al rights reserved 113

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.4.1.2.6 The information included into the access violation alarm shall include, but not
be limited to:

a) the initiator identifier in the BIND invocation; and

b) the service instance identifier of the service instance.

NOTE - Some of this information can be conveyed by standard arguments of the
LogRecord() function in the interface 1SLE_Reporter. This information

L Lal bl (l L. - - bl (- LE
STHUUTU TIUU UE Uuptitateu 1 tie TeLuru 1seltr.

3.3.4.1.2.7 The service type of the service instance must match the one indicatedoin the
BIND| invocation. If the check fails, the BIND invocation shall be rejected. with the
diagngstic ‘inconsistent service type’.

3.3.4.1.2.8 The version number in the BIND invocation must be supported by the servjce
instange. If the check fails, the BIND invocation shall be rejected”with the diagnostic
‘version not supported’. Otherwise the service instance shall memorize the version numiper
and er|sure that the service is provided as specified for that version:.

NOTH - As the API Proxy already checks the versign number against the versigns
identified in its configuration database (See 3.2.4.2.2.5), reception of [an
unsupported version number by the secvice instance is an indication off a
configuration problem. Therefore, implementations should issue an alarm if that
happens.

3.3.4.1.29 The time of the request must_be within the scheduled provision period of the
service instance. If the check fails, the-BHND invocation shall be rejected with the diagnogtic
‘invalid time’.

3.3.4.1.2.10 The state of the service instance must be UNBOUND. If the check fails, the
BIND|invocation shall be rejeeted with the diagnostic “already bound’.

3.3.4.1.2.11 The UNBIND operation for a service instance in the responder role shall [be
performed according.fo the general rules specified in 3.3.5. The additional specifications|in
3.3.4.1.2.12 to 3.3:4.1.2.14 shall apply to a service instance supporting the provider role.

3.3.4.1.2.12-}f the parameter ‘unbind reason’ in the UNBIND invocation is set to ‘suspenfd’,
the follewing steps shall be performed. The state of the service instance shall be set|to
‘UnbO e tee—p ainete 16 e—ese he—rttia ate—iFapplicable—and
service instance is ready to receive a new BIND invocation.

NOTE - Handling of the service parameters in the case of an UNBIND is specified
individually for the every service type.

3.3.4.1.2.13 If the parameter ‘unbind reason’ in the UNBIND invocation is set to ‘end’, the
service element shall inform the application that the scheduled provision period has been
prematurely terminated.

CCSDS 914.0-M-1 Page 3-34 October 2008
114 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - Further BIND invocations shall be rejected with the reason ‘invalid time’,

service instance has not yet been deleted by the application.

if the

3.3.4.1.2.14 When the scheduled provision period of a service instance supporting the
provider role ends and the state of the service instance is not ‘unbound’, the service element
shall abort the association.

3.3.4.2 Aborting Associations

3.

3.
as
de

3.3

.3.4.2.2 Whenever the service element aborts.'an association, it shall also fory

.3.4.3 Releasing Resources

4.2.1 The service element shall abort an association in the following cases:
a) the application invokes the PEER-ABORT operation;

b) abort of the association is explicitly required by any other specification for the s
element in this document; or

c) the service element cannot continue processing of the. asSociation, becaus
affected by major problems.

DTE — This specification implies that the proxy might<abort the association in the g
a catastrophic failure also when that case is.not specified in this document.

ER-ABORT invocation to the application.t* It shall set the parameter ‘originaf
rvice element’ in the operation objects passed to the proxy and to the application.

any reason and by any party, the State of the service instance shall be set to ‘unb
e service parameters shall be reset to the initial state, if applicable, and the service in
ready to receive a new BIND:invocation.

.4.3.1 Follewing completion of the UNBIND operation and following an abort

fined hy-the following specifications.

.4.3:1.1 For a service instance in the provider role, the service element shall releg

ervice

b it is

ase of

yard a
or’ to

.3.4.2.3 Whenever an association ysed by a service instance in the provider role is alported,

pund’.
stance

of the

ociation, the' service element shall release the resources allocated to the associafion as

1se the

interfaceof theassociationobject provided by-theproxy-

NOTE - A proxy supporting associations in the responder role creates a new association
for every incoming bind request and deletes the association object when the
association has terminated. To enable final deletion, the service element must

release all interfaces.

CCSDS 914.0-M-1 Page 3-35 October 2008
© 1SO 2013 — All rights reserved

115

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.4.3.1.2 For a service instance in the user role, the service element shall release the
association interfaces and request the proxy to delete the association object when it is no
longer needed.

NOTE - This specification does not prescribe when the association object in the initiator
role is deleted. Implementations are free to use a single association object during
the lifetime of the service instance, or a new association for every BIND. An

implementation is required to release an association object that has been created
for a service instance latest when the service instance itself is deleted

3.3.4.3.1.3 The service element shall clear the list of pending local and remote (returps,
cancel any timers still running, and release all operation objects on which it holds referencsgs.

3.3.4.3.1.4 If the service instance holds a transfer buffer, it shall release theybuffer and fall
data it/may still contain.

3.3.5 | SERVICE PROVISIONING
3.3.5.1 Processing of SLE Protocol Data Units
3.3.5.1.1 Protocol Data Units Received from the Application

3.35.1.1.1 The service element shall accept SEE protocol data units in the form |of
operation objects from the application via therinterface ISLE_Servicelnitiate. | It
shall process them as defined in this subsection and forward them to the proxy via the
interfgce 1SLE_SrvProxyInitiate for transfer on the association linked to the servjce
instange.

3.3.5.1.1.2 The service elementshall perform the checks in 3.3.5.1.1.3 to 3.3.5.1.1.6 on the
PDUs|received from the application. If any of the checks fails, the service element shall not
forward the PDU to the proxy but reject the PDU by an appropriate return code to the
functipn.

3.3.5.1.1.3 The PDY must be defined for the service type supported by the service instarjce
and mpst be compatible with the role of the service instance (user or provider).

3.3.5.1.1.4 \vThe parameters passed with the operation object must be complete, in range,
and cgnsistent with the configuration of the service instance.

NOTES

1 An example for a consistency check is the verification that the service type in a BIND
invocation matches the type of the service instance.

2 Operation objects are required to perform all checks that can be done on the data
passed without any further knowledge about the context and to provide an interface
by which these checks can be invoked. That feature should be used by the service

CCSDS 914.0-M-1 Page 3-36 October 2008
116 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

element. However, it must be considered that some checks require further knowledge
about the state and configuration of the service instance. These checks cannot be
performed by the operation objects. The checks performed by the operation objects
are defined in annex A and in the supplemental Recommended Practice documents

for service-specific APIs.

The checks do not include those parameters that are handled by the service instance
itself. If such parameters are checked by the operation object, they must be correctly

set hefare Phpr‘king is rpqupcfpd

3.1
tha

3.

N(

the

N(

3.
trg
PH

5.1.1.5 A return for a confirmed operation must be conveyed by an operation
it has previously been passed to the application by the service instance.

5.1.1.6 The PDU must be valid in the state of the service instance.

DTE — In a multithreaded environment, the application might-not yet have b
aware of a state change in some cases. If so, the return‘code does not indic

marked in the state tables in section 4.

.3.5.1.1.7 With a return code indicating success, the service element shall guarants

PDU has been accepted by the proxy for transmission.

DTE — The following specifications (3.3:5:1.1.8 to 3.3.5.1.1.10) for processing o
cases also apply when a PDU has been generated by the service element
The statements referring to return codes do not apply in that case.

5.1.1.8 When the proxy rejects a PDU with a return code indicating th
nsmission queue is full, the service element shall abort the association wi
ER-ABORT operation. lnjaddition, it shall set the code returned to the application

affected PDU to “overflow’;

N(

DTE — Because.of the flow control mechanisms built into the API, queue ov
cannet bée caused by transfer of space-link data units. It can only happen b
of <excessive generation of other events related to the production proc
excessively high status reporting frequencies. In these cases, the appl
would have no other option for handling the problem.

object

ecome
ate an

error but informs the application of the state change.~These cases are specifically

be that

f error
itself.

ht the
th the
for the

prflow
bcause
£ss or
cation

3.9

5.1.1.9 When the proxy rejects the transfer request with a code that informs the 3

ervice

element of a state change, the service element shall return the corresponding code to the
application and not abort the association.

NOTE -

already pending and will be available to the service element soon.

In such cases, it must be expected that the event causing the state change is

3.3.5.1.1.10 When the proxy rejects the transfer request with a code that indicates a protocol
error, the service element shall abort the association. In addition, it shall generate

a log

CCSDS 914.0-M-1 Page 3-37 October 2008
© 1SO 2013 — All rights reserved

117

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

message providing as much information as possible to investigate the problem, and notify the
application via the interface ISLE_Reporter.

3.3.5.1.1.11 When the service element has passed an unconfirmed invocation or a return to
the proxy, it shall release the operation object holding the PDU.

3.3.5.1.1.12 With the exception of PEER-ABORT invocations and invocations that are
inserted into the transfer buffer for return services, the service element shall ensure that
PDUs received from the application are passed to the proxy in the sequence received

NOTH - Handling of PEER-ABORT invocations is specified in 3.3.4.2. Buffering|of
PDUs for return services is specified in 3.3.5.3.

3.3.5.1.2 Protocol Data Units Received from the Proxy

3.3.5.1.2.1 The service element shall receive SLE protocol data“units in the form |of
operation objects from the proxy and process them as specified iR this subsection. If the
invocgtions and returns are accepted by the service elementit shall forward them to the
applicption unless specified differently for specific operations:

3.3.5.1.2.2 The service element shall perform the follewing checks on the PDUs received
from the proxy. If any of the checks fails, the service.element shall not forward the PDU|to
the application, but shall respond by rejecting the-PDU locally (see 3.3.5.1.2.3), rejecting the
PDU via the protocol (see 3.3.5.1.2.4), or by aborting the association.

NOTH - The type of response is defined-for the individual tests.

a)| The PDU must be defined for-the service type supported by the service instance. | If
the check fails, the PDU shall be rejected locally.

b)[The PDU must be compatible with the role of the service instance (user or providar).
If the check fails,-the 'service element shall abort the association with the diagnostic
‘protocol error’-

NOTE - Theproxy is not aware of the user or provider role of the service instance gnd
shall not check the PDUs for compatibility with this role.

c)| The'parameters passed with the PDU must be complete, in range, and consistent wjith
the configuration of the service instance. If the check fails, the PDU shall be reje\::\jed
via the protocol.

NOTE - See also the note on 3.3.5.1.1.4.

d) An invocation PDU must be consistent with the configuration of the service instance.
If the check fails, the PDU shall be rejected via the protocol.

CCSDS 914.0-M-1 Page 3-38 October 2008
118 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

fu
ing

N(

the

3.3
en
re

N(

.3.5.1.2.3 The service element shall reject a PDU locally by returning.an error code

.3.5.1.2.5 When the service element has passed an unconfirmed invocation or a ref

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - An example for a consistency check for an invocation is the verification
FSP service instance has invoke directive capability when receivi

that a
ng an

INVOKE-DIRECTIVE invocation. Consistency checks are defined by the
supplemental Recommended Practice documents for service-specific APIs.

e) A return PDU must be conveyed by an operation object that has previously been
passed to the proxy by the service instance. If the check fails, the PDU shall be

rejected locally.

response shall depend on the PDU and on the state of the service instance.

NOTE - The type of response is defined in the state tables in section 4,

nction which passes the PDU. In this case, it shall not modify the state of the §
tance.

pbend on the PDU type.

DTE — If the PDU is rejected via the protocol, thesmethod passing the PDU shall rg
result code indicating success.

a) For a confirmed invocation PDU, the-service element shall generate a return
negative result and the appropriate: diagnostic and forward this to the pro
transmission.

b) For an unconfirmed invocation PDU or a return PDU, the service element shal
the association with PEER-ABORT and the appropriate diagnostic.

application, it shallrelease the operation object holding the PDU.

5.1.2.6 With“the exception of PEER-ABORT invocations, the service elemen
sure that PDUs’ received from the proxy are passed to the application in the sec
eived.

DTE "= Handling of PEER-ABORT invocations is specified in 3.3.4.2.

pe of

to the
ervice

.3.5.1.2.4 The action taken by the service element to reject a PDU via the protocqgl shall

pturn a

with a
xy for

abort

urn to

t shall
uence

3.3.5.2 Processing of Confirmed Operations

3.3.5.2.1 The service element shall process invocations of confirmed operations issued by
the application as follows:

a) The service element shall assign an invocation identifier according to the rules

specified in the CCSDS Recommended Standards for SLE transfer services an
it to the operation object.

d pass

CCSDS 914.0-M-1 Page 3-39 October 2008
© 1SO 2013 — All rights reserved

119

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - It is noted that the confirmed operations BIND and UNBIND do not carry
invocation identifiers. Therefore, this specification does not apply to these
operations.

b) When the operation object has been accepted by the proxy for transmission, the
service element shall place the object on a list of pending remote returns. In addition,
it shall start a return timer for the object.

NOTE - The timeout value shall be passed to the service instance as part of its
configuration.

c)[When the proxy returns the operation object via the cinterface
ISLE_SrvProxylnform, the service element shall cancel the return timer,
remove the object from the list of pending remote returns, forward it to the
application, and release the object.

d)| If the return timer expires, the service element shall abort thé-association with the
diagnostic ‘return timeout’.

3.3.5.2.2 The service element shall process invocations of eonfirmed operations issued by
the proxy as follows:

a)| The service element shall verify that the invocation identifier of the operation objgct
is unique for all operation objects on the list‘of pending local returns. If this chgck
fails, the service element shall add a .negative result and a diagnostic ‘duplicgte
invocation identifier’ to the object and ferward it to the proxy for transmission.

NOQTE - It is noted that the confirmed operations BIND and UNBIND do not cafry
invocation identifiers Fherefore, this specification does not apply to these
operations.

b)[The service element shall-add the operation to the list of pending local returns.

c)| When the application returns the operation object via the interface
ISLE_Servicelnitiate, the service element shall remove the object from the list|of
pending local.returns, forward it to the proxy for transmission, and release the objeg

:—F

3.3.5.3 Buffering and Flow Control for Return Link Services

3.3.5.3.12” General Specifications

3.3.5.3.1.1 Service instances for return link services shall implement the transfer buffer
defined by the CCSDS Recommended Standards for SLE return link services (references [4],
[5] and [6]).

CCSDS 914.0-M-1 Page 3-40 October 2008
120 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - The specification of the procedure assumes use of a single transfer buffer. An
implementation may use multiple buffers to increase performance. However, an
implementation must ensure that only a single buffer is queued for transmission
in the delivery mode timely online.

3.3.5.3.1.2 The service element shall use the operation object TRANSFER-BUFFER for
buffering and for transfer of the buffer to and from the proxy.

3.35.3.1.3 The size of the transfer buffer and the value of the release timer are
copfiguration parameters passed to the service instance during configuration. The assqciated
interface is defined by the supplemental Recommended Practice documents for retufn link
sefvice-specific APIs.

NOQTE - The size of the transfer buffer is defined by the number of?PDUs that ¢an be
inserted into the buffer.

3.3.5.3.1.4 A service instance in the provider role shall buffer and'transmit data as follows:

NOQTE - Variations of this basic procedure depending on the delivery mode are spgcified
in3.3.5.3.2.1, 3.3.5.3.3.1,and 3.3.5.3.4.1.

a) The service element shall insert TRANSFER-DATA invocations| and
SYNC-NOTIFY invocations into the butfer in the sequence received from the
application.

b) When the buffer is full, or when-the SYNC-NOTIFY invocation indicates ‘end of
data’, the service element shall forward the complete buffer to the proxy requesting it
to issue a notification when the’buffer has been transmitted.

NOTE - Notifications for transmitted PDUs are specified in 3.2.3.2.

c) When the proxy cannot transmit the buffer immediately, the service element shall
memorize that(@)buffer is queued until it receives the notification via the method
PDUTransmitted().

d) After transmission of the transfer buffer, the service element shall create p new
buffer:

3.3.5:3:2 Delivery Modes Timely Online and Complete Online

3.3.5.3.2.1 For the delivery modes timely online and complete online, a service instance in
the provider role shall handle the release timer and the associated procedure defined in the
CCSDS Recommended Standards for return link services (references [4], [5] and [6]).

a) The value of the release timer is a configuration parameter passed to the service
instance via the service-type specific interface defined in the supplemental
Recommended Practice documents for return link service-specific APIs.

CCSDS 914.0-M-1 Page 3-41 October 2008
© 1SO 2013 — Al rights reserved 121

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) When the service element inserts the first PDU into an empty transfer buffer, it shall
start the release timer.

c) When the release timer expires and the transfer buffer is not empty the service
element shall transmit the buffer regardless of its fill-grade.

3.3.5.3.3 Delivery Mode Timely Online

Q4 [l) N H Lo i 1 L H : 4 N A 1)
335\ DL FUT UIC UtTIvETy THUUT UTTICTy UTHHTIT, a STTVILT Histdlive 1T uic pruviuct TUIT ol a”

apply the following additional rules before transferring the buffer to the proxy:

a)| When a buffer is already queued, the service element shall request the proxy|to
discard the buffer.

b)[If the return code from the proxy indicates that a buffer has been discarded, the
service element shall insert a SYNC-NOTIFY invocation, indigating ‘data discarded
due to excessive backlog’, at the beginning of the buffer.

NQTE - |If data transfer for the previous buffer has @lready started or when the
notification that the buffer has been transmitted is already pending in a
different thread of control, the proxy shallyindicate that no buffer has bden
discarded.

3.3.5.3.4 Delivery Modes Complete Online and Offline

3.3.5.3.4.1 For the delivery modes complete online and offline, a service instance in the
provider role shall perform the follewing procedure to suspend data transfer when the
transmission capacity is exceeded.

a)| When the buffer is due for transfer and a buffer is already queued, the service elemgnt
shall return a code to the application indicating ‘suspend data transfer’.

b)[When receiving~PDUs that must be buffered from the application in a period,|in
which data transfer has been suspended, the service element shall reject the requpst
with a codéedndicating “data transfer suspended’.

¢)| Whendata transfer has been suspended and the service element receives the
notification that the previous buffer has been transmitted, it shall forward the current
buffer to the proxy, create a new buffer, and notify the application that data transfer
can be resumed.

NOTE - The notification to the application is passed by the method
ResumeDataTransfter () of the interface ISLE_Servicelnform.

CCSDS 914.0-M-1 Page 3-42 October 2008
122 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.5.3.5 STOP Operation

3.3.5.3.5.1 When receiving a STOP return from the application, a service instance in the
provider role shall transmit the transfer buffer if it is not empty.

a) For the delivery mode timely online the service element shall apply the procedure
defined in 3.3.5.3.3.1.

b) For the delivery modes complete online and offline, the service element shall transfer

thao bt tffar slon vahaoin o Wi f oy 1o Slvaadhy o iadl
e otITCT Al SU- Wi a DuTicT rsarrcadyguctc U,

3.3.5.3.6 User Side Processing

3.3.5.3.6.1 When receiving a transfer buffer from the proxy, a service instance in the user
role shall extract the TRANSFER-DATA invocations and SYNC-NOTIFY invocatiops and
forward them to the application using individual operation objects- These objects shall be
forwarded in the sequence the invocations have been stored into the buffer.

3.3.5.4 Flow Control for Forward Services

3.3.5.4.1 A service instance in the user role supporting a forward link servicg shall
implement the following flow control procedure for the operation TRANSFER-DATA.

NOTE - The specification of the procedure assumes use of a single TRANSFER-DATA
invocation pending for transmission by the proxy. An implementation may
support multiple outstanding TRANSFER-DATA invocations to increase
performance.

3.3.5.4.2 When receiving-a* TRANSFER-DATA invocation from the applicatiop, the
sefvice element shall forward it to the proxy requesting the proxy to issue a notification) when
the buffer has been transmitted.

NOTE - Notifications for transmitted PDUs are specified in 3.2.3.2.

3.3.5.4.3 When the proxy cannot transmit the buffer immediately, the service element shall
rejurn a egde to the application indicating ‘suspend data transfer’.

3.3.54.4 When receiving a TRANSFER-DATA invocation in a period, in which data
transfer has been suspended, the service element shall reject the request with a code
indicating ‘data transmission suspended’.

3.3.5.45 When data transfer has been suspended and the service element receives the
notification that the previous TRANSFER-DATA invocation has been transmitted, it shall
notify the application that data transfer can be resumed.

NOTE - The notification to the application is passed by the method
ResumeDataTransfer () of the interface ISLE_Servicelnform.

CCSDS 914.0-M-1 Page 3-43 October 2008
© 1SO 2013 — Al rights reserved 123

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.5.5 Handling of Service Parameters

3.3.5.5.1 A service instance in the provider role shall maintain all service parameters
defined in the CCSDS Recommended Standards for SLE transfer services. For service
parameters that are updated by the production process, the service instance shall provide an
interface for the application to pass the updated values.

NOTE - The interface to update service parameters is service-type specific and is defined
by the relevant supplemental Recommended Practice for the service-specific API.

3.3.5.5.2 A service instance in the provider role shall implement the GET-PARAMETER
operation by returning the value of the requested parameter. It shall not forward the
GET-PARAMETER invocation to the application.

3.3.5.5.3 A service instance in the provider role shall implement status reporting as defirled
in the CCSDS Recommended Standards for SLE transfer services.

3.35.5.3.1 The service element shall not forward the SCHEDULE-STATUS-REPORT
invocgtion to the application, but perform all required actions internally.

3.35.5.3.2 When the SCHEDULE-STATUS-REPORT " invocation requests perioglic
transfer of status reports, the service element shall check the cycle period against the linfits
specifled in its configuration database and reject the.request when the period is not within
these limits.

3.3.5.5.3.3 When status reports have been-scheduled, the service element shall generate the
STATUS-REPORT invocation from the-wvalues of the service parameters at the time the
status report is due and send it without involvement of the application.

3.3.5.9.3.4 If the delivery mode:of the service instance is ‘offline’, the service element shall
reject p SCHEDULE STATUS REPORT invocation with a negative return and the diagnostic
‘not syipported in this delivery mode’.

NOTH - The CCSDSforward transfer services do not support the delivery mode ‘offling’.
Therefore; ‘not supported in this delivery mode’ is not a valid diagnostic code for
these 'services.

3.3.6 | LOGGING AND NOTIFICATION

3.3.6.1 The service element shall generate log messages for important events and enter
them to the system log of the hosting system using the interface ISLE_Reporter, passed
to its configuration method.

NOTE - The arguments to be supplied with a log message are specified in annex A.
Specific requirements and constraints on how this interface must be used are
defined in 3.6.2.

CCSDS 914.0-M-1 Page 3-44 October 2008
124 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.6.2 The log messages generated by the service element shall include, but not be limited
to those explicitly defined in this subsection.

NOTE - Guidelines for selection of the events that are entered to the log are defined in
3.6.2.

3.3.6.3 The service element shall notify the application of the events defined in 3.6.2.6.

3.3.6.4 The log messages and notifications shall be defined and documented by
implementations of the API Service Element.

3.3.6.4.1 Each log message shall be identified by a unique number, which is.referenced in
the¢ documentation and passed to the interface 1SLE_Reporter, whenpthe message is
logged.

3.3.6.4.2 Log message identifiers in the range 0 to 999 shall be-reserved for use by this
Rdcommended Practice and its supplemental Recommended Practice documents for sgrvice-
specific APIs. These log message identifiers shall not be used for messages defined by
implementations.

NOQTE - This version of the specification does nat.define any log messages. ldentifiers
are reserved for potential future use. Besides this constraint, each component
implementation can independently “assign log message identifiers, as the
component identification is also passed to the interface ISLE_Reporter

3.3.7 DIAGNOSTIC TRACES

NOTE - Support for diagnostic traces is an optional feature. This subsection cgntains
specific requirements for the service element. Further general specifigations
concerning the events that are traced and the information entered in trace rpcords
are providedin 3.6.3.

3.3.7.1 The service element shall provide a feature to generate trace records for events and
to pass them ta’the interface 1SLE_Trace.

3.3.7.1.1.~A'trace for a specific service instance can be started and stopped via the inferface
ISLEc TraceControl exported by service instance objects.

3.3.7.1.2 'When the argument Torward in the method StartTrace() Is set to true, the
service instance shall start tracing for all associations to which it is bound as long as tracing
is enabled. The service instance shall stop tracing by an association when StopTrace() is
called, if it has started tracing by the association.

NOTE - The service instance can only forward the request if the proxy supports tracing.

CCSDS 914.0-M-1 Page 3-45 October 2008
© 1SO 2013 — Al rights reserved 125

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.7.1.3 Traces started via the interface ISLE_TraceControl exported by the service
element shall include all service instances as well as events that cannot be associated with a
specific service instance. When tracing is stopped via the interface of the service element, all
traces started for individual service instances shall be stopped as well.

3.3.7.1.4 When the argument Forward in the method StartTrace() is set to true, the
service element shall start tracing for all proxies to which it is linked. The service element
shall stop tracing by a proxy when StopTrace() is called, if it has started tracing by the

proxy

NOTH - The service instance can only forward the request if the proxy supports tracing.

3.3.7.1.5 After creation, all traces in the service element shall be disabled.

3.3.8 | EXECUTION CONTEXT

3.3.8.1 Processes

3.3.8.1.1 Every instance of the component API Service Elément shall exist within a single

applicption process and provide interfaces only to clients in'thie same process.

3.3.8.1.2 The creator function shall ensure that a=single instance of the service elemgnt
companent is created within one process.

3.3.8.2 In Process Threads

3.3.8.2.1 For the interaction with the-application, the service element shall provide at lepst
one of the behaviors defined in.8.7 as well as the control interface associated with the
provided behavior.

3.3.8.2.1.1 The servicecelement shall provide the same behavior for all interfaces expoged
to the ppplication.

3.3.8.2.1.2 Theservice element shall expect that the complementary interfaces provided [by
the application~and used by the service element have the same behavior as the interfages
provided toithe application.

3.3.8. 2 2—Fertheinteractionwiththe-proxythe-servce-element-shal-provide-atdeastone! of
the behaviors defined in 3.6 and control the proxy using the interface associated with that
behavior.

NOTE - The behavior provided towards the proxy need not be the same as the one
provided towards the application.

3.3.8.2.2.1 The service element shall provide the same behavior for all interfaces exposed
to the proxy.

CCSDS 914.0-M-1 Page 3-46 October 2008
126 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.8.2.2.2 If the service element provides the sequential behavior towards the proxy, it
shall provide the event monitor and the timer handler defined in 3.7.2.

NOTE - If the service element also provides sequential behavior towards the application,
it must pass the event monitor and the timer handler supplied by the application
to the proxy.

3.3.8.2.3 An implementation may provide more than one of the specified behaviors on
either interface. If that option is selected. the implementation shall specify the means by
which the desired behavior can be selected.

NOTE - An implementation may support selection of the behaviar- by gff-line
configuration, or may support dynamic selection by call of\a ‘specifi¢ start
function.

3.3.9 CONFIGURATION

3.3.9.1 The service element can be configured for a specific deployment environment by
definition of parameters in a configuration database.

3.3.9.1.1 The detailed content, the structure, and the format of the configuration database
shall be implementation specific and documented. for an implementation together wjth the
procedures for entry and update of configuration‘parameters.

=

NOQTE - This specification does not.jrescribe how the database is created or hoy it is
accessed. The configuration database may consist of a simple file or a|set of
files, or it may be distributed to one or more directory systems or management
information databases.

3.3.9.1.2 Modification pf-the configuration database shall be considered a maint¢nance
activity. The procedures for entry and update of configuration parameters may requife that
the¢ service element is-terminated and restarted for the modifications to become effectivg.

3.3.9.1.3 ThenService element shall specify a configuration file, which provides all
information-required by the proxy to access the configuration database. The full path name
of this filexshall be passed to the Configure() method of the administrative interfacg.

NOTE - The configuration file might contain all configuration parameters or [might
contain references to other files or information that enables the service element to
query some database for the configuration parameters.

3.3.9.2 The information in the configuration database of the service element shall include,
but not be limited to:

a) the mapping of port identifiers to protocol identifiers for selection of the proxy
instance, as defined in 3.3.4.1.1.3; and

CCSDS 914.0-M-1 Page 3-47 October 2008
© 1SO 2013 — Al rights reserved 127

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

128

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) the minimum and the maximum value for the reporting cycle to be supported for
periodic status reports for a service element supporting the provider role.

3.3.10 INITIALIZATION, START-UP, TERMINATION, AND SHUTDOWN

3.3.10.1 The service element must be initialized by a call to the method Configure() of
the interface ISLE_SEAdmin, passing it the name of the configuration file and the
interfaces of other components needed.

NOTH - The interfaces needed by the service element and the exact signature are-defired
in annex A.

3.3.10,1.1 When the method Configure() is called, the service elementcshall check the
configuration on completeness and consistency. If any of the checks fail, the'service element
shall generate appropriate error messages to the log and return a result’code indicating a
configuration error.

3.3.1011.2 If the configuration database is complete and consistent, the service element shall
perform all actions required to configure the component. If there are any errors, the servjce
elemept shall log errors indicating the reason and return an.error code to the client.

3.3.10,1.3 Only when all initialization procedures have been completed successfully it shall
returnja positive result code.

3.3.10,2 Following configuration, all proxy< instances needed must be registered with the
service element, using the method AddP roxy () of the interface ISLE_SEAdmin.

3.3.1012.1 The service element shall check whether the proxy registration is compatible wjith
its copfiguration database, its-Gapabilities, and previous registrations. If there are gny
problgms, it shall log an errorand reject the registration with an appropriate error code.

3.3.10{2.2 The checks performed by the service element shall include, but not be limited|to
the following:

a)| The protaeol identifier passed with the registration request must be defined in the
configuration database if the proxy supports associations in the initiator role for the
givén-deployment environment.

NOFE—=—Theargumentroteof the method—AddProxy©)—shalindicatethe—bind
roles which associations of the proxy support for the given installation. If a
proxy implementation can support the initiator role but this role is not needed
by the application, this argument should be set to *provider only’.

b) The number of proxies registered must be within the limits supported by the service
element.

CCSDS 914.0-M-1 Page 3-48 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

c) Duplicate registration of the same proxy or the same protocol identifier m
prevented.

NOTE - Remaining checks must be performed when the service element is s

ust be

tarted.

For instance, the service element must ensure that all protocol identifiers used
in its mapping table are actually supported by a proxy that has been

registered.

3.3.10.2.3 Regqistration of proxies must be performed after configuration and before

op
an

3.
as

N(

3.9
co

3.3
tha

3.3

op
res

N(

3.
m§
ca
co

N(

eration of the service element is started. Invocation of the function at other times reg
error.

.10.3 Operation of the service element shall be started by a call to, the"start n
ociated with the behavior selected according to 3.3.8.2.1.

DTE — The start method is defined by the control interface associated with the sq
behavior. Control interfaces are specified in annex As

.10.3.1 The service element shall only start operation<when the initialization ha
mpleted with success. Otherwise, the start function shall return an error.

.10.3.2 As part of the start method, the service efement shall start operation of all
it have been registered. If starting of any of the-proxies fails, it shall log an error.

.10.3.3 If starting of at least one of the proxies succeeds, the service element sha
eration. If starting of at least one ofthe proxies failed, the service element shall re
ult indicating ‘degraded mode’. Otherwise, the function shall return with success.

DTE - Start of a proxy may fail because of problems with one or more interfac
such a case, communication with a subset of the peer-systems might g
possible.

.10.4 Operation .6f)the service element shall be terminated by a call to the ter

led, the sefwice element shall stop processing and revert to the state it hag
hfiguration'and before the start method was called.

DTE ‘= The terminate method is defined by the control interface associated w

ults in

nethod

lected

5 been

roxies

| start
turn a

bs, In
till be

minate

thod associated-with the behavior selected according to 3.3.8.2.1. When this method is

after

th the

selected behavior. Control interfaces are specified in annex A.

3.3.10.4.1 If service instances are still active and not in the state ‘unbound’, the service
element shall abort the associations and release the service instance objects.

3.3.10.4.2 The service element shall invoke the terminate method on all proxies which it has
started.

3.3.10.4.3 The service element shall release all resources it has allocated after the call to the
start method.

CCSDS 914.0-M-1 Page 3-49 October 2008
© 1SO 2013 — All rights reserved

129

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

130

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.3.10.5 The service element shall be instructed to shutdown by a call to the method
ShutDown() in its administrative interface.

3.3.10.5.1 The service element shall reject the request when it is still operating.
NOTE - Inthis case, the client shall be required to invoke the ‘terminate function’ first.

3.3.10.5.2 The service element shall release all interfaces of other components on which it
still holds references, delete all internal objects, and release any other resources it may have
allocaged.

3.3.1015.3 The service element shall ensure that all objects of the component are deleted
when tlients holding a reference on interfaces have released these references.

3.3.10(5.4 When the method returns with success, the service element has.ceased to exist.

3.3.11) COMPONENT OBJECTS AND INTERFACES

3.3.111 The component API Service Element shall implement the following compongnt
objectp and interfaces:

NOTH - Component objects are defined in annex«D-of this specification. As explaired
there, a component object is an externally visible entity that may be implemented
by a single object or by several interal objects, which co-operate to provide the
required external view. As specified in annex D, every component object shall
support the interface 1Unknewn in addition to the interfaces listed in this
subsection. The interfaces yeferenced in the following are specified in annex] A
and in the supplemental Recommended Practice documents for service-specific
APIs.

a)| a single instance of ‘the API Service Element, which shall export the following
interfaces and support navigation between these interfaces via the method
QuerylInterface():

1) the interface ISLE_SEAdmin;

2) thesinterface ISLE_Locator;

3), the interface 1ISLE_SIFactory;

4) the interface ISLE_Sequential if the service element supports ‘sequential
interface behavior’ as specified in 3.7.2;

5) the interface ISLE_Concurrent if the service element supports ‘concurrent
interface behavior’ as specified in 3.7.2; and

6) the interface ISLE_TraceControl if the service element supports diagnostic
traces as specified in 3.3.7;

CCSDS 914.0-M-1 Page 3-50 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) service instance objects, which export the following interfaces and support navigation
between these interfaces via the method QuerylInterface():

NOTE - A separate object shall be provided for every service instance created by the
application.

1) the interface ISLE_SIAdmin;

2) the interface I<SRV>_SI1Admin for service instances in the provider role, if this
iNtertace is specified for the SLCE Service type supported by the Service instajce;

NOTE - The prefix I<SRV> is substituted by the abbreviation for the-service type,
e.g., “IRAF’. The supplemental Recommended Practice. for the sgrvice-
specific API defines the interface, if it is needed.

3) the interface 1<SRV>_Sl1Update for service instances(in the provider fole, if
this interface is specified for the SLE service type“Supported by the gervice
instance;

NOTE - The prefix I<SRV> is substituted by the abbreviation for the servicg type,
e.g., “IFSP’. The supplemental Recommended Practice for the sgrvice-
specific API defines the interface, If it is needed.

4) the interface ISLE_SIOpFactory;

5) the interface ISLE_TraceControly:if the service element supports diagnostic|traces
as specified in 3.3.7; and

6) the interface ISLE_Servicelnitiate;

c) one or more objects far\processing of external events, which shall export the inferface
ISLE_EventProcessor if the service element supports ‘sequential interface
behavior’;

d) one or morerobjects for processing of a timeout, which shall export the interface
ISLE_TameoutProcessor if the service element supports ‘sequential inferface
behavigr’.

NOTE - If the service element supports the interface behavior ‘sequential’ pn the
interface to the proxy and the interface behavior ‘concurrent’ on the inferface

ta tha annbicatinn 1t chall alea imnlomant and avnart tha it rfaces
U L LAY MPPII\IM‘.U", m STTAATT UTJIU llllr’l\:lll\)llk AT UI\PU'L LB AY] micte

ISLE_EventMonitor and ISLE_TimerHandler.

3.3.11.2 For the interface ISLE_SrvProxyInform, the service element shall implement
one of the following options:

a) the interface 1SLE_SrvProxylnform shall be exported by the same object
exporting the interfaces listed in 3.3.11.1 item b); or

CCSDS 914.0-M-1 Page 3-51 October 2008
© 1SO 2013 — Al rights reserved 131

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) the interface ISLE_SrvProxylnform shall be implemented by a separate
component object, which shall also implement a separate interface 1Unknown.

NOTE - Clients of the component do not need to navigate between the interfaces
listed in 3.3.11.1 item b) and the interface ISLE_SrvProxylInform.
Therefore, an implementation may opt to support the interfaces to the proxy
and to the application by different objects.

3.4 BLE OPERATIONS
3.4.1 | OPERATION OBJECTS

3.4.1.1 The component ‘SLE Operations’ shall implement one operation @bject class for
every |[SLE operation defined for the service types it supports. Common-operations shall |be
provided by all implementations.

NOTH - Common operations are defined in this subsection.~ Service-type specific
operations are defined in the relevant supplemental ' Recommended Practice for
the service-specific API.

3.4.1.2 Operation objects shall store the parameterscdefined for the SLE operation, gnd
provide read and write access to these parameters: > For confirmed operations, operation
objectp shall contain the invocation parameters ang-the return parameters.

3.4.1.3 A reference to the interface 1SLEOReporter may be optionally passed as [an
argument to the creator function. This interface can be used by implementations to repprt
errorsjand inconsistencies detected in the attributes of operation objects.

3.4.1.4 The component shall provide an ‘operation factory’, which shall create operation
objectp in response to requests received via the interface ISLE_OperationFactory.

3.4.1.4.1 A reference to’the operation factory shall be returned by the creator function for
the component.

3.4.1.4.2 The~operation object to be created shall be specified by an identifier for the
operatjon object’interface, the operation type, the service type and the version number of the
service. ANMhen the component does not support objects with the specified interface, the
service type, or version number, or when the operation is not defined for the service type gand
version the factory shall reject the request.

3.4.1.4.3 Following creation, the parameters held by an operation object shall be set to the
initial values defined in annex A for common operations and in the relevant supplemental
Recommended Practice for the service-specific API for service-type specific operations.

NOTE - Deletion of operation objects shall be achieved by the reference counting scheme
defined in annex D.

CCSDS 914.0-M-1 Page 3-52 October 2008
132 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.4.1.4.4 Unless specified differently in annex A, data passed to operation objects shall be
considered the property of the operation object and be deleted when the object itself is
deleted.

3.4.2 CHARACTERISTICS OF OPERATION OBJECTS

3.4.2.1 Common characteristics of operation objects shall be defined by the interface
ISLE Operation, which shall be inherited by all interfaces exported by operation objects.

NOTE - This subsection specifies essential characteristics but does not address|every
method of the interface. Annex A defines the methods.

3.4.2.1.1 An operation object shall be identified by the combination of avidentifier for the
opgration, an identifier for the service type and the version number of the servicq type.
Operation objects shall provide methods to query these identifiers.

3.4.2.1.2 Operation objects shall provide methods to verify that the invocation argyments
ar¢ complete, consistent and in range.

NQTES

1 The checks are specified in annex A far.common operations and in the rglevant
supplemental Recommended Practice -for the service-specific APl for servide-type
specific operations. These checks assume that the operation object has been passed
from the proxy or is about to be {passed to the proxy. Therefore, the checks do not
include parameters handled by the proxy.

2 Implementations may issue“log messages to report errors detected by these mgthods
using the interface SISLE_Reporter passed to the creator function ¢f the
component.

3.4.2.1.3 All operation objects shall store the parameter for the invoker credentials.

3.4.2.1.4 Operation objects shall provide a method to produce a human readable|string
in¢luding thesmames and values of all parameters set in the object. For binary dafa, the
method shall' produce a dump of hexadecimal digits, where the maximum length of the dump
is ponstrained by an argument to the method.

NOTE = This Specification does not prescribe the format of the printout nor the names of
the parameters. When defining the output it should be considered that it will be
included into diagnostic traces and must be interpreted by humans. The output
should be understandable to engineers that are not programmers.

3.4.2.1.5 In order to increase performance, the interfaces provided by operation objects are
not safe in a multi-threaded environment. However, operation objects shall support an
advisory lock that can be set on the object. This lock must be used by clients in a multi-
threaded environment. The implementation shall prevent self-inflicting deadlocks.

CCSDS 914.0-M-1 Page 3-53 October 2008
© IS0 2013 — Al rights reserved 133

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.43 CHARACTERISTICS OF CONFIRMED OPERATION OBJECTS

3.4.3.1 Common characteristics of objects implementing confirmed operations shall be
defined by the interface ISLE_ConfirmedOperation, which is inherited by all
interfaces exported by confirmed operation objects.

NOTE - This subsection specifies essential characteristics but does not address every
method of the interface. Annex A defines the methods.

3.4.3.1.1 Confirmed operations shall store the invocation identifier used in the invocation
PDU gnd in the return PDU.

3.4.3.1.2 Confirmed operations shall store the result of the operation and, if the,result is pet
to ‘negative’, the associated diagnostics.

3.4.3.1.3 Confirmed operation objects shall store the parameter.for the performer
credentials.

3.4.3.1.4 Confirmed operation objects shall provide methads:to verify that the retyrn
arguments are complete, consistent, and in range.

NOTH - The checks are specified in annex A for common operations and in the relevant
supplemental Recommended Practice forthe service-specific API for service-type
specific operations. These checks assume that the operation object has bgen
passed from the proxy or is about\to be passed to the proxy. Therefore, the
checks do not include parameters‘handled by the proxy.

3.4.4 | COMMON OPERATION OBJECT CLASSES
3.4.4.1 Operations for Common Association Management

3.4.41.1 All implementations shall provide operation objects for the following SLE
operatjons:

a) | the operation BIND;
b)| the operdation UNBIND; and
c) | the'operation PEER-ABORT.

3.4.4.1.2 The operations for association management shall be included in the set of service-
type specific operations provided for a given service type. The implementation shall ensure
that the service type information returned by these objects matches the service type for which
it has been created.

NOTE - This specification implies, for instance, that a BIND operation object that has
been created for the FSP service always returns the service type identification
‘FSP”.

CCSDS 914.0-M-1 Page 3-54 October 2008
134 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.4.4.2 Other Common Operations

3.4.4.2.1 All implementations shall provide objects for the following SLE operations,
which are used for more than one SLE service type:

a) the STOP operation;
b) the SCHEDULE-STATUS-REPORT operation; and
c) the pseudo-operation TRANSFER-BUFFER.

N(

3.4
pr

information returned by these objects matches the service type for which it has been cre

DTE - TRANSFER-BUFFER is actually not defined as an SLE operation |
CCSDS Recommended Standards for return link services (references/[4] a
and [6]). Within the API, the operation object shall implement the transfer
used for return link services. It shall correspond to, the PDU us
transmission of the transfer buffer.

|.4.2.2 These operations shall be included into the set of service-type specific ope
pvided for a given service type. The implementation shall ‘ensure that the servic

y the
nd [5]
buffer
pd for

ations

e type
ated.

NOQTE - This specification implies, for instance, that.a'STOP operation object that hgs been
created for the FSP service always returngthe service type identification ‘FSP”.

3.4.4.2.3 The operation object for the . pseudo-operation TRANSFER-BUFFER| shall

provide a facility to queue and to de-queue‘any type of operation objects. The objeqt shall
nof check what operation objects are inserted into the buffer.

NOTE - Itis considered the responsibility of the client to insert only those objects for|which
buffering has been defined in the CCSDS Recommended Standards for retuyn link
services (referepees [4] and [5] and [6]). This implies that a client extracting
objects from the buffer must verify that the type of the object is correct. Detgils on
the features provided for queue handling are defined by the interface in annex A.

345 COMRONENT OBJECTS AND INTERFACES

3.4.5.1 The component SLE Operations shall implement the following component ¢bjects

ang interfaces:

NOTE — Component objects are defined in annex D of this Specification. AS explained
there, a component object is an externally visible entity that may be implemented
by a single object or by several internal objects, which co-operate to provide the
required external view. As specified in annex D, every component object shall
support the interface TUnknown in addition to the interfaces listed in this
subsection. The interfaces referenced in the following are specified in annex A.

a) an object for the operation object factory exporting the interface
ISLE_OperationFactory; and
CCSDS 914.0-M-1 Page 3-55 October 2008

© 1SO 2013 — All rights reserved

135

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) operation objects for all operations required by the SLE service types supported.

NOTE - A separate object shall be supported for every operation object created via the
operation factory.

3.4.5.2 Operation objects shall export the following interfaces and provide navigation
between these interfaces via Querylnterface():

a) the interface ISLE_Operation;

b)| the interface 1SLE_ConfirmedOperation, if the SLE operation supported’|by
the object is confirmed; and

c)| the interface specified for the operation type supported by the object.

3.5 PBLEUTILITIES
3.5.1 | GENERAL SPECIFICATIONS

3.5.1.1 The component ‘SLE Utilities’ shall implement ‘auxiliary objects that must |be
passed across component boundaries. The object classes provided are:

a)| a memory management class handling allocation and release of memory for data
structures passed across component boundaries;

b)[a time class handling specific CCSDS time formats;

c)| a class handling the service instance identifier defined by the CCSDS Recommended
Standards for SLE transfer services;

d

N—r

a class handling the credentials passed with SLE protocol data units for authenticatjon
of the peer identity; and

e)| a class storing security attributes of an SLE application and capable of generating
credentials and-authenticating credentials.

NOTHS
1 The API requires a common implementation for objects passed between compongnt

boundaries. Use of component interfaces for such objects instead of a standard class
Iihmry minimizes the dnpnndnnr‘inc hetween the AP] components

2 The functionality and the interfaces defined for SLE Utilities are minimal and
restricted to what is needed for the SLE API.

3.5.1.2 The component shall provide a ‘utility factory’, which shall create utility objects in
response to requests received via the interface ISLE_Uti lFactory.

CCSDS 914.0-M-1 Page 3-56 October 2008
136 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - Deletion of utility objects is achieved by the reference counting scheme d

in annex D.

efined

3.5.1.3 A reference to the utility factory shall be returned by the creator function for the
component.

3.5.1.4 An interface providing an external time source may be passed to the component as

an
ex

argument to the creator function. If this option is used, the component shall u
ternal time source interface to obtain current time. Otherwise, it shall use system tim

N(

1

3.5
sal
1N

N(

3.8

N(

DTES

The external time source is provided via the interface ISLE_TimeSource d
in 3.6.4 and in annex A.

The current time obtained via the external time source cor-from system t
supplied to other APl components via the Time class specified in 3.5.2.

1.5 In order to increase performance, the interfaces provided by utility objects 4
e in a multi-threaded environment, except for the. memory management in
alloc.

DTE - In general, utility objects shall either be stored locally or need to be accesse
in combination with the operation-object passing the value. Therefore, acg
a single thread of control can generally be guaranteed by the processing ¢
Should special protection be«tequired, this must be implemented by the cli
the object.

.2 MEMORY MANAGEMENT

DTE — An SLE API” specific memory management service is required to

independently developed components. The interface provided conforms to the
memory manager specified in reference [J5] in order to allow use of the SLE
a COM environment. However, implementations are not required to provide 3
conforming implementation and clients should only rely on the methods spec
this subsection. For further information see annex A and annex D.

se the
e.

efined

me is

ire not
erface

d only
ess by
pntext.
ents of

avoid

inconsisténcies between memory management services used by different

COM
API in
COM
fied in

3.5.2.1 The services of the memory manager shall be made available by the Int

IMal loc. The features provided shall include:

a) allocation of a block of memory;

b) release of a previously allocated block of memory; and

erface

c) re-allocation of a block of memory using a new block size, the contents of the block

are unchanged up to the shorter of the new and old sizes.

CCSDS 914.0-M-1 Page 3-57 October 2008
© 1SO 2013 — All rights reserved

137

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.5.2.2 Implementations may provide dummy implementations for the following methods
defined by the interface IMal loc:

a) GetSize() always returning zero;
b) DidAlloc() always returning —1;

c) HeapMinimize().

3.5.2.3—Fhe—component—SEE—JtHities—shal—make—sure—that—aH—memery—aHoeated—and

releasg¢d via the interface IMal loc is subject to a consistent memory management schema.

NOTH - Provided that this requirement is met, implementations may use multiple objegts
or a single object to implement the interface IMal loc.

3.5.2.4 The implementation of the interface IMal Ioc shall be multi-thread safe.

3.5.2.% API components and SLE Applications using the API shall be required to use the
memory manager for allocation and release of all data structures passed between API
compg@nents and between APl component and the SLE application.

NOTH - This requirement does not apply to utility*objects and operation objects, |as
memory management for these is achieved-by reference counting as specified|in
annex D.

3.5.3 | TIME

NOTH - CCSDS SLE Recommended Standards require that all time parameters be in UTC.
However, the time class is not required to perform conversion between local time
and UTC. It is assumed that the systems providing or using SLE Services will yse
UTC as their (system time or supply UTC time via the interface
ISLE_TimeSource, if that interface is used. (For possible exceptions see
3.6.4)

3.5.3.1 The services of the time class shall be made available by the interface
ISLE[Time.<The features provided shall include:

a) | setting the time from the following inputs:

T) the CCSDS day segmented time code (CDS) Specified in reference [1] with the
following selection of options:

i) level 1 epoch, i.e., 01.01.1958;
i) 16-bit day field;
iii) resolution in microseconds;

iv) the P-Field is implicit and not part of the input or output data;

CCSDS 914.0-M-1 Page 3-58 October 2008
138 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2) the CCSDS ASCII Calendar Segmented Time Code specified in referen

ce [1]

with two variants A (Month/Day of Month) and B (Year/Day of Year), supporting

the following subsets:
i) the calendar subset;
il) the time subset to the resolution defined by the client;

output of the stored time in the formats defined by item a);

3.8
3.9

N(

3.8

N(

4

resetting the time to current time;
comparison of two time objects;

calculation of the difference between two time objects and output'of the re
seconds and fractions of seconds.

3.2 After creation of an object, the time value shall be set to carsent time.
3.3 The time class shall support time values up to an aceuracy of one microsecong

DTE — This requirement is to be understood such that the object shall maintg

accuracy of a time value passed to it. The.daccuracy of the time value wh
current time is set depends on the capability of the platform.

SERVICE INSTANCE IDENTIFIER

DTES

The service instance identifier is specified in the CCSDS Recommended Sta
for SLE transfer services as a Distinguished Name as defined by reference [1
addition, the CCSDS Recommended Standards define a human readable
format. This class-Supports both formats and is able to convert between them.

This class“s not required to provide a general implementation for disting
names. Invparticular, the implementation may take advantage of the following:

— «the attribute value is always an ASCII string;

— the values of the object identifiers used to identify the attributes have a fix4

sult in

in the
en the

hdards
7]. In
string

uished

d size

and differ nnly in the last component

[V1:] For version 1 of the SLE transfer services RAF, RCF, and CLTU, the
specification of the Service Instance Identifier is provided in annex C of this
Specification. By default the class shall support the service instance identifier format

defined by the CCSDS Recommended Standards for transfer services. Support
initial format defined by annex C is optional and must be requested by calli

of the
ng the

appropriate method. Implementations not supporting the initial format shall return an

error when this method is called.

CCSDS 914.0-M-1 Page 3-59 October 2008
© 1SO 2013 — All rights reserved

139

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.5.4.1 The services of the service instance identifier class shall be made available by the
interface ISLE_S1 1. The features provided shall include:

a) setting of the service instance identifier value from the following inputs:

1) a sequence of relative distinguished names where the attribute is identified by an
object identifier presented as a sequence of integers and the attribute value as an
ASCII string;

2) [\11] for varcion 1 of tha DAE DCE aor ClL Tl] carvica tha ctandard AQ(:”
V+———o—e S o0 +—He——Ar—vor—O0H— ot o—ePAGE—HE—SHRaaHG— o

representation of the service instance identifier as defined in annex C; or

3) [V2:] the standard ASCII representation of the service instance identifier {as
defined in the CCSDS Recommended Standards for SLE transfer services;

b)[output of the service instance identifier in the formats defined in item-a);
c) | testing two service identifier objects for equality;

d)| [V1:] for version 1 of the RAF, RCF or CLTU service, verification that the attribuges
used in the service instance identifier are those defined-by)annex C;

NOTE - For version 1 of the services RAF, RCF, and"CLTU, the class shall not chgck
the number, sequence, or selection of attributes. Also it shall not check gny
of the attribute values.

e)| [V2:] verification that the format conforms to the specification provided in the
CCSDS Recommended Standards for SLE transfer services.

NOTE - The attributes used in-the identifier and the sequence of the attributes mpst
conform to the specification and all required attributes must be present. |In
addition, the CCSDPS Recommended Standards define a permissible set|of
values for someof the attributes, which must be adhered to.

3.5.4.1.1 The class shallprocess input and output as follows:

a)| When processing input of a value presented in ASCII, the class shall check the synfax
and perform the checks specified in 3.5.4.1. If there is an error, it shall reset the
internakvalue to NULL and return an error.

b)[In‘the ASCII representation produced as output, a NULL value of the service instance
identifier shall be represented by a string of three asterisks (“***”). This value shall

not be accepted for input.

3.5.4.2 After creation, the value of the service instance identifier shall be NULL; i.e., the
distinguished name shall not contain any components.

CCSDS 914.0-M-1 Page 3-60 October 2008
140 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.5.5 CREDENTIALS

3.5.5.1 Objects of the credentials class shall store the following attributes, as defined by
reference [18] for the simple authentication scheme:

a) the time when the credentials have been created,;
b) arandom number;

c) a message digest produced according to the procedure defined in 3.5.6.4.

3.%.5.2 The credentials class shall provide read and write access to its attributes py the
interface ISLE_Credentials.

3.9.6 SECURITY ATTRIBUTES

3.5.6.1 Objects of the class handling security attributes shall stare-the following attributes:
a) User name. The following rules shall apply for this attribute:
1) the user name is a character string of 3 to 16.gharacters; and

2) the user name must be identical to the authority identifier of the applicatjon by
which the application is identified in the BIND invocation and the BIND return.

b) Password. The following rules shall-apply for this attribute:
1) the password is an octet string-of 6 to 16 octets; and

2) SLE API components make no assumptions on the contents of the octets and use
the octet string as supplied.

3.5.6.2 Objects handling security attributes shall not check the length of the user name and
the¢ password but relycon the client supplying the attributes to pass strings of the ¢orrect
length.

NOQTE - It is’eXpected that the components API Proxy and API Service Element check the
tength of the user name and password when reading the configuration dataljase.

3.5.6,3 VThe services of the class shall be made available by the inferface
ISLE) SecAttributes. The features provided shall include:

a) write access to the attributes stored by the object;

NOTE - Because objects hold sensitive information, the interface shall not support
read access.

b) test of two objects of the class for equality;

c) generation of credentials from the security attributes stored; and

CCSDS 914.0-M-1 Page 3-61 October 2008
© 1SO 2013 — Al rights reserved 141

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

142

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

d) authentication of credentials using the security attributes stored.

3.5.6.4 Generation of credentials shall be performed according to the protected simple
authentication procedure (Protected 1) defined in reference [18] and detailed by the following
specifications.

3.5.6.4.1 The following information shall be encoded using the ASN.1 syntax defined in
reference [15] and the Distinguished Encoding Rules (DER) specified in reference [16]:

NOTH - Encoding the information with DER provides a platform independent bit pattiern

from which a hash code can be generated. Use of ASN.1 and DER for gen¢ration
of credentials does not imply that ASN.1 or DER is used for encoding-of data
exchanged between the service user and the service provider, |« Given the
simplicity of the ASN.1 type, encoding can be easily handcraftedyand use of |an
ASN.1 compiler is not required.

a) | the current time, using the CCSDS day segmented time code without the P-field;
b)[a random number generated by the class;
c) | the user name stored in the object; and

d)| the password stored in the object.

3.5.6.4.2 The ASN.1 type used for encoding shalltbe defined as

Hashlnput ::= SEQUENCE

{ time OCTET STRING (SIZE(8))

, randomNumber INTEGER (0 :/-2147483647)
, userName VisibleString

, passWord OCTET STRING

}

3.5.6.4.3 The output of the encoder shall be passed through a one-way hash function|to
obtain|a message digest.

3.5.6.4.4 A new credentials object shall be created and user name, the random number, the
time, and the message digest shall be passed to that object.

3.5.6.% Authentication of credentials shall be performed according to the protected simple
autherjtication procedure (Protected 1) defined in reference [18] and detailed by the following
specif|cations.

3.5.6.5.1 The time in the credentials shall be checked against the current time. If the time
difference is larger than the acceptable delay passed as an argument, authentication shall fail.

3.5.6.5.2 The following information shall be encoded using the ASN.1 type defined in Error!
Reference source not found. and the Distinguished Encoding Rules:

a) the time obtained from the credentials, in the CCSDS format;

CCSDS 914.0-M-1 Page 3-62 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) the random number obtained from the credentials;
c) the user name stored in the object; and

d) the password stored in the object.

3.5.6.5.3 The string shall be passed through a one-way hash function to obtain a message
digest.

35654 The messane diaest shall ha camnared with the messane diaest 1n the cradenti
o4 e ge-eigest-shat-be-coMmpareawWihi-te-A ge-eigestiitie-creaent

these match, authentication shall be regarded as successful. Otherwise, authenticatio
faifl.

3.%.6.6 The one-way hash function used is SHA-1 defined by reference [21}.

3.5.7 COMPONENT OBJECTS AND INTERFACES

THe component SLE Utilities shall implement the following component object
interfaces:

NOQTE - Component objects are defined in annex.Dyof this specification. As exp

N(

als. If
N shall

s and

lained
nented

there, a component object is an externally visible entity that may be implen

required external view. As specified in annex D, every component obje
support the interface 1TUnknown in addition to the interfaces listed
subsection. The interfaces réferenced in the following are specified in anne

a) an object for the utility factory exporting the interface ISLE_Uti lFactory;
b) objects for the time utility exporting the interface ISLE_Time;

c) objects for the service instance identifier exporting the interface ISLE_SI11;
d) objects for the-credentials exporting the interface ISLE_Credentials; and

e) objectsdfor'the security attributes exporting the interface 1SLE_SecAttribut

DTE ~-Separate utility objects shall be supported for every object created via a
the utility factory.

by a single object or by several internal objects, which co-operate to prov%:je the

shall
n this
X A.

[EeS.

call to

3.6 SLE APPLICATION

3.6.1 OBLIGATIONS

NOTE - An application using the SLE API must implement a set of interfaces defined by
the API and perform specific tasks required for correct functioning of the API.

This subsection summarizes the obligations of the application.

CCSDS 914.0-M-1 Page 3-63 October 2008
© 1SO 2013 — All rights reserved

143

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.6.1.1 The application shall create all APl components and configure them, see 3.6.5.

3.6.1.2 The application shall control processing of the service element and participate in
service instance management, see 3.6.6.

3.6.1.3 The application shall implement and export the interface ISLE_Servicelnform
used by the service element for passing of SLE protocol data units received from the peer
SLE application for one service instance.

3.6.1.3 The application shall implement and export an interface by which API componepts
can enter records to the system log and notify the application of specific events, see 36,2.

3.6.1.3 The application shall implement and export an interface by which API.componepts
can enter event trace records for diagnostic purposes. The application shall alse’start and sfop
tracing using the interface ISLE_TraceControl exported by the components. See 3.6.3.

3.6.1.6 The application may implement and export an interface by which the API
compaonent ‘SLE Utilities’ can obtain current time, see 3.6.4.

NOTH - An application using this feature may provide simulated time to the API.

3.6.1.T The application shall participate in memory management by applying the refererjce
counting scheme for component interfaces specified:in annex D to this specification gnd
using the APl memory manager via the interface IMal loc.

NOTH - API memory management is specified in 3.5.2.
3.6.1.8 The application shall terminate-processing of the APl and control orderly shutdoyn
of the|API, see 3.6.5.

3.6.2 | LOGGING AND NOTIFICATION
NOTHS

1 The specifications in this subsection partially apply to clients of the interface
ISLE-Reporter.

2 AP} components shall apply the following guidelines for production of log records
antnotificattons—Errorsdetectedby-acomponent-shal-atwaysbetogged; providing
as much information as possible to support investigation of the problem. Errors
reported by a lower layer component shall not be logged unless important information
can be added. Nominal events shall only be logged when the higher layer component
or the application is not informed of the event by other means.

3 Notifications shall be constrained to events related to security, failure of the
communication system, and to events that cannot be detected by the application by

CCSDS 914.0-M-1 Page 3-64 October 2008
144 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

other means. The event shall be notified by the highest layer in the API that can
detect the event.

3.6.2.1 The SLE Application shall export the interface 1SLE_Reporter by which API
Proxy and the API Service Element can enter log records and notify the application of
specific alarms.

NOTE - An application interface conforming to this specification must provide the
interface 1SI E Reporter. However, this specification does not prescribe

how the application handles the information passed to the interface.

3.6.2.2 The implementation of the interface ISLE_Reporter shall be multi-thread [safe.
3.6.2.3 Log records shall be classified as ‘alarms’ or ‘information messages’.

3.6.2.3.1 Alarms shall be raised for non-nominal events, including-but not limited to:
a) security alarms (access violations and authentication failares);

b) communication system failures;

c) incorrect specification of operation parameters;

d) protocol errors;

e) configuration deficiencies; and

f) errors that might be caused by a malfunctioning component.
3.6.2.3.2 Information messages shall report nominal events for documentation purposes.
3.6.2.4 A log record shall be:an ASCII string without any formatting characters.

NOTE - This specification does not define a maximum length for the [string.
Implementers should consider that most applications impose constraints pn the
length. 0f log records and might have to truncate long strings. Therefofe, the
message should be kept as short as possible.

3.6.2.5 <For every log record the following additional information shall be supplied) using
the arguments of the method LogRecord():

a)_the identification of the component that produced the tog Tecord;
b) the service instance identifier, if applicable;
c) the classification of the log record as defined in 3.6.2.3; and

d) a unique identification number, which is referenced in the documentation supplied by
the implementation of the APl component.

CCSDS 914.0-M-1 Page 3-65 October 2008
© 1SO 2013 — Al rights reserved 145

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - The time of the event is not passed as an argument. It is expected that the time be
added by the method LogRecord().

3.6.2.6 The application shall be notified of the following types of events using the function

Notify():

a) access violation alarms;

b) authentication failures;

¢)| communication system failures;

d)| premature termination of an association by a component before the higher layer
becomes aware of association establishment; and

e)| premature termination of an association by the peer system beforethe higher layer
becomes aware of association establishment.

3.6.2.7 The following information shall be supplied with achotification, using the
arguments of the method Notify():

a) | the type of the notification as defined in 3.6.2.6;
b)| the identification of the component that issued the notification;
c)| the service instance identifier, if applicable;

d)| a unique identification number, which-isreferenced in the documentation supplied |by
the implementation of the APl component; and

e) | optionally an additional text with~a maximum length of 20 characters.

NOTH - The time of the eventishall not be passed as an argument. It is expected that the
time be added by the'method Notify ().

3.6.3 | DIAGNOSTICITRACES

NOTHS
1 The'following specifications partially apply to clients of the interface ISLE_Trace.
2 This specification does ot prescribe fow arm apptication deals withthetrace Tecords

passed to the interface ISLE_Trace.

3 This specification does not prescribe how a trace record is formatted. When defining
the layout, it should be considered that traces are generally used for printout and must
be readable for humans. The output should be understandable to engineers that are
not programmers.

CCSDS 914.0-M-1 Page 3-66 October 2008
146 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.6.3.1 Components supporting traces of events shall generate trace records that are passed
to the interface ISLE_Trace, provided by the SLE Application.

NOTE - Components supporting traces shall implement the interface
ISLE_TraceControl. If a component does not support tracing, a query for
that interface shall be rejected.

3.6.3.1.1 The implementation of the interface 1 SLE_Trace shall be multi-thread safe.

3. i» .3.1.2 The events for which for which trace records are generated and the amgunt of
information that is entered in trace records shall be controlled by a trace level argument to the
mgthod StartTrace() in the interface 1ISLE_TraceControl. The trace levgls are
defined as follows:

a) ‘Low’ — state changes are traced. The information includes-the old state, the new
state, and the event that caused the state change.

b) ‘Medium’ — the trace additionally includes the type of albPDUs processed as Well as
additional interactions between components.

NOTE - An example for an additional interaction, iS-the report by the proxy that 3 PDU
has been transmitted. Further local events may be added by an implementation.

c) ‘High’ — the trace additionally contains a printout of all parameters of thg PDU
processed. The maximum length for@he printout of one argument is constraifned by
the associated argument of the method StartTrace().

d) ‘Full’ — the trace additionally-contains a dump of the encoded data sent fo and
received from the network(

3.6.3.1.3 For every trace fecord the following additional information shall be supplied,
us|ng the arguments of theé method TraceRecord() defined in ISLE_Trace:

[%2]

a) the identification of the component that produced the trace record; and

b) the servicelinstance identifier, if applicable.

NOTES=" The time of the event is not required as it can be added by the method
TraceRecord().

CCSDS 914.0-M-1 Page 3-67 October 2008
© 1SO 2013 — Al rights reserved 147

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.6.4 TIME SOURCE
NOTES

1 Applications may require that APl components use a time source supplied by the
application. Such a feature might be needed if the application uses an external time
source, which is not necessarily synchronized with system time. It might also be used
within simulation campaigns where a simulation might have to run in “future time’
without changing system time.

2 The Time Source interface specified in this subsection is used by the API compongnt
‘SLE Utilities’ to set current time in the interface ISLE_Time. As APl componefts
are required to use that interface for handling of time, the time reference is distributed
to all other API components. If the application opts not to use, this feature, the
component ‘SLE Utilities” uses system time.

3.6.4.1 Applications wishing to provide a time source to the API shall export the interfgce
ISLE[TimeSource and pass this interface to the creator funetion of the APl compongnt
‘SLE tilities’.
3.6.4.2 The interface ISLE_TimeSource shall provide a method returning the current

time if CCSDS CDS format.

3.6.4.3 The time returned by the interface ISLE_TimeSource may have a positive|or
negatiye offset to the system time. However, APl components may rely on the fact that this
offset femains constant within the limits of the-accuracy for timers defined in this specificatign.

NOTHS
1 The required timer accuracy is specified in 3.7.2.8.
2 A constant offset from system time allows implementation of timers using standard

services of the opérating system.

3.6.5 | INITIALIZATION AND SHUTDOWN OF THE API

3.6.5.1 The-application shall create the APl components needed for the specific installation
using the-creator functions provided by the components.

NOTE - The sequence in which the components must be created is partially determined
by information required by the creator function. For instance, the creator
function for operation objects requires a pointer to the utility factory.

3.6.5.2 The application shall configure and link the APl components.

3.6.5.2.1 The application shall configure the service element providing it the path name of
the configuration file and the required interface references.

CCSDS 914.0-M-1 Page 3-68 October 2008
148 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - Configuration of the service element is specified in 3.3.10.

3.6.5.2.2 The application shall configure all proxy instances with the path name of the
configuration file for each proxy and the required interface references including the reference
to the interface 1SLE_Locator obtained from the service element.

NOTE - Configuration of the proxy is specified in 3.2.12.

3.6.5.2.3 The application shall register each of the proxies with the service element.

N(

3.4
se
to

N(

3.6
se

3.6
the

N(

3.4

3.4

inferfaces of the service element.and of all proxies.

3.4

3.6
be
tha

DTE — Registration of proxies with the service element is specified in 3.3.10.

5.3 After configuration of all components, the application shall start proeessing
vice element by invocation of the start method of the control interface;selected acc
3.6.6.1.

DTE - Processing of the proxies shall be started by the service'efement.

5.4 For closedown of the API, the application shall perform the following steps
Juence specified.

5.4.1 The application shall call the terminate method of the selected control interfi
service element.

DTE — Processing of the proxies shall be-Stopped by the service element.
5.4.2 The application shall release all API interfaces on which it holds references.

5.4.3 The application shall~call the method ShutDown() of the adminig

6 CONTROL OFTHE SERVICE ELEMENT

6.1 For thedinteraction with the service element, the application shall provide one
haviors defined in 3.7 and control the service element using the interface associate
it behaviarn.

3.4

maonitor and the timer handler defined in 3.7.2

61,1 If the application provides the sequential behavior, it shall also provide the

of the
prding

in the

aCe on

trative

of the
d with

event

3.6.6.2 The application shall create and delete service instances using the interface
ISLE_SIFactory provided by the service element.

3.6.6.3 The application shall configure service instances providing the common service
parameters defined in this specification and the service-type specific parameters defined in
the relevant supplemental Recommended Practice for the service-specific API.

CCSDS 914.0-M-1 Page 3-69 October 2008
© 1SO 2013 — All rights reserved

149

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

150

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.6.6.4 A service provider application shall update service instances with values of
parameters that are modified by the service production process.

3.6.7 COMPONENT OBJECTS AND INTERFACES
3.6.7.1 An SLE Application shall implement the following component objects and interfaces:

NOTE - Component objects are defined in annex D of this specification. As explained
there, a component object is an externally visible entity that may be implemented
by a single object or by several internal objects, which co-operate to provide the
required external view. As specified in annex D, every component object shall
support the interface TUnknown in addition to the interfaces listed in this
subsection. The interfaces referenced in the following are specified‘in annex A

a)| objects for use by service instances exporting_) the interface
ISLE_Servicelnform;

NOTE - A separate component object shall be providedfor every service instarjce
created by the application.

b)[one or more objects accepting log records and-notifications and exporting the
interface ISLE_Reporter;

c)| one or more objects exporting the interface ISLE_EventMonitor, if the application
requires the interface behavior ‘sequential’;

d)| one or more objects exporting the-interface ISLE_TimerHandler if the application
requires the interface behavior~sequential’.

3.7 HANDLING OF IN PROCESS THREADS AND EXTERNAL EVENTS
3.7.1 | GENERAL SPECHICATIONS
NOTHS

1 In order_to ensure substitutability, handling of threads (or other implementations|of
coneurrent flows of control) must be well defined at interfaces between componerts.

Fhis' specification defines a single threaded (sequential) and a multi-threaded
h ad

(rFonctivreant) Aantinn Car thn cinala thrand

\UUII\;UII\.«IIL} UrJLIUII. Ul uare \JIIIUIL; aimrvuaucuu
which the client offers means for components to wait for external events. For the
multi-threaded option, components are expected to handle external events internally.
Components are required to support one of these options but may support both. The

terminology and the concepts are explained in 3.3.4.

antian—1t alen doafinac an 1ntarfann b
OpPtoTr T I aroo— Ot T oA e racc y

2 The specifications in this subsection apply to active APl components, i.e., the API
Service Element and the API Proxy, as well as to the interfaces provided by the SLE

CCSDS 914.0-M-1 Page 3-70 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Application. Relevant specifications for the components ‘SLE Operations’ and ‘SLE
Utilities” are defined in 3.4 and 3.5.

3.7.1.1 API components shall provide one of the following behaviors for interfaces:

a) sequential behavior, in which methods of the interface must be invoked sequentially
by different flows of control;

NOTE - Sequential behavior and the associated control interface are defined in 3.7.2.

b) concurrent behavior in which methods of an interface may be invoked concofrently
by different flows of control.

NOTE - Concurrent behavior and the associated control interface are.defined in B.7.3.

3.7.1.2 A component shall provide the same behavior on all interfaces provided {o one
client and expect the same behavior for the complementary interfacesprovided by the glient.

3.71.1.3 API components shall support a control interface “according to the behavior
provided on their interfaces. This control interface shall) provide methods to start and
tenminate processing of the component.

3.1.2 SEQUENTIAL BEHAVIOR

3.7.2.1 A component providing sequential*interface behavior shall be controlled py the
interface 1SLE_Sequential exported'by the component.

3.1.2.2 Processing of the (component shall be started by the method
StartSequential (), which shall pass references to the intgrfaces
ISLE_EventMonitor and FSLE_TimerHandler as arguments.

NOTE - The event monitor and its use by the component are defined in 3.7.2.7. The timer
handler.and its use by the component are specified in 3.7.2.8.

3.71.2.3 The fethod StartSequential () shall return as soon as processing of the
component-has started.

3.1.24 < The component shall guarantee that calls to complementary interfaces proviged by
its|cliént are performed in the thread of control that originates from:

a) a call of the client to one of the interfaces exported by the component;

b) a call to the method ProcessEvent() in the interface ISLE_EventProcessor
passed to the event monitor; or

c) a cal to the method ProcessTimeout() in the interface
ISLE_TimeoutProcessor passed to the timer handler.

CCSDS 914.0-M-1 Page 3-71 October 2008
© 1SO 2013 — Al rights reserved 151

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - Use of multiple threads within the component is not excluded. However, the
component must ensure that no thread created within the component or in a
component other than the client enters client code.

3.7.2.5 The client shall guarantee that all calls to component interfaces are performed in a
single thread of control at a time.

NOTE - Use of multiple threads by the client is not excluded, but the client must ensure
that calls to the component interfaces are strictly serialized.

3.7.2.6 For interfaces with sequential behavior, sequence counting for transfer ©f*SLE
protodol data units as defined in 3.7.3.5 is not required. The sequence count argument in the
associpted methods shall be set to zero.

3.7.2.0 The event monitor shall provide a service to the component to wait.for external events.

3.7.2.1.1 An event, which the event monitor should wait for, shall b€ registered with the
method AddEvent() passing an event handle and a reference to the interface
ISLE| EventProcessor.

NOTH - When events make use of UNIX file descriptors and event types (see annex |A)
AddEvent() must be called separatelycfor read events, write events, gnd
exceptions on a file descriptor, if the event-monitor shall report these events.

3.7.2.1.2 An event shall be de-registered with the method RemoveEvent(), which
references the event handle that shall be remaved from the list of monitored events.

3.7.2.1.3 The event monitor shall support waiting for several events in parallel. If the event
monitr constrains the number of.events that can be registered, it shall return an error cqde
indicating ‘overflow’ when thisnumber is exceeded.

NOTH - It is noted that)an event monitor with too restrictive constraints can prevgnt
proper operation of the component.

3.7.2.1.4 When <thé event monitor detects an event, it shall call the method
ProcgssEvent() on the interface that has been registered for that event.

3.7.2.1.5 < When the event monitor is no longer able to monitor an event for whatever reason,
it shallo remove the event and inform the event processor using the method

MonitorAbort().
NOTE - If more than one event must be removed, the method shall be invoked for every
event.

3.7.2.8 The timer handler shall provide a service to the component to have timers started
and be informed when the timer expires.

CCSDS 914.0-M-1 Page 3-72 October 2008
152 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.7.2.8.1 A timer shall be started by the method StartTimer() passing the timeout
value and a reference to the interface ISLE_TimeoutProcessor. When the timer has
been started, the method shall provide a timer identifier for later reference.

3.7.2.8.2 The timer handler shall allow specifying the timeout value with a resolution of

on

e second.

3.7.2.8.3 The timer handler shall support several running timers in parallel. If the timer

haﬁ&m&mnsih&mmb&oﬂmmihmwmlmmm_aﬂ_&m

inglicating ‘overflow’ when this number is exceeded.

N(

3.1
Pr

DTE — It is noted that timer handler with too restrictive constraints can prevent
operation of the component.
.2.8.4 When the timer expires, the timer handler shall “call the n

ocessTimeout() of the interface ISLE_TimeoutProcessor, which hag

registered with the method StartTimer ().

3
19
3.

(N

ne

3.]
as

3

.2.8.5 The timer handler shall provide the method CancelTimer () of the ini
LE_TimerHandler, with which an active timer can.be cancelled.

1.2.8.6 The timer handler shall provide the method RestartTimer () of the inf

LE_TimerHandler, with which an active\timer can be cancelled and restarted
v timeout value.

.2.8.7 As an option, the timer handler shall support an invocation identifier
ociated with the activation of a timer.

.2.8.8 The invocation identifier shall be passed as an optional argument to the n

StartTimer() or RestartTimer () of the interface ISLE_TimerHandler.

31
me
tin

N(

.2.8.9 The timer-handler shall memorize the identifier and pass it to the call
thod ProcessTimeout() in the interface I1SLE_TimeoutProcessor wh
Ner expires.

DTE —.SThe invocation identifier supports handling of race conditions in a multi-th
environment. If a timer is restarted just before it expires, a call to the n

r code

proper

nethod
been

erface

erface
with a

to be

nethod

of the
bn the

readed
nethod
I can

ProcessTimeout() in the interface ISLE_TimeoutProcesso

actuatyrestutt-from—aprevious—cat-to-StartFimerO—Such—race—con
cannot be avoided, but unwanted calls to ProcessTimeout() c
identified and ignored, as the causality of the call can be determined usi
invocation identifier.

itions
an be
ng the

3.7.2.8.10 When the timer handler is no longer able to process an active timer for whatever
reason, it shall cancel the timer and inform the timeout processor using the method
HandlerAbort().

CCSDS 914.0-M-1 Page 3-73 October 2008
© 1SO 2013 — All rights reserved

153

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

154

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

NOTE - If more than one timer must be aborted, the method shall be invoked for every timer.

3.7.2.9 Processing of the component shall be terminated by calling the method
TerminateSequential () of the interface ISLE_Sequential. The method shall
ensure that all events registered by the component are removed from the event monitor and
all running timers have been cancelled.

3.7.3 CONCURRENT BEHAVIOR

3.7.3.1 A component providing concurrent interface behavior shall be controlled-by the
interfgce 1SLE_Concurrent exported by the component.

3.7.3.2 Processing of the component shall be started by o.'the method
StargConcurrent(), which shall return as soon as processing has started.

3.7.3.3 The component must expect methods in an interface exparted to the client to [be
called|concurrently by separate threads of control.

3.7.3.4 The client of the component must expect methods{in an interface passed to the
client fo be called concurrently by separate threads of control.

3.7.3.% In order to support sequence preservation<for SLE protocol data units, methqds
passing PDUs across an interface with concurrent behavior shall support sequence counting.

NOTHS

1 The sequence count refers to the-sequence in which PDUs have been received from
the network or have been supplied by the application. It is required in a muljti-
threaded environment, because the sequence is not preserved when different PDUs
are processed by different threads. This specification requires components to suppprt
sequence counting-also in those cases where the specific implementation would
preserve the sequence of PDUs. This would be the case when a component use$ a
single thread fQrPDUs transferred in one direction.

2 It is stressed that sequence counting is local to a given interface. For the servjce
element,” sequence-counts on the proxy interface can differ from those on the
application interface.

3.7.3.5.T TNe Sequence count is a 32 DIt unsigned INteger.

3.7.3.5.2 The sequence count for a BIND invocation or a BIND return transmitted for one
association shall be set to one.

NOTE - This implies that sequence counts shall restart at one when an association has
been terminated or aborted and a new BIND invocation is issued.

3.7.3.5.3 For subsequent PDUs, the sequence-count shall be incremented by one.

CCSDS 914.0-M-1 Page 3-74 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

3.7.3.5.4 Recycling of the sequence count to zero shall be supported.

3.7.3.5.5 The receiving entity shall define a window in which it accepts sequence counts.
When receiving a sequence count outside of this window for a PDU, which is not a
PEER-ABORT invocation, it shall reject the PDU with an error code indicating ‘sequence error’.

NOTE - Itis not required but recommended that the window size be configurable.

3.7.3.6 Components providing the concurrent behavior shall handle external events
infernally without further support by the client.

3.1.3.7 Processing of the component shall be terminated by .the" method
TarminateConcurrent() of the interface ISLE_Concurrent. The method shall
enpure that all threads started by the component are stopped such that graceful termination of
the process becomes possible.

CCSDS 914.0-M-1 Page 3-75 October 2008
© IS0 2013 — Al rights reserved 155

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4 STATE TABLES
41 INTRODUCTION

This section defines detailed state tables for the processing of associations in the API Proxy
and service instances in the API Service Element, which are derived from the state tables in
the CCSDS Recommended Standards for SLE transfer services. The state tables in this

specification differ from those in the CCSDS Recommended Standards for SLE transfer
services in the following aspects:

a) the state tables are applicable to all service types;
b) specific state tables are provided for the APl Proxy and the API Service-Element; and

c) state tables for the SLE service user are explicitly specified.

The API Proxy and the API Service Element do not implement al,aspects defined py the
stgte tables in the CCSDS Recommended Standards for SLE transfer services. In parrﬂicular,
detection of and reaction to events in the service production process must be implemented by
the application. The behavior defined by the state tables’in the CCSDS Recomnjended
Standards for SLE transfer services is achieved by interaction of the state machines|in the
ARI Proxy, the API Service Element, and the SLE Application.

42 NOTATION

THe notation used for the state tables is.the one specified by UML for state diagrams (see
reference [J6]). This notation has.heen slightly extended to adapt it to state tables] It is
summarized below together with the extensions. Extensions are highlighted by underfining.
Fgr formulation of conditions;the Object Constraint Language (OCL) specified by UML is
used (see reference [J6]).

[72]

An incoming event in_the event column is defined by
<origin>/+ <event-name> ['(‘<arguments>")']

P

=

pcessing.ofithe event is described by the following sequence

[€guard-condition>] [<action-expression>]* [<send-clause>]* [<state-transition>]
<guard-condition> '[' <condition> "]’

<condition> conditional expression formulated in OCL
<action-expression> :: '[' <action-name> [‘(' <arguments>")"]
<send-clause> '\ <target>".' <event-name> [(' <arguments>")']
<state-transition> '2' <new-state>

Transition to self is not shown in the tables.

CCSDS 914.0-M-1 Page 4-1 October 2008
156 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

In extension of the UML notation actions can be simple actions or compound actions.
Compound actions are displayed in capital letters and are expanded using simple pseudo-
code (IF, THEN, ELSE, END IF) together with the notational elements shown above.

For a detailed description of the syntax and an explanation of how it is to be interpreted, the
UML specification should be consulted (see reference [J6]).

4.3 GENERAL ERROR HANDLING CONVENTIONS

For events received from another component, the following general rules are applied if the
event |s illegal in the current state:

a)| If violation is due to misbehavior of the sending component the state.shall not |be
changed and the request shall be rejected using a return code that indicates an errpr.
In addition, the event shall be entered to the system log. When receiving such a
return code, the invoking component is expected to abort the’ association and|to
provide as much information as possible to support investigation and correction of the
problem.

b)[In cases where the invoking component may not yet have become aware of a state
change, the request shall be rejected by returning<a‘code indicating that the state has
changed. For instance, the service elementmay not yet have seen an UNBIND
invocation when sending an invocation PDU, “In this case, the proxy shall respond|to
the request with a return code indicating ‘unbind pending’. This shall not |be
considered an error. The invoking component is expected to check the return cqde
and adjust its state accordingly.

c)| If the protocol error is due (to*a problem in the peer system, and it is not the
responsibility of the sending component to check and handle the condition, the
receiving component shall*either generate and send a return with a negative result gnd
the appropriate diagnostic, or abort the association. In this case, the state shall |be
adjusted and the method used to send the event returns with a code indicating succegs.

44 BTATE TABLE FOR ASSOCIATIONS

4.4.1 | PROCESSING CONTEXT

4.4.1.1 COverview

The presentation of the state table is based on the model described in section 2. The
processing context used for specification of the state table is shown in figure 4-1. The proxy
shall receive events either from the network interface (NIF) or the client interface (CIF) and
send events to both the network interface and the client interface. The client interface shall
include the interface ISLE_SrvProxylnitiate, which is exported by the proxy
component and ISLE_SrvProxylnform, which is exported by the service element
component.

CCSDS 914.0-M-1 Page 4-2 October 2008
© 1SO 2013 — All rights reserved

157

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

158

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Client (e.g. Service Element)

! : E Client |
' Locator : ' |
| ; ; 11 12) Interface !
i Interface : : .

(CIF) !

Association —Y .
Object CIF pre-processing ISLE_SrvProxylnitiate

\ 4

PROXY STATE MACHINE @

? ISLE_SrvProxytnform

|CIF post—processing| | NIF pre-processing |

: &

ISLE_Locator

A 4 A 4

Network Interface (NIF)

Figure 4-1: Processing Context for the Association State Table

When a BIND invocation is received from the network interface, the proxy shall crdate an
asgociation object of the correct service \type and request the locator interface
(ISLE_Locator) to locate a service instance. The locator interface shall refurn a
reference to the interface ISLE_SrvPraxyInform, if possible.

Injorder to simplify the state tables,processing steps that are common for all PDUs passed
acfoss an interface, and independent of the state of the association, have been excludeq from
the state tables. These are allecated to “pre-processing’ and ‘post-processing’ functiong.

A9 shown in figure 4-1, ‘it'is assumed that pre-processing shall be performed on an| event
before it is passed tocthe’state machine. If pre-processing fails, the associated action shall be
pefformed as part of,the pre-processing tasks and the event shall not be forwarded to the state
machine. Post-pracessing of an event shall be performed after the event has been progessed
by| the state machine. If a pre-processing or post-processing function encounters a sifuation
in which_tRe‘association must be aborted, it shall generate an internal event (INT: PeefAbort
(rdasan));-which shall then be processed by the state machine.

Pre=processing tasksare defimed forevents received fromrthe chentinterfaceandforevents
received from the network interface. Post-processing is only defined for events received
from the client interface.

It is stressed that the specification of pre- and post-processing functions has only the purpose of
simplifying the presentation of the state table. They do not prescribe any specific
implementation. The only requirement on implementations is that the behavior defined by
combination of the state table and the auxiliary functions shall actually be provided by the proxy.

CCSDS 914.0-M-1 Page 4-3 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4.4.1.2 Pre-Processing of Events Received from the Network Interface

Pre-processing of events received from the network interface includes the following tasks:
a) Decoding of the PDU. If decoding fails, the association shall be aborted.

b) Authentication of the peer identity, if authentication is required for the PDU. If
authentication fails, the PDU shall be ignored and not passed to the state machine.
3.2.6.3.2 defines optional exceptions from this rule. These exceptions are not

canaiderad-in-thic crhcoctian
COTTSTOCTC U T TS SUioSTTTIoOTT,

c)| Verification that the PDU is supported for the service type handled by the assgeiatipn.
If that is not the case, the association shall be aborted with the diagnostic “encoding
error’.

d)| For operation returns, retrieval of the operation object, which holds the associated
operation invocation, using the invocation identifier. If the associated invocation
cannot be found, the association shall be aborted with the. didagnostic ‘unsolicifed
invocation identifier’. If the operation object is located, it shall be removed from the
list of pending returns.

4.4.1.3 Pre-Processing of Events Received from the Client Interface

Pre-prpcessing of events received from the client interface includes the following tasks:

a)| Verification that the PDU passed with\the event is supported for the service type
handled by the association. If the check fails, the event shall be rejected with an erfor
indicating ‘unknown PDU’.

b)| Verification that the PDU can-be queued for transmission. If the queue is full, the
event shall be rejected withian error indicating ‘overflow’.

4.4.14 Post-Processingof Events Received from the Client Interface

Post-processing of events received from the client interface includes the following tasks:

a)| For invocations of confirmed operations, adding the operation object to the list|of
pending.returns.

b)| Generation and insertion of the credentials if authentication is required for the POJU.
Far PDUs of the BIND operation_insertion of the local application identifier This

step is omitted in the special ‘pass-through’ mode as specified in 3.2.7.

c) Encoding of the PDU.
d) Queuing of the PDU for transmission.

e) Transmission of the PDU, as soon as possible. If notification of transfer has been
requested for that PDU, the task shall include the following steps:

CCSDS 914.0-M-1 Page 4-4 October 2008
© IS0 2013 — Al rights reserved 159

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

160

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

1) if the PDU can be sent immediately, the event shall be acknowledged with a
return code indicating ‘PDU transmitted’;

2) otherwise, the internal event ‘PDU transmitted’ shall be generated as soon as the

PDU has been sent.

If the PDU is discarded on request of the client or because of an abort, the event
‘PDU Transmitted’ shall not be generated.

44.2 STATES

SY- UNBOUND An association in the initiator role has been greated, put no
BIND has been initiated yet or the association hag been
unbound or aborted. For an association inthe respondgr role,
the association object does not exist.

S2 - BIND PEND A BIND invocation PDU has beentprocessed successfullly; the
associated BIND return has not/yet been received.

S3- BOUND The BIND operation hasheen completed successfully.

S4- LOC UNBIND PEND An UNBIND invacation issued by the local client has been
processed; the peerproxy has not yet responded.

S5- REM UNBIND PEND An UNBIND ‘invocation received from the peer proxy has
been processed; the local client has not yet responded.

443 EVENTS

4.4.3.1 Events Received from the Client Interface (ISLE_SrvProxylnitiate

Bipdinvoke call to InitiateOpInvoke() with a BIND operation

BipdReturn call to InitiateOpReturn() with a BIND operation

Unbindinvoke call to InitiateOplInvoke() with a UNBIND operation

UnbindRetur call to InitiateOpReturn() with a UNBIND operation

PeprAbort call to InitiateOplInvoke() with a PEER-ABORT operation

SryPdulnvoke call to InitiateOplInvoke() with an operation that is va1|id for

tha aivan sarvica tvna
the-ghven-service type
SrvPduReturn call to InitiateOpReturn() with an operation that is valid for

DiscardBuffer

the given service type

call to DiscardBuffer()

4.4.3.2 Events Sent to the Client Interface (ISLE_SrvProxy Inform)

BindInvoke

CCSDS 914.0-M-1

call to InformOp Invoke () with a BIND operation

Page 4-5 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

BindReturn
UnbindInvoke
UnbindReturn
PeerAbort
ProtocolAbort
SrvPdulnvoke

SrvPduReturn

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

call to InformOpReturn() with a BIND operation

call to InformOpInvoke () with a UNBIND operation

call to InformOpReturn() with a UNBIND operation

call to InformOp Invoke () with a PEER-ABORT operation

call to ProtocolAbort()

call to InformOp Invoke () with an operation that is valid for the
given service type

call to InformOpReturn() with an operation that is valid for the

PDUTransmitted

4.4.3.3 Events Sent to the Locator Interface (ISLE_Locator)

locate|nstance

4.4.3.4 Events Received from the Network Interface

BindInvoke
BindReturn
UnbindInvoke
UnbindReturn
SrvPduinvoke

SrvPduReturn

Communication failure

44.3.

BindInvoke
BindReturn
UnbindInvoke
UnbindReturn
SrvPdunyvoke
SrvPd

Events Sent tocthe' Network Interface

given service type
call to PDUTransmitted()

call to Locatelnstance()

reception of a BIND invocation PDY
reception of a BIND return PDU
reception of a UNBIND invocation PDU
reception of a UNBIND return PDU
reception of a PDU witl’an invocation that is valid for the servjce
type

reception of a PDU with a return that is valid for the service type
indication of apeer abort procedure initiated by the peer proxy
any indication” from the local communication service provider of a
communications failure or breakdown of the connection

BIND invocation PDU

BIND return PDU

UNBIND invocation PDU

UNBIND return PDU

a PDU with an invocation that is valid for the service type

4.4.3.6 Internal Events

PDU transmitted

Peer Abort

CCSDS 914.0-M-1
© 1SO 2013 — All rights reserved

A PDU for which notification of transfer has been requested has
been transmitted.

The need to abort the association has been detected by one of the
pre-processing functions.

Page 4-6 October 2008
161

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

162

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

44.4 PREDICATES

role = initiator The association initiates the BIND operation. This predicate is true
for all associations that have been created on request of the client.
role = responder The association responds to a BIND invocation. This predicate is

true for all associations that have been created by the proxy because
of an incoming BIND invocation.

result = positive The result parameter in the PDU indicates “positive result’.
result = npgafi\/p The result parameter in the PDU indicates ‘npgafi\/p result’
ingtance located The locator has returned an instance of the client interface.
id registered The initiator identifier (user name) presented by a BIND invqcation

PDU or the responder identifier presented in the BIND.'feturp PDU
is registered in the configuration database of the proxy.
regponder = expected The responder identifier in a BIND return PDU.iS’'the one expected.
If the role of the association is ‘initiator’, the ID must be the one
specified by the BIND operation object: If the role of the
association is ‘responder’, it must match the local application

identifier.

vefsion supported The version number presented inthe BIND invocation is supported
for the specified service type.

type supported The service type presentedin the BIND invocation PDU is
supported.

bind arguments ok The arguments of a.BIND invocation issued by the local| client

match the definitions’ in the configuration database of the proxy.
The expected responder identifier is registered.

445 ACTIONS
4.45.1 Discrete Actions

/alyort connection(diaghostic) All PDUs queued for transmission shall be discarded and the
connection to the peer system terminated in an abortive mfanner,
using the most efficient procedure available. The procedure gpplied
must make sure that its effect can be interpreted by the pegr as a
PEER-ABORT and that the diagnostic is made available to the peer

proxy.

[cleanup All resources allocated by the association shall be released. In
E bt o it - 4 olds 2

reference shall be released and the list of pending returns cleared.

[create association Create a new association object in the role of a responder. In a strict
sense, this action is performed before processing of the state table
starts.

/delete association The association object is deleted; following this action processing of

the state table shall be assumed to cease. Therefore, no state change
shall be indicated.

CCSDS 914.0-M-1 Page 4-7 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

/prevent If the technology is connection-oriented and a single connection is
used for an association, the event cannot happen. If the event can
occur, the proxy shall handle it in a manner that the operation of the
API is not affected.

Ireject(reason) The function call returns with a result code indicating the reason.

/terminate connection The connection to the peer system is released in an orderly manner.

/discard invocations Remove all invocation PDUs from the send queue and discard them.

/discard buffers Remove all TRANSFER-BUFFER PDUs from the send queue and

diccard tham
UTvuvuUuruv LureiiT.

4452 Compound Actions
/ABORT (diagnostic) is defined as

/aport connection(diagnostic)
ACIF.PeerAbort(diagnostic)
/cleanup

IF role = initiator THEN - S1
ELSE /delete association

END IF

CCSDS 914.0-M-1 Page 4-8 October 2008
© IS0 2013 — Al rights reserved 163

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

/PROCESS BIND INV is defined as

IF not id registered THEN
ANIF.UnbindReturn(‘access denied’)
[cleanup /delete association
ELSE
IF not type supported THEN
ANHFUnbindReturn(typenotsupported™)
/cleanup /delete association
ELSE
IF not version supported THEN
ANIF.UnbindReturn(“version not supported’)
[cleanup /delete association
ELSE
ALocator.locatelnstance
IF not instance located THEN
ANIF.UnbindReturn(error returned by tocatelnstance)
[cleanup /delete association

ELSE
ACIF.BindInvoke
> S2

END IF

END IF
END IF
END IF
NOQTE - |If the initiator .identifier is registered and authentication 1is required,

authentication must be performed before processing starts. If authentication fails,
the request shall be ignored.

CCSDS 914.0-M-1 Page 4-9 October 2008
164 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

/PROCESS BIND RET is defined as

IF not id registered THEN
/ABORT (“access denied”)
[cleanup =S1

ELSE
IF not responder = expected THEN

LA DOD

TABORT(tnexpected-respondertd)
[cleanup =>S1
ELSE
ACIF.BindReturn
IF result = positive THEN
- S3
ELSE
[cleanup - S1
END IF
END IF
END IF

NOTH - |If the responder identifier is registered “and authentication is requirgd,

authentication must be performed before processing starts. If authentication fajls,
the request shall be ignored.

CCSDS 914.0-M-1 Page 4-10 October 2008
© IS0 2013 — Al rights reserved 165

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

T-IN-0'¥T16 SASDD

TT-¥ 9bed

800¢ 1390100

166

44,6 STATE TABLE FOR ASSOCIATIONS

S1- UNBOUND) {1} S2 - BIND PEND S3 - BOUND S4 - LOC UNBIND PEND S5 - REM UNBIND PEND
CIF: [bind arguments ok] Ireject(protocol error)
BindInvoke ANIF.BindInyoke
> S2
[not bind argunpents ok]
Ireject(configy error)
CIF: Ireject(protocol|error) [role = initiator] Ireject(protocol error)
BindReturn Ireject(pfotocol error)
[role = respondér]
ANIF.BindReturn
[result = positive]
> S3
[result = negative]
/terminate connection
[/cleanup
/delete association
{12}
CIF: Ireject(protocol error) [role = initiator] Ireject(protogol error)
Unbindinvoke ANIF.Unbkindinvoke
>S4
[role = responder}
I/reject(protocol error)
CIF: I/reject(protocol error) [role = intiatr]
UnbindReturn Ireject(protocl error)
[role = respgnder]
ANIF:UnbindReturn
/terminate connection
[/cleanuq
/delete association

{12}

© 1SO 2013 — All rights reserved

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

T-IN-0'¥T16 SASDD

ZT- 9bed

800¢ 1390100

ISO 18441:2013(E)

S1- UNBOUND {1}

S2 - BIND PEND

S3 - BOUND

S4 - LOC UNBIND PEND

S5 - REM UNBIND PEND

CIF: Ireject(protocol|error) /abort connection(diagnostic)
PeerAbort [cleanup
[role = initiator]
> S1
[role = responder]
/delete association
{12}
CIF: [reject(protocol error) ANIF.SrvPdulnvoke Ireject(protocol error) /reject(unbind pending)
SrvPdulnvoke {2}
CIF: Ireject(protocol error) ANIF.SrvPduReturn Ireject(protocol error) ANIF.SrvPduReturn
SrvPduReturn {3}
CIF: Ireject(protocol error) /discard buffers Ireject(protocol error) /discard buffers
DiscardBuffer
NIF: create associatjon /ABORT (protocol eror)
BindInvoke /PROCESS BIND INV {5}
{4}
NIF: /prevent [role = initiator] /ABORT (protocol error)
BindReturn /PROCESS BIND RET {7}
[role = responder]
/ABORT (protocol error)
{6}
NIF: /prevent /ABORT (protocol erorr) [role = initiator] /ABORT|(protocol error)
Unbindinvoke /ABORT (protocol error)
[role = responder]

/discard invocations

ACIF.UnbindInvoke

> S5
NIF: /prevent /ABORT (protocol error) [role = initiatof] /ABORT (protocol error)
UnbindReturn ACIF.UnbindReturn

/cleanup
2> S1

[rofe =Tesponder]
/ABORT (protocol error)

© 1SO 2013 — All rights reserved

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

167

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

8 S1- UNBOUND {1} S2 - BIND PEND S3 - BOUND S4 - LOC UNBIND PEND S5 - REM UNBIND PEND
w
8 NIF: /prevent ACIF.PeerAbort
© PeerAbort /cleanup
= [role = initiator]
o > S1
IZ [role = responder]
R /delete associaton
NIF: /prevent "CIF.ProtocolAbort
Communicatio [/cleanup
n failure [role = initiator]
> S1
[role = responder]
/delete associaton
NIF: /prevent /ABORT (protocol error) CIF.SrvPdulnvoke ACIF.SrvPdulnvoke /ABORT (protocol error)
SrvPdulnvoke {8} {9}
i NIF: /prevent /ABORT (protocol error) NCIF.SrvPduReturn ACIF.SrvPduReturn /ABORT (protocol error)
Q SrvPduReturn {10} {11}
N
'5 INT: not applicable 2CIF.PDUTransmitted
PDU
Transmitted
INT: not applicable /ABORT (f€ason)
Peer Abort
(reason)
NOTES
1 With exception of the event NIF: BindInvoke the events in the state UNBOUND ¢an only occur|for an association in the
initiator role. An association in the responder role is created when the event NIF: BindlLnvoke Has been received. If the
o BIND invocation|is accepted, the state is changed to BIND PENDING. Otherwise the objectis_deletefl again.
(@]
g 2 If UNBIND has [peen initiated by the peer, the local client must not transmit any further invocations. In a multi-threaded
N system, the clientTmay ot tave seermthe UNBHNDyet—The speciat Teturmtode—unyimd perding™Ts meant to indicate to the
o client that this action is not a bug (protocol error) but cannot be accepted because the state has already changed.
168 © IS0 2013 — Al rights reserved

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

T-IN-0'¥T16 SASDD

¥T-v abed

800¢ 1390100

ISO 18441:2013(E)

3 If UNBIND has been initiated by the peer, the local client may transmit all pending returns before the UNBIND return.

4 The cell only co
BIND invocation

5 The event can on

association. In this case it could theoretically happen that the BIND invocation contains an initiator i

the one presentec

violation alarm in addition to the'actions specified.

6 If the (illegal) BI

the proxy generates an access violation alarm in addition to the action specified.

7 The event can or
association. Inth
one presented in
alarm in addition

8 If UNBIND has
have seen the U

9 After sending an
10 If UNBIND has
11 After sending an

12 Following deletig
indicated.

5-such that this event cannot occur in the state UNBOUND.

y occuty’if the technology and the implementation allow transmission of a BIND inv

in the original BIND invocation. If such an event is possible, the proxy is expec

ND return received by,an association in the responder role carries a responder identi

ly occur, if the technology ane-the implementation allow transmission of a BIND
is case, it could theoretically happen that the BIND return contains a responder ident
the original BIND return. If such“an event is possible, the proxy is expected to gen
to the actions specified.

een sent by the local client, the peer shouldzno longer send any invocations. Howe
BIND invocation. Therefore, invocations are‘passed on to local client, which should

UNBIND invocation, the peer must not send any further invocations.
een sent by the local client, the peer may send all pending returns before sending the
UNBIND invocation, the peer must not send any returns.

n of the association object, processing of the state table is assumed to cease. Thef

Tains an entry Tor the Tesponder Tole. For the initiator Tolg, 1T1S assumed that proxy will not be listening for

pcation on an established
lentifier that differs from
ed to generate an access

fier, that is not expected,

return on an established
ifier that differs from the
erate an access violation

ver, the peer may not yet
ignore them.

UNBIND return.

efore, no state change is

© 1SO 2013 — All rights reserved

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

169

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

170

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45 STATE TABLES FOR SERVICE INSTANCES

451 INTRODUCTION

Processing of a service instance within the API Service Element is defined by the following

state tables:

a) SLE Service Provider

1) Common state table (see 4.5.3.2);

2) Return link SLE services state table (see 4.5.3.3);

3) Forward link SLE services state table (see 4.5.3.4).
b) SLE Service User

1) Common state table (see 4.5.4.2);

2) Return link SLE services state table (see 4.5.4.3);

3) Forward link SLE services state table (see 4.5:4.4).

THe common state tables define processing of.all’ events that have identical progessing

requirements for return services and for forward services. The specific tables for
sefvices and forward services specify processing of the remaining events. They m
ungderstood as a supplement to the commaon tables.

The common state tables are applicable to all service types; the return link tables a
forward link tables are applicable_for all return link services and all forward link s
regpectively. Because some service types only use a subset of the SLE operations df
not all events defined in the tables can occur for those services, unless there are serious
in [the application or in the-API Proxy. If such events are encountered, the service instg

return
ust be

nd the
rvices
pfined,
errors
Ance is

expected to reject them-with an appropriate error code. These actions are not specifically

shpwn in the state table.

Far some of the actions defined in the state tables processing is service-type specific, |
fa¢t that the action must be performed is independent of the service type. Obviously, 3
rellated te-events that are not supported by a given service type, are not applicable f

hut the
Ictions
Dr that

sefwvicetype.

CCSDS 914.0-M-1 Page 4-15 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.2 PROCESSING CONTEXT
4521 Overview

The state tables are based on the model presented in section 2. The processing context is
used for specification of the state tables is shown in figure 4-2. A service instance shall
receive events from the Proxy Interface (PIF) and the Application Interface (AlIF) and send
events to both the Proxy Interface and the Application Interface.

proxy|for an association and the interface I1SLE_SrvProxyInform, exported-by the
servicg element. The Application Interface includes the interface 1SLE_Service Inform,
exported by the application, and ISLE_Servicelnitiate, exported by the service
elemept.

The Proxy Interface comprises the interfaces ISLE_SrvProxyInitiate, exported by Jhe

In addglition, the service instance shall receive updates for service (parameters from the
applicption via the service-type specific interface 1<SRV>_SIlUpdate, which is referred|to
as Mahagement Interface (MIF) in the figure. These parameters.are needed to respond t¢ a
GET-PARAMETER request and to generate status reports.

Finally the locator interface (ISLE_Locator), by which:the service element is informed|of
an ingoming BIND invocation, needs to be considered This interface is not shown in the
figure

Application
i Management $ i l Application | :
! Interface @ 5 ; @ I’oD Interface | ISLE_SrvProxylnitiate
(MIF) g Yy (AIF) E @
| AlF pre-processing | | PIF post-processing | ISLE_SrvProxylnform
> STATE MACHINE ISLE_Servicelnform
7'y .@
SERVICE v
INSTANCE | AIF post-processing | | PIF pre-processing | ISLE_Servicelnitiate
.. . (i)

Proxy .
Ql) @ Interface ! I<SRV>_SlUpdate
(PIF) |

Figure 4-2: Processing Context for the Service Instance State Table

CCSDS 914.0-M-1 Page 4-16 October 2008
© 1SO 2013 — Al rights reserved 171

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

In order to simplify the state tables, processing steps that are common for all PDUs passed
across an interface and are independent of the state of the service instance have been
excluded from the state tables. These are allocated to ‘pre-processing’ and ‘post-processing’

functions.

As shown in figure 4-2, it is assumed that pre-processing is performed on an event before it is
passed to the state machine. If pre-processing fails, the associated action shall be performed

as part of the pre-processing function, and the event shall not be forwarded to the state
machine_Post-praocessing of an event shall be performed after the event has been processed

0

=

generated by the state machine. If a pre-processing function or a post-processing fLinction

enpounters a situation in which the association must be aborted, it shall generate.an internal

event (INT: Peer Abort(reason)), which shall then be processed by the state machine.

interface. This processing is described to more detail in 4.5.2.6.

It |s stressed that the specification of pre- and post-processing functions as well as the

FL]{rethermore, the state tables do not include processing performed by“call to the locator

details

rellated to calls on the locator interface have only the purpose of simplifying the presemtation

ofthe state tables. They do not prescribe any specific implementation. The only requif
on[implementations is that the behavior defined by the cembination of the state tables g
aukiliary functions shall actually be provided by service’instance objects.

[

4.%.2.2 Pre-Processing of Events Received-from the Proxy

Pre-processing of events received from the’proxy includes the following tasks:

a) Verification that the PDU-passed with the event is supported by the servic
handled by the service instance. If that check fails, the event shall be rejecte
the error “‘unknown PRU”.

b) Verification that the PDU is compatible with the role of the service instance
service user or-SLE service provider). If the check fails, the association sk
aborted with-the diagnostic ‘protocol error’.

c) Checking-that an operation object passing a return is actually on the list of p

should have been handled by the proxy. Otherwise the operation object sh
removed from the list of pending remote returns.

ement
nd the

e type
d with

(SLE
all be

ending

remote returns. If that check fails, the request shall be rejected, because this prioblem

all be

d) Canceling of the return timer for a return PDU.

e) Checking for duplicate invocation identifiers for confirmed invocations. If duplicate
invocation identifiers are detected, the pre-processing function shall generate and

send a return PDU with a negative result and the diagnostic ‘duplicate invocatio

nid’.

f) Checking of invocation and return arguments on completeness, consistency and

range. If there is an error, the reaction depends on the type of the PDU.
confirmed invocation, the pre-processing function shall generate and send a

For a
return

CCSDS 914.0-M-1 Page 4-17 October 2008

172 © 1S0 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

PDU with a negative result and the appropriate diagnostic. In all other cases it shall
abort the association with the appropriate diagnostic code.

g) Checking of the consistency of the PDU and the parameters with the configuration of
the service instance. If these checks fail, the function shall generate a return with a
negative result and the appropriate diagnostic. These checks are service-type
specific.

The checks and actions are partially service-type specific.

45.2.3 Post-Processing of Events Received from the Proxy

Post-pgrocessing of events received from the proxy includes the following tasks:

a)| adding the operation object to the list of pending local returns for confirnmed
invocations;

b)| passing of the PDU to the application.

These(actions are independent of the service type.

45.2.4 Pre-Processing of Events Received from the Application

Pre-prpcessing of events received from the application includes:
a)| Checking that the PDU is valid for the-service type handled by the service instance.

b)| Verification that the PDU is compatible with the role of the service instance (SLE
service user or SLE service provider).

c)| Verification that an operation object used to forward a return PDU is on the list|of
pending local returns.

d)| Checking of invocation and return arguments on completeness, consistency gnd
range.

e)| Checking'of the consistency of the PDU and the parameters with the configuration|of
the serviCe instance.

If there“s any error, the pre-processing function shall reject the request with the approprigate
return code. These tasks are partially service-type specific.

45.2.5 Post-Processing of Events Generated or Received from the Application

Post-processing of events received from the application includes:

a) Generation of a unique invocation identifier and inserting the id into the operation
object, if the PDU transmitted is a confirmed invocation.

CCSDS 914.0-M-1 Page 4-18 October 2008
© 1SO 2013 — Al rights reserved 173

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

174

Th

4.5

Pr

W
wi
re
the
ing
wih
th

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) Addition of the operation object to the list of pending remote returns and starting of

the return timer for confirmed invocations.

c) Forwarding the operation to the proxy for transmission. If the transfer request is
rejected by the proxy, e.g., because the send queue is full, the association shall be

aborted.

d) Because of the flow control mechanisms built into the API, queue overflow cannot be

caused by transfer of space link data-units.

ese tasks are not service-type specific.

2.6 Processing of Calls to the Locator Interface

pcessing of calls to the locator interface includes the following steps:

a) Location of the service instance requested by the BIND., invocation. If the
instance cannot be found, the function shall return with an error ‘no such
instance’.

Lo N

b) Verification that the initiator identifier matches the one defined for the s
instance. If that is not the case, the function shall return with an error ‘s
instance not accessible to this initiator’.

c) Verification that the service instance. is not already bound. If the service instg
bound, the function shall return with-an error “already bound’.

d) Verification that the scheduled provision period of the service instance has start
time’.
nNen receiving an error response from the locator, the proxy shall generate a BIND

urns a code indicating success and a pointer to the interface ISLE_SrvProxylIn

proxy shall pass‘the BIND invocation to that interface. Except for location of the s
tance, an jmplementation may choose to perform these checks by the service in;
en the BIND invocation has been passed to the interface 1SLE_SrvProxy Inforn
it is done, the service instance must generate the BIND return PDU.

ervice
ervice

ervice
ervice

Ince is

bd and

has not yet ended. If the check fails, the function shall return with the error ‘invalid

return

h a negative result@nd the diagnostic related to the error code returned. If the 1?cator

orm,
ervice
tance,
m. If

45.3 PROVIDER SIDE STATE TABLES

45.3.1 States

All provider side state tables use the same set of states. The main states are identical to those
defined in the CCSDS Recommended Standards for SLE transfer services. Sub-states have
been added to allow presentation of further details related to the interactions with the
application and the proxy. The states are defined as follows.

CCSDS 914.0-M-1 Page 4-19 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

UNBOUND:UNBOUND No user is bound.

UNBOUND:BIND PEND A BIND invocation has been received, the application has not
yet responded.

READY:BOUND A BIND has been sent to the user and no START invocation
has been received yet, or a STOP operation has been
completed.

READY:START PEND A START invocation has been received, the application has.fot
yet responded.

READY:UNBIND PEND An UNBIND invocation has been received, the application has
not yet responded.

ACTIVE:ACTIVE A START return with a positive result-has been sent to the
user.

ACTIVE:STOP PEND A STOP invocation has been received, the application has ot
yet responded.

NOTH - Sub-states are only shown in the tables if needed. If the processing is identical

for all sub-states, only the main state is entered in the table.

45.3.2 Common State Table—User Initiated Binding
453.2.1 Events

45.3.2.1.1 Events received from.the Application Interface
(ISLE_Servicelnitiate)

BindRet callto InitiateOpReturn() with a BIND operation
UnbindRet call to InittiateOpReturn() with a UNBIND operation
PeerAbortinv call to InitiateOplInvoke() with a PEER-ABORT operatiof

4.5.3.2.1.2 -Events sent to the Application Interface (ISLE_Servicelnform)

Bindlmyv ealHetnFermopinveke O-with-a- BIND-eperation

Unbindinv call to InformOp Invoke () with a UNBIND operation
PeerAbortinv call to InformOpInvoke () with a PEER-ABORT operation
ProtocolAbort call to ProtocolAbort()

PPends call to ProvisionPeriodEnds()

CCSDS 914.0-M-1 Page 4-20 October 2008

© 1SO 2013 — Al rights reserved 175

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

176

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.3.2.1.3 Events received from the Management Interface (I<SRV>_Sl1Update)

SetParameter

update of a service parameter

45.3.2.1.4 Events received from the Proxy Interface (ISLE_SrvProxylInform)

BindInv call to InformOpInvoke () with a BIND operation
Unbindinv call to InfFormOp Invoke () with a UNBIND operation
G@atPrminv call to InformOplnvoke() with a GET-PARAMETER

ScheduleStatReplnv

PeerAbortinv
Protocol Abort

4.%.3.2.1.5 Events sent to the Proxy Interface (ISLE_SrvProxylnitiate)

BipdRet

UnbindRet
GatPrmRet
ScheduleStatRepRet
StatusReplnv

PeprAbortinv

4%.3.2.1.6 Internal Events

Report timer expired
Rqturn timeout
Prpvision period-ends
Pegr Abort

4.%.372.2 Predicates

operation
call to InformOplnvoke() with a SCHEDWLE-STATUS-
REPORT operation
call to InformOpInvoke() with a PEER-ABQORT operatign
call to ProtocolAbort()

call to InitiateOpReturn) with a BIND operation

call to InitiateOpReturn() with a UNBIND operation
call to InitiateOpReturn() with a GET-PARAMETER
operation
call to InitiateQpReturn() with a SCHEDULE-STATUS-
REPORT operation
call to InitrateOplnvoke() with a STATUS-REPORT
operation
call to InitiateOplInvoke() with a PEER-ABORT operation

the periodic status report timer has expired

the time to wait for a specific return-PDU has elapsed
the service instance provision period has ended

peer abort event generated by a pre-processing function

delivery mode = offline
report timer active
reason = end

reason <> end

result = positive

result = negative

type = stop

CCSDS 914.0-M-1

The delivery mode of the service instance is ‘offline’.

The periodic status report timer is active.

The unbind-reason is ‘end of service provision’.

The unbind-reason is not equal ‘end of service provision’.

The result parameter in the PDU indicates “positive result’.

The result parameter in the PDU indicates ‘negative result’.

The type parameter in the SCHEDULE-STATUS-REPORT
invocation is set to ‘stop’.

Page 4-21 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

type = periodically The type parameter in the SCHEDULE-STATUS-REPORT
invocation is set to ‘periodically’.

45.3.2.3 Actions

45.3.2.3.1 Discrete Actions

[reject(reason) Reject the event by returning an error code to the function invoking
the event.

[/cance|l report timer Cancel the periodic status-report timer, if active.

[start ffeport timer Start the periodic status-report timer.

/generpte end of PP Generate the internal event ‘Provision period ends’.
[clear femote returns Cancel return timers for all pending remote returnscelear the list|of
pending remote returns, and release operation objects.
/store parameter value Store the value of the service parameter passed.

45.3.2.3.2 Compound Actions
/PROLESS SSREP(type) is defined as

IF delivery mode = offline THEN
Ireject(not supported in this delivery mode)
ELSE
IF type = stop THEN
IF report timer active THEN
/cancel report timer
"PIF.ScheduleStatusRepRet(positive result)
ELSE
PIF.ScheduleStatusRepRet(already stopped)
END IF
ELSE
/cancel report'timer
"PIF.ScheduleStatusRepRet(positive result)
APIE StatusReportinv
IEtype = periodically THEN
[start report timer
END IE
END IF
END IF

/ABORT (diagnostic)

Abort processing is forward/return-service specific, see /ABORT in 4.5.3.3 and 4.5.3.4.

CCSDS 914.0-M-1 Page 4-22 October 2008
© 1SO 2013 — Al rights reserved 177

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

/ICLEANUP

Cleanup processing is forward/return-service specific, see /CLEANUP in 4.5.3.3 and 4.5.3.4.

CCSDS 914.0-M-1 Page 4-23 October 2008
178 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

T-IN-0'¥T16 SASDD

v2-v abed

800¢ 1390100

45.3.2.4 Common State Table—Provider Side

ISO 18441:2013(E)

1 UNBOUND 2 READY 3 ACTIVE
1.1 UNBOUND1 {1} 1.2 BIND PEND 2.1 BOUND 2.2 START PEND 2.3 UNBIND PHEND
PIF: MNAIF.Bindinv [reject(protocol error) {3}
Bindinv >1.2 {2}
AlF: Ireject(pfotocol error) | "PiEBindRet Ireject(protocol error)
BindRet [result=-positive]
> 2.1
[result =negative]
>11
PIF: Ireject(protocol error) [clear remote returns | /ABORT (protocol err) | /reject(protocol erfor) /ABORT (protocol error)
Unbindlnv Icancel report timer | > 1.1 S>11
AMATF . Unbindinv
>23

AlF: Ireject(protocol error) PIF.UnbindRet Ireject(protocol error)
UnbindRet /CLEANUP

[reason = end]

/generate end of BP

2>11
[reason <> end]
2>1.1

PIF: Ireject(protocol error) "PIF.GetPrmRet Ireject(protocol erfor) PIF.GetPrmRet
GetPrminv
PIF: Ireject(protocol error) /PROCESS SSREP Ireject(protocol erfor) /PROCESS SSREP

ScheduleStatReplnv

PIF:
PeerAbortinv

Ireject(p

otocol error)

AAlF.PeerAbortinv
/CLEANUP
->1.1

NOILVDIdI103dS FHOI—S3DINAHTS 34SNVHL 371S 404 IdV

AlF:
PeerAbortinv

Ireject(p

otocol error)

"PIF.PeerAbortinv

/CLEANLID
(A4 =1=Tma A4

>11

© 1SO 2013 — All rights reserved

179

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

Q 1 UNBOUND 2 READY 3 ACTIVE
wn
9 1.1 UNBOUND {1} | 1.2 BIND PEND 2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND
(e
= PIF: Ireject(pfotoeal/error) "AIF.ProtocolAbort
© | ProtocolAbort ICLEANUP
Z >11
N
MIF: [store parameter value
SetParameter
INT: N/A /ABORT (reason)
PeerAbort(reason) ->11
INT: N/A N/A "PIF.StatusReplnv N/A {4} | "PIF.StatusReplnv
Report timer expired [start report timer [start report timer
INT: N/A N/A /ABORT (return timeout) N/A {4} | /ABORT(return timeout)
o Return timeout {5} ->11 ->11
[«5)
@ INT: AIF.PPENds /ABORT (end of Provision Period)
ﬁ Provision period ends AIF.PPends
al 2>1.1
NOTES
1 In the state UNBJOUND, events other than a BIND invocation can be reegived from the proxy only when the proxy fails to
forward the initia] BIND invocation.
2 All checks that nged to be performed by the service element are performed by the' mgthod Locateljnstance() defined by
the Locator interface. If any of these checks fail, that function returns an error and.the proxy respponds with the associated
BIND return.
o . . . i _ .
S 3 The event can on]ly occur when a BIND invocation is received on an established association,=wghich must be prevented by the
g proxy. If a BIND invocation is received on a new association, the event must be passed to the locater] which will reject it with
N the error “alreadytound™
o
oo
180 © IS0 2013 — Al rights reserved

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

T-IN-0'¥T16 SASDD

9Z- abed

800¢ 1390100

4 This is N/A as the timer was cancelled when the UNBIND invocation arrived.

5 In this version of
API software is ¢

© 1SO 2013 — All rights reserved

ISO 18441:2013(E)

e Recommended Practice the provider Never Sends confirmed operations, S0 this €
prrectly implemented.

yent cannot happen if the

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

181

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

182

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.3.3 Return Link SLE Services
453.3.1 Events

45.3.3.1.1 Events received from the Application Interface
(ISLE_Servicelnitiate)

StartRet call to InitiateOpReturn() with a START operation

StppRet call to InitiateOpReturn() with a STOP operation

TransferDatalnv call to InitiateOplnvoke() with a TRANSFER-DATA
operation

SyjncNotifylnv call to InttiateOpInvoke() with a SYNC-NOTIFY operation

4.%.3.3.1.2 Events sent to the Application Interface (1SLE_Serv#celnform)

Startinv call to InformOpInvoke() with a SFTART operation
Stoplnv call to InformOp Invoke () with a'STOP operation
RgqsumeDataTransfer call to ResumeDataTransfer()

PeerAbortinv call to InformOp Invoke ()-with a PEER-ABORT operatign

4.%.3.3.1.3 Events received from the Proxy Interface (ISLE_SrvProxylnform

Startinv call to InformQOp Invoke () with a START operation
Stopinv call to InfagrmOp Invoke () with a STOP operation
PDUTransmitted call to PDUTransmitted()

4.%.3.3.1.4 Events sento the Proxy Interface (ISLE_SrvProxylnitiate)

StartRet call to InitiateOpReturn() with a START operation
StppRet call to InitiateOpReturn() with a STOP operation
TransferBufferinv call to InitiateOplnvoke() with a TRANSFER-BUFFER

operation. This event is always transmitted with the request to
notify transmission of the PDU.
DiscardBuffer call to DiscardBuffer()

PeerAbortn catHtoHirtrateSptnvoke

45.3.3.1.5 Internal Events

release timer expired generated when the release timer expires

CCSDS 914.0-M-1 Page 4-27 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.3.3.2 Predicates

result = positive The result parameter in the PDU indicates “positive result’.

result = negative The result parameter in the PDU indicates ‘negative result’.

timely online The delivery mode is timely online.

complete online The delivery mode is complete online.

online The delivery mode is either timely online or complete online.

buffer full The transfer buffer is full.

buffer queued A transfer buffer has heen passed to the proxy for transfer and the
PDU Transmitted event has not yet been received for that buffer:

bufferfempty The transfer buffer is empty.

buffer|discarded The proxy has actually discarded the queued transfer. buffer |as
indicated by the return code.

buffer|transmitted The transfer buffer passed to the proxy could e transmitted

immediately as indicated by the return code of thieyfunction.
data triansfer suspended The application has been requested to suspend data transfer to the
user.

end of| data The SYNC-NOTIFY invocation is ‘end-ef data’.

45.3.3.3 Actions
45.3.3.3.1 Discrete Actions

Ireject(reason) Reject the event by returning an error code to the function invoking
the event.
[clear yemote returns ~ Cancel return times for all pending remote returns, clear the list|of
pending remote returns, and release operation objects.
[clear Jocal returns Clear thedist of pending local returns and release operation objects.
[/cance|l report timer Cancelthe periodic status-report timer, if active.
[reset pervice parameters Resétthe service parameters to the initial values. Resetting |of
service parameters must be checked individually for egch
parameter. Depending on the service type some parameters njay
have to be reset to the initial values, while others must keep their
current values.

[start flelease timer Start the release timer.

/cancd|l release timer Cancel the release timer, if active.
[creatd new buffer Create a new transfer buffer.
lappe

/prepend notification ~ Prepend the SYNC-NOTIFY invocation, indicating ‘data discarded
due to excessive backlog’, to the transfer buffer.

/discard buffer Discard transfer buffer and all contained PDUs.

/suspend data transfer ~ Request the application to suspend data transfer.

CCSDS 914.0-M-1 Page 4-28 October 2008
© IS0 2013 — Al rights reserved 183

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.3.3.3.2 Compound Actions
/ABORT (diagnostic) is defined as

APIF.PeerAbort(diagnostic)
AIF.PeerAbort(diagnostic)
/ICLEANUP

[CEEANUR-is-definred-as

[clear remote returns

[clear local returns

/cancel release timer

/cancel report timer

/discard buffer

/set data transfer suspended = FALSE
/set buffer queued = FALSE

Ireset service parameters

/BUFFER DATA is defined as

IF online and buffer empty THEN
[start release timer
END IF
/append PDU
IF buffer full THEN
IF buffer queued THEN
IF timely online THEN
PIF.DiscardBuffer
IF buffer discarded THEN
/prepend notification
END IF
"PIESransferBuffer
IFnet buffer transmitted THEN
/set buffer queued = TRUE
END IF
[/cancel release timer
ELSE

IF complete online THEN
/cancel release timer

END IF
/set data transfer suspended = TRUE
/suspend data transfer

END IF

ELSE
IF online THEN

CCSDS 914.0-M-1 Page 4-29
184

October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

/cancel release timer
END IF
APIF.TransferBuffer
IF not buffer transmitted THEN
/set buffer queued = TRUE
END IF
END IF
[create new buffer

ISO 18441:2013(E)

ENDBH-

NOTH - Processing as specified here, uses a single transfer buffer. Multiple buffers gan

be used by an implementation to increase performance.
/IPROLCESS RELEASE TIMER is defined as

IH buffer queued THEN

IF timely online THEN
APIF.DiscardBuffer
IF buffer discarded THEN

/prepend notification

END IF

END IF

IF complete online THEN
/suspend data transfer

END IF

END IF

ARIF. TransferBuffer

IH not buffer transmitted THEN

/set buffer queued = TRUE

END IF

/create new buffer

/PROLESS PDU TRANSMITTED is defined as

/st buffer quetied = FALSE

IR data transfer suspended THEN
/setdata transfer suspended = FALSE
MAINF.ResumeDataTransfer

ENDHFE
/PROCESS STOP PDU is defined as

IF not buffer empty THEN
IF online THEN
/cancel release timer
END IF
IF timely online THEN

CCSDS 914.0-M-1 Page 4-30
© 1SO 2013 — All rights reserved

October 2008

185

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

IF buffer queued THEN
"PIF.DiscardBuffer
IF buffer discarded THEN
/prepend notification
END IF
END IF
END IF
"PIF.TransferBuffer
Hnotbutfertransmitted THEN
/set buffer queued = TRUE
END IF
END IF

/PROCESS EOD is defined as

/append PDU
IF online THEN
[/cancel release timer
END IF
IF timely online THEN
IF buffer queued THEN
"PIF.DiscardBuffer
IF buffer discarded THEN
/prepend notification
END IF
END IF
END IF
"PIF.TransferBuffer
IF not buffer transmitted<FTHEN
/set buffer queued = FRUE
END IF
[create new bufféer

CCSDS 914.0-M-1 Page 4-31 October 2008
186 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

T-IN-0'¥T16 SASDD

Z&-1 abed

800¢ 1390100

45.3.3.4 Return Link State Table—Provider Side

ISO 18441:2013(E)

1 UNBOUND 2 READY 3 ACTIVE
2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND
PIF: Ireject(protocql err) | "AWE/Startinv /ABORT (protocol err) | /reject(protocol error) /ABORT (protocol error)
Startinv > 22 ->11 ->11
AlF: Ireject{protocol error) "P|F.StartRet Ireject(protocol error
StartRet [result = positive]
[create new buffer
> 31
[result = negative]
->21
PIF: Ireject(protocql err) /ABORT (protocol error) Ireject(protocol error) | “AlF.Stoplnv /ABORT (protocol error)
Stoplnv ->11 > 3.2 ->11
AlF: Ireject(protécol error) [result = positive]
StopRet /PROCESS STOP PDU
"PIF.StopRet
>21
[result =negative]
"PIF.StopRet
> 31
AlF: [Ireject(protocol error) [data transfer suspenfed] | /reject(stop pending)

TransferDatalnv

Ireject
[not
data transfer suspend
/BUFFER DATA

ed]

AlF:
SyncNotifylnv

Ireject(protocol error)

[data trar]
reject(s
[not data
[end off
/PR
[net.en

sfer suspended]
uspended)

transfer suspended]
data]

DCESS EOD

g of data]

/BUH

FER DATA

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

© 1SO 2013 — All rights reserved

187

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

8 1 UNBOUND 2 READY 3 ACTIVE
W
8 2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND
O
'E INT: N/A /PROCE$S RELEASE TIMER
© | Release timer
Z | expired
N
PIF: Ireject /PROCESS PDU TRANSMITTED
PDUTransmitted
o
[«5)
(@)
D
»
w
w
o
S
o
o
@
N
o
S
(00]
188 © IS0 2013 — Al rights reserved

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.3.4 Forward Link SLE Services
453.4.1 Events

45.3.4.1.1 Events received from the Application Interface (ISLE_Servicelnitiate)

StartRet call to InttiateOpReturn() with a START operation

StopRet call to InitiateOpReturn() with a STOP operation

TransferDataRet call to InitiateOpReturn() with a TRANSFER-DATA
operation

InvokeDirectiveRet call to InitiateOpReturn() with an INVOKE-DIRECTIVE
operation

AsyndNotifylnv call to InitiateOplnvoke() with an ASYNC-NOTIFY
operation

ThrowEventRet call to InitiateOplnvoke() with ‘&2 THROW-EVENT
operation

45.3.4.1.2 Events sent to the Application Interface (ISLE:_Servicelnform)

Startinv call to InformOpInvoke (Q‘with a START operation

Stopinv call to InformOp Invoke () with a STOP operation

TransferDatalnv call to InformOpilfavoke() with a TRANSFER-DATA
operation

InvokeDirectivelnv call to InformOplnvoke() with an INVOKE-DIRECTIVE
operation

ThrowEventinv call to InformOpInvoke () witha THROW-EVENT operation

PeerAbortinv call to lFaFormOp Invoke () with a PEER-ABORT operation

45.3.4.1.3 Events received from the Proxy Interface (ISLE_SrvProxylnform)

Startlpv call to InformOpInvoke() with a START operation

Stoplnv call to InformOp Invoke () with a STOP operation

TransferDatalny call to InformOplnvoke() with a TRANSFER-DATA
operation

InvoleirectiveInv call to InformOplnvoke() with an INVOKE-DIRECTIVE
operation

ThrowEventinv call to InformOp Invoke () with a THROW-EVENT operation

CCSDS 914.0-M-1 Page 4-34 October 2008

© IS0 2013 — Al rights reserved 189

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

190

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.3.4.1.4 Events sent to the Proxy Interface (ISLE_SrvProxylnitiate)

StartRet call to InitiateOpReturn() with a START operation

StopRet call to InitiateOpReturn() with a STOP operation

TransferDataRet call to InitiateOpReturn() with a TRANSFER-DATA
operation

InvokeDirectiveRet call to InitiateOpReturn() with a INVOKE-DIRECTIVE
operation

AgynciNotifyiny cat—to—inTtratedpinvokeO)—with—an—ASYNCNOTIFY
operation

THrowEventRet call to InitiateOpReturn() with a THROW-EVENT
operation

PeprAbortinv call to InitiateOplInvoke() with a PEER-ABORT operation

4.%.3.4.2 Predicates

regult = positive The result parameter in the PDU indicates “positive result’.

regult = negative The result parameter in the PDUdndicates ‘negative result’.

4.5
4.5

[re

.3.4.3 Actions
.3.4.3.1 Discrete Actions
ject(reason) Reject the eventby returning an error code to the function inyoking

the event.

[clear remote returns Cancel return timers for all pending remote returns, clear the|list of

pending remote returns, and release the operation objects.

[clear local returns Clear the list of pending local returns and release the opgration
objects.
[/cancel report timer Cancel the periodic status-report timer, if active.

[re

Set service parameters Reset the service parameters to the initial values. Resettjng of
service parameters must be checked individually for| each
parameter. Depending on the service type some parameters may
have to be reset to the initial values, while others must keep their
current values.

45.3.4.3.2 Compound Actions

IA

BORT (diagnostic) is defined as

APIF.PeerAbort(diagnostic)
AIF.PeerAbort(diagnostic)
/ICLEANUP

CCSDS 914.0-M-1 Page 4-35 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

/CLEANUP is defined as

/clear remote returns
[clear local returns
/cancel report timer
Ireset service parameters

CCSDS 914.0-M-1 Page 4-36 October 2008
© 1SO 2013 — Al rights reserved 191

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

45.3.4.4 Forward Link State Table—Provider Side

@)
@)
wn
8 1 UNHOUND 2 READY 3 ACTIVE
©
!4: 2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND 3.1 ACTIVH 3.2 STOP PEND
o
,Z PIF: Ireject(profocol error)Z«7"AlF.Startinv /ABORT (protocol error) | /reject(protocol error) ABORT (protocol error)
= Startinv 2.2 >11 > 1.1
AlF: Ireject(profocol error) PIF.StartRet Ireject(protocol errdr)
StartRet [result = positive]
> 31
[result = negative]
>21
PIF: Ireject(profocol error) /ABORT (protocol. error) Ireject(protocol error) | MAlF.Stoplnv /ABORT (protocol error)
Stoplinv ->11 2> 3.2 2>11
o AlF: Ireject(protocol error) "PIF.StopRet
S StopRet [result = positive]
z >21
& [result = negative]
~ 2> 3.1
PIF: Ireject(profocol error) /ABORT (protocol error) Ireject(protocol error) | MAlF.TransferDatgInv /ABORT (protocol error)
TransferDatalnv >11 > 31 >11
AlF: Ireject(profocol error) APIF.TransferDataRet
TransferDataRet
PIF: Ireject(profocol error) /ABORT (protocol error) Ireject(protocol‘error) | “AlF.InvokeDirectfvelnv | /ABORT (protocol error)
InvokeDirectivelnv 2>11 2>11
AlF: Ireject(profocol error) "PIF.InvokeDirectiveRet
InvokeDirectiveRet
8 AlF: Ireject(profocol error) ~PIF.AsyncNotifylnv Ireject(unbind pend) "PIF.AsyncNotifylnv
o AsyncNotifylnv
o
@
N PIF: Ireject(protocoterror) AT THTOWEVENtNV {1 freject(protocot error) *AF.ThrowEventinv {1}
o ThrowEventinv
oo
192 © 1SO 2013 — Al rights reserved

NOILVDI4103dS FHOI—S3DINAHTS 34SNVAHL 371S 404 IdV

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

T-IN-0'¥T16 SASDD

8¢-1 abed

800¢ 1390100

ISO 18441:2013(E)

1 UNBOUND 2 READY

3 ACTIVE

2.1 BOUND 2.2 START PEND 2.3 UNBIND PEND

3.1 ACTIVH

3.2 STOP PEND

AlF: Ireject(prof
ThrowEventRet

ocol-efrar) APIF.ThrowEventRet {1} | /reject(unbind pend)

APIF.]

hrowEventRet {1}

NOTE - The operatio
place. As |
diagnostic ‘o

ther reason’.

n THROW-EVENT is defined in the transfer services but the associated managem
bng as this situation exists, applications should respond with a return holding a

ent support is not yet in
negative result and the

© 1SO 2013 — All rights reserved

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

193

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

194

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.4 USER SIDE STATE TABLES

4541 States

All user side state tables use the same set of states. The main states are identical to those
defined in the CCSDS Recommended Standards for SLE transfer services. Sub-states have
been added to allow presentation of further details related to the interactions with the
application and the proxy. The states are defined as follows.

UNBOUND:UNBOUND

UNBOUND:BIND PEND

READY:BOUND

READY:START PEND

READY:UNBIND PEND

ACTIVE:ACTIVE

ACTIVE:STOP PEND

4.%.4.2 Common State'Table—User Initiated Binding

45421 Events

454211 Events received from the Application Interface
(IBLE_Servicelnitiate)

The user is not bound to the service instance.

A BIND invocation has been issued, the service provid
not yet responded.

A BIND return with a positive result has’been received {
START invocation has been sent, ‘or‘a STOP operati(
been completed.

A START invocation has been’issued, the service provic
not yet responded.

An UNBIND invoeation has been issued, the service pr
has not yet responded.

A START return with a positive result has been received

A STQP invocation has been issued, the service provid
not yet responded.

er has

aind no
)N has

er has

ovider

er has

Bipdny call to InitiateOplInvoke() with a BIND operation

Unbiadlinv callto InitiateOplnvoke) with a UNBIND operation

GetPrminv call to InitiateOplnvoke() with a GET-PARAMETER
operation

ScheduleStatRepInv call to InitiateOplnvoke() with a SCHEDULE-STATUS-
REPORT operation

PeerAbortinv call to InitiateOplInvoke() with a PEER-ABORT operation

CCSDS 914.0-M-1 Page 4-39 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.4.2.1.2 Events sent to the Application Interface (ISLE_Servicelnform)

BindRet call to InformOpReturn() with a BIND operation

UnbindRet call to InformOpReturn() with a UNBIND operation

GetPrmRet call to InformOpReturn() with a GET-PARAMETER
operation

ScheduleStatRepRet call to InformOpReturn() with a SCHEDUI E-STATUS-
REPORT operation

StatusReportinv call to InformOpInvoke() with a STATUS-REPORT opeératipn

PeerAportinv call to InformOp Invoke () with a PEER-ABORT operation

ProtoqolAbort call to ProtocolAbort()

45.4.2.1.3 Events received from the Proxy Interface (ISLE_SrvProxylInform)

BindRet call to InformOpReturn() with a BIND operation

UnbindRet call to InformOpReturn() with 2&UNBIND operation

GetPrmRet call to InformOpReturn(:»with a GET-PARAMETER
operation

SchedpleStatRepRet call to InformOpReturn() with a SCHEDULE-STATUS-
REPORT operation

StatusReportinv call to InformOp Invoke () with a STATUS-REPORT operatipn

PeerAbortinv call to InformOplovoke () with a PEER-ABORT operation

ProtoqolAbort call to ProtocotAbort()

45.4.2.1.4 Events sent to the Rroxy Interface (ISLE_SrvProxylnitiate)

Bindlnpv callto InitiateOplInvoke() with a BIND operation

Unbindinv call to InitiateOplInvoke() with a UNBIND operation

GetPrminv call to InitiateOplnvoke() with a GET-PARAMETER
operation

SchedpleStatRepinv call to InitiateOplnvoke() with a SCHEDULE-STATUS-
REPORT operation

PeerAbortinv call to InitiateOplInvoke() with a PEER-ABORT operatiof

45.4.2.1.5 Internal Events

Peer Abort peer abort event generated by a pre-processing function or a post-

Return timeout

CCSDS 914.0-M-1

© 1SO 2013 — All rights reserved

processing function
the time to wait for a specific return-PDU has elapsed

Page 4-40 October 2008

195

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

196

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.4.2.2 Predicates

result = positive The result parameter in the PDU indicates “positive result’.
result = negative The result parameter in the PDU indicates ‘negative result’.

45423 Actions

45.4.2.3.1 Discrete Actions

Irgject(reason) Reject the event by returning an error code to the function.inyoking
the event.

[clear local returns Clear the list of pending local returns and release operation objects.

4.%.42.3.2 Compound Actions

/ABORT

Alort processing is forward/return-service specific, see /ABORT in4.5.4.3and 4.5.4.4

/ICILEANUP

Clganup processing is forward/return-service speeific, see /CLEANUP in 4.5.4.3 and 4)5.4.4.

CCSDS 914.0-M-1 Page 4-41 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

T-IN-0'¥T16 SASDD

Zb- abed

800¢ 1390100

45.4.2.4 Common State Table—User Side

ISO 18441:2013(E)

1 UNBOUND 2 READY 3 ACTIVE
1}1 UNBQUND 1.2 BIND PEND 2.1 BOUND 2.2 START PEND | 2.3 UNBIND HEND
AlF: PIH.BindInv Ireject(protocol error)
BindInv >1
PIF: Ireject(protocol error) NAIF.BindRet Ireject(protocol error)
BindRet [result = positive]
>2.1
[result £ negative]
>11
AlF: Ireject(protocol error) PIF.Unbindinv Ireject(protocl error)
Unbindinv [clear local returns
> 2.3
PIF: Ireject(protocol erfor) NAIF.UnbindRét [Ireject(protocol error)
UnbindRet /CLEANUP
>1.1
AlF: Ireject(protocol error) PIF,GetPrminv Ireject(protocol err) | *PIF.GetPrminv
GetPrminv
PIF: Ireject(protocol error) MAIF.GetPrmRet {1}
GetPrmRet
AlF: reject(protocol error) APIF.ScheduleStatReplnv Ireject(protocol grr) | *PIF.ScheduleStatRepinv

ScheduleStatReplnv

PIF: Ireject(protocol error) MAIF ScheduleStatRepRet {1}
ScheduleStatRepRet
PIF: Ireject(protocol error) AAlF.StatusReportinvy {2}

StatusReportinv

PIF:
PeerAbortinv

Ireje]

Ct(protocol error)

AAlF.PeerAbortinv

[CLEANUP

->11

© 1SO 2013 — All rights reserved

NOILVDI4103dS FHOI—S3DINAHTS 34SNVAHL 371S 404 IdV

197

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

T-IN-0'¥T16 SASDD

et- abed

1 UNBOUND 2 READY 3 ACTIVE
1[I UNBOUND 1.2 BIND PEND 2.1 BOUND 2.2 START PEND | 2.3 UNBIND HEND
AlF: Ireject(pretocol error) "PIF.PeerAbortinv
PeerAbortinv /CLEANUP
>11
PIF: Ireject(protocol error) AAIF.ProtoclAbortinv
ProtocolAbort /CLEANUP
>11
INT: N/A /ABORT (return timeout)
Return timeout 2>11
INT: N/A /ABORT (reason)
PeerAbort(reason) ->11
NOTES
1 In the state UNBIND-PENDING, returns can still be receivedfrem the peer.
2 In the state UNB|ND-PENDING, no further invocations should be sent by the peer. However, the peer may not yet have seen
the UNBIND invpcation. Therefore all invocations are passed to the application. The application sholild no longer respond.

800¢ 1390100

198 © IS0 2013 — Al rights reserved

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4543 Return Link SLE Services
4543.1 Events

45.4.3.1.1 Events received from the Application Interface
(ISLE_Servicelnitiate)

Startlnv call to InitiateOplInvoke() with a START operation
Stoplnv call to InitiateOplInvoke() with a STOP operation

45.4.3.1.2 Events sent to the Application Interface (ISLE_Servicelnform)

StartRlet call to InformOpReturn() with a START operation

StopREt call to InformOpReturn() with a STOP operation

TransferDatalnv call to InformOplnvoke() with @“~TRANSFER-DATA
operation

SyncNotifylnv call to InformOpInvoke() with aSYNC-NOTIFY operation

PeerAbortinv call to InformOpInvoke() with & PEER-ABORT operation

StartRet call to InformOpReturn() with a START operation
StopREt call to InformOpReturn() with a STOP operation
TransterBufferinv call to InformOplnvoke() with a TRANSFER-BUFFER

operation.

45.43.1.4 Events sent to the Proxy Interface (ISLE_SrvProxylnitiate)

Startinv call to InitiateOplInvoke() with a START operation
Stoplnv call to InitiateOplInvoke() with a STOP operation
PeerAbortinv call to InitiateOplInvoke() with a PEER-ABORT operatiof

45.4.3.24 Predicates

result = positive The result parameter in the PDU indicates “positive result’.

result = negative The result parameter in the PDU indicates ‘negative result’.

buffer empty The transfer buffer is empty.

pdu = data The PDU extracted from the transfer buffer is a TRANSFER-
DATA invocation.

pdu = notification The PDU extracted from the transfer buffer is a SYNC-NOTIFY
invocation.

CCSDS 914.0-M-1 Page 4-44 October 2008

© IS0 2013 — Al rights reserved 199

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.4.3.3 Actions

45.4.3.3.1 Discrete Actions

[reject(reason)
[extract pdu

[/clear remote returns

the event.

buffer.

Reject the event by returning an error code to the function invoking
Extract (and remove) the PDU at the beginning of the transfer

Cancel return timers for all pending remote returns, clear the list of

[clear local returns

4.5

IA

IC

/P

4.3.3.2 Compound Actions
BORT (diagnostic) is defined as

APIF.PeerAbort(diagnostic)
ANAIF.PeerAbort(diagnostic)
/ICLEANUP

LEANUP is defined as

[/clear remote returns
[clear local returns

ROCESS BUFFER is defined as

WHILE not buffer empty BO
/extract pdu
IF pdu = data THEN
AAIF. TransferDatalnv
ELSE
IF pdu= notification THEN
SAIF.SyncNotifylnv
ELSE
/ABORT (protocol error)
END IF

pending remote returns, and release operation objects.
Clear the list of pending local returns and release operation objects.

END IF
END WHILE

CCSDS 914.0-M-1 Page 4-45

200

October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

T-IN-0'¥T16 SASDD

9t~ abed

800¢ 1390100

45.4.3.4 Return Link State Table—User Side

ISO 18441:2013(E)

1 UNBOUND 2 READY 3 ACTIVE
2.1 BOUND 2.2 START PEND | 2.3 UNBIND PEND 3.1 A]TIVE 3.2 STOP PEND
AlF: Ireject(protocol error) "PIF.Startinv Ireject(protocol error)
Startinv > 2.2
PIF: [Ireject(protocol error) [ABORT (protocol error) MAIF.StartRet /ABORT (protgcol error)
StartRet ->11 [result = positive] ->11
> 31
[result = negative]
>21
AlF: Ireject(protocol error) "PIF.Stoplnv Ireject(protocol error)
Stopinv > 3.2
PIF: Ireject(protocol error) JABORT (protocol error) "AIF.StopRet
StopRet 211 [result = positive]
>21
[result = negative]
2> 31
PIF: Ireject(protocol error) /ABORT (protocol-€rrar) PROCESS BUFFER

TransferBufferinv

>11

© 1SO 2013 — All rights reserved

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

201

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

202

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

4544 Forward Link SLE Services

45441 Events

45.4.4.1.1 Events received from the Application Interface
(ISLE_Servicelnitiate)

Startlnv

call to InitiateOplInvoke() with a START operation

Stoplnv
TransferDatalnv

InyokeDirectivelnv

THrowEventinv

4%.4.4.1.2 Events sent to the Application Interface (LSLE_Servicelnform)

StartRet
StppRet
TransferDataRet

InyokeDirectiveRet

RgsumeDataTransfer
AgyncNotifylnv
THrowEventRet
PeerAbortinv

4.%5.4.4.1.3 Eventsreceived from the Proxy Interface (ISLE_SrvProxyInform

StartRet
StppRet
TransferDataRet

call to InitiateOplInvoke() with a STOP operation

call to InitiateOplnvoke() with a TRANSFER-I
operation
call to InitiateOplnvoke() with an INVOKE-DIRE(
operation

call to InitiateOplnvoke() with~a THROW-E
operation

call to InformOpReturn-with a START operation
call to InformOpReturn() with a STOP operation

call to InformOpReturn() with a TRANSFER-I
operation
call to InformOpReturn() with an INVOKE-DIREC
operation

call to ResumeDataTransfer()

call to InformOp Invoke () with an ASYNC-NOTIFY ope
call to:InformOpReturn() with a THROW-EVENT operz
cali-to InformOpInvoke() with a PEER-ABORT operatio

call to InformOpReturn() with a START operation
call to InformOpReturn() with a STOP operation
call to InformOpReturn() with a TRANSFER-I

DATA

L TIVE

VENT

DATA

L TIVE

ration
tion
n

DATA

operation

InvokeDirectiveRet
AsyncNotifylnv

ThrowEventRet
PDUTransmitted

CCSDS 914.0-M-1

call to InformOpReturn() with an INVOKE-DIRECTIVE

operation
call to InformOpInvoke() with an ASYNC-NOTIFY ope

ration

call to InformOpReturn() with a THROW-EVENT operation

call to PDUTransmitted()

Page 4-47 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.4.4.1.4 Events sent to the Proxy Interface (ISLE_SrvProxylnitiate)

Startinv call to InitiateOplInvoke() with a START operation

Stoplnv call to InitiateOpInvoke() with a STOP operation

TransferDatalnv call to InitiateOplnvoke() with a TRANSFER-DATA
operation

InvokeDirectivelnv call to InitiateOplnvoke() with an INVOKE-DIRECTIVE
operation

ThrowEventinv cat—to—InrtiatetpinvokeO—with—a—THROW-EVENT
operation

PeerAbortinv call to InitiateOplInvoke() with a PEER-ABORT operation

45.4.4.2 Predicates

result F positive The result parameter in the PDU indicates “posifive result’.

result F negative The result parameter in the PDU indicates negative result’.

data tqansmitted The TRANSFER-DATA invocation pdssed to the proxy could |be
transmitted immediately as indicatédvby the return code of the
function.

data qpeued A TRANSFER-DATA invocation has been passed to the proxy for
transfer and the PDU Transmitted event has not yet been receied

45443 Actions

45.4.4.3.1 Discrete Actions

[reject(reason)
[/clear femote returns

[clear Jocal returns

for that buffer.

Reject the event by returning an error code to the function invoking

the event.

Cancel return timers for all pending remote returns, clear the list
pending remote returns, and release operation objects.

Clear the list of pending local returns and release operation object

of

.

/suspend data transfer Request the application to suspend data transfer, by returning the
appropriate code from the function transmitting the event.
CCSDS 914.0-M-1 Page 4-48 October 2008

© 1SO 2013 — All rights reserved

203

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

45.4.43.2 Compound Actions
/ABORT (diagnostic) is defined as

APIF.PeerAbort(diagnostic)
AIF.PeerAbort(diagnostic)
/ICLEANUP

[CEEANUR-is-definred-as

[/clear remote returns
[clear local returns
/set data queued = FALSE

/PROCESS TD INV is defined as

IF data queued THEN
Ireject(transfer suspended)
ELSE
APIF.TransferDatalnv
IF not data transmitted THEN
/set data queued = TRUE
/suspend data transfer
END IF
END IF

NOTE - Processing as specified fiere, applies to a single outstanding TRANSFER DATA
invocation. Multiple outstanding TRANSFER DATA invocations might be used
by an implementation to increase performance.

/PROCESS PDU TRANSMITTED is defined as

IF data queued-THEN
/set dataiqueued = FALSE
AAKFResumeDataTransfer
ENDIF

CCSDS 914.0-M-1 Page 4-49 October 2008
204 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

T-IN-0'¥T16 SASDD

0G-1 abed

800¢ 1390100

45444 Forward Link State Table—User Side

ISO 18441:2013(E)

1 UNHOUND 2 READY 3 ACTIVE
2.1 BOUND 2.2 START PEND | 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND
AlF: Ireject(profocol error)Z«7"PIF.Startinv Ireject(protocol error)
Startinv 2.2
PIF: Ireject(profocol error) | /ABQRT (protocol error) | “AlF.StartRet /ABORT (protogol error)
StartRet ->11 [result = positive] 2>11
>31
[result = negative]
>21
AlF: Ireject(protocol error) "PIF.Stoplnv Ireject(protocol error)
Stoplinv > 3.2
PIF: Ireject(profocol error) /ABORT (protocol error) "AlIF.StopRet
StopRet 2> 11 [result = positive]
>21
[result = negative]
>31
AlF: Ireject(protocol error) /PROCESS TD|INV Ireject(protocol error)
TransferDatalnv
PIF: Ireject(profocol error) /ABORT (protocol error) "AlF. TransferDataRet
TransferDataRet ->11
AlF: Ireject(protocol error) "PIF.InvokeDirgctivelnv | /reject(protocol error)
InvokeDirectivelnv

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

PIF: Ireject(profocol error) /ABORT (protocol error) MAIF.InvokeDirectiveRet
InvokeDirectiveRet ->11
PIF: Ireject /PROCESS PDU TRANSMITTED

PDU transmitted

PIF:
AsyncNotifylnv

Ireject(protocoterror)

A ASYNCNOtfymnv

{2}

© 1SO 2013 — All rights reserved

205

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

Q 1 UNBOUND 2 READY 3 ACTIVE
wn
9 2.1 BOUND 2.2 START PEND | 2.3 UNBIND PEND 3.1 ACTIVE 3.2 STOP PEND
(e
= AlF: Ireject(profocol-efror) APIF.ThrowEventinv Ireject(protocol err) PIF.ThrowEventinv
(=) ThrowEventinv
<
= PIF: Ireject(profocol error) NAIF. ThrowEventRet {1}
ThrowEventRet
NOTES
1 In the state UNBIND-PENDING, returns can/still be received from the peer.
2 In the state UNB|ND-PENDING, no further invocations should be sent by the peer. However, the peer may not yet have seen
- the UNBIND invpcation. Therefore all invocations are,passed to the application. The application sholild no longer respond.
&
D
=
(6]
H
@)
2
o
o
@
N
o
o
oo
206 © IS0 2013 — Al rights reserved

NOILVDId103dS FHOI—S3DIAHES 34SNVAHL 371S 404 IdV

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ANNEX A
SPECIFICATION OF COMMON INTERFACES

(Normative)

Al INTRODUCTION

THis annex contains the C++ definition of interfaces that are common for all SI'E-3ervice

types and of supporting types required by these interfaces. Service-type specific’intg

rfaces

ar¢ defined by the relevant supplemental Recommended Practice documents’ for sgrvice-

specific APlIs.

THe interface specifications are structured according to the components that must prov{de the

implementation:
A4,

A5.

subsection AS8.

e) Interfaces that must be provided by the SLE Application are defined in subg
A9,

Inferfaces that must be implemented by more than one component are defined in subs
AG. Interfaces defined)in that subsection must be implemented by the componen
Prpxy” and ‘APl Service Element’.

Subsection A3'defines types used throughout the remaining subsections.

THe conventions used for the specification are explained in subsection A2.

a) Interfaces implemented by the component ‘SLE Utilities’ are defined in subgection
b) Interfaces implemented by the component ‘SLE Operations’ are defined in subgection

c) Interfaces implemented by the component *API Proxy’ are defined in subsection A7.

d) Interfaces implemented by the _cemponent ‘APl Service Element’ are defiped in

ection

ection
‘API

TheSpecifications of this annex are complemented by the definition of the ‘$imple

Component Model’ in annex D.

CCSDS 914.0-M-1 Page A-1 October 2008

© 1SO 2013 — All rights reserved

207

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

208

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A2 CONVENTIONS

A21

OVERVIEW

The specification of the interfaces follows the design patterns and conventions described for
the ‘Simple Component Model’ in annex D. In order to be consistent with those elements
adopted from COM, the coding style has been also adopted from COM to a large extent.

A2.2

The ‘K

in the

derived from the interface lUnknown, which is also defined in SLE ~SCM_H.

A2.3

Names for the following items start with uppercase letters:

a)

b)

Names for the following items start with lowercase letters:

All na

INTERFACES
eyword” interface is defined by
#define interface struct

file SLE_SCM_H described in annex D. All interfaces are directly or indirec

NAMING CONVENTIONS

All types, i.e.:

1) Interfaces (e.g., ISLE_Bind);

2) enumeration types (e.g., SLE_RarameterName);

3) other types declared by typedef (e.g., SLE_Invokeld);
Method names (e.g., InitiateOplInvoke()).

variables;
arguments ef methods;

enumeration labels.

—F

y

mes at global scope in this specification use the prefix ‘SLE’ (or ‘sle’ when {

namedad

All int

item is supposed to start with a lowercase letter).

erfaces start with a capital “1’, such that interface names are prefixed with ‘I1SLE”’.

NOTE - The interface IMal loc defined in A4.3 is the only exception to this rule because

of the considerations presented in A2.6.

CCSDS 914.0-M-1 Page A-2 October 2008

© 1SO 2013 — All rights

reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Because enumeration labels are defined at global scope, the prefix is extended to include an

abbreviation for the enumeration type.

SLE_ParameterName are prefixed by ‘slePN’.

For instance, all labels of the enumeration type

An underscore character is used to separate the prefix from the name. Within the name itself
upper and lower case is used to improve readability.

A2.4 ACCESS TO OBJECT ATTRIBUTES

M
‘G
ch
se
ca

w
ar

=

AZ

a)

b)

d)

5

bthods that only provide read access to an attribute of an object, are named using. the
e,
aracter is used to separate the prefix from the name. For example the méthod to reg
vice type is called Get_ServiceType() and the method to setcthe service type is
led Set_ServiceType().-

hen the attribute type is not a basic type (e.g., a character string) the following convg
applied:

Methods that set the attribute are named using the prefix ‘Set’. An. undg

If it can be assumed that the implementation steres the attribute in the for
which it is delivered, the return value is defined to be const. In these cas
client must copy the value if it wants to modify it.

If the object implementation might have:to derive the value a pointer to a not cq
object is returned. In these cases theclient must delete the returned value.

In order to optimize performance, an additional retrieval method, prefix
‘Remove_’ is defined for aftributes that might become large (e.g., the spag
data). These methods retura a pointer to the internal representation and remo
pointer from the object.itself. The client calling that method must make sy
memory is released Wwhen the data are no longer needed.

For setting of attributes a pointer or reference to a const object is generally
For potentially-larger arguments, an additional method (prefixed by ‘Put’) is d

prefix
rscore
ad the

ntions

mat in
bs, the

nstant

ed by
e link
e that
re the

used.
efined

which passes a pointer to a not constant object. In these cases the implementation is

expected to delete the data passed with the argument, when it no longer needs it

CONDITIONAL AND OPTIONAL ATTRIBUTES

Attributes of operation objects can be:

a) conditional, i.e., their value is only defined when another attribute has a certain value;

b)

optional, i.e., the value may or may not be defined.

For access to conditional attributes, checking of the condition is considered a precondition;
i.e., the result of calling the access method is undefined when the attribute is not present.

CCSDS 914.0-M-1 Page A-3 October 2008
© 1SO 2013 — All rights reserved

209

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

For access to optional attributes, different approaches are used, depending on the type of the
attribute:

a) For enumeration types, an additional enumeration value ‘undefined’ is added to the
type declaration. This value is returned if the attribute is currently undefined.

b) Object types or composite C++ types, such as arrays or structures are returned via a
pointer to a constant object, instead of using a reference to a constant object. If an
optional attribute is undefined, the access method returns a NULL pointer.

c)| For simple types the following cases are distinguished:

1) if the valid range of attribute values does not include the complete range|covered
by the type, a special value is selected to indicate that the attribute is not'defined;

2) in other cases, a special method is provided to check whether. the attribute| is

defined or not.

In casgs where presence or absence of an attribute is identified by a’special method, absence
of an pperation object attribute shall be marked as ‘(not used)~in the tables specifying the
initial|values of operation object attributes.

A2.6 | MEMORY MANAGEMENT

Non-gbject data structures, to which pointers are passed across component boundaries, might
be crejated by one component or the application and released by another component or the
applicption. Use of a consistent memory ymanagement scheme by all involved parties is|of
prime [importance to ensure integrity of\pracess memory.

Therefore, this Recommended Practice defines a specific memory management interfgce
IMalfloc, which must be used by all API components and by the application when creating
or deleting data structures to'which pointers are passed across component boundaries. The
interfgce IMal loc is_implemented by the component SLE Utilities. A pointer to the
interfgce can be obtained using the method CreateMemoryManager() of the Utility

Factory.

NOTHS

1 Memory management for objects created by API components is controlled by the
reference counting schemefornterfaces describedmanmex D—This schemempties

that the memory for such objects is always allocated and released by the same
component. Therefore, the means by which memory is allocated and released for
such objects is considered a local implementation issue and not prescribed by this
Recommended Practice. The same applies to interfaces, which are implemented by
objects within the application software.

CCSDS 914.0-M-1 Page A-4 October 2008
210 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

2 Data structures, which might be created by one component and deleted by another
component, are generally strings, arrays or structures passed by Put_xxx() or
Remove_ xxx() methods.

3 For data that are never passed across component boundaries and for data that are
always passed by value, memory management is considered a local implementation
issue and not prescribed by this Recommended Practice.

4 e data,
which are passed across component boundaries using a reference to a constaxt data

structure or a pointer to a constant data structure, must not be deleted by the ¢alling
software. Therefore, use of the memory manager interface IMall¥oc js not
mandated if a data structure is only passed across component baoundaries in these
ways.

5 The specification of the interface IMal loc defines a subset of the COM inferface
IMalloc, in order to enable use of the SLE API in a-=COM environment. Rurther
details concerning the use of this interface and the injglementation of the interface in
other environments can be found in A4.3 and annex D.

A2.7 INTERFACE IDENTIFIERS

Inferface identifiers are displayed in the format as defined for the COM registry. In addition,
eatch interface contains a macro that allows pre-setting of the structure GUID (see annex D).

THe name of the macro is constructed,as 1 1D_<interface-name>_DEF Guidelines for
usg of this macro can be found in annex D.

A2.8 TYPE DEFINITIONS

Types other than interfaces are defined at global scope. They are grouped into twa files,
namely:

a) SLE.Types.h for types derived from the CCSDS Recommended Stapdards
for SLE transfer services;

b),"SLE_APITypes.h for types specified by the API.

All types are defined in a manner that is compatible with the C language in order to simplify
mapping of the interfaces to C. For enumeration types derived from the CCSDS
Recommended Standards for SLE transfer services the numbers assigned to the labels
correspond to the integer values used in those specifications.

CCSDS 914.0-M-1 Page A-5 October 2008
© 1SO 2013 — Al rights reserved 211

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A2.9 RESULT CODES

This specification adopts the scheme to define result codes from COM. All values that can
be used for the variable HRESULT are defined in annex B and in the file SLE_ Result.h.
A2.10 FUNCTION OVERLOADING

In order to simplify mapping to the C language, this specification does not use overloaded
functipns except for overloaded operators. Overloaded operators can be mapped to funetjon
namegin C.

A2.11 OBJECT CREATION METHODS

The signature of methods creating and returning objects follows the COM conventions:

a)| the GUID of the interface is passed as an input argument (and checked by the
implementation);

b)| a pointer to the interface of the object is passed as_af output argument of the type
void**;

c) | the method returns a result code.

A2.12| FILES

This specification defines header files that'contain interface declarations and type definitiops.
Obviously, these definitions are not mandatory, but present a recommendation. A set of the
files defined in this specification is:available from the same source as the specification itself.

A3 TYPE DEFINITIONS
A3.1 | SLE TYPES
A3.1.1 General

File SLE Types.h

The fpHowing basic types have been derived from the ASN.1 modules in the CCSIDS
Recommended Standards for SLE transfer services. The source ASN.1 type is indicated in
brackets. For all enumeration types a special value ‘invalid’ is defined, which is returned if
the associated value in the operation object has not yet been set, or is not applicable in case
of a choice.

The type definitions in this specification cover all those types that are common for all service
types or for a subset of service types. These types are defined in the ASN.1 modules:

a) CCSDS-SLE-TRANSFER-SERVICE-COMMON-TYPES;

CCSDS 914.0-M-1 Page A-6 October 2008
212 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

b) CCSDS-SLE-TRANSFER-SERVICE-BIND-TYPES; and
c) CCSDS-SLE-TRANSFER-COMMON-PDUS.

The definition of the SLE service parameters (ParameterName) has been excluded
because extensions are expected when further SLE services are added. Service parameters
are defined in the relevant supplemental Recommended Practice documents for service-
specific APlIs.

A3.1.2 Auxiliary Types

Size of Data

#iffndef SIZE T

#define SIZE T

typedef unsigned int size_t;
#endif

On POSIX systems, size_t is defined by standard headeffiles; redefinition myst be
prévented by conditional compilation.

Definition of an Octet
typedef unsigned char SLE_Octet;

Inlorder to distinguish between character strings and sequences of octets (bytes) frequently
used by SLE Service specifications, the APl defines a special type for an octet. The type
char™> always refers to a zero terminated string of characters.

Ygs/No Value
typedef enum SLE YesNo

{
sleYN_No =0,
sleYN_Yes =1,
sleYN_invalid~= -1

} SLE _YesNo;

THhe type describes a Boolean value, which might not be available at certain times.

A3.L3 Types derived from CCSDS-SLE-TRANSFER-SERVICE-COMMON-TYPES
Delivery Mode [Del 1veryMode]

typedef enum SLE DeliveryMode

sleDM_rtnTimelyOnline = 0,
sleDM_rtnCompleteOnline = 1,
sleDM_rtnOffline = 2,
sleDM_fwdOnline = 3,
sleDM_fwdOFfline = 4,
sleDM_invalid = -1
CCSDS 914.0-M-1 Page A-7 October 2008

© 1SO 2013 — Al rights reserved 213

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

} SLE DeliveryMode;

Common Diagnostics [Diagnostics]
typedef enum SLE Diagnhostics

sleD_duplicatelnvokeld = 100,
sleD_otherReason = 127,
sleD_invalid = -1

} SLE Diagnostics;

ard Data Unit Status [ForwardDuStatus]

{
sleFDS radiated = o,
slefFDS_expired = 1,
slefFDS_interrupted = 2,
slefFDS_acknowledged = 3,
slefFDS_productionStarted = 4,
slefFDS_productionNotStarted = 5,
slefFDS_unsupportedTransmissionMode = 6,
slefFDS_invalid = -1

} SLE| ForwardDuStatus;

Invocation Identifier [Invokeld]
typedef unsigned short SLE Invokeld;

Genetration of Notifications [SIduStatusNotification]
typedef enum SLE_SlduStatusNotification

{
sleSN_produceNotification = o,
sleSN_doNotProduceNoti fication = 1,
sleSN_invalid = -1

} SLE[SIduStatusNotifieation;

A3.14 Types dérived from CCSDS-SLE-TRANSFER-SERVICE-BIND-TYPES

Version Number [VersionNumber]
typedef_unsigned short SLE VersionNumber;

Duration [Duration]

typedef unsigned long SLE Duration; /* in microseconds */

SLE Service Type [Applicationldentifier]
typedef enum SLE_Applicationldentifier

sleAl_rtnAllFrames = o,

CCSDS 914.0-M-1 Page A-8 October 2008
214 © 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

sleAl_rtninsert
sleAl_rtnChFrames
sleAl_rtnChFsh
sleAl_rtnChOcf
sleAl_rtnBitstr
sleAl_rtnSpacePkt
sleAl_fwdAosSpacePkt
sleAl_fwdAosVca
sleAl_fwdBitstr
sleAl_fwdProtoVcdu
sleAl fudlnsert
leAl_fwdVcdu
leAl_fwdTcSpacePkt
leAl_fwdTcVca
leAl_fwdTcFrame
leAl_fwdCltu
leAl invalid
} BLE_Applicationldentifier;

OCoO~NOUAWNER

=
o

=Y
=Y

PR
ENEREN)

T TR TR T
B
o

I
=

BIND Diagnostic [BindDiagnostic]

typedef enum SLE_BindDiagnostic

{
leBD_accessDenied
1eBD_serviceTypeNotSupported
1eBD_versionNotSupported
1eBD_noSuchServicelnstance
1eBD_alreadyBound
leBD_siNotAccessibleToThislnitiator
1eBD_inconsistentServiceType
1eBD_invalidTime
1eBD_outOfService
1eBD_otherReason
leBD_invalid

} SLE BindDiagnostic;

O~NO U WNEO

=
N
~

|
=

BIND Reason [UnbindReason]

edef enum SLE_UnhbindReason

=

l1eUBR_end
leUBR_suspend
leUBR \wversionNotSupported
lIeUBR* otherReason
leUBR_invalid

} SLE UnbindReason;

o mmnu
N

PEER-ABORT Diagnostic [PeerAbortDiagnostic]
typedef enum SLE PeerAbortDiagnostic

slePAD_accessDenied
slePAD_unexpectedResponderld
slePAD_operationalRequirement
slePAD_protoclError

o
WNEFO

CCSDS 914.0-M-1 Page A-9 October 2008
© 1SO 2013 — Al rights reserved 215

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

216

sle
sle
sle
sle
sle
sle
sle

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

PAD_communicationsFailure
PAD_encodingError
PAD_returnTimeout
PAD_endOfServiceProvisionPeriod
PAD_unsolicitedlinvokeld
PAD_otherReason

PAD_invalid

o~NO O~

} SLE_PeerAbortDiagnostic;

A3.1.5

Repot
typed

Repot
typed
{

sle
sle
sle
sle
} SLE

SCHH
[Diag

typed
{

sle
sle
sle
sle
} SLE

A3.2
File

The fa

m

Typesderived-fromCCSDS=St-
ting Cycle [ReportingCycle]
ef unsigned int SLE_ReportingCycle;

t Request Type [ReportRequestType]
ef enum SLE_ReportRequestType

RRT _immediately
RRT_periodically
RRT_stop
RRT_invalid

| ReportRequestType;

PNEFEO

DULE-STATUS-REPORT Diagnostic
nosticScheduleStatusReport]

ef enum SLE_ScheduleStatusReportDiagnostic

SSD_notSupportedInThisDel iveryMode
SSD_alreadyStopped

SSD_inval idReportingCycle
SSD_invalid

| ScheduleStatusReportPiagnostic;

PNPEO

SLE API TYRES
SEE* APITypes.h

llowing types are used throughout the API Specification.

State of an Association

typedef enum SLE_AssocState
{
sleAST_unbound =0,
sleAST_bindPending =1, /* Bind initiated remotely */
sleAST _bound =2,
sleAST_remoteUnbindPending = 3, /* Unbind iInitiated remotely */
sleAST _localUnbindPending = 4 /* Unbind initiated locally */
} SLE AssocState;
CCSDS 914.0-M-1 Page A-10 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

State of a Service Instance
typedef enum SLE SlIState

sleSIS_unbound
sleSIS_bindPending
sleSIS_bound
sleSIS_unbindPending
sleSIS_startPending
sleSIS _active
sleSIS_stopPending

} SLE_SIState;

L | R V|
OO WNEFO

Role of an SLE Application
typedef enum SLE AppRole

s1eAR_user
sleAR_provider
sleAR_userAndProvider
} BLE_AppRole;

I
=

Role of an SLE Application in the BIND Operation
typedef enum SLE BindRole

{
sleBR_initiator =0,
sleBR_responder =1,
sleBR_initiatorAndResponder = 2

} BLE_BindRole;

Pdrt Registration Identifier

typedef void* SLE_PortRegld;

AP1 Components

typedef enum SLE.‘€omponent

{
s1eCP_applLication =0,
sleCP_serviceElement =1,
s1eCP_proxy =2,
sleCP<operations = 3,
sleCR utilities =4

| I o v
} StE—Component:

Authentication Mode
typedef enum SLE_AuthenticationMode

0, /* authentication not used */
sleAM_bindOnly 1, /* authetication only for bind */
sleAM_all 2 /* authentication for all operations */

} SLE_AuthenticationMode;

sleAM_none

CCSDS 914.0-M-1 Page A-11 October 2008
© 1SO 2013 — Al rights reserved 217

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

218

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Event Handle

#i1F defined(_SLE_EH FILE_DESCRIPTOR) /* UNIX file descriptor */
typedef enum SLE_EventType

sleET_readEvent = 0;
sleET _writeEvent = 1;
sleET_exception = 2;

} SLE_EventType;

typedef struct SLE EventHandle
{

ing filedes; /* Tile descriptor */
SLE| EventType eventType;
} SLE|[EventHandle;

#elif] defined(_SLE_EH_EVENT_FLAG_) /* VMS event flag */
typedef unsigned int SLE_EventHandle;

#elif| defined (_SLE_EH_EVENT_OBJECT) /* Win32 event“object */
typedef HANDLE SLE EventHandle;

/* further definitions may be added in future versions */
#else

typedef void* SLE _EventHandle;

#endilf

The format of the event handle depends on the progessing platform and the operating syst¢m
featurgs selected by the implementation of the AP¥component:

a)| On UNIX, the event handle consists of a file descriptor, and the type of evepts
supported by the select() call:: Note that two event handles are considered|to
refer to the same event specification only when the file descriptor and the event type
match. Different event types on the same file descriptor are considered unrelatgd.
(This version can also(be used on other platforms supporting select() in the
combination with the secket API.)

b)[On Windows systems, event objects can be used.

Timerx Identifier
typedef voiad™ SLE _Timerld;

The identifier for a timer supported by the interface ISLE_TimerHandler.

Trace Level
typedef enum SLE TraceLevel

sleTL_low = 0, /* only state changes */
sleTL_medium =1, /* plus all PDUs and internal events */
sleTL_high = 2, /* plus arguments of the PDU */
sleTL_full = 3 /* plus encoded data */
} SLE TracelLevel;
CCSDS 914.0-M-1 Page A-12 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Log Message Types
typedef enum SLE LogMessageType
sleLM_alarm

sleLM_information
} SLE_LogMessageType;

01
1

Alarms Notified by the API

ty: adaef o Sl o AL~
coCT—Crronm— ot =_7 kot

sleAL_accessViolation
sleAL_authFailure
sleAL_commsFailure
sleAL_localAbort
sleAL_remoteAbort

} SLE_Alarm;

I n
AP WNEFO

Variants of the CCSDS ASCII Time Format
typedef enum SLE TimeFmt

{
sleTF_dayOfMonth =0,
sleTF_dayOfYear =1

} BLE_TimeFmt;

Time Resolution

typedef enum SLE TimeRes

{
sleTR_minutes = 0y
sleTR_seconds =\1),
sleTR_hundredMilliSec =2,
sleTR_tenMilliSec = 3,
sleTR_milliSec = 4,
sleTR_hundredMicreSec =5,
sleTR_tenMicroSec = 6,
sleTR_microSec =7

} BLE TimeRes¢

Oypperation:Type

typedeT 'enum SLE_OpType
{

te6T—hind
sle0T_unbind
sleOT_peerAbort
sleOT_start
sle0T_stop
sle0T_transferData
sle0T_transferBuffer
sle0T_syncNotify
sleOT_asyncNotify
sleOT_scheduleStatusReport
sle0T_statusReport

CQOVWO~NOUDMWNEFEOD

=

CCSDS 914.0-M-1 Page A-13 October 2008
© 1SO 2013 — Al rights reserved 219

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

sle0T_getParameter = 11,
sle0T_throwEvent =12,
sleOT_invokeDirective = 13

} SLE OpType;

This enumeration specifies all operation types used by SLE Services. Not all operations are
valid for all service types. In addition, operations for different service types differ.
Therefore, an operation object is fully specified only by the combination of ‘operation type’
and ‘service type’.

Operation Result

typedef enum SLE Result
sleRES positive = 0,
sleRES negative = 1,
sleRES invalid = -1
} SLE[Result;

f enum SLE DiagnosticType

T_noDiagnostics
T_commonDiagnostics
T_specificDiagnostics
DiagnosticType;

(I
N~ O

The tylpe of diagnostic stored in a confirmed operation object.

Origipator of a Peer Abort
typedef enum SLE AbortOrKiginator

{
slepA0_peer = 0, /* the peer system */
sleA0_proxy = 1, /* the local proxy */
slepO_serviceElement = 2, /* the local service element */
slep0_application = 3, /* the local application */
slepO0_invalid = -1

} SLE|[AbortOriginator;

CCSDS 914.0-M-1 Page A-14 October 2008

220 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4 SLEUTILITY CLASSES
A4.1 COMPONENT CREATOR FUNCTION
File <impl-id>_H

The component implementing SLE utility classes includes a function to obtain a pointer to
the utility object factory interface. The signature of this function is defined as:

extern "C" HRESULT

<impl-i1d>_CreateUtilFactory(const GUID& 11id,
ISLE_TimeSource* ptimeSourc
void** ppv);

117

where <impl-id> is replaced by the product identifier of the implementation. Note that
external ‘C’ linkage is required. The function checks the argument-identifying the factory
inferface and returns an error when the implementation does not support that identifier.

If |a pointer to the interface 1SLE_TimeSource is supplied, the component usgs this
interface to obtain the current time via the interface ASLE_Time. If a NULL poipter is
supplied, the component uses system time.

Arguments

ild identifier of the required interface

pl imeSource pointer to the interface 1SLE_TimeSource

ppv pointer to the'requested interface of the Utility Factory
R4gsult codes

S |0K the object has been created

E [NOINTERFACE the specified interface is not supported

A4.2 SLEUTILITY FACTORY

Name ISLE_UtilFactory

GUID {DED624E1-54CB-11d8-9CF5-0004761E8CFB}
Inperitance: 1Unknown

File ISLE_UtilFactory.H

The Utility Factory provides the means to create an SLE Utility object with a default
initialization. The factory uses the interface identifier to verify that it can create the
requested version of the object. If the 11D is unknown, the factory returns an error. The
lifetime of utility objects is controlled by reference counting as defined in annex D.

Synopsis
#include <SLE_SCM.H>

CCSDS 914.0-M-1 Page A-15 October 2008
© 1SO 2013 — Al rights reserved 221

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

interface IMalloc;

interface ISLE Time;
interface ISLE_SII;

interface ISLE Credentials;
interface ISLE_SecAttributes;

#define 11D_ISLE_UtilFactory DEF { Oxded624el, 0Ox54cb, 0x11d8, \
{ 0x9c, Oxf5, 0x0, Ox4, Ox76, Oxle, Ox8c, Oxfb } };

interface ISLE_UtilFactory : lUnknown

{
virjtual HRESULT
ClreateMemoryManager(const GUID& iid,
void** ppv) const = 0;
virjtual HRESULT
ClreateTime(const GUID& iid,
void** ppv) const = 0;
virftual HRESULT
reateS11(const GUID& iid,
void** ppv) const = 0;
virjtual HRESULT
ClreateCredentials(const GUID& iid,
void** ppv) const = 0;
virftual HRESULT
ClreateSecAttributes(const GUID& iid,
void** ppv) const = 0;
};
Methods

HRESULT CreateMemoryManager(const GUID& i1id, void** ppv) const;

Creatds a new memory manager object'which implements the COM interface IMal loc.

Arguments
iid Identifier of the required interface
ppv pointer to the requested interface of the object

Resul{ codes
S OK the object has been created
E_NOJINTERFACE the specified interface is not supported

HRESULT CreateTime(const GUID& T1d, void** ppv) CcoOnst;

Creates a new time object, set to current time. Current time is obtained from the interface
ISLE_TimeSource, if this interface was supplied to the creator-function of the
component. Otherwise, the component uses system time.

Arguments

1id identifier of the required interface

ppv pointer to the requested interface of the object

CCSDS 914.0-M-1 Page A-16 October 2008

222 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S _OK the object has been created
E_NOINTERFACE the specified interface is not supported

HRESULT CreateSII1(const GUID& i1id, void** ppv) const;

Creates a new service instance identifier object.

Aﬂguments
1id identifier of the required interface

ppv pointer to the requested interface of the object
Rdsult codes

S |OK the object has been created

E [NOINTERFACE the specified interface is not supported

HRESULT CreateCredentials(const GUID& iid, ~v0id** ppv) const;

ild identifier of the required interface

pRv pointer to the requested interface of the object
Rdsult codes

S |0OK the object has been created

E [NOINTERFACE the specified interface is not supported

HRESULT CreateSecAttributes(const GUID& iid, void** ppv) const;

Creates a new object holding security attributes.

Arguments

ild identifier of the required interface

ppv pointer to the requested interface of the object

Restttcodes

S OK the object has been created

E_NOINTERFACE the specified interface is not supported

CCSDS 914.0-M-1 Page A-17 October 2008

© 1SO 2013 — Al rights reserved 223

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

224

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4.3 SLE MEMORY MANAGER

Name IMalloc

GUID {00000002-0000-0000-C0O00-000000000046}
Inheritance: IUnknown

File IMalloc.H

The Memory Manager manages dynamic allocation and release of memory blocks. It must

be usedforall data structures passed-over components-boundaries or between the SLE AP

and the SLE application.

This ipterface conforms to the definition in the COM specification (including the GUID)|in
order fo allow use of the COM memory manager in a COM environment. Hewever, in the
context of the SLE API, only the methods Al loc(), Real loc() and Free() are needed
and implementations may provide dummy implementations of the metheds GetSize(),
HeapMinimize(), and DidAlloc(). Clients must not rely on these’methods.

A morle detailed discussion of memory management is provided-in’annex D.

Synogsis
#include <SLE_SCM.H>

#defipe 11D_IMalloc DEF { 0x00000002, 0xQQ00, 0x0000, \
{ Oxc0, 0x0, 0x0, Ox0, Ox0, OxO, Ox0, Ox46 } }

interjfface IMalloc : l1Unknown

{
virtual void *
Iloc(unsigned long cb):-=0;
virftual void *

Realloc(void* pv, unsigned long cb) = 0;
virjtual void
Free(void* pv).z 0;
virjtual unsigned_Jdong
tSize(void*xZpv) = 0;
virjtual int
DidAlloc(syoid* pv) = 0;
virjtual void
HeapMinimize() = 0;

Methods

virtual void * Alloc(unsigned long cb);

Allocates a memory block of at least cb bytes. The initial content of the returned memory
block is undefined. Specifically, it is not guaranteed that the block is zeroed. The block
actually allocated may be larger than cb bytes because of space required for alignment and
for maintenance information.

CCSDS 914.0-M-1 Page A-18 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments

cb minimum size (in bytes) of the memory block to be allocated; if
cb is 0, Alloc() allocates a zero-length item and returns a
valid pointer to that item

Results

NULL insufficient memory available

not NULL start address of the allocated memory block

vilrtual void * Realloc(void* pv, unsigned long cb);

Changes the size of a previously allocated memory block. The contentiof the blpck is
unchanged up to the shorter of the new and old sizes, although the newpblock may ke in a
different location. Because the new block can be in a new memory location, the pointer
refurned by Realloc() is not guaranteed to be the pointerCpassed through the pv
ar_lument. If pv is not NULL and cb is 0, then the memory pointed to by pv is freed.

Real loc() returns a void pointer to the reallocated (and-possibly moved) memory [block.
THe return value is NULL if the size is zero and the buffer-argument is not NULL, or if there
is pot enough available memory to expand the block*te’the given size. In the first cape, the
orjginal block is freed. In the second, the originalbleck is unchanged.

THe storage space pointed to by the return walue is guaranteed to be suitably aligned for
stqrage of any type of object. To get a pointer to a type other than void, a type cast pn the
rejurn value must be used.

Arguments

pv current start address of the memory block to be reallocated; if
pv is NULL, Realloc() functions in the same way as
Alloc() and allocates a new block of cb bytes; if pv|is not
NULL, it should be a pointer returned by a prior ¢all to
Alloc(QO

ch minimum new size (in bytes) of reallocated memory bloch

Rasults

NULL insufficient memory available, or original memory blo¢k has
been freed (if cb was 0)

not NULL start address of reallocated memory block

virtual void Free(void* pv);

Deallocates a memory block. The pv argument points to a memory block previously
allocated through a call to Alloc() or Realloc(). The number of bytes freed is the
number of bytes with which the block was originally allocated (or reallocated, in the case of

CCSDS 914.0-M-1 Page A-19 October 2008
© 1SO 2013 — Al rights reserved 225

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Realloc()). After the call, the pv parameter is invalid, and can no longer be used. pv
may be NULL, in which case this method does nothing.

Arguments
pv address of memory block to be deallocated

virtual unsigned long GetSize(void* pv);

Returps the size (in bytes) of a memory Dblock previously allocated ~with
IMalfloc: :Alloc() or IMalloc: :Realloc().

NOTH - Implementations of the SLE Utilities component are not required to.support this
feature and may provide a dummy implementation, which alwaysdeturns zero.

Arguments
pv address of the memory block for which~the size should |be

returned

virtyal int DidAlloc(void* pv);
Determines if this allocator was used to allocate the specified block of memory.

NOTH - Implementations of the SLE Utilities<component are not required to support this
feature and may provide a dummy-implementation, which always returns —1.

Arguments

pv address of the memory block for which the query is made
Results

1 The memory block was allocated by this IMal loc instance

0 The memory block was not allocated by this IMal 1oc instarice
-1 DidAlloc() is unable to determine whether or not| it

allocated the memory block

virtyal void HeapMinimize();

Minimizes_the heap as much as possible by releasing unused memory to the operating

system, coalescing adjacent free blocks and committing free pages.

NOTE - Implementations of the SLE Utilities component are not required to support this
feature and may provide a dummy implementation, which does nothing.

CCSDS 914.0-M-1 Page A-20 October 2008
226 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A44 SLE TIME

Name ISLE _Time
GUID {73517E80-D3F3-11d2-9B44-00A0246D80DB}
Inheritance: 1Unknown

File ISLE_Time.H

Objects exporting this interface store time information with a resolution of up to one

mi

rosecond—TFhey supportinput-and-outputin-the following formats:

TH
tin

a) CCSDS day segmented time code (CDS);
b) CCSDS ASCII Calendar Segmented Time Code.

ey provide methods for comparison of times and calculation of the difféerence betwe
nes measured in seconds and fractions of seconds.

Synopsis

#i
#i

#d

nclude <SLE_SCM.H>
nclude <SLE_APITypes.h>

efine 1ID_ISLE Time DEF { 0x73517e80, Oxd3f3, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, 0x24,X0x6d, 0x80, Oxdb } };

interface ISLE _Time : IUnknown

virtual HRESULT
Set CDS(const SLE Octet* time) = O0;
virtual SLE_ Octet*
Get_CDS() const = 0;
virtual HRESULT
Set_DateAndTime(const char* dateAndTime) = O;
virtual HRESULT

Set Time(const~char* time) = 0;
virtual char*

Get_Date(SLE TimeFmt fmt) const = O;
virtual chat™

Get _Time(SLE_TimeFmt fmt,

SLE TimeRes res = sleTR_seconds) const = 0O;

virtualkChar*

Get~-DateAndTime(SLE_TimeFmt fmt,

SLE TimeRes res = sleTR_seconds) const = 0;

Aavrtual vvoid

en two

Update() = O;
virtual double

operator- (const ISLE_Time& time) const = O;
virtual bool

operator== (const ISLE Time& time) const = O;
virtual bool

operator!= (const ISLE_Time& time) const
virtual bool

operator< (const ISLE Time& time) const = O;
virtual bool

0;

CCSDS 914.0-M-1 Page A-21 October 2008
© 1SO 2013 — All rights reserved

227

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

operator> (const ISLE Time& time) const = O;
virtual bool

operator<= (const ISLE_Time& time) const = O;
virtual bool

operator>= (const ISLE Time& time) const
virtual ISLE_Time*

Copy() const = 0;

0;

Methods

HRESULT Set_CDS(const SLE Octet* time);

Sets the time to the value of the argument presented in the CCSDS day segmented-time code.

Arguments
time time coded according to the CCSDS day.segmented time cogle,

consisting of 8 octets; the P-Field is implicit and not included

Result codes

S OK the time has been set
E_INVALIDARG the argument does not contain-the expected format
E_FA[IL failure to set the time begatse of other reasons

SLE_Qctet* Get_CDS() const;

Returns the time in the CCSDS day segmented time code, consisting of 8 octets; the P-Fi¢ld

is implicit and not included. The retutned value must be deleted by the client.

HRESULT Set DateAndTimef const char* dateAndTime);

Sets the date and time to‘the value specified by the input argument. The ASCII string can|be
coded|in either variant’A or B of the CCSDS ASCII Calendar Segmented Time Code. The
time spibset must contain at least the hours. The trailing *Z’ may or may not be included.

Arguments
time date and time coded according to the CCSDS ASCII Calendar

Segmented Time Code either format A or B

Result codes

S 0K the time has been set

E_INVALIDARG the argument does not contain a valid date and time representation
E _FAIL failure to set the time because of other reasons

CCSDS 914.0-M-1 Page A-22 October 2008

228 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

HRESULT Set_Time(const char* time);

Sets the time to the value specified by the input argument and the date to the current date.
The ASCII string contains the time subset of the CCSDS ASCII Calendar Segmented Time
Code. The time subset must contain at least the hours. The trailing ‘Z’ may or may not be

included.

Arguments

time time subset of the CCSDS ASCII Calendar Segmented Time
Code

Rdsult codes

S |OK the time has been set

E | INVALIDARG the argument does not contain a valid date and-time representation

E |FAIL failure to set the time because of other reasons

char* Get_Date(SLE_TimeFmt fmt) const;

Rgturns an ASCII string with the date formatted according to the CCSDS ASCII Cglendar
Segmented Time Code in the variant specified by the\input argument. The returned value
muist be deleted by the client.

the variant of the time code to be used

char* Get_Time(SLE_TimeFmt>fmt,
SLE_TimeRes res = sleTR_seconds) const;

Rqturns the time (no date)(formatted according to the CCSDS ASCII Calendar Segmented
Time Code in the variant-and with the resolution specified by the input arguments| The
optional ‘Z’ is included-~The returned value must be deleted by the client.

Arguments
it the variant of the time code to be used
res the resolution of the time

char* (-‘.pf_naprnrlTimp(Sl F_Timplsz ot
SLE _TimeRes res = sleTR_seconds) const;

Returns the time and date formatted according to the CCSDS ASCII Calendar Segmented
Time Code in the variant and with the resolution specified by the input arguments. The
optional *Z” is included. The returned value must be deleted by the client.

CCSDS 914.0-M-1 Page A-23 October 2008
© 1SO 2013 — Al rights reserved 229

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

230

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
mt

res

void Update();

the variant of the time code to be used

the resolution of the time

Sets the value of the time to current time.
ISLE_TimeSource, if this interface was supplied to the creator-function of the

Current time is obtained from the interface

companent. Otherwise, the component uses system time.

double operator- (const ISLE Time& time) const;

Calculates the difference between the time stored and the time passed as-argument gnd

return$ the difference measured in seconds and fractions of a second.

bool |operator== (
bool |operator!= (
bool |operator< (
bool |operator> (
bool |operator<= (
bool |operator>= (

const
const
const
const
const
const

ISLE_Timeé&
ISLE_Timeé&
ISLE_Timeé&
ISLE_Time&
ISLE_Time&
ISLE_Time&

Standard comparison operators for times.

ISLE [Time* Copy() const;

Copies the time object and returns the interface of the copy.

time
time
time
time
time
time

NI A o\ o

const;
consit;
const;
const;
const;
const;

CCSDS 914.0-M-1

Page A-24

October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4.5 SLE SERVICE INSTANCE IDENTIFIER

Name ISLE_SII
GUID {EC5C1E4B-1E25-4280-AA17-BA8B510AEC20}
Inheritance: 1Unknown

Fil

o)

e ISLE_SI1.H

R4
the

Th
att
de

Th

It
fo
pre
co
idg
by,

Th
to
se

Afiter creation the value of the service instance identifier is NULL.

jects exporting this interface handle the service instance identifier defined by the

service instance identifier:

are always character strings.

b) A standard character string representation defined in the. CCSDS Recomn

provided by annex C of this specification).

e standard format consists of a sequence of ‘attribute_value assertions’, i.e., pairg

fined by ASN.1 (reference [15]).
e object is able to process the standard ASCl{representation for input and output.

hlso accepts the standard format as defined by reference [17] and produces output
mat. For the global form of the object identifier the object uses the full object idg

mponent of the object identifier;«which is unique for all attributes used in a service in
ntifier. For retrieval of the'standard format, the object supports a simple built-in i
which the name components can be read.

e object verifies that-the structure and contents of the service instance identifier cor
the specifications provided in the CCSDS Recommended Standards for SLE tt
vices (for version 1 to the specification in annex C).

A
St

er_creation, the format to be used is set to the one defined in the CCSDS Recomn

CSDS

commended Standards for SLE transfer services. The interface supports two formpts for

a) The standard format as defined by reference [17] with the constraint that the atribute

ended

Standards (for version 1 of the services RAF, RCF, andELTU, this definition is

of an

ribute identifier and an attribute value. The attribute-identifier is an object identifier as

in this
ntifier

psented as an array of integers. For’the local form, it accepts and outputs only the trailing

stance
terator

forms
ansfer

ended

hethod

Set_InitialFormat() must be called. Support for the initial format is optional and

implementations not supporting this format shall return an error when the method is called.

Synopsis

#i

#d

CCSDS 914.0-M-1 Page A-25 October 2008

nclude <SLE_SCM.H>

efine I11D_ISLE_SI1I_DEF { Oxec5cled4b, Oxle25, 0x4280, \
{ Oxaa, 0x17, Oxba, 0x8b, 0x51, Oxa, Oxec, 0x20 } }

© 1SO 2013 — All rights reserved

231

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

interface ISLE_SI1 : 1Unknown
{
virtual bool
Get_InitialFormatUsed() const = 0;
virtual HRESULT
Set_InitialFormat() = 0O;
virtual char*
Get_AsciiForm() const = 0;
virtual char*
Getl :\QfDnl\I() const = ﬂ;
virjtual HRESULT
Set_AsciiForm(const char* siiString) = 0;
virftual bool
IsNull() const = 0;
virjtual void
SetToNull () = 0;
virftual bool
operator== (const ISLE_SI1& sii) const = 0;
virjtual bool
operator!= (const ISLE SIl& sii) const = O;
virjtual ISLE_SII*
py() const = 0;
virftual HRESULT
d _GlobalRDN(const int objld[],
size_t objldLength,
const char* value) = 0;
virftual HRESULT
d LocalRDN(int objld, const char*/wvalue) = 0;
virjtual void
Reset() = 0;
virftual bool
MoreData() = O;
virftual HRESULT
NextGlobalRDN(int*& objild,
size_t&objldLength,
char*&,value) = 0;

virjtual HRESULT
extLocalRDN(int&objld,
char*& value) = 0;

=

¥

Methods

Bool |Get: InitialFormatUsed();

Returns TRUE if the initial format defined in annex C is being used and FALSE otherwise.

HRESULT Set_ InitialFormat();

Requests use of the initial format defined in annex C of this Specification to support version
1 of the services RAF, RCF, and CLTU.

CCSDS 914.0-M-1 Page A-26 October 2008
232 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S _OK the request has been accepted
E_NOTIMPL the implementation does not support the initial format

char* Get_AsciiForm() const;

Returns the ASCII representation of the service instance identifier or the string “***’
identifier is NULL. The string must be deleted by the client.

if the

char* GetLastRDN() const;

Raturns the ASCII representation of the last component of the service instance identifier or

the string “***” if the identifier is NULL. The string must be deleted by the-client.

HRESULT Set_AsciiForm(const char* siiString);

Parses the input string and sets the value of the service instance identifier as defined

by the

string. If the string is badly formatted or contains attributes that are not defined for the

sefvice instance identifier, returns an error and sets thewalue of the service instance idg

sijiString an ASCII string defining the service instance identifier

Rdsult codes

ntifier

S |0K the value of the service instance identifier has been [set as
defined by the input argument

E | INVALIDARG syntax error in the input

SUE_E_INVALIDID unknown attribute abbreviation encountered

SUE _E_SEQUENCE incorrect sequence of attributes

bgol IsNull() const;

Rdturns_“true if the value if the service instance identifier is NULL.

void SetToNull();

Sets the value of service instance identifier to NULL.

bool operator== (const ISLE SI11& sii) const;
bool operator!= (const ISLE_SII& sii) const;

The standard equality operators for service instance identifiers.

CCSDS 914.0-M-1 Page A-27 October 2008

© 1SO 2013 — All rights reserved

233

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ISLE_SI1* Copy() const;

Performs a deep copy of the service instance identifier and returns the copy.

HRESULT Add_GlobalRDN(const int objld[],
size_t objldLength,
const char* value);

Appends-arelative-distingtished-rame—(-e-

end of the service instance identifier. If the object identifier is not defined for the servjce

instance identifier or the value is empty, returns an error and does not add the name to-servjce
instange identifier.

an attrihnta idantifiar - attrilhiita valilg nair) 0 he
ottt oteTa et e —ttoote—vyatae—pet) o

Argunents

obj g the object identifier of the attribute presented as an array |of
integers; the array is copied by the object

objldLength the number of components of the objectidentifier

valug the value of the attribute

Resul codes

S OK the relative distinguished, name has been appended to the
service instance identifier

SLE_E BADVALUE value contains characters that are not permitted

SLE_E_INVALIDID unknown attribute identifier

SLE_E_SEQUENCE incorrect sequetice of attributes

HRESULT Add_LocalRDN(int objld, const char* value);

Apper)ds a relative distinguishéd’name to the end of the service instance identifier. For this
method the attribute is ideptified by the last component of the object identifier. If the objgct
identifier is not defined dar the service instance identifier or the value is empty, returns|an
error gnd does not add“the name to service instance identifier.

Arguments

obj g the last component of the object identifier of the attribute
valug the value of the attribute

CCSDS 914.0-M-1 Page A-28 October 2008

234 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes

S _OK the relative distinguished name has been appended to the
service instance identifier

SLE_E_BADVALUE value contains characters that are not permitted

SLE_E_INVALIDID unknown attribute identifier

SLE_E_SEQUENCE incorrect sequence of attributes

Iteration Methods

V(@

R4

ba

R4
l.e
dig

HRESULT NextGlobalRDN(int*& objld,

R8
fo

id Reset();

sets the internal iterator to the beginning of the service instance identifier.

ol MoreData();

turns true when the iterator has not yet reached the end of the sefvice instance ide
., the next to call to NextGlobalRDN() or NextLocalRDN() will return a r
tinguished name. Otherwise, returns false.

size_t& objldiength,
char*& valuel) const;

turns the relative distinguished name pointed at by the iterator in the global for
'wards the iterator by one element, If the iterator has reached the end of the g

ntifier.
blative

m and
ervice

ingtance identifier or the service identifier is NULL, returns an error.

Arguments

ohjid the object identifier of the attribute presented as an array of
integers; the array is a copy of the internal data and must be
deleted by the client

ohjldLength the length of the object identifier

value the value of the attribute; this is a copy of the internal data,
which must be deleted by the client

Rdsult Codes

S_|0K the output arguments contain the relative distinguished name

SLE_S EOD end of service instance identifier reached

SLE S NULL service instance identifier is NULL

HRESULT NextLocalRDN(int& objld, char*& value) const;

Returns the relative distinguished name pointed at by the iterator in the local form and

forwards the iterator by one element.

instance identifier or the service identifier is NULL, returns an error.

If the iterator has reached the end of the service

CCSDS 914.0-M-1 Page A-29 October 2008
© 1SO 2013 — All rights reserved

235

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
objid the last component of the object identifier of the attribute
value the value of the attribute; this is a copy of the internal data

which must be deleted by the client

Result codes

S OK the output arguments contain the relative distinguished name
SLE_S_EOD end of service instance identifier reached

SLE 5NGHE servicethstancetdentifierisNUGHE

CCSDS 914.0-M-1 Page A-30 October 2008

236 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4.6 SLE CREDENTIALS

Name ISLE _Credentials

GUID {D020B002-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown

File ISLE Credentials.H

Ohjects implementing this interface hold the credentials used for authentication of the peer
identity. The credentials comprise a message digest (the protected), a random numbgr, and
the time when the message digest was generated. For the message digest the object dges not
make any assumptions on the format, size, or encoding. It simply stores the.sequepce of
bytes passed to it.

Sylnopsis

#inpclude <SLE_SCM.H>
#include <SLE_APITypes.h>
interface ISLE Time;

#define 11D_ISLE_Credentials DEF { 0xd020b002j. 0Oxccdl, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, Ox6d; 0x80, Oxdb } }

interface ISLE_Credentials : l1Unknown

virtual long

Get_RandomNumber() const = 0;
vVirtual const SLE Octet*

Get Protected(size t& size)) const = 0;
virtual const ISLE Time&

Get _TimeRef() const = 0,
virtual void

Set_RandomNumber(dong number) = O;
virtual void

Set_Protected((const SLE_Octet* hashCode, size_t size) = 0;
virtual void

Set_TimeRef¢)const ISLE_Time& time) = O;
virtual bogl

operater== (const ISLE Credentials& credentials) const = 0;

virtual bool
operator!= (const ISLE Credentials& credentials) const = 0;

virtual ISLE Credentials™
copy() const = 0;
; 1 tua= bhal =
Dump() const = 0;

CCSDS 914.0-M-1 Page A-31 October 2008

© 1SO 2013 — Al rights reserved 237

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

238

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods
long Get_RandomNumber() const;

Returns the random number currently stored in the object or zero when no value has been set.
Of course, zero is as random as any other number. A return value of zero does not indicate
that the attribute has not been set.

const_SLE Octet* Get Protected(size t& size) const:

Returns the hash code (‘the protected”) currently stored in the object or a NULLcpointer
when po value has been set.

const ISLE Time& Get TimeRef() const;

Returns the generation time stored in the object; if no values have been-set, the time valug
undefined.

S

void [Set_RandomNumber(long number);

Sets the random number to the value of the input argument.

void|Set Protected(const SLE Octet* hashCode, size t size);

Sets the hash code in the object copying the-input argument.

void |Set_TimeRef(const 4SLE_Time& time);

Sets the generation time in the-object copying the input argument.

bool |operator=="("const ISLE_Credentials& credentials) const;
bool |operatori=(const ISLE_Credentials& credentials) const;

Compprison operators for credentials.

ISLE_Credentials™ Copy() const;

Performs a deep copy and returns it.

char* Dump() const;

Produces a human readable string of the object contents. The returned value must be deleted
by the client.

CCSDS 914.0-M-1 Page A-32 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A4.7 SLE SECURITY ATTRIBUTES

Name ISLE_SecAttributes

GUID {D020B003-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown

File ISLE_SecAttributes.H

Objects implementing this interface hold the user name and the password required for generating

and-authenticating-credentials—FEor-the password-the obiect does-not-make anv assumptions on
O-atitheRtcatiig-cregeRtals—For-tiep WOorg-1n pject-a Rot-axke-any ApH

the format, size, or encoding. It simply stores the sequence of bytes passed to it.

The interface provides methods to generate credentials and to authenticate credentiald. The
procedure applied for both methods is specified in 3.5.6.

=

Bdcause the object stores sensitive information it does not provide methods for read pccess
anf does not support printing of the contents.

>

Syinopsis

#include <SLE_SCM.H>
#include <SLE _APITypes.h>
interface ISLE Credentials;

#define 11D_ISLE_SecAttributes DEF { 0xd020b003, Oxccdl, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, Ox6d, 0x80, Oxdb } }

interface ISLE_SecAttributes : IUnknown

virtual void
Set _UserName(const chak® name) = 0;
virtual void
Set_Password(const-SLE_Octet* pwd, size_t size) = O;
virtual void
Set_HexPassword(const char* pwd) = O;
virtual ISLE Credentials™
GenerateCredentials() const = 0;
virtual bool
Authenticate(const ISLE_Credentials& credentials,
int acceptableDelay) const = 0;
virtualibool
operator== (const ISLE_SecAttributes& secAttr) const = 0;
virtual bool

operator!= (const ISLE SecAttributes& secAttr) const = 0;
virtual ISLE_SecAttributes*
Copy() const = 0;
Methods
void Set UserName(const char* name);
CCSDS 914.0-M-1 Page A-33 October 2008

© IS0 2013 — Al rights reserved 239

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Sets the user name to the value defined by the argument.

Arguments
name user name

Precondition: The length of the string supplied as argument is >= 3 and <= 16 characters.

void Set Password(const SLE Octet* pwd, size t size);

Sets the password to the value defined by the arguments.

Arguments
pwd pointer to the password
size the size of the password in bytes

Precomdition: The length of the octet string supplied as argument is >=.6"and <= 16 octets.

void |Set_HexPassword(const char* pwd);
Sets the password to the value described by the argument:

Arguments
pwd An ASCII string with;a hex representation of the password. The

ASCII string consists of an even number of hex digits (two hex
digits for each byte of the password) without blanks and withgut
any prefix.orpostfix. The ASCII string may only contain ASCII
charactersfrom the set {*0’ - ‘9’, ‘A’ - ‘F’, ‘a’ - ‘f’}.’

Precondition: The length of theyoctet string represented by the argument is >=6 and <516
octets.

ISLE |[Credentials®/GenerateCredentials() const;

Generptes and_returns credentials from the attributes stored to the object. When any of the
attribytes have-not been set, returns NULL.

bool Authermticate const SLE Credentials& credentiatls,

int acceptableDelay) const;

Verifies that the credentials passed as argument have been generated from the attributes
stored to the object within the acceptable time delay. Returns true, if authentication
succeeds and Fal se otherwise.

CCSDS 914.0-M-1 Page A-34 October 2008
240 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
credentials the credentials that shall be authenticated
acceptableDelay the acceptable delay between the time the credentials have been

generated and the time of authentication

bool operator== (const ISLE_SecAttributes& secAttr) const;
bool operator!= (const ISLE_SecAttributes& secAttr) const;

THe standard equality operators for security attributes.

ISLE_SecAttributes* Copy() const;

Performs a deep copy of the object and returns the copy.

CCSDS 914.0-M-1 Page A-35 October 2008
© 1SO 2013 — Al rights reserved 241

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

242

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

AS SLE OPERATION OBJECTS

A51 COMPONENT CREATOR FUNCTION

File

<impl-id>_H

The component implementing operation objects includes a function to obtain a pointer to the

operation factory interface. The signature of this function is defined as:

exteLn "C™ HRESULT

pl-1d>_CreateOpFactory(const GUID& 1id,
ISLE_UtilFactory* putil,
ISLE_Reporter™* preporter,

<i

where
extern
compq
the op!
that id

entifier.

ppVv

Result
S OK
E _NO
E_IN

void** ppv);

<impl-id> is replaced by the product identifier of the implementation. Note that
al ‘C’ linkage is required. A reference to the utility factory that shall be used by the
nent must be passed as an argument. The function checks the argument identifying
eration factory interface and returns an error when the implementation does not suppprt

inter to the reporter interface can optionally be passed as well. Operation objects nmay

is interface to report error messages, if it issprovided. The extent to which erfor

pbrter

codes

INTERFAGE
VAL I1DARG

identifier ofthe required interface

pointer t0 the interface of the Utility Factory

pointer to the reporter interface for passing of log messages gnd

natifications to the application

pointer to the requested interface of the Operation Factory

the object has been created
the specified interface is not supported

the reference to the utility factory or reporter is missing

CCSDS 914.0-M-1

Page A-36

October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.2 SLE OPERATION FACTORY

Name ISLE_OperationFactory

GUID {BB4DDA22-54CD-11d8-9CF5-0004761E8CFB}
Inheritance: 1Unknown

File ISLE_OperationFactory

SyopsTs

ihclude <SLE_SCM.H>
include <SLE_APITypes.h>
include <SLE Types.h>
erface ISLE_Operation;

#define 11D_ISLE_OperationFactory DEF { Oxbb4dda22, Ox54ed,® 0x11d8, \
{ 0x9c, Oxf5, Ox0, Ox4, Ox76, Oxle, 0x8c, Oxfb.} }

interface ISLE_OperationFactory : IUnknown

virtual HRESULT
CreateOperation(const GUID& iid,
SLE_OpType opType,
SLE_Applicationldentifier srvType,
SLE_VersionNumber Vérsion,
void** ppv) const, = 0;

¥

Methods

HRESULT CreateOperation(const GUID& 1id,

SLE_OpType opType,
SLE_Applicationldentifier srvType,
SLE VersionNumber version,

void ** ppv) const;

Creates a new operation object as specified by the arguments. If the interface canpot be
fouind, does natyrefer to an operation object interface of the specified type, or is not supported
for the specified service type, returns an error and sets the output argument to NULL.

Arnguments

iid GUID for the operation object interface to be returned

01 : oTLobi e I

srvType the service type for which an operation is requested

version the version number of the service type identified by srvType,
which must be greater than zero

ppv a pointer to the requested interface

CCSDS 914.0-M-1 Page A-37 October 2008

© 1SO 2013 — Al rights reserved 243

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes
S _OK the object has been created

E_NOINTERFACE the specified interface is not supported
SLE_E_INCONSISTENT the requested operation type is not supported by the specified
service type

CCSDS 914.0-M-1 Page A-38 October 2008
244 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.3 BASIC INTERFACES

A5.3.1 SLE Operation

Name ISLE_Operation

GUID {BB4DDA25-54CD-11d8-9CF5-0004761E8CFB}
Inheritance: 1Unknown

File ISLE Operation.H

ISO 18441:2013(E)

The interface defines basic characteristics supported by all operation objects.

nopsis

ihclude <SLE_SCM.H>
include <SLE_APITypes.h>
include <SLE Types.h>
erface ISLE Credentials;

#define 11D_ISLE_ Operation_DEF { Oxbb4dda25, O0x54cd, 0x11d8, \
{ 0x9c, Oxf5, Ox0, Ox4, Ox76, Oxle, Ox8c, Oxfb } }

interface ISLE Operation : lUnknown

virtual SLE_Applicationldentifier
Get_OpServiceType() const = 0;
virtual SLE_VersionNumber
Get_OpVersionNumber() const =¢0;
virtual SLE_OpType
Get_OperationType() const.50;
virtual bool
IsConfirmed() const = 0;
virtual const ISLE Credentials*
Get_InvokerCredentials() const = 0;
virtual void

virtual void

virtual HRESULT
VerifylnvocationArguments() const = 0;
Virtualh HRESULT
Lock() = O;
virtual HRESULT
TryLock() = O;

Set_InvokerCredentials(const ISLE Credentials& credentials) = 0;

Put_InvokerCredentials(ISLE Credentials* pcredentials) = 0

virtual HRESULT
Unlock() = 0;
virtual ISLE Operation*
Copy()const = 0;
virtual char*
Print(int maxDumpLength) const = O;
};

CCSDS 914.0-M-1 Page A-39

© 1SO 2013 — All rights reserved

October 2008

245

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

246

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods

SLE_Applicationldentifier Get OpServiceType() const;

Returns the SLE service type for the operation.

SLE_VersionNumber Get_OpVersionNumber() const;

Returnstheversiormrmumter of the-StE-Servite type fortheoperatior.

SLE_(

Returr

bool

Returr

const

Returr

void

Sets tk

void

Sets tf
operat]

HRESU

Verifi

pType Get OperationType() const;

s the type of operation as defined by SLE_OpType.

IsConfirmed() const;

s true if the operation is a confirmed operation, false otherwise.

ISLE_Credentials* Get_InvokerCredentials() const;

s a pointer to the invoker credentials or NULL when no credentials are present.

Set_InvokerCredentials(const ISLE_Credentials& credentials)§

e invoker credentials copying thejinput argument.

Put_InvokerCredentials(ISLE_Credentials* pcredentials);

e invoker credentialsto the input argument. The input argument will be deleted by the
jon object.

LT VerifylnvocationArguments() const;

bsthe 'invocation arguments with respect to completeness, consistency, and range.

CCSDS 914.0-M-1 Page A-40 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes

S _OK all checks passed
SLE_E_MISSINGARG at least one argument is missing
SLE_E_INCONSISTENT the arguments are inconsistent
SLE_E_RANGE at least one argument is out of range

Further results codes might be specified by supplemental Recommended Practice documents
for service-specific APIs. These result codes must be taken into account by implementations

KAA-L

fr\lt\ nadintarfacac
O UCTTVEU TTIICTTALT O,

HRESULT LockQ);

Sefs an advisory lock on the operation object.

Rdsult codes
S |OK lock has been set
E |FAIL further unspecified error

HRESULT TryLock():

Sets the lock on the object if possible. If the“lock is currently not available feturns
immediately.

Rdsult codes

S |OK lock has been set

SUE_ S LOCKED lock notavailable

E |FAIL further unspecified error

HRESULT Unllock(Q);

Rgleases a lock prévjously set on the operation object.

Rdsult codes

S |0OK lock has been removed

E |[FAIL further unspecified error

ISLE_Operation* Copy(Q);

Performs a deep copy of the operation object and returns a pointer to the new object.

char* Print(int maxDumpLength) const;

Generates and returns a human readable printout of the object attributes.

CCSDS 914.0-M-1 Page A-41 October 2008

© 1SO 2013 — All rights reserved

247

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments
maxDumpLength defines the maximum length in bytes of hexadecimal dumps

produced for binary parameters, such as space data units

Default Setting of Operation Parameters after Creation

Argument Created directly Created by Service Instance
service type set in the create request as defined for the Sl

version number set in the create request as defined for the Sl
operation type set in the create request according to the request
confirmed operation depending on derived I/F depending on derived I/F
invokef credentials used false false

invokef credentials NULL NULL

Checking of Invocation Parameters

No chgcks are defined for the parameters handled by this interface.

CCSDS 914.0-M-1 Page A-42 October 2008
248 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.3.2 SLE Confirmed Operation

Name ISLE_ConfTirmedOperation

GUID {D020B006-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown — ISLE_Operation

File ISLE_ConfTirmedOperation.H

The_ interface defines characteristics supported by all confirmed operation objects

Syinopsis
#include <ISLE Operation.H>

#define 11D_ISLE_ConfirmedOperation DEF {0xd020b006, Oxccdd -0x11d2,\
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, Ox6d, 0x80, Oxdby} }

interface ISLE_ConfirmedOperation : ISLE_ Operation

virtual SLE Result

Get_Result() const = 0;

virtual SLE_DiagnosticType

Get_DiagnosticType() const = 0;

virtual SLE_Diagnostics

Get_Diagnostics() const = 0;

virtual SLE_Invokeld

Get_Invokeld() const = 0;

virtual const ISLE Credentials*
Get_PerformerCredentials() const = 0;

virtual void

Set_PositiveResult() = 03

virtual void

Set Diagnostics(SLE_Diagnostics diagnostic) = 0;
virtual void

Set_Invokeld(SLE_lnvokeld id) = O;

virtual void

Set_ Performer€redentials(const ISLE Credentials& credentials) = (0;
virtual void

Put_PerfoermerCredentials(ISLE _Credentials* pcredentials) = 0O;
virtual HRESULT

VerifyReturnArguments() const = 0;

3

Methods

SLE_Result Get_Result() const;

Returns the result (positive / negative) stored to the object.
SLE DiagnosticType Get DiagnosticType() const;

Returns the type of diagnostic (general, special, none) stored to the object.

CCSDS 914.0-M-1 Page A-43 October 2008
© 1SO 2013 — Al rights reserved 249

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

SLE_Diagnostics Get_Diagnostics() const;

Returns the common diagnostics if set in the object.

SLE_Invokeld Get_Invokeld() const;

Returns the Invocation Identifier currently set in the object.

const ISLE_Credentials* Get_PerformerCredentials() const;

Returns a pointer to the performer credentials or NULL when no credentials are present.

void|Set PositiveResult();

Sets the result of the operation to positive and the diagnostic type to“‘invalid’. A negat{ve
result Js set with the diagnostics.

void |Set_Diagnostics(SLE Diagnostics diagnostic);

Sets the common diagnostics to the input argument, sets‘the diagnostic type to ‘common’ gnd
the reqult to negative.

void |Set_Invokeld(SLE_Invokeld i1d);

Sets the invoke identifier to the value passed as argument.

void |Set_PerformerCredentials(const ISLE_Credentials& credentials);

Sets the performer credentials copying the input argument.

void [Put_PerformerCredentials(ISLE_Credentials* pcredentials);

Sets the performer credentials to the input argument. The credentials argument will [be
deletefl by the operation object.

HRESULT VerifyReturnArguments();

Verifies the invocation arguments with respect to completeness, consistency, and range.

CCSDS 914.0-M-1 Page A-44 October 2008
250 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

Re

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

sult codes
S OK
SLE _E_MISSINGARG

SLE_E_INCONSISTENT

SLE_E_RANGE
SLE_E_DIAGNOSTIC

all checks passed

at least one argument is missing
the arguments are inconsistent, e.g., do not match the invocation

arguments

at least one argument is out of range
the diagnostic code is missing, unknown, or inconsistent with

the result

g\

rther results codes might be specified by for specific SLE services. These result
st be taken into account by implementations of derived interfaces.

codes

Dgfault Setting of Operation Parameters after Creation

Argument Created directly Created by(Service Instance
regult ‘invalid’ ‘invalid?

diggnostic type ‘none’ ‘none’

conmon diagnostics ‘invalid’ ‘invalid’

pefformer credentials used false false

pefformer credentials NULL NULL

invocation identifier 0 0 (will be handled by the servicg

instance)

Checking of Return Parameters

Argument Required condition

regult must be set

didgnostic type if the result is ‘negative’ must be ‘common’ or ‘specific’

co

mmon diagnostics

if the diagnostic type is common, must not be ‘invalid’

CCSDS 914.0-M-1
© 1SO 2013 — All rights reserved

Page A-45

October 2008

251

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A54 COMMON ASSOCIATION MANAGEMENT

A5.4.1 BIND Operation

Name ISLE Bind

GUID {D020B007-CCD1-11d2-9B44-00A0246D80DB}

Inheritance: 1Unknown — ISLE_Operation — ISLE_ConfirmedOperation
File ISLE_Bind.H

The ipterface provides access to the parameters of the operation BIND. Through|its
inherifance, it provides access to the parameter ‘invocation identifier’. This parameter'is pot
defined for the BIND operation and must not be used. The API proxy and the,AP1 Serv|ce
Elemegnt must exclude this operation from the checks related to invocation identifiers.

The SLE service type and version number applicable for the operation_object are defirjed
when | the object is created (see ISLE UtilFactory) “and the interface
ISLE| Operation provides access to these attributes. This interface defines additional
attribdtes for the SLE service type and version number, which represent the parameters of the
SLE BIND operation and can be modified via this interface.

Synopsis
#include <ISLE_ConfirmedOperation.H>
interfface ISLE_SII;

#defipe 11D_ISLE_Bind_DEF { 0xd020b00Q7, Oxccdl, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0;\:0x24, 0Ox6d, 0x80, Oxdb } }

ace ISLE Bind : ISLE_ConF¥rmedOperation

{
virftual const char*
Get_Initiatorldentifier() const = 0;
virftual const char*
Get_Responderldentifier() const = 0;
virftual const chax™*
Get_ResponderPortldentifier() const = 0;
virjtual const<ISLE SlI&
Get_Servicelnstanceld() const = 0;
virjtual veid
Set _dnitiatorldentifier(const char* id) = 0;
virftual* void

virtual void

Set_ResponderPortldentifier(const char* port) = 0;
virtual void

Set_Servicelnstanceld(const ISLE_SI1& siid) = 0;
virtual void

Put_Servicelnstanceld(ISLE_SII* psiid) = 0;
virtual SLE_Applicationldentifier

Get_ServiceType() const = 0;
virtual SLE_VersionNumber

Get _VersionNumber() const = 0;

CCSDS 914.0-M-1 Page A-46 October 2008
252 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

virtual void

Set_ServiceType(SLE_Applicationldentifier serviceType) = 0;

virtual void

Set_VersionNumber(SLE_VersionNumber version) = O;

virtual SLE_BindDiagnostic

Get_BindDiagnostic() const = 0;

virtual void

3

Set_BindDiagnostic(SLE_BindDiagnostic diagnostic) = O;

Methods
cgnst char* Get_Initiatorldentifier() const;

Rqturns the identifier for initiating SLE Application set in the object,or NULL
pafameter has not been set.

canst char* Get_Responderldentifier() const;

Rdturns the identifier for responding SLE Application set. n“the object or NULL
pafameter has not been set.

cgnst char* Get_ResponderPortldentifier(),-const;

Rqturns the responder port identifier if currently set'in the object. Otherwise returns a
pojinter.

cqa

nst ISLE_SI1& Get_Servicelnstanceld() const;

Rqturns the service instance identifier-set in the object.

Precondition: service instance identifier is present in the object.

VQ

id Set_Initiatorldentifier(const char* id);

Sets the identifier of\the initiating SLE Application.

VQ

id Set Responderldentifier(const char* id);

Sets the identifier of the responding SLE Application.

V(@

id, Set_ResponderPortldentifier(const char* port);

if the

if the

NULL

Sets the initiator port identifier copying the input argument.

void Set_Servicelnstanceld(const ISLE _SI1& siid);

Sets the service instance identifier copying the input argument.

void Put_Servicelnstanceld(ISLE SII1* psiid);

CCSDS 914.0-M-1 Page A-47 October 2008

© 1SO 2013 — All rights reserved

253

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Sets the service instance identifier to the input argument. The service instance identifier
passed is deleted by the component.

SLE _Applicationldentifier Get ServiceType();

Returns the service type currently stored in the object. Note that this method differs from the
inherited method Get_OpServiceType(), which returns the service type for which the
operation object was created (see ISLE_UtiIFactory and ISLE_Operation).

SLE_VersionNumber Get_VersionNumber() const;

Returns the version number currently set in the object. Note that this method differs from the
inherifed method Get_OpVersionNumber (), which returns the version-of the service
type [for which the operation object was created (see ISLE_UtilFactory dnd
ISLE[Operation).

void |Set _ServiceType(SLE Applicationldentifier-serviceType);

Sets the service type to the input argument.

void |Set_VersionNumber(SLE_VersionNumber“version);

Sets the version to the input argument.

SLE_BindDiagnostic Get _BindDiagnostic();

Returns the bind diagnostic currently set in the object.

void [Set BindDiagnhostic(SLE BindDiagnostic diagnostic);

Sets the result to negative;-the diagnostic type to ‘specific’, and the diagnostics to the input
argument.

Default Setting-of Operation Parameters after Creation

Argument Created directly Created by Service Instance

initiatof identifier NULL NULL

responder identifier NULL as defined for the Sl

responder port identifier NULL as defined for the Sl

service instance identifier NULL as defined for the S

service type as requested for creation as defined for the Sl

version number as requested for creation as defined for the Sl

bind diagnostic ‘invalid’ ‘invalid’

CCSDS 914.0-M-1 Page A-48 October 2008

254 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Checking of Invocation Parameters

Argument Required condition

responder identifier must be set

responder port identifier must be set

service instance identifier must be set

service type must be set

velsion number must be set

The checks defined here include a check on the presence of the responder identifier and

the¢refore apply to the BIND initiating side only. On the responding side, the method

VarifylnvocationArguments() should not be called, becausecit” might retirn an

erfor although the BIND invocation PDU is correct. Calling of this method on the responder

side is not necessary, because all arguments are subject to specifie;tests performed py the

components API proxy and API Service Element.

Checking of Return Parameters

Argument Required condition

birld diagnostic if the result is negative‘and the diagnostic type is ‘specific’ must not be
‘invalid’

CCSDS 914.0-M-1 Page A-49 October 2008

© IS0 2013 — Al rights reserved 255

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.4.2 UNBIND Operation

Name ISLE_Unbind

GUID {7B425720-D32D-11d2-9B44-00A0246D80DB}

Inheritance: IUnknown — ISLE_Operation — ISLE ConfirmedOperation
File ISLE_Unbind.H

The interface provides access to the parameters of the operation UNBIND. Through its
inheritance,—-provides-access-to-the parameter “invocation-identifier”—This-parameteris-not
definef for the UNBIND operation and must not be used. The API proxy and the API Servjce
Element must exclude this operation from the checks related to invocation identifiers.

Synogsis
#include <ISLE_ConfirmedOperation.H>

#defipe 11D_ISLE Unbind DEF { 0x7b425720, 0xd32d, 0x11d2;-N
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, Ox6d, 0x80, Oxdb } }

interfface ISLE_Unbind : ISLE_ConfirmedOperation
{

virftual SLE_UnbindReason
Get_UnbindReason() const = 0;
virftual void
Set_UnbindReason(SLE_UnbindReason reasen) = 0;

¥
Methods

SLE_UnbindReason Get_UnbindReason() const;

Returns the unbind reason currently set in the object.

void [Set_UnbindReason(~SLE_UnbindReason reason);

Sets the unbind reason-to-the input argument.

Default Setting f-Operation Parameters after Creation
Argunjent Created directly Created by Service Instance

unbind| reason ‘invalid’ ‘invalid’

Checking of Invocation Parameters
Argument Required condition

unbind reason must not be ‘invalid’

Checking of Return Parameters

No checks are defined for parameters handled by this interface.

CCSDS 914.0-M-1 Page A-50 October 2008
256 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.4.3 PEER-ABORT Operation

Name ISLE_PeerAbort

GUID {7B425721-D32D-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown — ISLE_Operation

File ISLE_PeerAbort.H

The mterface prowdes access to the parameters of the operation PEER ABORT Through its

deflned for the PEER ABORT operatlon and must not be used The proxy must erisuye that
authentication is not applied to the PEER-ABORT operation, even if the parameter ig set in
the operation object by mistake.

Infaddition to the parameters defined for the SLE operation, objects exparting this interface
stqre the originator of the abort, which can be the peer system, the-local proxy, th¢ local
sefvice element, or the local application. This information is-not forwarded acrgss the
asgociation.

Sylnopsis
#include <ISLE_Operation.H>

#define 11D_ISLE_PeerAbort DEF { Ox7b425721, 0xd32d, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, Ox24, Ox6d, 0x80, Oxdb } }

interface ISLE_PeerAbort : ISLE Operation

virtual SLE_PeerAbortDiagnostic
Get_PeerAbortDiagnostic()\const = 0;
virtual void
Set_PeerAbortDiagnostic(SLE_PeerAbortDiagnostic diagnostic) =
virtual SLE_AbortOriginator
Get_AbortOriginator() const = 0;
virtual void
Set_AbortOriginator(SLE _AbortOriginator originator) =

Methods

SUE PeerAbortDiagnostic Get_PeerAbortDiagnostic() const;

Returns the speciat diagnostics for PEER-ABORT, 1f these are avaitable: —The type of the
diagnostics can be checked by the method provided by the base class.

void Set PeerAbortDiagnostic(SLE PeerAbortDiagnostic diagnostic);
Sets the PEER-ABORT diagnostic, and the diagnostic type to ‘specific’.

SLE AbortOriginator Get_AbortOriginator() const;

CCSDS 914.0-M-1 Page A-51 October 2008
© 1SO 2013 — Al rights reserved 257

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

258

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Returns the originator of the abort.

void Set_AbortOriginator(SLE_AbortOriginator originator);

Sets the originator of the abort to the input argument.

Default Setting of Parameters after Creation

Argument Created directly Created by Service Instance
peer abort diagnostics ‘invalid’ ‘invalid’

abort griginator ‘invalid’ ‘application’

Checking of Invocation Parameters

No ch

ecking is performed.

CCSDS 914.0-M-1

Page A-52

October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A55 OTHER COMMON OPERATIONS
A5.5.1 STOP Operation

Name ISLE_Stop

GUID {7B425723-D32D-11d2-9B44-00A0246D80DB}

Inheritance: 1Unknown — ISLE_Operation — ISLE_ConfirmedOperation
File ISLE_Stop.H

THhis is an empty interface, as all functionality required is covered by the inheritedhinteffaces.
The specific interface exists in order to attach the required identifier.

Syinopsis
#include <ISLE_ConfirmedOperation.H>

#define IID_ISLE_Stop DEF { Ox7b425723, 0xd32d, Ox11ld2, \
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, Ox6d, O0x80, Oxdb } }

interface ISLE_Stop : ISLE_ConfirmedOperation. {3;

Megthods
THhis interface does not define any new methods:

CCSDS 914.0-M-1 Page A-53 October 2008
© IS0 2013 — Al rights reserved 259

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

260

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.5.2 SCHEDULE STATUS REPORT Operation

Name ISLE_ScheduleStatusReport

GUID {7B425724-D32D-11d2-9B44-00A0246D80DB}

Inheritance: IUnknown — ISLE_Operation — ISLE ConfirmedOperation
File ISLE_ScheduleStatusReport.H

Synosis

#include <ISLE_ConfirmedOperation.H>

#defiphe 11D_ISLE_ScheduleStatusReport DEF \
{ O0x7b425724, 0xd32d, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, O0x24, Ox6d, O0x80, Oxdb } }

interfface ISLE_ScheduleStatusReport : ISLE_ConfirmedOperation

virftual SLE_ReportRequestType
Get_ReportRequestType() const = 0;
virftual void
Set ReportRequestType(SLE ReportRequestType.type) = O;
virjtual SLE_ReportingCycle
Get_ReportingCycle() const = 0;
virftual void
Set_ReportingCycle(SLE_ReportingCycle, cycle) = 0;
virjtual SLE_ScheduleStatusReportDiagnastic
Get _SSRDiagnostic() const = 0;
virftual void
Set _SSRDiagnostic(SLE ScheduleStatusReportDiagnostic diagnostic)= (;

}:
Methods
SLE_ReportRequestType, .Get_ReportRequestType() const;

Returns the type of request (immediate, periodically, stop).

void [Set_ReportRequestType(SLE_ReportRequestType type);

Sets the type-of request.

SLE_ReportingCycle Get ReportingCycle() const;
Returns the reporting cycle value currently set in the object.
Precondition: The report request type is set to ‘periodically’.

void Set_ReportingCycle(SLE_ReportingCycle cycle);

Sets the reporting cycle to the value passed as argument.

CCSDS 914.0-M-1 Page A-54 October 2008
© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Precondition: The report request type is set to “periodically’.

SLE_ScheduleStatusReportDiagnostic Get SSRDiagnostic() const;

Returns the diagnostic code if set in the object.

void Set SSRDiagnostic(SLE_ScheduleStatusReportDiagnostic

diagnostic))-:
g 75

Sets the diagnostic code to the value of the argument, the diagnostic type to ‘specifi¢’, and

the result to ‘negative’.

Dgfault Setting of Operation Parameters after Creation

Argument Created directly Created. by Service Instance

report request type ‘invalid’ ‘invalid’

regorting cycle zero zero

schedule status report ‘invalid’ ‘invalid’

diggnostic

Checking of Invocation Parameters

Argument Required condition

report request type must notbe ‘invalid’

regorting cycle must'be set if the reporting type is periodically; if used the valu¢ must
be.in the range 2 to 600 seconds

Checking of Return Rarameters

Argument Required condition

schedule statusireport if the diagnostic type is ‘specific’ must not be ‘invalid’

diggnostic

CCSDS 914.0-M-1 Page A-55 October 2008

© 1SO 2013 — Al rights reserved 261

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A5.5.3 TRANSFER BUFFER Operation

Name ISLE_TransferBuffer

GUID {7B425725-D32D-11d2-9B44-00A0246D80DB }
Inheritance: IUnknown — ISLE_Operation

File ISLE_TransferBuffer.H

Synopcic

#include <ISLE Operation.H>

#defiphe 11D_ISLE_TransferBuffer DEF { O0x7b425725, 0xd32d, 0x11d2,)\
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, Ox6d, 0x80, Oxdb } }

interfface ISLE_TransferBuffer : ISLE Operation

{
virtual size_ t
t_MaximumSize() const = 0;
virtual HRESULT
t MaximumSize(size_t size) = 0;
virtual size_t
t_Size() const = 0;
virjtual bool
11() const = 0;
virjtual bool
pty() const = 0;
virftual void
pend(ISLE_Operation* poperation) = O;
virjtual void
Prepend(ISLE_Operation* popetation,
bool extend = false") = 0;
virftual ISLE_Operation*
RemoveFront() = O;
virftual ISLE Operation*
RemoveRear() = 0;
virftual const ISLE-Operation*
FHront() const =\0;
virjtual void
Cllear() = Q3
virjtual void
Reset()«=/0;
virftual«bool
rebata() const = 0;
virjtual const ISLE_Operation*
Next() = O;
}:
CCSDS 914.0-M-1 Page A-56 October 2008

262

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

M
si

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ethods
ze_t Get_MaximumSize() const;

Returns the maximum number of elements that can be stored into the buffer.

HRESULT Set_MaximumSize(size_t size);

Se
ex

R
stq

b

(@]

R4

V(3

Al
by

Pri

V(@

In
the

turns the number of elements currently stored in the buffer.

ol Full() const;

turns true if the number of stored elements equals the maximum number that (
red.

ol Empty() const;
turns true if nothing is stored in the-buffer.
id Append(ISLE_Operation* poperation);

pends the operation objecCt to the end of the buffer. The operation object will be ¢
the buffer when it itself.is deleted.

pconditions: The-buffer is not full and the operation object is of the correct type.

id Prepend(ISLE_Operation* poperation, bool extend = false)

erts the-operation object at the front of the buffer. If the argument ‘extend’ is set {
buffér is extended if it is already full and the maximum size is adjusted.

ts the maximum number of elements that can be stored into the buffer. If the current size
ceeds the mquncmd maximum size returns an error
sult codes
|OK the maximum size has been set as requested
|FAIL the maximum size has not been set because. jtwould require
deletion of stored objects
ijze_t Get_Size() const;

an be

eleted

D true,

Preconditions: The buffer is not full or the argument ‘extend’ is set to true; the operation

IS

object is of the correct type.

LE_Operation* RemoveFront();

Returns the operation object at the beginning of the buffer and removes it from the buffer. If
the buffer is empty returns NULL.

CCSDS 914.0-M-1 Page A-57 October 2008

©1S0 20

13 — All rights reserved

263

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

ISLE_Operation* RemoveRear();

Returns the operation object at the end of the buffer and removes it from the buffer. If the
buffer is empty returns NULL.

const ISLE_Operation* Front() const;

Returns a pointer to the first object in the buffer, without changing the buffer content.

void ctearO:
Remoye and delete all stored objects.

Iteratjng through the transfer buffer.

The following methods define a simple iterator for the transfer buffer.(Iteration is always
from the first to the last element stored.

void [Reset();
Resetq the iterator to the beginning of the buffer.
bool |MoreData() const;

Returns true if more objects are stored in the buffer; i.e., the next call to Next () will return
an object. If the iterator has reached the end of the buffer, returns false.

const ISLE Operation* Next();
Returns the object at the position of.the iterator and advances the iterator by one.
Code Example for iteration through the buffer (pbuf is a pointer to the buffer):

const ISLE_Operation* poperation = 0O;
pbuf->Reset();
while (buf->MoreData()) {
poperation = buf->Next();
// do something with the object

D f I+ €attina nf Onnaratinn Davramntnrc afiny Crnntinn

erautt ottty U optrataor T ararrctersartc—oreatort
Argument Created directly
maximum buffer size 1
current size 0

Checking of Invocation Parameters
No checks are defined.

CCSDS 914.0-M-1 Page A-58 October 2008
264 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A6 INTERFACES PROVIDED BY SEVERAL COMPONENTS
A6.1 CONTROL OF INTERFACE BEHAVIOR

A6.1.1 Sequential Flows of Control

Name ISLE_Sequential

GUID {D020B008-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: TUnknown

File ISLE_Sequential .H

The interface is used to control processing of a component providing ‘the behavior
‘Sequential Flows of Control’ as defined in 3.7.2.

Prpcessing of the component is started with the method StartSequential()) and
stgpped by TerminateSequential (). StartSequential() returns as sgon as
prpcessing of the component has started.

=

THe event monitor (interface ISLE_EventMonitor).iscused by the component to register
events on which the component implementing this interface will wait. The timer handler
(interface 1SLE_TimerHandler) is used by the‘Component to start timers and register a
timeout processor to be called when the timer expires.

Sylnopsis

#include <SLE_SCM.H>
#include <SLE _APITypes.h>
interface ISLE_EventMonitor;
interface ISLE_TimerHandler;

#define 11D_ISLE_Sequential DEF { 0xd020b008, Oxccdl, Ox11d2, \
{ 0x9b, 0%44, 0x0, Oxa0, 0x24, Ox6d, 0x80, Oxdb } }

interface ISLE_Geguential : IUnknown

virtual HRESULT

StartSequential (ISLE_EventMonitor* pmonitor,
ISLE_TimerHandler* ptimerhandler) = 0;

virtual HRESULT

TerminateSequential() = 0;

3

Methods

HRESULT StartSequential(ISLE_EventMonitor* pmonitor,
ISLE_TimerHandler* ptimerhandler);

Starts processing of the component.

CCSDS 914.0-M-1 Page A-59 October 2008
© IS0 2013 — Al rights reserved 265

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

266

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments

pmonitor reference to the event monitor the component shall use for
monitoring external events

ptimerhandler reference to the timer handler the component shall use

Result codes

S OK processing of the component has started

SLE_E_DEGRADED not all of the proxies linked to the service element could be
ctavind (annline Anhv far tha carmana Alanaant)
SJLAUartcuyu \M'J'JIIUO Ulll_y TUT U1iv oUT VILUL CICIIIUIIL}

SLE_E CONFIG configuration has not been performed or has not completed
successfully

E_INVALIDARG either the event monitor or the timer handler are missing

SLE_E_STATE operation of the component has already been started

E _FA[IL operation could not be started because of any other problem

HRESULT TerminateSequential();

Termipates processing of the component.

Resulf codes

S_OK processing of the component will terminate

SLE_E_STATE operation of the compenent has not been started

CCSDS 914.0-M-1 Page A-60 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A6.1.2 Event Monitor

Name ISLE_EventMonitor

GUID {D020B009-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: 1Unknown

File ISLE_EventMonitor.H

Ohjects implementing this interface provide the means to register and de-register external
events, which the object will monitor. When an event is detected, the object will>¢pll the
mgthod ProcesskEvent() of the interface ISLE_EventProcessor (passgd as
argument to the event registration method. If, for any reason the object is no.longer @ble to
maonitor an event, it calls the method MonitorAbort() of the event processor.

Sylnopsis

#include <SLE_SCM.H>
#include <SLE _APITypes.h>
interface ISLE_EventProcessor;

#define 11D_ISLE_EventMonitor_DEF { 0xd020b00Q9, Oxccdl, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, 0Ox6d, 0x80, Oxdb } }

interface ISLE_EventMonitor : lUnknown

virtual HRESULT

AddEvent(const SLE_EventHandle& handle,
ISLE_EventProcessor® pprocessor) = 0;

virtual HRESULT

RemoveEvent(const SLE EventHandle& handle) = O;

¥

Methods

HRESULT AddEvent(-const SLE_EventHandle& handle,
ISLE_EventProcessor* pprocessor);

Rdgisters the-event identified by the event handle and the event processor that will grocess
the event.

Arguments

handle the event handle, dpcrrihing the event nm‘nrding 1o pl tform
specific conventions

pprocessor pointer to the interface of the event processor that shall be
invoked when the event is detected

CCSDS 914.0-M-1 Page A-61 October 2008

© 1SO 2013 — Al rights reserved 267

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes

S _OK the event has been registered

SLE_E_OVERFLOW the number of registered events exceeds the capabilities of the
event monitor

SLE_E_DUPLICATE the event is already registered

E _FAIL the request fails because of a further unspecified error

HRESULT RemoveEvent(const SILE EventHandle& handle);

Remoyes a previously registered event and its event handler from the event monitor.

Arguments

handfle the event handle, describing the event according to platfoym
specific conventions

Resulf codes

S OK the event has been de-registered

SLE_E_UNKNOWN the event is not registered

CCSDS 914.0-M-1 Page A-62 October 2008

268 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A6.1.3 Event Processor

Name ISLE_EventProcessor

GUID {D020B0O0OA-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown

File ISLE EventProcessor.H

Sylnopsis

#ipclude <SLE_SCM_H>
#include <SLE_APITypes.h>

#define 11D_ISLE_EventProcessor DEF { 0xd020b00Oa, Oxcedd, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, 0Ox6d, 0x80,*0xdb } }

interface ISLE_EventProcessor : lUnknown

virtual void

ProcessEvent(const SLE_EventHandle& handle) = O;
virtual void
MonitorAbort(const SLE_EventHandle&-handle) = 0;
}:
Megthods

vgid ProcessEvent(const (SLE_EventHandle& handle);

Prpcesses the event passed astargument.

Arguments
handle the event handle describing the event that has occurred

vdid MonitorAbort(const SLE EventHandle& handle);

THe method-is called when the event handler is no longer able to monitor the event.

Arguments
handie theevent handtethat tad beerrregistered
CCSDS 914.0-M-1 Page A-63 October 2008

© IS0 2013 — Al rights reserved 269

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A6.1.4 Timer Handler

Name ISLE_TimerHandler

GUID {0E265180-D4BF-11d2-9B44-00A0246D80DB}
Inheritance: 1Unknown

File ISLE_TimerHandler_.H

Objects_implementing this interface provide the means to start a timer and register a timeout
procegsor. When the timer expires, the method ProcessTimeout() of the timegut
procegsor is called. The interface also provides a method to cancel a running timet and|to
restart| a timer that is already running. If for any reason the timer handler aborts a“running
timer by itself it calls the method Hand lerAbort() of the timeout processor:

A runping timer is identified by a timer identifier. This is an opaque type, with which the
client must not associate any specific meaning. A specific identifier isonly valid as long|as
the asgociated timer is running.

As anfoption, an invocation identifier can be associated with every activation of a timer. This
invocgtion identifier is passed to the matching call of the imethod ProcessTimeout()|of
the timeout processor.

Synogsis

#include <SLE_SCM.H>
#include <SLE_APITypes.h>
interfface ISLE_TimeoutProcessor;

#defipe 11D_ISLE _TimerHandler DEF { 0xe265180, Oxd4bf, O0x11d2, \
{ Ox9b, 0x44, 0xQjy O0xa0, 0x24, Ox6d, O0x80, Oxdb } };

interfface ISLE_TimerHandler : lUnknown

virftual HRESULT
SgartTimer(_4ant timeout,
ISLE_TimeoutProcessor* pprocessor,
SLE Timerld& timer,
int invocationld = 0) = 0;
virftuad VHRESULT
pcelTimer(SLE _Timerld timer) = O;
vi ual HRESULT
RestartTimer(SLE Timerld timer,
int timeout,
int invocationld = 0) = 0;

CCSDS 914.0-M-1 Page A-64 October 2008
270 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods

HRESULT StartTimer(int timeout,
ISLE_TimeoutProcessor* pprocessor,
SLE Timerld& timer,
int invocationld);

Starts a timer and registers a timeout processor to be called when the timer expires.

Arguments

timeout the timeout value in seconds

parocessor pointer to the interface of the timeout processor that shall be
invoked when the timer expires

timer the identifier for the timer returned to the caller.

invocationld identifier of the timer activation passed torthe matching gall of

the timeout processor

Rdsult codes

S |0OK the timer has been started

SUE_E_OVERFLOW the number of timers exceeds the capabilities of the| timer
handler

SUE _E TIME the time specified cannot'be handled

E |FAIL the request fails because of a further unspecified error

HRESULT CancelTimer(SLE_Timer}d timer);
Cancels a previously started timer.

Arguments
timer the timer id returned from the call to StartTimer()

Rdsult codes
S |0OK the timer has been cancelled
SUE E_UNKNOWN the timer is not running

HRESULT RestartTimer(SLE_Timerld timer, int timeout,
int invocationld);

Cancels and subsequently starts the timer identified in the first argument. Returns an error if
the timer is not active.

Arguments

timer the timer id returned from the call to StartTimer()

timeout the timeout value in seconds

invocationld identifier of the timer activation passed to the matching call of
the timeout processor

CCSDS 914.0-M-1 Page A-65 October 2008

© 1SO 2013 — Al rights reserved 271

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

272

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes

S _OK the timer has been restarted

SLE_E_UNKNOWN the timer is not active

SLE_E TIME the time specified cannot be handled

E_FAIL the request fails because of a further unspecified reason

A6.1.5 Timeout Processor

Name
GUID
Inher
File

The ti

Synoq

#incl
#incl

#deTi

— ISLE TimeoutProcessor

{0E265181-D4BF-11d2-9B44-00A0246D80DB}
tance: IUnknown
ISLE_TimeoutProcessor.H

meout processor is called when a timer expires.

Sis
ude <SLE_SCM.H>
ude <SLE_APITypes.h>

he 1ID_ISLE_TimeoutProcessor_DEF { 0xe265181; Oxd4bf, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, 0Ox6d, ‘Ox80, Oxdb } };

interfface ISLE_TimeoutProcessor : IUnknown

{
virftual void
PlrocessTimeout(SLE Timerld timer)
int invocationld”) = O;
virtual void
HandlerAbort(SLE Timerld timer) = 0;
};
Methods
void |ProcessTimeout(SLE_Timerld timer, int invocationld);
Procegses a timequt.
Arguments
timer the timer id returned when the timer was started
invocationld identifier of the timer activation passed to the call of the
interface 1SLE_TimerHandler, which caused this method
invocation
CCSDS 914.0-M-1 Page A-66 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

void HandlerAbort(SLE_Timerld timer);

The method is called when the timer handler has aborted the timer for whatever reason.

Arguments
timer the timer id returned when the timer was started

A6.1.6 Concurrent Flows of Control

N4
G

In
Fi

Th
‘C

Pr
m¢
be

Syinopsis

#i

#d

interface ISLE_Concurrent :1Unknown

{

¥

M

HRESULT> StartConcurrent();

fme ISLE Concurrent

JID {7B425726-D32D-11d2-9B44-00A0246D80DB}
heritance: IUnknown

e ISLE Concurrent.H

e interface is used to control processing of a component providing the be
pncurrent Flows of Control’ as defined in 3.7.3.

pcessing of the component is started with the method StartConcurent().
thod checks the configuration and returns as soon as processing within the compong
bn started.

nclude <SLE_SCM.H>

efine 11D _ISLE Concurrent DEF {,-0x7b425726, 0xd32d, 0x11d2, \
{ Ox9b, 0x44, 0x0, OxaOy 0x24, Ox6d, O0x80, Oxdb } }

virtual HRESULT
StartConcurrent()_£)0;
virtual HRESULT
TerminateConcufrrent() = 0;

bthods

St

havior

The
nt has

CCSDS 914.0-M-1 Page A-67 October 2008
© 1SO 2013 — All rights reserved

273

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

274

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes

S _OK processing of the component has started

SLE_E_DEGRADED not all of the proxies linked to the service element could be
started (applies only for the service element)

SLE_E_CONFIG configuration has not been performed or has not completed
successfully

SLE_E_STATE operation of the component has already been started

E _FAIL operation could not be started because of any other problem

HRESULT TerminateConcurrent();

Termipates processing of the component.

Resul{ codes

S OK processing of the component will terminate

SLE_E STATE operation of the component has not been started

CCSDS 914.0-M-1 Page A-68 October 2008

© 1SO 2013 — All rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A6.2 CONTROL OF TRACES

Name ISLE_TraceControl

GUID {D020B00OB-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: 1Unknown

File ISLE_TraceControl .H

Th

e interface is exported by objects that support generation of diagnostic traces

Trace

re
Th

sp

ords are entered to the interface 1SLE_Trace passed to the method StartTra
IS interface is provided by the SLE Application. Trace records and the traceslev
eeified in 3.6.3.

Sylnopsis

#i
#i

nclude <SLE_SCM.H>
hclude <SLE_APITypes.h>

interface ISLE Trace;

#d

efine 1ID_ISLE TraceControl DEF { 0xd020b00b,y0xccdl, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, Ox6d; 0x80, Oxdb } }

interface ISLE_TraceControl : lUnknown

¥

M

virtual HRESULT
StartTrace(ISLE_Trace* trace,
SLE TraceLevel level,
bool forward) =%03
virtual HRESULT
StopTrace() = 0;

pthods

HRESULT StartTrace(ISLE Trace* ptrace,

S
tr

—

SLE TraceLevel level,
bool forward);

rts tracing by the object that exports the interface. If the argument forward is
ue, the-object also starts tracing of associated lower layers of the API, if applicable.

ATl

guments

ce().

b|s are

set to

ptrace

level the trace level that shall be applied as defined in 3.6.3

forward

started as well

pointer to the interface to which trace records shall be passed

if set to true, tracing for lower layers of the API shall be

CCSDS 914.0-M-1 Page A-69 October 2008
© 1SO 2013 — All rights reserved

275

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes

S_OK tracing started
SLE_E_STATE tracing already active
E_FAIL the request fails because of a further unspecified error

HRESULT StopTrace();

Stops a previously started trace.

Result codes

S OK tracing stopped

SLE_E STATE tracing not active

CCSDS 914.0-M-1 Page A-70 October 2008

276 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A7 SLE API PROXY
A7.1 COMPONENT CREATOR FUNCTION
File <impl-id>_H

The API proxy component includes a function to create an instance and obtain a pointer to
the administrative interface. The signature of this function is defined as:

extern "C" HRESULT
<impl-i1d>_CreateProxy(const GUID& 1id,
void** ppv);
where <impl-i1d> is replaced by the product identifier of the implementation. Note that
external ‘C’ linkage is required. The function ensures that a single ‘instance of the proxy is
crg¢ated and returns pointer to the same instance if it is called.repetitively. The function
checks the argument identifying the interface and returns an_errar when the implementation
does not support an interface with that identifier.
Arguments
ild identifier of the required interface
ppv pointer to the requested interface of the API proxy
Rdsult codes
S |0OK the object has’been created
E [NOINTERFACE the specified interface is not supported
CCSDS 914.0-M-1 Page A-71 October 2008

© 1SO 2013 — Al rights reserved 277

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A7.2 SLE PROXY ADMINISTRATIVE INTERFACE

Name ISLE_ProxyAdmin

GUID {D020B0O0C-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown

File ISLE_ProxyAdmin.H

The interface provides the means to configure the proxy component and to pass it the
interfgces needed operationally. All static configuration parameters needed by the proxy-are
defined in a configuration file. The path name of that file is supplied to the proxywia this
interfgce.

In addition, the interface provides methods to register and de-register ports for a specific
service instance. These methods are used by the service element when a-service instanceg is
createfl and deleted. Port registration is described in 3.2.5.

The interface finally provides a method for shutdown of the proxy,

Synogsis

#include <SLE_SCM.H>

#include <SLE_APITypes.h>
#include <SLE_Types.h>

interfface ISLE_lLocator;
interfface ISLE_OperationFactory;
interfface ISLE_UtilFactory;
interfface ISLE_Reporter;
interfface ISLE_SII;

#defipe 11D_ISLE_ProxyAdmin ‘BEF { 0xd020b00c, Oxccdl, Ox11d2, \
{ 0x9b, 0x44, 0x0Q; Oxa0, 0x24, 0x6d, 0x80, Oxdb } }

inte:[ace ISLE_ProxyAdmin = lUnknown

ual HRESULT
Configure(const char* configFilePath,
ISLE_Locator* plocator,
ISLE OperationFactory* popFactory,
ISLE_UtilFactory* putilFactory,
ISLE_Reporter* preporter) = 0;
virjtual HRESULT
ShutbDown () -0 ;
virtual HRESULT
RegisterPort(const ISLE SlI& sili,
const char* responderPort,
SLE_PortRegld& regld) = 0;
virtual HRESULT
DeregisterPort(SLE PortRegld regld) = O;
virtual const char*
Get_Protocolld() const = 0;

CCSDS 914.0-M-1 Page A-72 October 2008
278 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods

HRESULT Configure(const char* configFilePath,
ISLE Locator* plocator,
ISLE_OperationFactory* popFactory,
ISLE_UtilFactory* putilFactory,
ISLE_Reporter™® preporter);

Configures the proxy and passes it the basic interfaces of other components needed for
oper |n |n||I|zs the

interface passed as argument

Arguments

cgnfigFilePath full path name of the proxy configuration filg; the cont@nts of
this file is implementation dependent

plocator Pointer to the locator interface fof~incoming calls; |if no
incoming calls are to be accepted, this argument is set to NULL

papFactory pointer to the operation object factory to be used by the proxy

putilFactory pointer to the factory interface-for utility objects to be used by
the proxy

preporter pointer to the reporter interface for passing of log messages and

notifications to the application

Rdsult codes

S |OK configuration\completed without errors

SUE _E NOFILE configuration file not found

SUE_E CONFIG errors-or-inconsistencies in the configuration data
SUE_E_COMMS unable to initialize communications system

E [INVALIDARG one of the input arguments is NULL

E |[FAIL the request fails because of a further unspecified error

HRESULT ShutbDown();
Rdquests the proxy to shutdown and release all resources.

Rgsult codes
S_|0K the proxy no longer exists
SLE_E_STATE operation of the proxXy must be terminated Tirst

HRESULT RegisterPort(const ISLE_SII& sili,
const char* responderPort,
SLE_PortRegld& regld);

CCSDS 914.0-M-1 Page A-73 October 2008
© 1SO 2013 — Al rights reserved 279

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Registers a port. Port registration actions are technology and implementation dependent.
The method must be called for every new service instance responding to BIND invocations,
as the proxy may depend on this procedure.

Arguments

Sil service instance identifier

responderPort logical name of the local port on which the proxy shall accept a
BIND invocation

regld registration-tdentifierthat-must-be-passed-to-the-proxy-when-the

port is de-registered; for the client the registration identifier| is
an opaque type and no further meaning should be associated
with it; in particular the registration id need not berunique for
service instances

Result codes

S _OK port has been registered

SLE_E UNKNOWN the port identifier is not defined in the ¢gnfiguration database

SLE_E_INVALIDID the port is not defined as a local port

SLE_E DUPLICATE duplicate registration

E_NOJ IMPL the responder role is either not supported or has been disabled
by configuration

E FAJIL the request fails because-of a further unspecified error

HRESULT DeregisterPort(SLE_PortRegld regld);

De-registers a port that has been previously registered.

Argunents

regld registration identifier obtained from a previous call (to
RegisterPort()

Result codes

S _OK port has been de-registered

SLE_E_UNKNOWN port was not registered

E_NOJ IMPL the responder role is either not supported or has been disabled
by configuration

E_INVALIDARG the registration identifier is invalid

const char* Get Protocolld() const;

Returns the identifier for the protocol supported by the proxy.

CCSDS 914.0-M-1 Page A-74 October 2008
280 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A7.3 ASSOCIATION FACTORY

Name ISLE_AssocFactory

GUID {D020B0O0OD-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: 1Unknown

File ISLE_AssocFactory.H

The_interface allows creation of associations that take the initiator role for the BIND
opgration. Associations created via this interface can be used for several consgcutive
asgociations for the same service instance. When the association is no longer. fieeded, the
proxy must be instructed to destroy the association. In addition, clients must,make sufe that
allfreferences on the interface have been released.

include <SLE_APITypes.h>
erface ISLE_SrvProxylnitiate;
erface ISLE_SrvProxylnform;

#define 11D_ISLE_AssocFactory DEF { 0xd020b00d, Oxccdl, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, 0x24 ;. 0x6d, 0x80, Oxdb } }

interface ISLE_AssocFactory : lUnknown

virtual HRESULT

CreateAssociation(const GUID& iid,
SLE_Applicationldentifier srvType,
ISLE ‘SrvProxylnform* pclientlf,
voRd** ppv) = 0;

virtual HRESULT

DestroyAssociation(IUnknown* passoc) = 0;

3

Methods

HRESULT CreateAssociation(const GUID& iid,
SLE_Appplicationldentifier srvType,
ISLE_SrvProxylInform* pclientlf,
void** ppv);

Creates a new association of the specified service type, which acts as an initiator for the
BIND operation. If the proxy does not support the service type or the specified interface it
returns an error.

CCSDS 914.0-M-1 Page A-75 October 2008
© 1SO 2013 — Al rights reserved 281

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments

1id identifier for the interface ISLE_SrvProxylnitiate
srvType the SLE service type to be supported by the association
pclientlf pointer to the client interface

ppv pointer to the requested interface of the association

Result codes

S OK the association object has been created
SLE_F—STATE theproxy hasnot beenstarted

E_NOJ IMPL the service type is not supported by the proxy
E_NOJINTERFACE the interface is not supported by an association object
HRESULT DestroyAssociation(lUnknown* passoc);

Deletgs an association previously created by this interface.

Arguments

passpc pointer to the association object

Result codes

S OK the object has been destroyed

SLE_E_STATE the association is not in the state unbound

SLE_E UNKNOWN the association is net’known to the proxy

SLE E TYPE the association has not been created by this interface
CCSDS 914.0-M-1 Page A-76 October 2008

282 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A7.4 SLE SERVICE PROXY INTERFACE

Name ISLE_SrvProxylnitiate
GUID {D020B0O0OE-CCD1-11d2-9B44-00A0246D80DB}
Inheritance: 1Unknown

File ISLE_SrvProxylnitiate.H

The_interface allows a client to pass SI E operation invocations and returns to an asso

iation

in the proxy for transmission to the peer system.

The association accepts any operation that is valid for the given service type, indepenc
the¢ service instance state and whether the clients acts as an SLE service user or providg

onlly checks applied are related to the state of the association.

Fo

r a description of the associated state table of an association see 4-

Sylnopsis

#i
#i

in

#d

nclude <SLE SCM_H>
nclude <SLE APITypes.h>

interface ISLE Operation;

erface ISLE_ConfirmedOperation;

efine 1ID_ISLE SrvProxylnitiate DEF;{ 0xd020b00Oe, Oxccdl, 0x11d2, \
{ Ox9b, 0x44, 0x0, Oxa0, 0x24, Ox6d, 0x80, Oxdb } }

interface ISLE_SrvProxylnitiate -~ 1Unknown

Vi

Vi

3

M

virtual HRESULT
InitiateOplnvoke(ISLE® Operation* poperation,
boel' reportTransmission = false,
unsigned long seqCount = 0) = O;
rtual HRESULT
InitiateOpRetukn(ISLE_ConfirmedOperation* poperation,
bool report = false,
unsigned long seqCount = 0) = 0;
rtual HRESULT
DiscardBuffer() = O;
virtual\ SLE_AssocState
Get_ AssocState() const = 0;

ethods

HRESULT InitiateOplnvoke(ISLE_Operation* poperation,

bool reportTransmission = false,
unsigned long seqCount = 0);

ent of
r. The

Queues the operation invocation defined by the argument poperation for transmission. If
the argument reportTransmission is set to true final transmission is reported via the

CCSDS 914.0-M-1 Page A-77 October 2008
© 1SO 2013 — All rights reserved

283

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

interface ISLE_SrvProxyInform. If the operation is confirmed, the association returns
it when the associated return arrives.

Arguments
poperation the operation object containing the invocation that shall be

transmitted
reportTransmission true indicates that transmission of the PDU shall be reported
seqCount sequence count for PDUs as defined in 3.7.3

Result codes
SLE_B TRANSMITTED the PDU has been passed to the communications system for
transmission

SLE_B QUEUED the PDU has been queued locally for transmission

SLE_E_UNBINDING the PDU can no longer be accepted because’an UNBIND
operation has already been initialized

SLE_E INVALIDID the identifier of the peer application\passed in a BIND

invocation is not defined in the configuration database
SLE_E_INVALIDPDU the operation is not supported for the'service type

SLE_E PROTOCOL the operation cannot be accepted in the current state, because
that would result in a protocol error

SLE_E COMMS the request cannot be perfermed because of a communicatigns
system failure

SLE_E OVERFLOW the configured queuing capability has been exceeded

SLE_E_ABORTED the association has-been aborted

SLE_E_SEQUENCE sequence count'out of acceptable window

E_FA[IL the request-fails because of a further unspecified error

HRESULT InitiateOpReturn('ISLE_ConfirmedOperation* poperation,
bool reportTransmission = false,
unsigned long seqCount = 0);

Queuss the operatiop-return defined by the argument poperation for transmission. If the
argument reportfransmission is set to true final transmission is reported via the
interfgce 1SLE~SrvProxyInform.

Arguments
poperation the operation object containing the invocation that shall |be

transmitted
reportTransmission true indicates that transmission of the PDU shall be reported
seqCount sequence count for PDUs as defined in 3.7.3

CCSDS 914.0-M-1 Page A-78 October 2008
284 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Result codes

SLE_S _TRANSMITTED the PDU has been passed to the communications system for
transmission

SLE_S QUEUED the PDU has been queued locally for transmission

SLE_E_UNBINDING the PDU can no longer be accepted because an UNBIND
operation has already been initialized

SLE_E_INVALIDPDU the operation is not supported for the service type

SLE_E_PROTOCOL the operation cannot be accepted in the current state, because
thatwoutd Tesuttima protocot error

SUE_E_COMMS the request cannot be performed because of a communigations
system failure

SUE_E_OVERFLOW the configured queuing capability has been exceeded

SUE_E_ABORTED the association has been aborted

SUE_E SEQUENCE sequence count out of acceptable window.

E |FAIL the request fails because of a further unspecified error

HRESULT DiscardBuffer();

Seprches the local transmission queue of operations of<the type TRANSFER-BUFFER, and
dejetes all objects for which transmission of data has'not yet started. Returns whether any
buffer has been discarded.

R4gsult codes

SUE_S _NOTDISCARDED no buffer deleted
SUE_S_DISCARDED at least one buffer discarded
SUE _E_STATE the request is not valid in the current state of the association

SUE AssocState Get AssocState() const;

Rdturns the current state‘of the association.

CCSDS 914.0-M-1 Page A-79 October 2008
© IS0 2013 — Al rights reserved 285

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8 SLE API SERVICE ELEMENT
A8.1 COMPONENT CREATOR FUNCTION

The API Service Element component includes a function to create an instance and obtain a
pointer to the administrative interface. The signature of this function is defined as:

extern "C" HRESULT
<ifipf—-1d>_CreateServiceElement(const GUID& 11d,
void** ppv);

where| <impl-1d> is replaced by the product identifier of the implementation. “Note that
externgl *C” linkage is required. The function ensures that a single instance,0f the proxyf is
createfl and returns the same instance if it is called repetitively. The function checks the
argument identifying the interface and returns an error when the implémentation does Mot
suppoft an interface with this identifier.

Arguments
iid identifier of the required interface
ppv pointer to the requested interface of the API Service Element

Result codes

S OK the object has been created
E _NOJINTERFACE the specified interface is not supported
CCSDS 914.0-M-1 Page A-80 October 2008

286 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.2 API SERVICE ELEMENT ADMINISTRATIVE INTERFACE

Name ISLE_SEAdmin

GUID {24396FC0-CD99-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown

File ISLE_SEAdmin_H

The_interface provides the means to configure the service element component and to pass it
the interfaces needed operationally. All static configuration parameters needed-by the
component are defined in a configuration file. The path name of that file is supplied|to the
proxy via this interface.

=

Cljents must first call the method Configure() and then call AddPoxy () to pass a
pojinter to the proxy component for every proxy that shall be supported:

The interface finally provides a method for shutdown of the service element.

Sylnopsis

#inpclude <SLE_SCM.H>

#include <SLE_APITypes.h>
interface ISLE_OperationFactory;
interface ISLE_UtilFactory;
interface ISLE_Reporter;
interface ISLE_ProxyAdmin;

#define 11D_ISLE_SEAdmin_DEF {:0x24396fc0, Oxcd99, 0x11d2, \
{ 0Ox9b, 0x44, 0x0,0xa0, 0x24, 0x6d, 0x80, Oxdb } }

interface ISLE_SEAdmin : «lUnknown

virtual HRESULT
Configure(const char* configFilePath,
ISLE-OperationFactory* popFactory,
ISCE_UtilFactory* putilFactory,
ISLE_Reporter* preporter) = 0;
vijrtual HRESULET
AddPrexy(const char* protocolld,
SLE BindRole role,
ISLE_ProxyAdmin* pproxy) = O;
virtual HRESULT
ShutDown() = 0;

CCSDS 914.0-M-1 Page A-81 October 2008
© 1SO 2013 — Al rights reserved 287

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Methods

HRESULT Configure(const char* configFilePath,
ISLE_OperationFactory* popFactory,
ISLE_UtilFactory* putilFactory,
ISLE_Reporter* preporter);

Configures the service element component and passes it the basic interfaces of other
components needed for operations. Any problems and errors are entered into the system log

using he interface Inacqu as argument

Arguments

confagFilePath full path name of the configuration file; the contents, ofvthis flile
is implementation dependent

popFactory pointer to the operation object factory to be usedby the servjce
element

putiflFactory pointer to the factory interface for utility. abjects to be used by
the service element

prepprter pointer to the reporter interface for-passing of log messages gnd
notifications to the application

Resul{ codes

S OK configuration completed-without errors

SLE_E NOFILE configuration file not.found

SLE_E CONFIG errors or inconsistencies in the configuration data

E_INVALIDARG one of the input@rguments is NULL

E_FA[IL the request fails because of a further unspecified error

HRESYLT AddProxy(const ehar* protocolld,

SLE _BindRole role,
ISLE-“ProxyAdmin* pproxy);

Passeq the proxy component to use to the service element.

Arguments

protpcolld identification of the technology and mapping supported by the
proxy; this argument is required for selection of the corrgct
proxy when multiple proxies are configured

role the-bind-rotessupportet-by-the-APHproxy-component

pproxy pointer to the administrative interface of the proxy

Result codes

S OK proxy added

SLE_E_OVERFLOW too many proxies

SLE_E DUPLICATE protocol identifier already used by a configured proxy

E_FAIL the request fails because of a further unspecified error

CCSDS 914.0-M-1 Page A-82 October 2008

288 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.3 SERVICE INSTANCE LOCATOR

Name ISLE Locator

GUID {24396FC1-CD99-11d2-9B44-00A0246D80DB}
Inheritance: IUnknown

File ISLE_Locator_H

The interface is provided to the proxy to obtain an interface of the type
2 i } ol an-grror is

reurngd, the proxy is expected to reject the BIND invocation.
Sylnopsis
#include <SLE_SCM.H>

interface ISLE_SrvProxylnform;

inEerface ISLE Bind;
interface ISLE_SrvProxylnitiate;

#define 11D_ISLE_Locator_DEF { 0x24396fcl, 0xcd99) 0x11d2, \
{ Ox9b, 0x44, 0x0, OxaO, O0x24, 0Ox6d, ‘Ox80, Oxdb } }

interface ISLE_Locator : lUnknown

virtual HRESULT

Locatelnstance(ISLE_SrvProxylnitiate* passociation,
ISLE_Bind* pbindop,
ISLE_SrvProxylinform** ppServicelnstance) = O;

3

Mgthods

HRESULT Locatelnstance(ISLE_SrvProxylnitiate* passociation,
ISLE Bind* pbindop
ISLE_SrvProxylnform** ppServicelnstance);

Optains and returns‘an interface 1SLE_SrvProxylnform for use by a new assogiation.
Tq locate (or<create) the object implementing ISLE_SrvProxylnform, the [BIND
opgration 4S)*made available, which contains all information needed. The inferface
ISLE _SrvProxylnitiate is made available to the object providing the returned
intlerface ISLE_SrvProxylInform.

If no interface can be made available returns an error and sets the output argument to NULL.
In this case the proxy is expected to reject the BIND invocation by a BIND return with a
negative response and a diagnostic corresponding to the returned error.

An implementation is not required to perform all the checks defined by the result codes in
this method. It can also accept the association and perform the checks when the BIND
invocation is passed to the interface ISLE_SrvProxyInform.

CCSDS 914.0-M-1 Page A-83 October 2008
© IS0 2013 — Al rights reserved 289

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Arguments

passociation interface provided by the association on which the BIND
invocation was received

pbindop bind operation object holding the received bind invocation

ppServicelnstance complementary interface that shall be used by the association to
forward PDUs received from the network

Result codes

S OK a-Service—stance—has-beentocated—and-is—ready—to-aceeptthe
BIND invocation

SLE_E UNKNOWN the service instance identifier in the BIND invocation-does not
match any available service instance

E_ACLCESSDENIED the service instance does not belong to the peer lapplication|as
identified by the application identifier in the BIND operation

SLE_E TYPE the service type specification in the BIND.operation does mot
match the service type in the service instance

SLE_E TIME the scheduled provision period of the‘service instance has not
yet started or has expired

SLE_E STATE the service instance is already bound

E_FA[IL the request fails because of a.further unspecified error

CCSDS 914.0-M-1 Page A-84 October 2008

290 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.4 SLE SERVICE INSTANCE FACTORY

Name ISLE_SIFactory

GUID {BB4DDA2E-54CD-11d8-9CF5-0004761E8CFB}
Inheritance: IUnknown

File ISLE_SIFactory.H

The_interface allows creation of service instances for a specified service type and for a
specified role (SLE service provider or SLE service user). Following creation, the-gervice
ingtance must be configured using its administrative interface. When the assogiation is no
lomger needed, the service element component must be instructed to destroy“the gervice
ingtance. In addition, clients must make sure that all references on all. interfaces |of the
sefvice instance have been released.

#define 11D_ISLE_SIFactory DEF { Oxbb4dda2e, O0x54cd, 0x11d8, \
{ 0x9c, Oxf5, Ox0, Ox4, Ox76, Oxle, 0x8c, Oxfb } }

interface ISLE_SlIFactory : lUnknown

virtual HRESULT

CreateServicelnstance(const GUID& i1id,
SLE Applicationldentifier srvType,
SLE_VersionNumber version,
SLE_AppRole role,
ISLE_Servicelnform* pclientlf,
void** ppv) = 0;

virtual HRESULT

DestroyServicelnstance(IUnknown* psi) = O;

¥

Methods

HRESULLT> CreateServicelnstance(const GUID& iid,
SLE_Applicationldentifier srvType,
SLE VersionNumber version,
SLE_AppRole role,
ISLE_Servicelnform* pclientlf,
void** ppv);

Creates a new service instance for the requested SLE service type, supporting the requested
role (SLE service provider or SLE service user). Returns a pointer to the requested interface
of the service instance. If the component does not support the service type, the requested
role, or the requested interface identifier returns an error.

CCSDS 914.0-M-1 Page A-85 October 2008
© 1SO 2013 — Al rights reserved 291

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

For service instances in the user (initiator) role the version of the SLE service must be
specified and this specification will be included into the BIND invocation. On the provider
(responder) side the version number is defined by the BIND invocation received from the
user and checked against the list of supported version numbers in the configuration database
of the API Proxy. Therefore the argument is ignored and should be set to zero.

Arguments
iid the identifier for the required interface

for the user (initiator) role defines the version number ,0f>the
SLE service type to be used; for the provider (responder) side
this argument is ignored and should be set to zero

role the role (user or provider) to be supported by."the service
instance

pcligntlf pointer to the interface the service instance)shall use to pass
operations to the client

ppv pointer to the requested interface of theservice instance

Result codes

S OK the service instance object has-been created

SLE_E_STATE the service element has not-been started

SLE_E [INVALIDID the version number is zéro for the role ‘user’

E_NOJ IMPL the service type or the-version or the role is not supported by the
service element

E_NOJINTERFACE the interface is'ot supported by an association object

HRESULT DestroyServicelnstance(lUnknown* psi);
Destrqys a service instance created by this interface.

Arguments
psi pointer to the service interface

Result codes

S OK service instance destroyed
SLE_E UNKNOWN the service instance is not known
SLE_E“STATE the service instance is not in the unbound state; the association

must be aborted first

CCSDS 914.0-M-1 Page A-86 October 2008
292 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

A8.5 SLE SERVICE INSTANCE ADMINISTRATIVE INTERFACE

Name ISLE_SIAdmin

GUID {BB4DDA31-54CD-11d8-9CF5-0004761E8CFB}
Inheritance: IUnknown

File ISLE_SIAdmin_H

The interface is provided for configuration of service instances. It can be used for instances

alalala inn [a} nrn\li ar raolea _or g lLisar rolp (ald inc ancec silinnor inn e lLisar rolp
porting-the provider role or the user role For instances supporting-the user rol

pafameters need to be set.

Cl
D¢

type-specific configuration interface. When all parameters have been supplied, the n

Cd
co

op
is

A9

rejurn of the method ConfigCompleted(). Theeffect of an attempt to set a par

wi

TH
the
m§

pending on the service type, further parameters may have to be supplied.using the 9

nfigCompleted() must be called. The service instance (then verifies th
hfiguration is complete and consistent and performes all actions fequired to start n
eration. If the method ConfigCompleted() returns with sticcess, the service in
ready for operation.

a general precondition, configuration parameters must not be modified after a suc

en the initial configuration has completed, is undefined.

create request to the Service Instance-Factory. The value returned by a call to th
thods before configuration has beenicompleted, is generally undefined.

in

fine 11D_{SLE_SIAdmin_DEF { Oxbb4dda31l, Ox54cd, 0x11d8, \
{' 0x9c, Oxf5, Ox0, Ox4, Ox76, Oxle, Ox8c, Oxfb } }

erface ISLE SIAdmin : IUnknown

not all

ents must specify the individual parameters using the method foreseen for.the” pargmeter.

ervice
nethod
At the
pminal
stance

essful
hmeter

e interface provides read access to all configuration parameters, including those defined in

e read

CCSDS 914.0-M-1 Page A-87 October 2008

virtual void

Set_Servicelnstanceld(const ISLE_SI1& id) = 0;
virtual void

Put_Servicelnstanceld(ISLE_SII* id) = O;
virtual void

Set_Peerldentifier(const char* id) = O;
virtual void

Set ProvisionPeriod(const ISLE Time* start,

const ISLE_Time* stop) = O;

virtual void

© 1SO 2013 — All rights reserved

293

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

Set BindInitiative(SLE_AppRole role) = 0;
virtual void
Set_ResponderPortldentifier(const char* portld) = 0O;
virtual void
Set ReturnTimeout(int timeout) = O;
virtual HRESULT
ConfigCompleted() = O;
virtual SLE_Applicationldentifier
Get_ServiceType() const = 0;
virtual SLE_VersionNumber
Get \Inrcinn() const =0
ual SLE_AppRole
t_Role() const = 0;
ual const ISLE_SII*
t_Servicelnstanceldentifier() const = 0;
ual const char*
t_Peerldentifier() const = 0;
ual const ISLE Time*
t_ProvisionPeriodStart() const = 0;
ual const ISLE Time*
t_ProvisionPeriodStop() const = 0;
ual SLE_AppRole
t_BindInitiative() const = 0;
ual const char*
t_ResponderPortldentifier() const = 0;
ual int
Get_ReturnTimeout() const = 0;

¥

Methods
void |Set_Servicelnstanceld(const ISLE_SII& id);

Sets the service instance identifier.copying the input argument.
void |Put_Servicelnstanpceld(ISLE_SII* id);

Sets the service instanceto the input argument. The argument will be deleted by the servjce
instange object.

void |Set Peerldentifier(const char* id);
Sets the identifier of the peer application.

void lSet_ProvisionReriod(const ISLE Time* start,
const ISLE_Time* stop);

Sets the scheduled provisioning period according the start and stop times passed as
arguments. If the start time is NULL, the service instance assumes immediate start of the
provision period. If the stop time is NULL, the service instance provision period never
expires.

CCSDS 914.0-M-1 Page A-88 October 2008
294 © 1SO 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)

API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

void Set_BindInitiative(SLE_AppRole role);

Specifies whether user-initiated binding or server-initiated binding shall be used.

void Set_ResponderPortldentifier(const char* portid);

Sets the port identifier for the responding application.

vdid Set ReturnTimeout(int timeout);

Sets the timeout value in which a return for confirmed operations must arrive. The timeout

argument is passed in units of seconds.

HRESULT ConfigCompleted();

CH

pe
se
Se

by

Re
S
E
S|
S|
S|

SL
S|

Sy

R4

a result code of S_OK.

sult codes
|OK

INOT IMPL
E E TIME
E_E_PORT

E_E_INVALIDID
E_E_STATE
E_E_CONFIG

E Applicationldentifier Get ServiceType() const;

turns.the service type supported by the service instance.

all checks passed; the service instance is ready for operati
provider-initiated bind not supported

inconsistent start and stop times

the port identifier does not match the configuration or cot
be.registered

invalid service instance identifier

the service instance is already configured

other, further unspecified configuration problem

ecks the configuration of the service element on completeness and consistengy and
[forms all actions needed to start nominal operation. Thethethod includes checking of all
vice type-specific parameters and takes into account‘the role (user or provider)
vice instance. This method must not be called again-after successful completion indicated

of the

=4

n

Id not

SLE_VersionNumber Get_Version() const;

Returns the version number of the service type supported by the service instance. For the
role ‘provider’ returns the value extracted from the received BIND invocation when the
service instance is bound and zero when the service instance is not bound.

CCSDS 914.0-M-1
© 1SO 2013 — All rights reserved

Page A-89 October 2008

295

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

ISO 18441:2013(E)
API FOR SLE TRANSFER SERVICES—CORE SPECIFICATION

SLE_AppRole Get_Role() const;

Returns the application role (user or provider) assumed by the service instance.

const SLE_SI1* Get_Servicelnstanceldentifier() const;

Returns the service instance identifier set in the object, or NULL if no identifier has been set.

const char* Get_ Peerldentifier() const;

Returns the peer identifier set in the service instance or NULL when not yet configured.

const ISLE Time* Get ProvisionPeriodStart() const;

Returns the provisioning start time set in the service instance or“"NULL when not yet
configured.

const ISLE_Time* Get_ProvisionPeriodStop() censt;

Returns the provisioning stop time set in the service’ instance or NULL when not yet
configured.

SLE_AppRole Get_BindInitiative()*econst;

Returns the bind initiative (user-initiated-or provider-initiated) set for the service instance.

const char* Get_ResponderPortldentifier() const;

Returs the logical port-identifier set in the service instance or NULL when not yet
configured.

int ¢et ReturnTimeout() const;

Returns the return timeout period set in the service instance or 0 when not yet configured.

CCSDS 914.0-M-1 Page A-90 October 2008
296 © IS0 2013 — Al rights reserved

https://standardsiso.com/api/?name=c1f9d147909742a0ae793c8588bea476

	AUTHORITY
	STATEMENT OF INTENT
	FOREWORD
	DOCUMENT CONTROL
	CONTENTS
	1 INTRODUCTION
	1.1 PURPOSE OF THIS RECOMMENDED PRACTICE
	1.2 SCOPE
	1.3 APPLICABILITY
	1.4 RATIONALE
	1.5 DOCUMENT STRUCTURE
	1.6 DEFINITIONS
	1.7 REFERENCES

	2 DESCRIPTION OF THE SLE API
	2.1 INTRODUCTION
	2.2 SPECIFICATION METHOD AND NOTATION
	2.3 LOGICAL VIEW
	2.4 SECURITY ASPECTS OF CORE SLE API CAPABILITIES

	3 SPECIFICATION OF API COMPONENTS
	3.1 INTRODUCTION
	3.2 API PROXY
	3.3 API SERVICE ELEMENT
	3.4 SLE OPERATIONS
	3.5 SLE UTILITIES
	3.6 SLE APPLICATION
	3.7 HANDLING OF IN PROCESS THREADS AND EXTERNAL EVENTS

	4 STATE TABLES
	4.1 INTRODUCTION
	4.2 NOTATION
	4.3 GENERAL ERROR HANDLING CONVENTIONS
	4.4 STATE TABLE FOR ASSOCIATIONS
	4.5 STATE TABLES FOR SERVICE INSTANCES

	ANNEX A SPECIFICATION OF COMMON INTERFACES(Normative)
	ANNEX B RESULT CODES(Normative)
	ANNEX C STRUCTURE OF THE SERVICE INSTANCE IDENTIFIER FOR VERSION 1 OF THE SLE SERVICES RAF, RCF, AND CLTU(Normative)
	ANNEX D SIMPLE COMPONENT MODEL(Normative)
	ANNEX E CONFORMANCE(Normative)
	ANNEX F INTERACTION OF COMPONENTS(Informative)
	ANNEX G INTERFACE CROSS REFERENCE(Informative)
	ANNEX H INDEX TO DEFINITIONS(Informative)
	ANNEX I ACRONYMS AND ABBREVIATIONS(Informative)
	ANNEX J INFORMATIVE REFERENCES(Informative)
	S62456e.pdf
	1 Scope
	2 Requirements
	3 Revision of publication CCSDS 914.0-M-1

