INTERNATIONAL

ISO

STANDARD 19118

Second edition
2011-10-15

Geographic information —Encodi

Information géographique — Codage

ng

Reference number

= — ISO

19118:2011(E)

© SO 2011

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

COPYRIGHT PROTECTED DOCUMENT

© 1S0 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +4122749 01 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © IS0 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

Contents

o1 =V o o
INErOAUCHION ...
1 8T oo o -
2 CONFOIMANCE ... s e e s s e s s s e s e s e s e s e s e s s e e s e ensesnsneneneeeneennenes bhn
2.1 INErOAUCHION.......ceeeee s s s s s s e s e e e P P
2.2 Conformance classes related to encoding rulescccceciiiiiininnnen g e
23 Conformance classes related to encoding Servicescocceiiiimrrinsienninnsiesdathsneesnnnns
3 Normative references.......... s ssssssssses e a s s s s s s s s
4 Terms and definitions ... G N e
5 Symbols and abbreviated terms...........cccvceecerircccerrrcser e e e
6 Fundamental concepts and assumptions...........cccccrrrrrrrnnrntes i ennnnnnnnsrs s
6.1 (00 4 Lo =T o -3 - SO
6.2 (D F 1 7= I] C=1 e T= 1 Ve 1= U 400 SR
6.3 WY o] e Tez=Ya Tod g JR-Td 4 11 4 o - T e S SR
6.4 =40 Yoo T 114 Ve 0 (U1 - PR
6.5 Encoding Service.......cocciiiiniinimnninnnnnn sl s
6.6 B LSS (T oT=Y /T o - Y S
7 L0 g F= 1= Tod L= gl =T =T o Lo] -
8 Generic instance Model........... i ———————
8.1 [0 1o T LW T2 4 o o
8.2 Relation between UML and the instance model.............cooiiciiii e
9 ENCOAING FUIES.......ceiieiii s 5o i s ms s s amn e e
9.1 0 1o T ¥ T2 4] o T
9.2 General encoding reqUITEMENLSccccerireeeerrrssrererssreresssr e e s sssne s sssssne e ssssmeessssmeessnsans
9.3] o101 e F=1 3 4 o3 0 = SN
9.4 Output data StrUCLUTE..........ccceeereii e rses e mn e e s s s smme e e e e e se s snmnnnnees
9.5 CONVErSION FTUIES ..ot s s ane e s e mme e s e mmn e s nnnns
9.6 EXaMPIES ... i i
10 L T e T 11 4T 1= 7 TN
Annex A (normative) XML-based encoding rule..........ccccvriinnimimmnnnsinnsss s,
Anngx B (normative) Abstract test SUit.........ccccorrieecirircccer i
Anngx_E, (informative) XML-based encoding rule in use by communities.........ccccccvreecerrrcncenn.
Bibliography ... e nmnn e

ISO 19118:2011(E)

© 1SO 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been

established h

as the right to be represented on that committee. International organizations, governmental and

non-governmental, in liaison with ISO_ also take part in the wark 1SO collaborates closely with the

International |[Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International [Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main tagk of technical committees is to prepare International Standards. Draft International Stanglards
adopted by [the technical committees are circulated to the member bodies for voting.-“Publication 3s an

International [Standard requires approval by at least 75 % of the member bodies casting-a vote.

Attention is g

rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 19118 was prepared by Technical Committee ISO/TC 211, Geographic information/Geomatics.

This second
revised.

rawn to the possibility that some of the elements of this document may be the subject of gatent

edition cancels and replaces the first edition (ISO 19418:2005), which has been techrfically

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

Introduction

This International Standard specifies the requirements for defining encoding rules used for interchange of
geographic data within the set of International Standards known as the “ISO 19100 series”. An encoding rule
allows geographic information defined by application schemas and standardized schemas to be coded into a
system-independent data structure suitable for transport and storage. The encoding rule specifies the types of

data

being coded and the syntax, structure and coding schemes used in the resulting data s

ructure. The

resul
that |

The

domd
depe
ISO/I
the W

This
base
spec

The
Mark

The
“1SO
fund4

User:
inforr
sche
Interr

ing data structure can be stored on digital media or transferred using transfer protocols.
he data be read and interpreted by computers, but data can be in a form that is human-eadg

choice of one encoding rule for application-independent data interchange does,not ‘exclud
ins and individual nations from defining and using their own encoding rules"that can
ndent or more effective with regard to data size or processing complexity. XML is

[EC 8879 and has been chosen because it is independent of computingplatform and interg

orld Wide Web.

t is intended
ble.

e application
be platform
a subset of
perable with

nternational Standard is divided into three logical sections. The requirements for creating epcoding rules

i on UML schemas are specified in Clauses 6 to 9. The requirefments for creating encodin
fied in Clause 10, and the requirements for XML-based encading rules are specified in Annej

XML-based encoding rule is intended for use as a neutral data interchange. It relies on th
Lip Language (XML) and the ISO/IEC 10646 characteriset standards.

peographic information standards are organizedWwithin the set of International Standards K
19100 series”. The background and the overall‘structure of this series of International Stand
mental description techniques are defined in ISO 19101, ISO/TS 19103 and ISO/TS 19104.

5 of this International Standard can develop application schemas to formally describg
nation. An application schema is Compiled by integrating elements from other standardize
mas (e.g. 1SO 19107). How this integration takes place is described in 1SO 19109.
ational Standards known as:the “ISO 19100 series” also defines a set of common serv,

available when developing geographic information applications. The common services are geners

I1ISO 1
inforr

9119 and cover access-—to, and processing of, geographic information according to
nation model. This International Standard covers implementation issues.

h service are
X A.

e Extensible

nown as the
ards and the

geographic
d conceptual
The set of
ces that are
lly defined in
he common

© IS0

2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

INTE

RNATIONAL STANDARD ISO 191

18:2011(E)

Geographic information — Encoding

1 Scope

This
of dd
“1SO

This

— requirements for creating encoding rules based on UML schemas,
— nequirements for creating encoding services, and

— nequirements for XML-based encoding rules for neutral interchange of data.

This

transfer protocols, nor does it specify how to encode inline large images.

2.1

Two

2.2

All erf
case

nternational Standard specifies the requirements for defining encoding rules for use for. the
19100 series”.

nternational Standard specifies

interchange

ta that conform to the geographic information in the set of International Standards kpown as the

International Standard does not specify any digital media, does not define any transfef services or

Conformance

Introduction

sets of conformance classes are defined for this International Standard.

Conformance classes related to encoding rules

coding rules shall pass all test cases of the abstract test suite in B.1. All encoding rules shal
5 of the abstract test suite in B.2 and/or B.3.

Table 1 — Conformance classes related to encoding rules

Subclause of the

Conformance class abstract test suite

pass all test

2.3

All encoding rules B.1
Encoding rule with instance conversion B.2
Encoding rule with schema conversion B.3

Conformance classes related to encoding services

All encoding services shall pass all test cases of the abstract test suite in B.4. Depending on the capabilities of
the encoding service, it shall pass all test cases of additional conformance classes in accordance with Table 2.

© IS0

2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:

2011(E)

Table 2 — Conformance classes related to encoding services

Conformance class Subclause of the

abstract test suite
All encoding services B.4
Generic encoding service B.5
Service that encodes data B.6
Service that decodes data B.7
Service that generates an output data structure schema B.8

3 Norma

The followin
references,
document (in

ISO 8601:20
dates and tin

ISO/IEC 106
ISO/TS 1910
ISO 19109:2

Extensible M
<http://www.

tive references

g referenced documents are indispensable for the application of this document. For
bnly the edition cited applies. For undated references, the latest edition® of the referg
cluding any amendments) applies.

D4, Data elements and interchange formats — Information interchiange — Representati
nes

16:2011, Information technology — Universal Coded Character Set (UCS)
3:2005, Geographic information — Conceptual schema,language
D05, Geographic information — Rules for application schema

arkup Language (XML) 1.0, W3C Recommendation. Available at
3.0rg/TR/REC-xml>

4 Terms

For the purpgses of this document, the-following terms and definitions apply.

4.1
application
conceptual

[ISO 19101:3

NOTE AT
(4.22) in a spd

4.2
character
member of a

and definitions

chema
chema (4.5) for data (4.8) required by one or more applications

002, 4.2]

application schema describes the content, the structure and the constraints applicable to inforni
cific_ application domain.

Hated
nced

bn of

ation

set of elements that is used for the representation, organization, or control of data (4.8)

[ISO/IEC 2382-1:1993, 01.02.11]

4.3
code

representation of a label according to a specified scheme

© 1S0O 2011 — All rights reserved

http://www.w3.org/TR/REC-xml
https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

4.4
conceptual model
model (4.27) that defines concepts of a universe of discourse (4.33)

[1ISO 19101:2002, 4.4]
4.5
conceptual schema

formal description of a conceptual model (4.4)

[1SO 19101:2002, 4.5]

4.6
congeptual schema language
formal language based on a conceptual formalism for the purpose of representing conceptual schemas (4.5)

[1SO19101:2002, 4.6]
EXAMPLES UML, EXPRESS, IDEF1X.
NOTH A conceptual schema language may be lexical or graphical.

4.7
conversion rule
rule fpr converting instances in the input data (4.8) structure toinstances in the output data structyure

4.8

data
reinterpretable representation of information (4.22)Nin a formalized manner suitable for communication,
interpretation, or processing

[ISONEC 2382-1:1993, 01.01.02]

4.9
datajinterchange
delivery, receipt and interpretation.ef*data (4.8)

4.10
datatransfer
movement of data (4.8).from one point to another over a medium (4.26)

NOTH Transfefof-information (4.22) implies transfer of data.

4.1
dataftype
specification of a value domain (4.34) with operations allowed on values in this domain

[ISO/TS 19103:2005, 4.1.5]
EXAMPLES Integer, Real, Boolean, String and Date.

NOTE A data type is identified by a term, e.g. Integer. Values of the data types are of the specified value domain, e.g.
all integer numbers between —65537 and 65536. The set of operations can be +, -, * and / and is semantically well defined.
A data type can be simple or complex. A simple data type defines a value domain where values are considered atomic in
a certain context, e.g. Integer. A complex data type is a collection of data types that are grouped together. A complex data
type may represent an object and can, thus, have identity.

© 1SO 2011 — All rights reserved 3

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

412
dataset

identifiable collection of data (4.8)

[1SO 19115:2003, 4.2]

413
encoding

conversion of data (4.8) into a series of codes (4.3)

414

encoding rute
ollection of conversion rules (4.7) that define the encoding (4.13) for a particular data

identifiable ¢
structure

EXAMPLES

NOTE Ar
used in the reg

415
encoding
software co

4.16
feature
abstraction o

[1ISO 19101:3
NOTE Al
417

file
named set of

[ISO/IEC 238§
418

geographic
data (4.8) wi
[ISO 19109:2

4.19
geographic

srirvice

f real world phenomena

pature may occur as a type or an instance. Feature type or feature instance is used when only one is n

data

information

XML, ISO 10303-21, ISO/IEC 8211.

encoding rule specifies the types of data being converted as well as the syntax, structure and codes
ulting data structure.

ponent that has an encoding rule (4.14) implemented

002, 4.11]

records stored or processed as a, unit

2-1:1993, 01.08.06]

h implicit or explicit'reference to a location relative to the Earth

005, 4.12]

nformation

(4.8)

(4.3)

heant.

(4-22) concerning phenomena implicitly or explicitly associated with a location relative t

b the

Earth

[ISO 19101:2002, 4.16]

4.20
identifier

linguistically independent sequence of characters (4.2) capable of uniquely and permanently identifying that
with which it is associated

[1ISO 19135:2005, 4.1.5]

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

4.21
identification convention
set of rules for creating identifiers (4.20)

4.22

information

knowledge concerning objects, such as facts, events, things, processes, or ideas, including concepts, that
within a certain context has a particular meaning

[ISO/IEC 2382-1:1993, 01.01.01]
4.23

instance model
representation model (4.27) for storing data (4.8) according to an application schema (4.1)

4.24
interface
(UML) named set of operations that characterize the behaviour of an element

[ISOAEC 19501]

4.25
interpperability
capability to communicate, execute programs, or transfer data¢(4.8) among various functionjl units in a
manrer that requires the user to have little or no knowledge of the unique characteristics of those|units

[ISOAEC 2382-1:1993, 01.01.47]

4.26
medijum
substance or agency for storing or transmitting.data (4.8)

EXAMPLES Compact disc, internetl!], radio.waves, etc.

4.27
model
abstrpction of some aspects of reality

[ISO[19109:2005, 4.14]
4.28
schema

formal description of a model (4.27)

[ISO [19101:2002, 4.25]

4.29
schema model
representation model (4.27) for storing schemas (4.28)

EXAMPLE Representation model for a schema repository.
4.30
stereotype

(UML) new type of modelling element that extends the semantics of the metamodel

[ISO/IEC 19501]

© 1SO 2011 — All rights reserved 5

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

NOTE It is necessary that stereotypes be based on certain existing types or classes in the metamodel. Stereotypes
may extend the semantics, but not the structure, of pre-existing types and classes. Certain stereotypes are predefined in
the UML, others may be user-defined. Stereotypes are one of three extensibility mechanisms in UML; the others are

constraint and

4.31

tagged value.

transfer protocol
common set of rules for defining interactions between distributed systems

4.32

transfer unit
collection of data (4.8) for the purpose of a data transfer (4.10)

NOTE A
4.33
universe of

view of the rg
[ISO 19101:2

4.34

value domain

set of accepf]

ransfer unit does not have to be identifiable like a dataset (4.12).
discourse
bal or hypothetical world that includes everything of interest

002, 4.29]

ed values

[ISO/TS 19103:2005, 4.1.15]

EXAMPLE The range 3-28, all integers, any character, enumeration of all accepted values (green, blue, white).
5 Symbgls and abbreviated terms

DCE Distributed computing environment

DUID Domain unique identifier

HTML Hypertext markup language

MODIS Moderate resolution imaging spectroradiometer

POSC Petroleum Open Standards Consortium

TIFF Tagged image file format

UcCs niversal multiple-octet coded character set

UML Intfied-modeltingtanguage

UTF UCS Transfer format

uuID Universally unique identifier

XML Extensible markup language

6 ©1S0 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 191

6 Fundamental concepts and assumptions

6.1 Concepts

18:2011(E)

The purpose of the set of International Standards known as the “ISO 19100 series” is to enable interoperability
between heterogeneous geographic information systems. To achieve interoperability between heterogeneous
systems, it is necessary to determine two fundamental issues. The first issue is to define the semantics of the
content and the logical structures of geographic data. This shall be done in an application schema. The
second issue is to define a system- and platform-independent data structure that can represent data

corresponding to the application schema.

The fundamental concepts of data interchange, i.e. the procedure based on the application
encofling, delivery, receipt and interpretation of geographic data, are described in 6.2 to 6.6 A
the data interchange process is described in 6.2; 6.3 introduces application schemas that\allow

schema for
overview of
nterpretation

of gepgraphic data; 6.4 describes the importance of the encoding rule for producing system-independent data
strucjures; 6.5 describes a software component, called the encoding service, for executing the ehcoding rule;

and 6.6 describes the procedure for delivery and receipt, called the transfer service.

6.2 | Data interchange

An oYerview of a data interchange is shown in Figure 1. System A wanis to send a dataset to $ystem B. To

ensufe a successful interchange, it is necessary that A and B-decide on three things: i.e
appligcation schema 1, which encoding rule R to apply, and what kind of transfer protocol

a common
to use. The

application schema is the basis of a successful data transfer and.defines the possible content angl structure of
the tfansferred data, whereas the encoding rule defines the*Cenversion rules for how to code the data into a

systgm-independent data structure.

System A System B
Application A
schema Internal
| schema
B
v i v
Internal M, £ N ’—* M, Internal
» i i nterna
database & A B B database
Encoding E:::/?;ZQ
ser;lce (Decoding)
r1
\ '/
File |Transfer PR Transfer| File
i Defines system |services services | system
Data transfer
i Data flow

System boundary System boundary

Figure 1 — Overview of data interchange between two systems

© 1SO 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

Both systems, A and B, store data in an internal database according to an internal schema, but the schemas
are usually different, i.e. schema A is not equal to schema B. It is necessary to take the following logical steps
in order to transfer a dataset from A's internal database to B's internal database.

The first step for system A is to translate its internal data into a data structure that is in accordance with

the common application schema I. Here, this is done by defining a mapping from the concepts of the
internal schema to the concepts defined in the application schema and by writing appropriate mapping
software to translate the data instances. In Figure 1, this mapping is denoted as M,;. The result is an
application-schema-specific data structure, i,. The data structure is stored in memory or on an
intermediate file and is system-dependent and, thus, is not suitable for transfer.

o Ritn nrantn A At
TC7TTtoO—CIroatc

nonlicc oty
oot ot Y

o1

trgcture

follows @ transfer protocol for how to do packaging and how the actual transportation, over an on-li

a)

b) The nex
thatis s
be store

c) System
off-line ¢
protocol

d) The tran
dataset

e) In order
rule R—1

f) Tousef
its interr]
schema

This Internat

services and
c), d) and f) {

6.3 Applig

An applicatio
schema is th
data. ltis als

The applicat
the UML con
Standards sf

to use standardized“schemas to define feature types. It is necessary that both a sender and a receiver o

have access

oton 1o co an anendina camann aahhinh o tha ancadinari
StCPTo o USC T ChCoTmg—SCTvicC v tC—CCoTmg—Td

stem independent and, therefore, suitable for transfer. This encoded dataset is called d,.and
d in a file system or transferred using a transfer service.

PPITCS

A then invokes a transfer service to send the encoded dataset d to system B. The.transfer sg

ommunication medium should take place. It is necessary that both parties agree on the trg
used.

sfer service on system B receives the transferred dataset, and aecording to the protocq
s unpacked and stored as an encoded dataset d, e.g. on an intermediate file.

to get an application-schema-specific data structure iz, systemn B applies the inverse enc
to interpret the encoded data.

he dataset, it is necessary that B translate the applieation-schema-specific data structure
al database. This is done by defining a mapping from the application schema into its in
and by writing software that does the actual translation. In Figure 1 this mapping is denoted
ional Standard specifies only the requirements for creating encoding rules and the enc

not the whole data interchange process. Thus, only steps b) and e) are standardized. Ste
se general information technology services.

cation schema
n schema is a conceptual schema for applications with similar data requirements. The applic
b the basis for implementing application-schema-specific data structures for local storage of
on schema used/for encoding in compliance with this International Standard shall be writ
ecify a framework for how to write application schemas. The rules include specifications or

to thetapplication schema.

e
ceptual schema language, in accordance with ISO/TS 19103 and I1ISO 19109. These Internalional

may

brvice
ne or
nsfer

| the

bding

5 into
ernal
M 5.

bding
DS a),

ation

e basis of a successful)data interchange and defines the possible content and structure o¢f the

data.

nin

how
data

The application schema shall be accessible 1o both ends of a data interchange 0 ensure a successful result. It
is necessary that the application schema be transferred before data interchange takes place, so that both the
receiver and sender can prepare their systems by implementing mappings and data structures according to
the application schema. It may be transferred together with the dataset, or it may be stored in a public place
and referenced from the dataset.

The applicati

on schema may be interchanged by paper- or electronic-based methods.

© SO 2011 — All rights re

served

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

6.4

6.4.1

ISO 19118:2011(E)

Encoding rule

Concept

An encoding rule is an identifiable collection of conversion rules that defines the encoding for a particular data
structure. The encoding rule specifies the data types being converted, as well as the syntax, structure and
coding schemes used in the resulting data structure. An encoding rule is applied to application-schema-
specific data structures to produce system-independent data structures suitable for transport or storage. In
order to define an encoding rule, it is necessary that three important aspects be specified: the input data
structure, the output data structure and the conversion rules between the elements of the input and the output
data structures. Both the input and output data structures are written using a conceptual schema language

and {|

6.4.2

The i
as a
I, dg
appli

The

conc
sche

6.4.3
The

and i
d={
The 3

6.4.4

€ concepts In the languages are used 1o define the encoding rule.

Input data structure

hput data structure is an application-schema-specific data structure. The data structure can
et of data instances, i.e. i= {i, ..., i }; see Figure 1. Each data instance, i, i$)an instance
fined in an application schema.
cation schemal = {/,, ..., [, }.

application schema is a conceptual schema, ¢, written in a conceptual schema langu

pptual schema defines a set of concepts ¢ = {¢,, ..., ¢,,} by instantiating the concepts of th
ma language C = {C,, ..., C,}. Since the application schema isya.conceptual schema, ¢ =1.

Output data structure

butput data structure is defined by a schema, D ={D,, ..., D.}. D is the schema for the ou
s not shown in Figure 1. The output data structure can be thought of as a set of data i
1, .o dq} where each data instance, d,, is an instance of a concept, D,.

chema, D, defines the syntax, structureiand coding schemes of the output data structure.

Conversion rules

A conversion rule specifies how@a-data instance in the input data structure shall be converted to

more|
the d
nece
sche
is thg
be sg
relati

instances in the output data’ structure. The conversion rules are defined and based on thg

ssary to specify a conyersion rule, R;, for each of the legal combinations of concepts in th
ma language. The set of conversion rules are R={R,, ..., R}, where R; is the i-th conversig
i-th legal combination of instances from the schema language. A conversion table for all pg
t up, where.each C; maps to a production of instances in the output data structure, D. Figurg
bnship between the input and output conceptual schema language and the encoding rule.

be thought of
of a concept,

e application schema defines a set of concepts dg¢fined in the

age, C. The
e conceptual

ut structure

’Lp
stances, i.e.

zero, one, or
concepts of

onceptual schema language, C, and on the concepts of the output data structure sche¢ma, D. It is

e conceptual
n rule and C;
ssible C; can
2 shows the

Conceptual Output data
schema structure
language schema
C language
input Enfslimg output
concepts R concepts

Figure 2 — The encoding rule defines conversion rules from input concepts to output concepts

NOTE

The conversion rules are defined based on the two schema languages and not on any particular application

schema. This is a generic approach that allows developers to write application-schema-independent encoding services,
which can be used for different application schemas as long as the schemas are defined in the same conceptual schema
language.

© IS0

2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

6.5 Encoding service

An encoding service is a software component that has implemented the encoding rule and provides an
interface to encoding and decoding functionality. It is an integrated part of data interchange.

Figure 3 presents the details of an encoding service and its relationships to important specification schemas.
The encoding service shall be able to read the input data structure and convert the instances to an output data
structure and vice versa. It shall also be able to read the application schema declarations and write the
corresponding output data structure schema. The input data structure is defined by an application schema.
The application schema is defined using concepts of the conceptual schema language. The output data
structure is also described with a schema, called the data structure schema, which defines the possible
content, strugtare—and-coding-schemes of-the ottput-data—structure: ribed
with a schema language. The encoding rule specifies conversion rules at two levels: the first is at the sehema
level and thg second is at the instance level. At the schema level, the conversion rules define a_mapping for
each of the [concepts defined in the application schema to corresponding concepts in the_data strycture
schema. At {he instance level, the conversion rules define a mapping for each of the instamces in the|input
data structue to corresponding instances in the output data structure. The instance cenversion ruleg are
normally deduced from the schema conversion rules.

™\
e

Tl ot ry ey o + <l
T Ualia STUCWUIT SUITCTTTIa 15 UTSU

Data
strueture
schema
D

()

Application
schema
|

Schema

Encoding
service

<-----
<-----

"\

output

Instances

input

Defines
Y
i Data flow

Figure 3 — Overview of the encoding process

es of
ce to

An encoding
such interfag

service shall at least provide interfaces for encoding and decoding functionality. Examp
es are for encoding“d)= encode (i, I) and for decoding i = decode (d, I). Here, i is a referen

an applicatio

to the system independent-data structure.

6.6 Trans

A transfer sdg

h-schema-specific‘data structure; | is a reference to the application schema; and d is a refe

fer service

rvice.is a software component that has implemented one or more transfer protocols that g

ence

data transfet

llows
a. To

successfully transfer data between two systems it is necessary that the sender and receiver agree on the
transfer protocol being used.

Different transfer protocols can be defined. One example is off-line transfer protocols where data are stored
on optical or magnetic media and delivered using postal services or other dedicated delivery services. Another
example is on-line transfer protocols where data are compressed and included as an email attachment,
delivered using a file transfer protocol or transferred using other distributed information technology services
which rely on an underlying network service.

This International Standard does not prescribe any preferred transfer protocols.

10 ©1S0 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

7 Character repertoire

ISO/IEC 10646 defines an internationally recognized repertoire of characters called the Universal Character
Set (UCS) and its character-encoding schemes. The international character set standards defined in
ISO/IEC 10646 shall be used in implementing this International Standard.

The character-encoding schemes that can be supported by international profiles of this International Standard
are the following:

a) 8-bit variable size UCS Transfer Format UTF-8;

b) fo-bitvartable size UCS Transfer Format UTF-16;

c) 16-bit fixed size Universal Character Set UCS-2 (deprecated);
d) 32-bit fixed size Universal Character Set UCS-4.

Interpational encoding rules that claim conformance with this International Standard shall supporf one or more
of these character-encoding schemes. Within national profiles and system implementatigns, different
character-encoding schemes may be used. The fixed-size character-encoding schemes are qften used in

database implementations and the variable-size is often used for data interchange purposes.

ISO/IEC 10646 specifies only the repertoire of characters and gives.no'indication of which language is actually
used

NOTH 1 In cases where it is important to distinguish between different languages in text strings, special mechanisms to
indicate the language used can be used.

ISO/IEC 10646 defines mechanisms for creating composite characters. Composite characters afe characters
produiced by superimposing one or more additional characters on a base character. ISO/IEC 10646 defines a
set of precomposed characters and their defined)decomposition. Since mixing composite characu‘ers with their
precamposed equivalents can lead to intérpretation problems, the use of a composite character if a
precamposed character exists is deprecated; i.e. the precomposed character shall always be usefl.
To symmarize, an encoding rule shall

— gupport one or more character-encoding schemes, and

— not use composite characters if equivalent precomposed characters exist.

EXAMPLE The-precomposed character 6 has the defined decomposition o™.

NOTH 2 For{a'more detailed description of character normalization, see http://www.unicode.org/reports/tr15/
and hitp://www-w3.org/TR/charmod-norm/.

NOTH 3_-, "‘UTF-16, UCS-2 and UCS-4 require informaton on how to deal with byte ordering,
see hipdiwwwunicode-orgifagiutf bom-himl.

8 Generic instance model

8.1 Introduction

A generic instance model is defined in Clause 8. The instance model is a convenient common representation
of data when developing encoding services. The instance model is capable of representing data described by
application schemas expressed in UML. The instance model represents the application-schema-specific data
structure defined in Clause 6 (data structures i, and ig in Figure 1). The instance model consists of a dataset
(IM_Dataset) that contains a sequence of objects (IM_Object), where an object consists of a sequence of
properties (IM_Property). Properties in this context are either attributes or associations; operations are not

© 1S0 2011 — All rights reserved 11

http://www.unicode.org/reports/tr15/
http://www.w3.org/TR/charmod-norm/
http://www.unicode.org/faq/utf_bom.html
https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

included in the general instance model. Each property is encoded according to its data type. The instance
model is shown in Figures 4 and 5.

The application schema defines a number of classes and their attributes and associations and it is the basis
for generating data representations. A data representation (dataset) contains one or more objects that are
structured and encoded according to their class definitions. Clause 8 describes the principles of how to
represent objects, their attributes and associations between objects.

The basic unit of information in a dataset is the object. An object shall be an instance of a single concrete
class. There are no instances of abstract classes and classes stereotyped as interface. Thus, properties
defined by such classes are encoded as part of concrete classes inheriting or realizing them. Each class shall

a nnlieat nnliaat a

have a uniq
defined in st
be included i
a separate fil

An object sh
be inherited
the different
type governs
attribute in a

An object ha

o ion—cehama Tha o ion—cehoama mavy rnfar $4 ~r o
A>3 UP'JII\JULIUII =AY RAYIRAL® LA~ UHPIIUULIUII =AY RAI R R Le) Illuy LA A"} A"} U
bndardized schemas or other application schemas. The declaration of these classes shall
n the UML model that contains the application schema or accompany the application schery

e.

io-namaoe waathin th
pC—arrC—vv ettt A2 T

bll contain a set of property values. The object's class defines the properties and they can
hrough the “class” supertypes or defined within the class itself. In order todifferentiate bef
properties, each property shall have a name that is unique within its class. The property's

the possible values and the multiplicity statement indicates the number of instances ¢
N instantiated object.

5 a corresponding class, defined in an application schema or standardized schema, which dg

elasses

Bither
ha as

bither
ween
data
f the

fines

the possible jattributes and associations that are necessary to represent {he’state of the object. An IM_Qbject
refers to its flass by the “class” attribute, it shall be identified withinithe context of a dataset by its upique
identifier “id”| and may be universally uniquely identified within a defined universe, application domain or hame
space, by its|“duid” attribute.
<<t >> ~<type>>
ype - H
Instance Model::IM_DataSet . instance Madel:iM Object
_ - P object _ '+ ig: CharacterString
1 |d:.CharacterStrlng_ 0.* 0.* + duid: CharacterString
4 duid: CharacterString + /uuid: CharacterString
4 /uuid: CharacterString + type: GenericName
constraints P
. . constraints
{puid = duid} {uuid = duid}
property 0..x
<<type>>

Instance Model::IM_Property

+ name: GenericName
+ value: IM_Value [0..*] {ordered}

Figure 4 — Instance model — Dataset, object and property

The attributes defined by the class and the association ends navigable from the class are mapped to a set of
properties. A property (IM_Property) represents a name with an ordered collection of values. It can represent
an attribute or association end. The property name shall correspond to the attribute name or the target role
name of an association. A value (IM_Value) represents a property value.

Null values may be given either explicitly or implicitly. An explicit null value shall be indicated by an instance of
the corresponding IM_Property with a given nilReason value. An implicit null value is indicated if the
corresponding IM_Property instance is missing.

12 © 1SO 2011 — Al rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

<<type>>
Instance Model::IM_Value

+ id: CharacterString [0..1]
+ duid: CharacterString [0..1]
+ /uuid: CharacterString [0..1]

constraints

{uuid = duid}
| | |
<<type>> <<type>> <<type>>
Instance Model:: Instance Model::IM_Reference Instance Model::
IM_SimpleValue IM_StructuredValue
+ id_ref: CharacterString [0..1]

+ value: CharacterString + duid_ref: CharacterString [0..1] + type: GenerieName
+ type: GenericName

constraints

{id_ref->notEmpty() or duid_ref->notEmpty()} 0.1
{id->isEmpty()}
{duid>isEmpty()}
property 0.”
<<type>>

Instance Model::IM_Propprty

+ name: GenericName
+ value: IM_Value [0..*] {ordergd}

Figure 5 — Instance-model — Value types

The k[:v/‘ree value types are defined as follows.
IM_SimpleValue represents a value ofsimple content.
EXAMPLE An integer or a character string.

— IM_Reference represents allink or reference to a target object. The target object may be Ipcated in the
game transfer unit or anothér one. A unique identifier (id_ref) targets an object located within the same
fransfer unit. A domain unique identifier (duid_ref) targets an object located within the dontext of an
application domain,

— IM_StructuredValue represents a data type value with complex content [a sequence of properties
IM_Property)l.

An opject may, through its associations, be linked (or refer) to one or more objects. UML defines three
differg i i
ISO/T
enca
relational tables.

The encapsulated representation strategy splits an association into a source object property and a target
object property. These two link properties then each point to the other object. The link property contains
references to its target objects or, in the case of a composition, the target objects themselves. A link property
is identified by the role name close to the target class and has a corresponding multiplicity. If the role name is
missing or if the association is not navigable from the source object, then there shall be no link property. The
two link property values should be consistent in that the referential integrity constraint is enforced. That is, if a
source object is referring to another target object through a link property and the target object has a bi-
directional association to the source object, the target object shall have a corresponding link property that is
referring back to the source object. If a link property is encoded as a reference or an embedded object or not
encoded at all, it is defined by a concrete encoding rule (such as Annex A).

© 1S0 2011 — All rights reserved 13

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

8.2 Relation between UML and the instance model

Table 3 gives a summary of the relation between UML and the instance model.

Objects based on classes that have supertypes shall contain all the properties and association ends of their
class and of their supertypes. Thus, all attributes and association ends shall be copied from the supertypes
and are considered to be a part of the object. Attribute and association end names shall be the way of

accessing the values of the attributes and they shall therefore be unique within the class.

Operations and constraints shall not be mapped to the instance model.

9

9.1

The requirements for specifying encoding rules are defined in 9.2 to 9.6. An encoding rule describes
conversion rules for transforming data from an input data structure to an output data structure. Schemas shall
be described for both the input and the output data structure. The schema for the input data structure is called

Table 3 — Summary of relationship between UML and the instance model

UML concept Instance model
Package N/A2
Class
Stergotype
<<Interface>> IM_Object
<<DataType>> IM_SimpleValue or IM_StructuredValue
<<Union>> IM_StructuredValue
<<Enumeration>> IM_SimpleValue
<<CodelList>> IM_SimpleValue or IM_StructuredValue
<<Type>> IM_Object
<<FeatureType>> IM_Object
NONE IM_Object

any other stereotype as defined
by the UML profile used

as defined by the encoding rtle’specification

Attribute IM_Property with IM_Value according to attribute type; either
IM_SimpleValue, IM~Reference or IM_StructuredValue

Associatipn IM_Property withIM_Reference

Aggregatjon IM_Property-with IM_Reference

Composifion IM_Property with IM_Value according to target type; either
IM_Reference (target type is a class) or IM_SimpleValue or
IM_. StracturedValue (target type is a data type)

Generalization The object according to the sub-class carries all the properties that
the sub-class inherits from the super-classes.

Operation N/A

Constraint N/A

@ NJ/A sfands for not applicable.

Encodjng rules

Introduction

an application schema.

An encoding rule shall in general specify the following:

a)

14

general encoding requirements (9.2):

1)

application schemas and schema language,

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

2) order of bits within each byte, and bytes within a word (where applicable),
3) character repertoire and encoding,
4) necessary exchange metadata,
5) dataset and object identification convention;
b) input data structure (9.3):

1) data structure used to pass data according to an application schema (data structures i, and ig in
Figwc 1) tU ti 1< CllbUdilly DUIV;bC, bd”CUI t;IU illbtdllbc IIIUUICi,

2) how the instance model is related to the application schema;
c) output data structure used, called the exchange format (9.4);

d) ¢onversion rules, called the mapping, for converting data in the instance model to the exchange format
9.5):

1) conversion rules for encoding,
2) if necessary, conversion rules for decoding;

e) sufficient examples of abstract data, application of conversioh rules and encoded data (9.6).
9.2 | General encoding requirements

9.2.1| Application schema and schema language

The encoding rule shall specify the schema language used to define application schemas and ¢lescribe how
an application schema is organized.

9.2.2| Bit and byte ordering

If the| encoding rule specifies a binary encoding, it shall specify the order of the bits within each pyte, and the
orderand number of bytes within any multi-byte structure (word).

NOTH These are géneral rules that apply to text and binary encoding rules. Even text-based encodings (such as
UTF-16, UCS-2, UCS-4) require a specification of byte ordering (see http://www.unicode.org/fag/utf bom.html).

9.2.3| Character repertoire and encoding

The ¢haracter repertoire defines the characters that are allowed. The character repertoire doesp't define the
langyage of the data. The same character repertoire can be encoded in different ways.

If more than one language is required, the application schema shall model an attribute so that the actual
language of encoded text can be identified.

NOTE See class LocalizedCharacterString in ISO/TS 19103.

The encoding rule shall specify the character repertoire used and the encoding of the characters.

9.2.4 Exchange metadata
Exchange metadata are metadata about the encoded data structure. They may describe the originator of the

dataset, refer to metadata information about the dataset, refer to the application schema and provide
information about the encoding rule applied.

© 1SO 2011 — All rights reserved 15

http://www.unicode.org/faq/utf_bom.html
https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

The encoding rule shall specify the exchange metadata and how it accompanies the encoded data structure.

Figure 6 illustrates an example of an ExchangeMetadata class and a corresponding EncodingRule class. The
Cl_Citation class is defined in ISO 19115. An exchange file normally contains one instance of the
ExchangeMetadata class. The “datasetCitation” attribute contains information about the originator of the
dataset, the “metadataCitation” attribute may contain information about where to find metadata about the
dataset, and the “applicationSchemaCitation” attribute may hold a reference to the application schema. The
EncodingRule's “encodingRuleCitation” attribute identifies the encoding rule applied and a description of how
the rule was applied in this particular case. It may also contain information about the encoding service tool
used to encode the dataset, where “toolName” and “toolVersion” indicate the name of the encoding service
tool and its version number.

Exchange Metadata::EM_ExchangeMetadata
{root}

+ datasetCitation: CI_Citation
+ metadataCitation: CI_Citation [0..1]
+ applicationSchemacCitation: Cl_Citation [0..1]

¢

encodingRule 1

Exchange Metadata::EM_EncodingRule

+ encodingRuleCitation: CI_Citation
+ toolName: CharacterString
+ toolVersion: CharacterString [0..1]

Figure 6 — Example of exchange metadata

9.2.5 Transfer unit

9.2.5.1 Granularity and structure

It is important to define the“\granularity and the structure of a transfer unit so that it can be encoded and
decoded effigiently. An @bject is here considered as the basic unit of information and it is necessary that the
different typgs of objécts be identified. The objects in a transfer unit may be structured sequentially gnd/or
hierarchically. An object may be internally structured as a sequence of attributes, it may contain referenges to
other objectd and.ittmay also be composed of other objects in a hierarchical manner.

An object may be split into different fragments, or its properties may be merged with other objects. Whatever
changes in structure an encoding rule specifies, the instance conversion shall be unambiguously reversible.

The encoding rule shall specify the following:
— what an object is and the different types of object;
— the structure of an object;

— the structure of a dataset.

16 ©1S0 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

9.2.5

ISO 19118:2011(E)

.2 Object identification

Objects may be assigned identifiers that allow their unique identification within a particular context. Two
different contexts should be considered.

a)

The first context is a transfer unit. Here the object identifiers are unique within a particular unit of data

transfer. These identifiers allow objects to refer to other objects within the context of that one transfer unit.
The identifiers may be assigned to the objects when they are inserted into the transfer unit and are

t

b)

ransient in nature.

mYN |

aeataH

The second context is an application domain. An application domain defines a universe and an

1
[
!
g
!
&

An a
objed
this g

An e
supp

fragnpent identifiers are in any case transient (only valid inside the transfer unit), and are never a |

The ¢ncoding rules shall specify the following:

9.3

The i
data,
repre

appli
does

The {
mode

This
are p|

the different object identification mechanisms used;

their internal structure.

1IN A NN
TJo). "V U

nhfioobion aneaantions Aollod Ao e ot Lo idantifi oo [
MTTTUTTCAtulT CUTTVETTUUTT LallflCu Uultiant urimyuc TutTTliuncro (LU

is created and is stable over the entire life span of the object. A DUID of a deleted objec
sed again. A DUID is mostly used for implementation reasons. DUIDs are required f

ersistent identifiers. A special name server may be used to resolve persistent identifiers. T
hall be unique within a well-defined, limited universe defined by an application.demain.

bplication domain may use additional properties to identify the real-world(phenomena repreg
t (e.g. a parcel number). These additional properties are not considered object identifiers in
pecification.

ncoding rule may change the layout of the data, for example factering out common charact
prt this, types without identity, according to the application schema, may get a fragment ide

Input data structure

for defining conversion rules” and for expressing examples. The instance model shall b
senting data according te_the specification in the application schema. It may be specific t
Cation schema or capablée of representing data according to any schema. It may be abst
not have to be implemented in order to realize an encoding service.

encoding rulesshall reference the general instance model as defined in Clause 8 or specify
| and its relation to the application schema.

nternational Standard does not mandate a specific implementation of the instance model
assed'from/to the encoding service.

object when
shall not be
br long term

istributed data management and for realizing update mechanisms. These identifiers ar¢ also called

he identifiers

ented by the
the scope of

er strings. To
ntifier. These
DUID.

nput data structure is called4he instance model and it is an instrument for reasoning abodit application

e capable of
b a particular
ract in that it

an instance

or how data

9.4

Output data structure

The output data structure defines how data is structured and represented in an exchange file. A schema may
accompany the output data structure.

The encoding rule shall specify the output data structure and, if present, the output data structure schema.

© IS0

2011 — All rights reserved

17

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

9.5 Conversion rules

A conversion rule specifies how a data instance in the input data structure is converted to a data instance in
the output data structure. Two sets of conversion rules may exist. The first one is the set of schema
conversion rules that define a mapping from the UML schema to the schema of the output data structure. The
second one is the set of instance conversion rules that define a mapping from instances in the instance model
to instances in the resulting data model. Figure 7 shows the different conversion rules.

icati ; ; Data
Application Schema Encoding Service ot
schema —— > model structure
schema
c
Schema / D
' conversion |
: rules |
' |
: Instance :
v conversion V
rules
Q Data

Application structure

d

data

Figure 7 — Conversion rules

The encoding rule shall specify the following:
— schemayjconversion rules;

— instance conversion rules.

9.6 Examples

Examples arg important for understanding the conversion rules and for testing encoding services.
The encoding rule shall provide the)following:

— examplgs that illustrate, conversion rules;

— test datg that can‘be'used in implementation of encoding services.

10 Encoding service

An encoding service is a software component that implements the encoding rule and provides an interface to
its functionality.

An encoding service shall provide an interface to its functionality through one or more interface specifications.
An encoding service shall provide one or more of the following:

— capability to encode data according to the instance conversion rules;

— capability to decode data according to the instance conversion rules;

— capability to create an output data structure schema according to the schema conversion rules.

18 ©1S0 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

This International Standard does not mandate a specific interface to the encoding service.
An encoding service may provide only encoding or decoding capabilities.
Figure 8 is an example of an XML-based encoding service.

NOTE Figure 8 shows an encoding service with one interface specification. It supports three operations:
generateXMLSchema, encode and decode. The “generateXMLSchema” operation can be used to generate an XML
Schema file. This operation takes a schema model as input parameter and produces an XMLStream object as a result.
The “encode” operation can be used to generate an XML document. It takes a schema model and an instance model as
input parameters and returns an XMLStream object. The “decode” operation can be used to interpret an XML document. It
takes a schema model and an XMLStream object as input and returns an instance model.

<<interface>>
Encoding Service::GenericXMLEncodingService

{abstract,root,leaf}

+ generateXMLSchema(m :SchemaModel) : XMLStream
+ decode(m :SchemaModel, d :XMLstream) : InstanceModel
+ encode(m :SchemaModel, i :InstanceModel) : XMLStream

Encoding Service:: Encoding Service:: Encoding Service::
SchemaModel InstanceModel XMLstream

Figure 8 — Example encoding service interface

© 1S0 2011 — All rights reserved 19

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

Annex A
(normative)

XML-based encoding rule

A.1 The XML encoding in this International Standard shall be in accordance with the Extensible Markup
Language (XML) 1.0. There isn't a fixed set of encoding requirements enabling a single XML-based encoding
rule for all the schemas. As a result, this International Standard does not specify a schema conversion rule.

Every XML-Hased encoding rule shall

— specify ¢

— specify the XML output data structure,

— specify the schema conversion rules between the input and output data structures;~and

— conform

A.2 Differd
known as thd

— SO 191B6:2007, Annex E, specifies an XML-based encoding rule for ISO 19109-conformant applig
schemas that can be represented using a restricted profile @f2UML that allows for a conversion to

Schema
specifyir]
structure

— ISO/TS 19139 specifies an XML-based encoding rule for conceptual schemas specifying typeg

describe
to 1ISO 1
the stan
the outp

A.3 Differe
Examples fo

— support
commuri

— support

— support

r identify the input data structure, typically the profile of UML used by the encoding rdle;

to all requirements specified in this annex.

nt use cases result in different encoding rules. Currently, the\set of International Stan
“ISO 19100 series” specifies two XML-based encoding rules:

The encoding rule has mainly been developed for the purpose of application sch
g feature types and their properties. The enceding rule uses XML Schema for the output
schema.

geographic resources, e.g. metadata-according to ISO 19115 and feature catalogues accd
0110. The encoding rule supports'the UML profile as used in the UML models commonly ug
Lt data structure schema.

nt XML-based encoding.tfules may be required and specified by an information comm
such requirements include, but are not limited to, the following:

for the XML-based encoding rule specified in Annex C (this encoding rule is in us
ities);

for a different UML profile not covered by an existing XML-based encoding rule;

for-an output data structure schema other than XML Schema (e.g. Relax NG);

Hards

ation
XML
bmas
data

that
rding
ed in

Hards developed by Technical Committee ISO/TC 211. The encoding rule uses XML Schema for

unity.

e by

— support for new XML technologies or new versions of existing XML technologies;

— support for specific conversions to optimize the use of the capabilities of XML;

— support for other XML-related requirements that are established in a community.

20

© SO 2011 — All rights re

served

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

B.1

ISO 19118:2011(E)

Annex B
(normative)

Abstract test suit

Test cases for an encoding rule

B.1.]

All epcoding rules shall pass all test cases of the abstract test suite in B.1 to B:3y acca

confd

B.1.1
a) |
b)
c) |
d) 7
B.1.1

a) |
q

b)]
c) f
d) T
B.1.4

a) |

b)

c) |

General

rmance classes defined in clause 2.2.

? Documentation of conversion rules

[est purpose: Verify that the encoding rule defines instance or schema eonversion rules.
[est method: Inspect the encoding rule documentation.
Reference: 9.5.

[est type: Basic.

8 Consistent instance and schema conversion rules

[est purpose: Verify that, if the encoding rule defines schema and instance conversion ru
onsistent.

[est method: Inspect the encoding rule documentation.
Reference: 9.5.

[est type: Capability.

I Bit and byte ordering

at runtime;
[est method: Inspect the encoding rule documentation.

Réference: 9.2.2, 9.2.4.

rding to the

les, they are

[est purpose: Verify that the encoding rule specifies bit and byte ordering or defines metadata to specify

d) Test type: Capability.

B.1.5 Character set and encoding

a) Test purpose: Verify that the encoding rule specifies character set and encoding or defines metadata to
specify it at runtime.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.2.3,9.2.4.

d) Test type: Capability.

© IS0

2011 — All rights reserved

21

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

B.1.6 Identification convention

a)

b)
c)

d)

B.1.7 Encading metadata

a)

b)
c)

d)

B.2 Test ¢ases for instance conversion rules

B.2.1 Documentation of instance conversion

B.2.2 Completeness of instance conversion

Test purpose: Verify that the encoding rule specifies an identification convention or defines metadata to
specify it at runtime.

Test method: Inspect the encoding rule documentation.
Reference: 9.2.4, 9.2.5.2.

Test type: Capability.

Test purpose: Verify that the encoding rule defines metadata to specify encoding aspects atrunatime that
are not fjxed in the encoding rule.

Test method: Inspect the encoding rule documentation.
Referenge: 9.2.2,9.2.3,9.2.4,9.2.5.2, 9.5.

Test typg: Capability.

Test purpose: Verify that the encoding rule defines-how instances of the generic instance modgl are
mapped|to the transfer format.

Test method: Inspect the encoding rule documentation.
Referenge: 9.5.

Test typg: Capability.

Test pufpose: Verify that\the encoding rule defines instance conversion rules for the complete generic
instancel model.

Test method: Inspect the encoding rule documentation.

Referenge= Clause 8 and 9.5.

Test type: Capability.

B.2.3 Unambiguous instance conversion

a)

b)
c)

d)

22

Test purpose: Verify that the encoding rule defines instance conversion rules that map an instance from
the generic instance model to the transfer format and back again without loss of information.

Test method: Inspect the encoding rule documentation.
Reference: 9.2.5.1.

Test type: Capability.

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

B.3

B.3.

a)

b)
c)

d)

B.3.

a)

b)
c)

d)

B.3.

a)

b)

d)

B.4

B.4.

d)

B.4.

a)

ISO 19118:2011(E)

Test cases for schema conversion rules

1 Documentation of schema conversion

Test purpose: Verify that the encoding rule defines how an application schema is mapped to the transfer

format schema.
Test method: Inspect the encoding rule documentation.

Reference: 9.5.

Fest type: Capabiiity.
2 Completeness of schema conversion

Test purpose: Verify that the encoding rule defines schema conversion rules for, the Complets
defined by ISO/TS 19103 or a profile of it.

Test method: Inspect the encoding rule documentation.

Reference: 9.5.

Test type: Capability.

3 Unambiguous instance conversion

Test purpose: Verify that the encoding rule defines.schema conversion rules that result in

an instance from the generic instance model to the transfer format and back again wi
information.

Test method: Inspect the encoding rule documentation.
Reference: 9.2.5.1.

Test type: Capability.

Test cases for an encoding service

1 Documentation-of service interface
Test purpose: Verify that the encoding service provides a documented interface.
Test method: Inspect the encoding service documentation.

Reference: Clause 10.

e UML profile

h mapping of
hout loss of

Test type: Basic.

2 Reference to encoding rule

Test purpose: Verify that the encoding service documentation references the encoding rule that it

implements.
Test method: Inspect the encoding service documentation.
Reference: Clause 10.

Test type: Basic.

© 1SO 2011 — All rights reserved

23

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

B.4.3 Implementation of specified encoding rule

a) Test purpose: Verify that the encoding service implements the referenced encoding rule.
b) Test method: Inspect the encoding service implementation.

c) Reference: Clause 10.

d) Test type: Capability.

B.5 Suppért of any application schema

a) Test purpose: Verify that the encoding service supports any application schema as specified by the{UML
profile used by the encoding rule.

b) Test method: Inspect the encoding service interface to see if it supports the generic instance model.
c) Referenge: Clause 8.

d) Testtype: Capability.

B.6 Encoding data

a) Test purpose: Verify that the encoding service provides functionality to write data.

b) Test method: Inspect the encoding service interface to see'if it provides functionality for writing data.
c) Referenge: Clause 10.

d) Testtypge: Capability.

B.7 Decoding data

a) Test purpose: Verify that the eficoding service provides functionality to read data.
b) Test method: Inspect the.ehcoding service interface to see if it provides functionality for reading data
c) Referenge: Clause 10.

d) Testtypge: Capability.

B.8 Schema generation
a) Test purpose: Verify that the encoding service provides functionality to generate a format schema.

b) Test method: Inspect the encoding service interface to see if it provides format schema generation
functionality.

c) Reference: Clause 10.

d) Test type: Capability.

24 © 1SO 2011 — Al rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

CA

This

comrj

enco

ISO 19118:2011(E)

Annex C
(informative)

XML-based encoding rule in use by communities

Introduction

ling rule based on the Extensible Markup Language (XML).

NOTH ISO 19118:2005, Annex A, specified an XML-based encoding rule. The ruleshas been
comnunities. This Annex C is the revision of the rule for the communities in compliance with-this Internation

This
a)
b)
c)

d)

annex follows the requirements in Clause 9 and specifies the following:

e general encoding requirements in C.2;
e input data structure in C.3;
e output data structure in C.4;

e conversion rules in C.5 and C.6.

Examples are given in C.5.8 and C.6.4.

The ¢onversion rules are based on the idea.that the class definitions in the application schema a

type
elem

© IS0

declarations in XML Schema, and that'the objects in the instance model are mapped to c

bnt structures in the XML document. Figure C.1 depicts the two types of conversion rule.
]
Application Schema Encoding Service (Xl\?lfhsecnr::ma

schema —-——->| model | DTD)

D

¢ | \ Schema /

J I conversion I

: : rules :

| | |

: \1/ Instance :

v conversion — v

rules

annex introduces an example of the XML-based encoding rule for neutral data interchapge in some
hunities. The encoding rule is compatible with the Unified Modelling Language (UML) and defines an

sed in some
| Standard.

€ mapped to
brresponding

Apptication——% | model document
data D i d

Figure C.1 — XML-based conversion rules

2011 — All rights reserved

25

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

C.2 General encoding requirements
C.2.1 Application schema

C.2.1.1 Introduction

The application schema shall be expressed in UML schema language according to the rules specified in
ISO/TS 19103 and ISO 19109. An application schema consists of application-defined concepts expressed as
classes and associations. Some of these classes may be imported from the standardized schemas in other

standards.

C.21.2 Cliss

The fundamd
The class m
type that car
out of which
and objects.

ntal modelling concept in UML is the class. It is identified by a name and may have-alstereqg
iy have attributes, operations and constraints and participate in associations. A.class defi
be used as a building block to define other classes. Types are the fundamental building b
all forms of data can be composed and encoded, e.g. numbers, coordinates, text strings, ¢
A type defines the legal value domain and the operations on values of that domain.

Two main cgtegories of types are the simple data types and the complex data types. A type is a simplg

type if therg
represent va
simple typeg
encoding de|
complex typd
combination
are defined @

is a canonical encoding defined for the type. This canonical encoding may define hg
ues of the type as bits in a memory location or as charactersdnya textual encoding. Examp

are integer, float and string. A type is of a complex data type when there is no can
fined for the type. Examples are object types, structured types, records, and collectio
b consists of a structured collection of basic and complex-attributes that can be encoded ug
of basic types and special structuring primitives. A.third category is the external data type
utside the set of International Standards known as the “ISO 19100 series”.

type.
nes a
locks
ates,

data
w to
es of
nical
ns. A
ing a
5 that

a) Simple data types — Fundamental types for representing values:
1) bas|c data types: CharacterString, Integer, Binary, Boolean, Date, Time, etc.;
2) enumerated data types and code lists: A list of legal values, where each value is a word or a|code
with associated semantics.
b) Complex data types — Types for representing more complex collections of values:
1) collgction data types: Template types for representing multiple occurrences of other types — Set,| Bag,
Seduence, Dictionary;-etc.;
2) structured datatypes: Types that define attribute groups;
3) objgct types:”Types whose instances are objects; often defined in application schemas or
starjdardized schemas — GM_Point, Building, etc.;
4) interfaces Types whoseinstances are Service CoMmMponerTts:
c) External data types — Basic or complex types with a well-defined encoding that are not defined within the

set of International Standards known as the “ISO 19100 series”; examples are image formats such as
NASA MODIS, TIFF, etc. Special referencing mechanisms shall be specified that allow references,
usually stored in separate files, to external data types.

ISO/TS 19103 defines the modelling concepts applied, including a number of simple and complex data types
together with their semantics. The application developers are free to specify user-defined data types and
object types using the stereotype extension mechanism of UML. Other International Standards within the set
of International Standards known as the “ISO 19100 series” define more specialized data types. It can
occasionally be necessary for application schema developers to use external data types. External data types
are basic or structured data types that are defined outside this series of International Standards. It is

26 ©1S0 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

necessary that they have a well-defined encoding; examples are image formats such as NASA MODIS and
TIFF. Objects of external data types can be stored in separate files and special referencing mechanisms that
allow references to external data types shall be specified.

The stereotypes allowed on classes are described in Table C.1.

Table C.1 — Stereotypes on classes

Stereotype Description
<<BasicType>> Defines a basic data type that has defined a canonical encoding
<<D4taType>> Defines a struciured data type. The instances are not considered objects and $hall therefore
not have an identity
<<Union>> Defines a union data type
<<Erjumeration>> Defines an enumerated data type
<<CqdelList>> Defines an extendable enumerated data type, consisting of codé\and value paifs
<<Interface>> Defines a service interface and shall not be encoded
<<Type>> Defines an object type. Instances shall have identity
<<FgatureType>> Defines a feature type. Instances shall have identity
NONE Defines an object type. Instances shall have identity

An object is considered the fundamental unit of interchange, Only aspects that are essential for|capturing an
objeqt's state shall be considered for data interchange pufposes. Attributes and associations shall be encoded.
Operptions and constraints shall not be considered further. An encoding rule shall specify how|instances of
classgs are represented, including how attributes andyassociations are structured and represented.

C.2.1.3 Attributes

An attribute is identified by a name. It(may have a multiplicity statement and shall always have a type. The
multiplicity statement shall indicate the number of legal value occurrences of a particular attribute

Combinations of multiplicity and use of collection data types allows nesting of values.

Ther¢ shall be mechanisms.to handle null values. The type shall define how a null value is repr¢sented. See
ISO/TS 19103 for the definition of the basic and collection data types.

C.2.1.4 Associjations

Assotiations—define relationships between classes that involve connections between their ifstances. An
instantiation~of an association is called a link. A link contains an ordered list of references to ¢bjects. UML
defings three different types of associations called association, aggregation and composition.

— Association defines general relationships between classes.

— Aggregation defines weak part-whole relationships between classes.

— Composition defines strong part-whole relationships between classes.

The three association types have different semantics. ISO/TS 19103 gives further details.

The end of an association is identified by its role name and its target class, and is further described by a

multiplicity statement. The role name shall be used to represent a link. If the role name is missing, then there
is no link.

© 1SO 2011 — All rights reserved 27

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

C.2.2 Exchange structure and exchange metadata

The exchange structure shall be divided into three parts. The first part is the exchange metadata, which shall
be described according to 9.2.4. The second part is the dataset that shall contain XML elements that
correspond to independent objects. The third part is optional and shall contain an update section of the update

primitives as

C.2.3 Char

described in C.2.5.

acter repertoire and language

The underlying exchange structure shall support the language and character repertoire:

languag

characts

C.2.4 Dataget and object identification

The two way,|

unique g

universg

NOTE Th
and “UUID” a
International
“universal unig
which is qualif

EXAMPLE

name and thg
instance numi
UUIDs in a do

C.2.5 Updg

An update m
reissuing a
application. T
on the objec
previously bé
sequence of

add: A
add prin

a)

e (see C.5.6 for language tagging);

r repertoire (see ISO/IEC 10646).

5 of specifying object identification as described in 9.2.5.2 shall be as follows:
ataset identifiers according to XML's ID mechanism;

| unique identifiers according to the application domain's specification.

e term “universal unique identifier” has the same meaning as, “domain unique identifier”. This annex U

5 its abbreviation to keep the compatibility for the communities in use. The application of UUIDs

btandard is not limited to a particular mathematical basis}/like ISO/IEC 11578 or ISO/IEC 9834-§
ue identifier” is not actually qualified by application domains, in contrast to the “domain unique iden
ed by the application domain.

An application domain can want to use a two-component identifier. The first component is the d
next component is an integer instance number. The components can be separated by a colon “
ers can be encoded in hex. There are nocrestrictions on the size of the instance number. Examples
main called “example” are: “example:F23C30” and “example:FFFFFF12345A”.

ite mechanism

echanism allows previously exchanged data to be brought up to date without the requireme
complete new dataset./Policies and procedures for update shall be defined by the sp
hree basic update primitives are usually defined: add, modify and delete. These primitives

level, but may-also be defined to work on the attribute or association level. Any object thg
ben transmitted-with a UUID may be modified or deleted. An update dataset contains an or
update primitives. The basic primitives are described as follows.

ew object has been added to the source dataset and shall be added into the target datase
nitivesshall contain information about the new object to be added and may contain inforni

ses it
n this
. The
tifier”,

bmain

1. The

bf two

nt for
ecific
work
t has
lered

t. An
ation

about w

pere it is inserted in the target dataset

b)

modify: An existing object has been modified in the source dataset and shall be modified in the target

dataset. A modify primitive shall contain information that identifies the target object and the actual
modifications. Examples of modification information could range from a complete object to just an

updated

c)

attribute.

delete: An existing object has been deleted in the source dataset and shall therefore be deleted in the

target dataset. The delete primitive shall contain information that identifies the target object to be deleted.

The users may extend the list of primitives.

28

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

C.3 Input data structure

C.3.1 Instance model

ISO 19118:2011(E)

The instance model is capable of representing data described by application schemas expressed in UML. As
the input data structure, this encoding rule uses an instance model which is based on the generic instance
model defined in Clause 8. The instance model is defined in Figures C.2 and C.3.

Figure C.2 shows IM_Dataset, IM_Object and IM_Property classes that are basically the same as the ones
defined in 8.1 and in Figure 4.

The |nstance model consists of-a dataset represented by IM_Dataset. A dataset contains a
objedts represented by IM_Object. An object consists of a sequence of properties represented by

There is an additionaldefinition of attribute uuid in IM_Dataset and IM_Object. The derived att

<<type>>
Instance Model::IM_DataSet

+ id: CharacterString
+ duid: CharacterString
+ /uuid: CharacterString

object

<<type>>
Instance Model::IM_Object

+ id: CharacterString

constraints
{uuid = duid}

0.*

+ duid: CharacterString
+ /uuid: CharacterString
+ type: GenericName

constraints

{uuid = duid}
property |, 0..*
<<type>>

Instant Model::IM_Property

+ name: GenericName
+ value: IM_Value [0..*] {ordered}

Figure C.2 — Instance model — Dataset, object and property

defingd as the alternativée name of attribute duid.

NOTE 1

Thedefinition of attribute uuid is to keep the compatibility for the communities in use.

Valug types’in the instance model are defined in Figure C.3, which is based on Figure 5.

sequence of
IM_Property.

ribute uuid is

© 1SO 2011 — All rights reserved

29

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

<<type>>
Instance Model::IM_Value

+ id: CharacterString [0..1]
+ duid: CharacterString [0..1]
+ /uuid: CharacterString [0..1]

constraints

{uuid = duid}
type type= type
nstance Model:: Instance Model::IM_Reference Instance Model::
IM_SimpleValue - - IM_StructuredValue
+ id_ref: CharacterString [0..1]
+ valpe: CharacterString + duid_ref: CharacterString [0..1] + type: GenericName
+ type: GenericName -
constraints ’
{id_ref->notEmpty() or duid_ref->notEmpty()} o
{id->isEmpty()}
{duid->isEmpty()}

property 0.”

<<type>> <<type>>

Instance Model:: Instance Model::IM_Property
IM_ObjectReference ‘

leaf} + name : GenericName
+ value: IM_Value [0..*] {ordered}

+ /uuid_ref: CharacterString [0,.1}
constraints
{uuid_ref = duid_ref}

Figure C.3 — Instance model — Value types

IM_Value is the superclass of four valuestypes defined as follows.

— IM_SimpleValue represents a yalue of a basic type.

EXAMPLE An integer ot-acharacter string.

— IM_Refdrence represénts a link or reference to a target object. The target object may be located i

same or|other datasets.

— IM_ObjdctReference is a subtype of IM_Reference. A unique identifier (id_ref) targets an object lo
within thetsame dataset. A universal unique identifier (uuid_ref and duid_ref) targets an object lo

n the

cated

cated

within the context of an application domain.

— IM_StructuredValue represents a data type value with complex content [a sequence of properties

(IM_Property)].

The difference between this instance model and the generic instance model defined in Clause 8 is as follows.

a) IM_Value contains the derived attribute uuid as the alternative name of attribute duid.

b) IM_ObjectReference is defined and it has an additional derived attribute uuid_ref which defines the

alternative name of attribute duid_ref.

30 © IS0 2011 — Al rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

Other classes defined in Figure C.3 are identical to the ones defined in 8.1 and Figure 5.

NOTE 2

are to keep the compatibility for the communities in use.

C.3.2 Relation between UML and the instance model

The definition of the class IM_ObjectReference and the attribute uuid in IM_Value and IM_ObjectReference

Tables C.2 and C.3 give a summary of the relation between UML and the instance model. Thus an abstract

class

shall not be instantiated.

Objects based on classes that have supertypes shall contain all the properties, associations and compositions

of th
and 4
the v

Oper

I cfass and of thelr supertypes. 1hus, ail attributes and associations shall be copied from th
re considered to be a part of the object. Attribute and association names shall be the way
blues of the attributes and they shall therefore be unique within the class.

btions and constraints shall not be mapped to the instance model.

Table C.2 — Summary of relationship between UML and the-instance model

e supertypes
of accessing

<<DataType>>

<<Union>>

<<Enumeration>>

<<CodeList>>

<<Type>> or NONE
Abstract class

UML concept Instance 'model
FPackage N/A2
Class
Stereotype
<<Interface>> N/A
<<BasicType>> IM_SimpleValue

IM_StructuredValue
IM_StructuredValue
IM_SimpleValue
IM_SimpleValue
IM_Object

N/A

Sub-class attributes and associations shall be copied from super-classés
Attribute IM_Property with IM_Value according to data type (either
IM_SimpleValue or IM_StructuredValue)
Association IM_Property with IM_Value of IM_ObjectReference
Aggregation IM_Property with IM_Value according to either IM_Structure@iValue or

IM_ObjectReference

Composition

IM_Property with IM_Value of IM_StructuredValue

Dperation

N/A

Constraint

N/A

N/A stands for not applicable.

© IS0

2011 — All rights reserved

31

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

Table C.3 — Mapping of attributes with multiplicity and collection type

Attribute Instance model

a1[0..7]:

al:Sequ

is the same as

Integer IM_Property with multiple value occurrences

ence<Integer>2

a2 : Sequ

ence<T> IM_Property with multiple occurrences of value type T

a3 : Dictionary<T1, T2>

IM_Property with multiple occurrences of IM_StructuredValue with
two elements of value type T1 and T2

a4 [0..7] :

oequerice<Iinieger~ IVI_Froperty with multiple occurrences Ol lvi_structureavadalue witn

integer elements

a8 Thisi

5 also valid for any other basic type.

Attribute and
this is to en
alternatively,

Attribute ang

happens when an attribute or association declared in a supertype gets redéclared in a subtype with a n

restricted typ
carefully con

C.3.3 Appl

C.3.3.1

This exampl¢ defines an application schema, gives_somie data and shows the mapping from the data in{

instance moq

Figure C4 d
class CO has
basic data ty
type. The ag
association
class C2 has

Aplplication schema

association name clashes can cause problems when using inheritance. Asimple way to
sure that all attributes and associations shall be prefixed with their @ppropriate class r
the method of avoiding name clashes is left to the user.

association redeclaration can also cause problems when using inheritance. Redecla

e. Many object-oriented programming languages cannot handle redeclarations and it shoy
sidered whether redeclarations should be deprecated.

cation schema and instance model — Example

el.

efines an example application schema that defines four classes and their relationships.
three attributes. Attribute “atas a multiplicity of zero or one, which means it is optional,
pe “Real’. Attribute “a2” has a multiplicity of zero or many. Attribute “a3” is of a structured
sociation between “CQ” 'and “C1” has two role names. “role1” belongs to CO and name
b C1 in the context of\C0. Class C1 has an association to CO which is called “main”. Notic§
an attribute named\“pos” with a class data type Point.

avoid
ame;

ation
BW Or
Id be

o the

Here,
and a

data
s the
e that

32

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

Cco

+a1[0..1] : Real +main +role1
+ a2 [0..*] : CharacterString
+ a3 : Dictionary<Integer, CharacterString>

C1
+ a1 : Integer

1 1.n

C2
+ no_items : Integer P +part ra2 Cs t
+ pos : Point 0.n [7@s:-Tae
— Po.int — <<BasicType>>
+ position : DirectPosition DirectPosition

Figure C.4 — Application schema — Example

C.3.3.2 Data — Example

The ¢xample data is shown in Figure C.5 in an object diagram.

o1:CO 02:CO0
al1=2.14 al=215
a2 = {*A”,"list of”,"strings™} a2={"a"b7c"}
role1 = {08, 05} role1 ={03, 06, 07}
a3 = {{1,"one"} a3 = {{1024,1KB"}
{2,"two™} {2048/2KB"}}
{3,"three%}}
03": C1 o4:C2 05:C3
al =255 no_items = 2 al=25
main =02 pos= o~ Point ranZa;\2S(3)(;0221
position=
{23553, 35534,
08 : C1 2 06 :C3
part= [7 3
al =255 s a1 =30
al= —_—
main =o1 a2 = 20000225 a2 - 20001231
main = 02 main =02

Figure C.5 — Data — Example

C.4 Output data structure

C.4.1 XML document

This encoding rule is based on the XML Recommendation 1.0. XML is a text format and it is necessary that
the values of all data types be character encoded. Data shall be encoded using XML elements and the rules
given in the XML recommendation. The basic units of encoding in XML are XML elements. An element may
have attributes and content. This enables a hierarchical structure and combined with XML's linking facilities a

© IS0 2011 — Al rights reserved 33

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

network structure can be created. The exchange structure shall consist of a sequence of elements
corresponding to the objects in the instance model.

The schema for the output data structure that governs the structure of the exchange format shall be a valid
XML Schema.

C.4.2 XML Schema

An XML Schema Document (XSD) defines a number of complex types, simple types and element declarations
that define the allowable structure and data instances of an XML document. The XML Schema conversion

rules are defined in C.5.

C.5 Schema conversion rules

C.5.1 XML

The schema
application ¢
produced usi

The XSD sh
defined in th
adhere to XN

The XSD m4
schema doc
mechanisms

A number of
definition acq

Schema

conversion rules define how to produce an XML Schema Document((XSD) according
chema expressed in UML. The main purpose of the XSD is to ensdre that XML docun
ng the data conversion rules are valid.

b application schema. The elements shall be organized in an/exchange structure. The XSD
IL Schema Part 1: Structures and Part 2: Datatypes.

y physically be represented in a single schema dogument or divided into several separate
uments. Logically, it shall be referred to as a_single schema utilizing the import or in
of XML Schema. There are no restrictions on. the*use of namespaces in an XSD.

general rules are defined in C.5.2 to C(5.8. A class shall in general be converted to a
ording to C.5.2, it may be converted to:an element declaration according to C.5.4 and it may

o an
nents

Il contain type definitions and attribute and element declarations that correspond to the classes

shall

(sub)
clude

type
be a

member of the exchange structure.
Exceptions t¢ the general rules are allowed+as long as they are documented.

NOTE In
"http://www.wJ

the following the namespace” “xs:” is used to refer to the namespace of XML Schema, whjch is

.org/2001/XMLSchema",

C.5.2 Typels

C.5.21 <<BasicType>>

C.521.1 (

Seneral-rule

A

A class sterd X Schema—Any of
the data types efined basic types. The
encoding of the basic types shall follow the canonical representation defined in XML Schema Part 2:
Datatypes.

Modelling rules for basic types are defined in ISO/TS 19103. The basic types defined in ISO/TS 19103 are
converted in C.5.2.1.2 to C.5.2.1.15.

Users are permitted to restrict the basic types further using the restriction mechanisms defined in XML
Schema.

NOTE The different types are not clearly defined in ISO/TS 19103 and neither is the <<BasicType>> stereotype used.
The following declarations, therefore, follow a subset of the data type definitions in XML Schema Part 2: Datatypes.

34 ©1S0 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

C.5.2.1.2 Number

A Number is defined in ISO/TS 19103 as an abstract type and a supertype of Integer, Real and Decimal.
However, it is much used in the different standardized schemas. XML Schema does not define an abstract
number type, but defines decimal to be a supertype of integer.

NOTE A number data type is declared as a simple data type based on the decimal data type.

<xs:si

mpleType name="Number">

<xs:restriction base="xs:decimal"/>
</xs:simpleType>

C.5.2
An In|
<xS:Si

<X
</xs:g

C.5.2
The I
<XS:Si

<X
</xs:g
<xs:Si

<X
</xs:S

NOTH

C.5.2
A Ve
<xs:si

<X
</xs:g

1.3 Integer

teger shall be based on the XML Schema integer data type. The value domain may-be restri
ImpleType name="Integer">

s:restriction base="xs:integer"/>

impleType>

1.4 Decimal and Real

Decimal and Real types are both based on the XML Schema decimal type.
ImpleType name="Decimal">

s:restriction base="xs:decimal"/>

impleType>

mpleType name="Real">

s:restriction base="xs:decimal"/>
impleType>

ISO/TS 19103 does not(define the conceptual difference between a Decimal and a Real.

1.5 Vector
Ctor is defined as~a-sequence of numbers. The list construct defines a list of decimal values.
mpleType name="Vector">

s:list itemType="xs:decimal"/>
impleType>

cted.

C.5.2.1.6 Character

A Character is represented as an XML Schema string restricted to contain only one character.

<xs:si

mpleType name="Character">

<xs:restriction base="xs:string">

<xs:length value="1" fixed="true"/>

</xs:restriction>
</xs:simpleType>

© IS0

2011 — All rights reserved

35

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

C.5.2.1.7 CharacterString

CharacterString is based on XML Schema string that can represent any ISO/IEC 10646 string.

<xs:simpleType name="CharacterString">
<xs:restriction base="xs:string"/>
</xs:simpleType>

NOTE

C.5.21.8 Date

For language identification, see C.5.6.

Date is basef on XML Schema date, which has a canonical encoding according to ISO 8601.

<xs:simpleTyp
<xs:restric

e name="Date">
jon base="xs:date"/>

</xs:simpleType>

C.5219 1
Time is base]
<xs:simpleTyp

<xs:restric
</xs:simpleTy
C.5.21.10 [
DateTime is
<xs:simpleTyp

<xs:restric
</xs:simpleTy

C.5.2.1.11

Boolean is b
“1” and “true’

<xs:simpleTyp
<xs:restric

ime
d on XML Schema time, which has a canonical encoding according to ISO 8601.
e name="Time">

jon base="xs:time"/>
be>

DateTime

e name="DateTime">
ion base="xs:dateTime"/>
De>

Boolean

, Which represent logical true.

e name="Boolean">
ion-base="xs:boolean"/>

based on XML Schema dateTime, which has a canonical encoding according to ISO 8601.

psed on XML<Schema boolean. The values are “0” or “false”, which represent logical false

</xs:simpleTy

12d

C.5.2.1.12 Logical

, and

Logical defines three values: true, maybe and false. It is represented as a union between XML Schema

boolean and

two enumerated values, “0.5” and “maybe”, which represent the maybe value.

<xs:simpleType name="Logical">
<xs:union>
<xs:simpleType>

<Xs

restriction base="xs:boolean"/>

</xs:simpleType>

36

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="maybe"/>
<xs:enumeration value="0.5"/>
</xs:restriction>
</xs:simpleType>

</xs:union>
</xs:simpleType>

C.5.2.1.13 Probability

Prob

ISO 19118:2011(E)

hbility is a decimal number between 0 and 1.0.

<xs:simpleType name="Probability">
<¥s:restriction base="xs:decimal">

</

<xs:minlinclusive value="0.0"/>
<xs:maxlInclusive value="1.0"/>
Ks:restriction>

</xs:gimpleType>

C.5.2.1.14 Binary

XML
used
defin

bd that contains either a BinaryBase64 or a BinaryHex.

<xs:simpleType name="BinaryBase64">

</

<xs:restriction base="xs:base64Binary"/>
Ks:simpleType>

xs:simpleType name="BinaryHex">

</

<xs:restriction base="xs:hexBinary"/>
Ks:simpleType>

<x¥s:complexType name="Binary!>

</

NOTH

<xs:choice>
<xs:element name='BinaryBase64" type="BinaryBase64"/>
<xs:element name="BinaryHex" type="BinaryHex"/>
</xs:choice>
Ks:complexType>

The Binary data type is not defined in ISO/TS 19103.

Schema defines two binary data types base64Binary and fiexBinary. Two types are defined| that shall be
as binary data types in UML: BinaryBase64 and BinaryHex. A special choice type called Binary is

C.5.2.1.15 Unlimitedinteger

Unlimitedinteger is a basic type that has a value domain from 0 to infinity. The symbol “*” is defined to

repre

<xs:si

© IS0

sent the infinite value.

mpleType name="UnlimitedInteger">
<xs:union>
<xs:simpleType>
<xs:restriction base="xs:nonNegativelnteger"/>
</xs:simpleType>
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="*"/>

2011 — All rights reserved

37

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

</xs:restriction>

</xs:simpleType>

</xs:un

ion>

</xs:simpleType>

C.5.2.2

C.5.2.21

<<DataType>>

General rule

A class stereotyped <<DataType>> shall be converted to a complexType definition in XML Schema. The

attributes an
construct ac
definition.

The data typ

NOTE Th
types defined
data type defin

C.5.2.2.2

A Multiplicity
as a <<Pata]

<xs:complexT
<xs:seque
<xs:ele
</xs:sequ€g
</xs:complexT|

<xs:complexT
<xs:seque
<xs:ele
<xs:ele
</xs:sequ€g
</xs:complexT|

C.5.2.23 |
The units o
international
published in

Multiplicity

] possible associations shall be declared as XML attributes or local XML elements in a segu
cording to C.5.3. The order of the property elements is, therefore, given in the complex

bs defined in ISO/TS 19103 are converted in C.5.2.2.2 and C.5.2.2.3.

e different types are not clearly defined in ISO/TS 19103 and neither are all classes that are structure
using the <<DataType>> stereotype. The declarations in C.5.2.2.2 and C.5.2.2.3, therefore, interpr]
itions in ISO/TS 19103.

class is defined as a multiplicity range from lower to upperin 1SO/TS 19103. Here it is interp
[ype>> and defined as follows.

pe name="Multiplicity">

hce>

ment name="range" type="MultiplicityRange" minOcecurs="1" maxOccurs="unbounded"/>
nce>

ype>

pe name="MultiplicityRange">

ce>

ment name="lower" type="xs:nonNegativelnteger"/>
ment name="upper" type="UnlimitedInteger"/>

nce>

ype>
Units of measure
measure/types defined in ISO/TS 19103 are intended for use as definitions of loca

measurement systems. Quantities are then measured according to a unit system pro
a units of measure dictionary. The models are unfortunately difficult to understand, no exar

ence
type

il data
et the

reted

and
bably
nples

and the description is vague. The POSC (Petroleum Open Standards Consortium) U

its of

are provide

Measure Recommendation is an alternative to ISO/TS 19103. A UML diagram that illustrates some of the
basic ideas in the specification is shown in Figure C.6. An instance of a UnitOfMeasure defines a measure
system, gives it a name and, if necessary, provides information about how to convert quantities to a base unit
using the general formula Y = (4 + BX)/(C + DX), where X is the value of the unit to be converted and Y is in the
base unit. If A=D =0 and C=1, then B becomes a conversion factor. If 4 = D =0, the conversion factor is
described by a fraction. Otherwise, it is described by the four parameters. An instance of a Measure is then a
decimal value with a reference to the unit of measure.

38

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

<<BasicType>>| +yom UnitOfMeasure <<DataType>>
Measure + name : CharacterString FourParameters
0.1 |+ measurementType[0..1] : CharacterString + A [0..1] : Decimal

+ B : Decimal
+ C : Decimal
+conversion | 0..1 +D[0..1] : Decimal
Conversion
+ baseUnit : CharacterString <<DataType>>
+ factor [0..1] : Decimal Fraction

+ fraction [0..1] : Fraction
+ formula [0 1] - FourParameters

+ numerator : Decimal
+denomimator —Degimal

Figure C.6 — Units of measure

It is [recommended to use the XML Schema definitions as defined in ,the "POSC Units|of Measure
Recommendations.

<<BasicType>>

Measure
<<BasicType>> <<BasicType>> <<BasicType>>
Angle Scale Volume
<<BasicType>> <<BasicType>> <<BasicType>> <<BasicType>>
Length Velocity MTime Area

<<BasicType>>
Distance

Figure C.7 — Measure types

The measure types defined by ISO/TS 19103 (Length, Angle, Velocity, Scale, MTime, Area and Volume) shall
be defined as follows.

<xs:complexType name="Measure">
<xs:simpleContent>
<xs:extension base="Decimal">
<xs:attribute name="uom" type="URI"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

© IS0 2011 — Al rights reserved 39

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

<xs:complexType name="Length">

<xs:sim
<Xs:

pleContent>
extension base="Measure"/>

</xs:simpleContent>
</xs:complexType>

<xs:complexType name="Angle">
<xs:simpleContent>
<xs:extension base="Decimal"/>
</xs:simpleContent>
</xs:complexType>

xs:comple
<xs:sin
<Xs|

Type name="Scale">
pleContent>
extension base="Measure"/>

</xs:simpleContent>
</xs:complexType>

<xs:compld
<xs:sin
<xs|
</xs:sif
</xs:comp
<xs:complq
<xs:sin
<xs|
</xs:sif
</xs:comp

<xs:compld
<Xs:sin
<xs|
</xs:sif
</xs:comp

<xs:compl{
<xs:sin
<xs|
</xs:sif
</xs:comp

<xs:compld
<Xs:sin
<xs|
</xs:sif
</xs:comp

exType name="Area">
pleContent>

extension base="Measure"/>
hpleContent>

exType>

exType name="Velocity">
pleContent>

extension base="Measure"/>
hpleContent>

exType>

exType name="MTime">
pleContent>

extension base="Measure"/>
hpleContent>

exType>

exType name="Distance">
pleContent>

extension base="Measure"/>
hpleContent>

exType>

exType name="Volume">
pleContent>
extension‘base="Measure"/>
hpleCentent>

exType>

C.5.2.3 <<Enumeration>>

A class stereotyped as <<enumeration>> shall be converted to a simple type that restricts a text string to a
number of enumerated values.

EXAMPLE

» o« on

40

“, "

An example is the Sign enumeration, which is based on a string and restricts its value to either “+”,
“positive”, “—” or “negative”.

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

<<Enumeration>>
Sign

positve +

negative -

Figure C.8 — Example of <<Enumeration>>

<xs:simpleType name="Sign">
<Xs:restriction base="xs:string">

<xs:enumeration value="+"/>

<xs:enumeration value="-"/>

<xs:enumeration value="positive"/>

<xs:enumeration value="negative"/>
</ks:restriction>

</xs:simpleType>

C.5.24 <<CodelList>>
A claps stereotyped as <<codelist>> shall not be converted to the_ output schema but may insteagd be mapped
to a Hictionary that stores the code and value pairs defined insthe code list. The dictionary shall be made
publicly available and its Web address shall be given as a URI;

An aftribute of a code list type shall be encoded as a string value.

See also Figure C.22 for class CodelListExtraction.and Figure C.27 for the representation of codelists.

EXAMPLE Figure C.9 shows a code list called BorderCL that is mapped to a dictionary in XML. Note that instead of
listing| the code-value pairs as attributes to the:BorderCL, a comment box is used.

<<CodelList>>
BorderCL

1 Unknown border
2 Country

3 County

5 Property

Figure C:9— Exampie of <<CodeList>>

<codelist name="BorderCL">
<codevalue code="1" value="Unknown border"/>
<codevalue code="2" value="Country"/>
<codevalue code="3" value="County"/>
<codevalue code="5" value="Property"/>
</codelist>

© 1S0 2011 — All rights reserved 41

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

C.5.2.5 <<Union>>

A class stereotyped <<Union>> lists a number of attributes, and the semantics is that only one of the
attributes can be present at any time. It shall be converted to a complex type definition with the attributes as
elements in a choice construction.

EXAMPLE

The GM_Position union is taken from ISO 19107. It is mapped to a complex type with the appro

local element declarations in a choice construction.

<<Union>>
GM_Position

<xs:complexT
<xs:choice]
<xs:el¢
<xs:el¢
</xs:choicg
</xs:complexT|

C.5.2.6 OHject types

C.5.2.6.1 (

A class with

same name
from IM_Obj¢

C.5.2.6.2 |

A few record

+ direct : DirectPosition
+ indirect : GM_PointRef

Figure C.10 — Example of <<Union>>

pe name="GM_Position">
>

ment name="direct" type="DirectPosition"/>
ment name="indirect" type="GM_PointRef"/>
p>

ype>

Seneral rule
no stereotype or stereotyped <<Type>> shall be mapped to a complex type definition wit

as the class. The complex type definition shall include identification attributes, either inh
pct or through a reference to the\IM_Objectldentificaton attribute group.

Record types

types are definedNn”ISO/TS 19103. They are remodelled and interpreted in Figure C.11

priate

h the
brited

The

AttributeNanle and TypeName are modelled as basic types based on CharacterString.
RpcordSchéema RecordType
+ schemaNameg.CharacterString > relement * typeName : CharacterString
\ 0..n |+ attributeTypes : Dictionary<AttributeName, TypeNameg>
+recordType 1
<<BasicType>> <<BasicType>> Record
AttributeName TypeName

+ attributes : Dictionary<AttributeName,Any>

42

Figure C.11 — Record types

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

<xs:complexType name="RecordSchema">

<Xs:sequence>

<xs:element name="schemaName" type="CharacterString"/>

<xs:element name="element" type="RecordType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attributeGroup ref="IM_Objectldentification"/>

</xs:complexType>

<xs:complexType name="RecordType">

<Xs:sequence>

<xs:element name="typeName" type="CharacterString"/>

</xs:sequence>

</xs:domplexType>

<xs:attributeGroup ref="IM_Objectldentification"/>

<xs:complexType name="Record">

<xs:sequence>

</xs:sequence>

</xs:domplexType>

<xs:element name="attributes" type="Dictionary_AttributeName_Any_"/>
<xs:element name="recordType" type="ref_RecordType"/>

<xs:attributeGroup ref="IM_Objectldentification"/>

C.5.2.7 Bound template type

A bound template type is a type where the parameters are bound to actual argument values. I§

defines five different template types: Set<T>Bag<T>, Sequence<T>,

<xs-alamant nama="attribiitaTv/nac" tuyna="Nictianar, AttribiitoNama Tyvngllaoma "/
xS-ereRetHah SO te Y PES—YP =HEHO ARG — Ao tervah —ypervah 7

ISO 19118:2011(E)

bO/TS 19103

CircularSequemce<T> and

Dictionary<K,V>. The first four take one parameter whereas Dictionary takes two. These type
bound in attribute declarations; see the "attribut€Types" attribute of the RecordType defined in Fig

A bound template type shall be converted to a complex type definition that corresponds to
tiype. The type declaration shall be\named. The name may be constructed by concatenating
name with the argument names_separated with underscore “ ” characters. The less-than “<
and greater-than “>” characters:cannot be used in the name.

— A bound Set, BagsSequence or CircularSequence template type shall be mapped to a
definition that consists of a sequence construct of unbounded multiplicity containing
named and typed according to the single parameter type. If the parameter type is a basig
simple type\definition may be used instead, utilizing the list construct of XML Schema.

+ A bound template type of Dictionary shall be mapped to a complex type definition that

two parameters.

sequence construct of unbounded multiplicity with two elements named and typed acg

5 are usually
ure C.11.

the template
the template

”, comma “,

complex type
one element
type, then a

consists of a
ording to the

EXAMPLE+—The direct positiom datatype defimed imtSO—19t07 s showrmim Figure €712

© 1SO 2011 — All rights reserved

<<DataType>>
DirectPosition

+ coordinate : Sequence<Number>

Figure C.12 — Example of bounded template type

43

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

The Sequence<Number> defines a bound template type and, according to the general rule, maps to the

following.

<xs:complexType name="Sequence_Number_">

<Xs:.sequen

ce maxOccurs="unbounded">

<xs:element name="Number" type="Number"/>
</xs:sequence>
</xs:complexType>

Since the argument type is of a basic type, it may also be mapped to the following:

<xs:simpleTy,

=" Al b
rame="oCtquCTICCINGTTTOCT

<xs:list itemType="Number"/>
</xs:simpleType>

EXAMPLE 2

<xs:complexT
<xs:seq

<xs|

<xs|

The bound template types defined in Figure C.11 are mapped as follows.

pe name="Dictionary_AttributeName_Any_">

uence maxOccurs="unbounded">

element name="AttributeName" type="CharacterString"/>
element name="Any" type="xs:anyType"/>

</xs:sequence>
</xs:complexType>

<xs:complexT
<xs:seq

<xs|

<xs|

pe name="Dictionary_AttributeName_TypeName_">
uence maxOccurs="unbounded">

element name="AttributeName" type="CharacterString"/>
element name="TypeName" type="CharacterString"/>

</xs:seguence>
</xs:complexTlype>

C.5.2.8 Inheritance

C.5.2.81 General
The inheritance mechanism in UML “allows a subtype to inherit its supertypes' attributes and associatiops. In
single inheritance, a type can inherit only from a single supertype, whereas in multiple inheritance a type can
inherit from more than one type)UML allows both single and multiple inheritance. XML Schema only sugports
single inherithnce. Therefore;.it is necessary to simulate multiple inheritance.
Inheritance shall be realized either

— by the XML/Schema extension or restriction mechanism called single inheritance (C.5.2.8.2), or

— by copying attributes and associations from supertypes into the target type called multiple inheritance
(C.5.2.8.3).

In case of multiple inheritance, the attributes and associations shall be copied into the target type.

C.5.2.8.2 Single inheritance

The general rule shall be to use XML Schema's extension mechanism for complex types. But if an attribute or
association is redefined the restriction mechanism shall be used.

EXAMPLE Figure C.13 shows a supertype S1 with subtypes S2 and S3. S1 is an abstract class. S4 and S5 are
subtypes of S2. Note that S5 redefines “attr1” and that it is necessary, therefore, to use the restriction mechanism.

44 © 1SO 2011 — Al rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

S1

+ attr1 [0..*] : Integer

i

S2

S3

+ attrA :

Real + attrB : Boolean

i

ISO 19118:2011(E)

S4

S5

+ attrX : CharacterString

+ attr1 [2..8] : Integer

<xs:cpmplexType name="S1" abstract="true”>
<xs:complexContent>

<xs:extension base="IM_Object">
<xs:sequence>

</xs:sequence>
</xs:extension>

</ks:complexContent>
</xs:domplexType>

<xs:cpmplexType name="S2">
<xs:complexContent>

<xs:extension base="S1">
<xs:sequence>

</xs:sequence>
</xs:extension>

</ks:complexContent>
</xs:gomplexType>

<xs:cpmplexType names"S3">
<¥s:complexCantent>

<xs:extension base="S1">
<x§:sequence>

</xs:sequence>

<xs:element name="attrA% type="Real"/>

<xs:element name="attrB" type="Boolean"/>

Figure C.13 — Example of single inheritance

<xs:element name="attr1" type="Integer" minOccurs="0"ymaxOccurs="unbounded"/>

/XS EXtension=
</xs:complexContent>
</xs:complexType>

<xs:complexType name="S4">
<xs:complexContent>
<xs:extension base="S2">
<xs:sequence>

<xs:element name="attrX" type="CharacterString"/>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

© 1SO 2011 — All rights reserved

45

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

<xs:complexType name="S5">
<xs:complexContent>
<xs:restriction base="S2">
<xs:sequence>
<xs:element name="attr1" type="Integer" minOccurs="2" maxOccurs="8"/>
<xs:element name="attrA" type="Real"/>
</xs:sequence>
</xs:restricton>
</xs:complexContent>
</xs:complexType>

C.5.2.8.3 Illlultiple inheritance

The procedufe for copying the attributes/associations is to start with the left supertype and copy its attriputes
and associatjons, then continue with the next supertype to the right until the rightmost supertype is reaghed.
The subtypel|s attributes are added last. A conflict occurs if a supertype or subtype defines an attribute or
association with the same name as previously copied. In case of a name conflict, the”latter attribyte or
association ghall take precedence and replace the previously copied one.

EXAMPLE Figure C.14 defines four types: T1, T2, T3 and T4. T4 is a subtype of T1,.12 and T3.
T T2 3
+ attrX : S3 + attrY : Integer| |+ atttX :'Date

N

+ attrZ :*Character

Figure C.14.——~ Example of multiple inheritance

<xs:complexType name="T1">
<xs:sequehce>
<xs:elegment name="attrX"\type="S3"/>
</xs:sequgnce>
<xs:attributeGroup ref="IM" Objectldentification"/>
</xs:complexTlype>

<xs:complexType’name="T2">
<xs:sequepce>
<xs:element name="attrY" type="Real"/>
</xs:sequence>
<xs:attributeGroup ref="IM_Objectldentification"/>
</xs:complexType>

<xs:complexType name="T3">
<xs:sequence>
<xs:element name="attrX" type="Date"/>
</xs:sequence>
<xs:attributeGroup ref="IM_Objectldentification"/>
</xs:complexType>

46 ©1S0 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 191

<xs:complexType name="T4">
<xs:sequence>

<xs:element name="attrX" type="Date"/>
<xs:element name="attrY" type="Integer"/>
<xs:element name="attrZ" type="Character"/>

</xs:sequence>
<xs:attributeGroup ref="IM_Objectldentification"/>
</xs:complexType>

C.5.2.9 Substitution types

The

concrete subtypes defined by the inheritance hierarchy of the supertype. XML Schema does no
dynamic type mechanism directly.

Threg alternative approaches may be used.

a)

b)

c)

If the|copy mechanism described in C.5.2.8.3 is used;;only approach c) shall be used.

EXAMPLE 1 Approach a): A class Ex2 definessan’attribute of type S1, see Figure C.15. S1 is the abst
with gn inheritance hierarchy defined in Figure C:13.

<xs:complexType hame="Ex2">
<Xs:sequence>

</ks:sequence>

18:2011(E)

Ise of a supertype as an attribute type means that an instance of the attribute can bhe“q

Declare a standard element declaration with type corresponding to the. supertype. In the e
the xsi:type attribute shall be used to indicate the required type. See Example 1.

Define global elements with a substitution group that matches thé inheritance hierarchy of th
The global element shall be referred to within an element declatation. See Example 2.

Define choice groups for each supertype that contains a ‘choice of element declarations fo
g¢oncrete types in the inheritance hierarchy of the supertype. The choice group shall be refe
an element declaration. See Example 3.

Ex2
+ use1 : S1

Figure C.15 — Example attribute of a supertype

<x$.element name="use1" type="S1"/>

f one of the

support this

xchange file,

e supertype.

 each of the

rred to within

ract supertype

</xs:complexType>

Use of xsi:type in the exchange file:

<Ex1>
<use1 xsi:type="S3">

<attr1>42</attr1><attr1>43</attr1><attr1>44</attr1>
<attrB>true</attrB>

</use1>
</Ex1>

© 1SO 2011 — All rights reserved

47

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

EXAMPLE 2 Approach b): Use of global substitution elements.

<xs:element name="S1" type="S1" abstract="true"/>

<xs:element name="S2" type="S2" substitutionGroup="S1"/>
<xs:element name="S3" type="S3" substitutionGroup="S1"/>
<xs:element name="S4" type="S4" substitutionGroup="S2"/>
<xs:element name="S5" type="S5" substitutionGroup="S2"/>

<xs:complexType name="Ex2">
<xs:sequence>
<xs:element name="use1">
<Xc-r\nmp|an\len>
<xs:sequence>
<xs:element ref="81"/>
</xs:sequence>
</x$:complexType>
</xs:ele¢ment>
</xs:sequgnce>
</xs:complexType>

<Ex1>
<use1>
<S3>
<atfr1>42</attr1><attr1>43</attr1><attr1>44</attr1>
<at{rB>true</attrB>
</S3>
</use1>
</Ex1>

EXAMPLE 3 Approach c): Use of choice groups.

<xs:group name="S1">
<xs:choice
<xs:element name="S2" type="S2"/>
<xs:element name="S3" type="S3"/>
<xs:elegment name="S4" type="S4"/>
<xs:elegment name="S5" type="S5"/>
</xs:choicg>
</xs:group>

<xs:.complexType name="Ex2">
<xs:sequehce>
<xs:element name="use1">
<xsfcomplexlype>
xs:group ref="S1"/>
</x$:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>

The instance becomes exactly the same as the instance in Example 2. The benefit of this approach is that there are no
global elements.

C.5.2.10 <<Abstract>> or abstract class

An abstract class may not be represented as a complexType declaration if the copy down mechanism is used.
If single inheritance is used, an abstract class shall be converted to a complexType definition according to
C.5.2.6 that has the “abstract” attribute set to true.

48 ©1S0 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

C.5.2.11 <<ExternalType>>

All classes stereotyped <<ExternalType>> shall either be mapped to a simple type that restricts the XML
Schema type anyURI or to a NOTATION type.

EXAMPLE
<xs:simpleType name="Modis">

<xs:restriction base="xs:anyURI"/>
</xs:simpleType>

C.5.3 Property element declarations

C.5.3.1 Attribute

An aftribute defines a characteristic of a class. An attribute shall be converted to @nelement declaration or an
attribute declaration in the class' complex type declaration. An element declaration is the defaplt rule. If an
attribpte is of basic type with multiplicity of zero or one it may be converted to.ar’ attribute declaration. All other
attribptes shall be converted to an element declaration.

The default rule is to convert all attributes and derived attributes.

An attribute declaration defines an attribute with a name and a.basic data type. The multiplicity gf an attribute
shall pe according to Table C.4. The default multiplicity of an<attribute declaration in XML Schemgq is optional.

Table C.4 — Multiplicity mapping for attributes

UML Optional Necessary attribute declaration
1 (default) false optional="false"
0..1 true\(default) —

An element declaration definescan-element with a name and a type. The multiplicity shall be [according to
Tablg C.5. The default values are indicated in the table, and it is not necessary that they pe declared.
Alterpatively, both minimumand maximum values may be given.

Table C.5 — Multiplicity mapping for content elements

UML minOccurs maxOccurs Necessary element declaratign
1 (default) 1 (default) 1 (default) —

0..1 0 1 (default) minOccurs="0"

Q.* 0 unbounded minQccurs="0" maxQceurs="unbounded”

1.* 1 (default) unbounded maxOccurs="unbounded”

2.8 2 8 minOccurs="2" maxOccurs="8"

EXAMPLE

A data type Example is declared in UML. It has three attributes “title”, “number” and “subExample”, see

Figure C.16. Both the “title” and “number” attribute can be converted to an attribute declaration, whereas “subExample” is
of a complex type and it is necessary that it be mapped to an element declaration.

© 1SO 2011 — All rights reserved

49

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

<<DataType>>
Example
+ title : CharacterString
+ number [0..1] : Integer
+ subExample[0..*] : Example

Figure C.16 — Example attribute

The default glement declaration gives the following:

<xs:complexType name="Example” >
<xs:sequehce>
<xs:el¢ment name="title" type="CharacterString"/>
<xs:el¢ment name="number" type="Integer" minOccurs="0"/>
<xs:el¢ement name="subExample" type="Example" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequgnce>
</xs:complexTlype>

Here “title” and “number” are converted according to the attribute declaration rule.

<xs:complexType name="Example” >
<xs:sequehce>
<xs:el¢ment name="subExample" type="Example"” minOccurs="0" maxOccurs="unbounded"/>
</xs:sequgnce>
<xs:attribute name="title" type="CharacterString" optional="false"/>
<xs:attribute name="number" type="Integer"/>
</xs:complexType>

C.5.3.2 Aspociation

An associatipn defines a general relationship between two classes. In the following, one of the clasges is
called a souice class and the othef is‘called a target class. Source objects store references to target objects
and vice verga.

— The complex type corresponding to the source class shall contain an element declaration if the
associatjon is navigable and the target class is identified by a role name. The name of the element|shall
be the rple nametidentifying the target class, and the type shall be either IM_ObjectReference, or g type
that is based on.or has the attributes defined in IM_ObjectReference. The element declaration shalllhave
multiplic|ty according to Table C.5.

— The complex type corresponding to the target class shall contain an element declaration if the association
is navigable and the source class is identified by a role name. The name of the element shall be the role
name identifying the source class, and the type shall be either IM_ObjectReference, or a type that is
based on or has the attributes defined in IM_ObjectReference. The element declaration shall have
multiplicity according to Table C.5.

EXAMPLE An association between class A and B is defined, see Figure C.17. Only A knows about B since only one
role name is defined.

50 © 1SO 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 191

A +theB B
0..*

Figure C.17 — Example association

The XML Schema declarations are as follows:

<xs:complexType name="A">
<xs:sequence>

</ks:sequence>>
</xs:gomplexType>

<xs:complexType name="ref_B">

<xs:attributeGroup ref="IM_ObjectReference"/>
</xs:domplexType>

C.5.3.3 Aggregation

An aggregation defines a weak whole-part relationship between an.aggregate (whole) and a cor

The
part

refergnces only to its parts but may, in case of complete ownership, contain the respective parts.

EXAMPLE An aggregationybetween the aggregate C and the part D is defined, see Figure C.18. C
the roe name “theD” and D identifies C by the role name “theC”.

bwnership is weak in that parts can be members of more thah one aggregate at the same
bbject may be shared by more than one aggregate object.*An aggregate can, therefore, in

The complex type corresponding to the aggregate, class shall contain an element declarati
nmame corresponds to the role name identifying’the part class. The multiplicity of this elen
according to Table C.5. The type of the element shall be based on an IM_ObjectReferer
¢ontain zero or one element of a type that«Corresponds to the part class.

The complex type corresponding to-the part class shall contain an element declaration if th
is navigable and the target class .is-identified by a role name. The name of the element sha
to the role name identifying the‘aggregate class and type shall be based on an IM_ObjectRe
e¢lement declaration shall have 'multiplicity according to Table C.5.

C +theC +theD D
1.* 1.

18:2011(E)

stituent part.
ime. Thus, a
jeneral store

bn where the
nent shall be
ice and may

B association
| correspond
ference. The

dentifies D by

Figure C.18 — Example aggregation

<xs:complexType name="C">
<xs:sequence>

<xs:element name="theD" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="D" type="D" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
<xs:attributeGroup ref="IM_ObjectReference"/>
</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

© 1SO 2011 — All rights reserved

51

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

<xs:complexType name="D">
<xs:sequence>
<xs:element name="theC" type="IM_ObjectReference” minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

C.5.3.4 Composition

A composition defines a strong whole-part relationship between a composite (whole) and a constituent part.
The ownership is strong in that a part can be a member of exactly one composite object. A composite shall,
therefore, coptalii tS TESpective parts.

— The complex type corresponding to the composite class shall contain an element declarationnwhere the
name cqrresponds to the role name identifying the part class and the type corresponds to-the‘type o¢f the
part clags. The element declaration shall have multiplicity according to Table C.5.

— The complex type corresponding to the part class shall not contain any element declaration, even if & role
name identifies the composite class. This is implicit because a part is always contained within a
composite class.

EXAMPLE A composition between classes E and F is defined, see Figure C.19{E identifies F by a target role name
“theF”.
+theF
E P F
2.8

Figure C.19 — Example composition

<xs:complexType name="E">
<xs:sequepce>
<xs:el¢ment name="theE" type="F" minOccurs="2" maxOccurs="8"/>

</xs:sequgnce>
</xs:complexTlype>

C.5.4 Element declarations

C.5.4.1 Document structure

The GI element shall'be the root element of the exchange file. It contains three elements: exchangeMetddata,
dataset and|update; see Figure C.20. The dataset and update elements may have identity whereas the
exchange matadata-shall-not

The attributes of the Gl element are as follows:
— version: CharacterString = "1.0";
— timeStamp: DateTime;

— exchangeMode [0..1] : CharacterString.

52 © 1SO 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

The version attribute is required to be set to “1.0”. This indicates that the exchange file conforms to this
version of this International Standard. Revised versions of this International Standard will have another
number associated with them. The timestamp attribute indicates the date and time of when the data was
encoded. That is, when the exchange file was produced. The exchangeMode attribute is user-defined and its
value may indicate the context or mode of the exchange file.

<<DataType>>
ExchangeMetadata
+exchangeMetadata
0..1
<<RootElement>>
Gl

+ version : CharacterString = "1.0" P *dataset | bopaset
+ timeStamp : DateTime 0..1
+ exchangeMode [0..1] : CharacterString

+update

0..1

Update

Figure C.20 — Document structure

The declaration of the Gl element is as follows.

<xs:element name="GI">
<xqs:complexType>
<xs:sequence>
<xs:element name="exehangeMetadata" type="ExchangeMetadata" minOccurs="0"/>
<xs:element name="dataset" type="Dataset" minOccurs="0"/>
<xs:element name="update" type="Update" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="version" type="CharacterString" use="required" fixed="1.0"/>
<xs:attribute hame="timeStamp" type="DateTime" use="required"/>
<xs:attribute-name="exchangeMode" type="CharacterString"/>
</ks:compléxType>
</xs:glement>

C.5.4.2 Dataset and object elements
A dataset contains one or more elements that encode objects, called object elements, which shall be declared.

— All complex type definitions with identification attributes are candidates for object element declaration.
Some might not be considered as independent objects and might not, therefore, be defined.

— The name of the element shall be the same as the type name or it may be a tag name defined for this

type. An object element may be declared either as a local or as a global element. The default is as a local
element.

© 1SO 2011 — All rights reserved 53

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

— All object elements shall be grouped in a choice group that may be named Object. Thus the choice group
either refers to global declared elements or declares the object elements locally. This choice group shall

be used

EXAMPLE

to restrict the legal objects in a dataset.

The Object group defines the object elements of the example in C.5.2.8.3. The dataset type refers

to an

unbounded sequence of the object group (Figure C.21). This means that the dataset can contain only the four elements
T1, T2, T3 and T4.

Dataset

[

<xs:complexT
<xs:seque
<xs:gr
</xs:sequg
<xs:attribu
</xs:complexT|

Object

Figure C.21 — Dataset contains objects

pe name="Dataset">
nce maxOccurs="unbounded">

bup ref="Object"/>
nce>
eGroup ref="IM_Objectldentification"/>

ype>

<xs:group name="0Object">

<xs:choice
<xs:ele
<xs:ele
<xs:el¢
<xs:el¢
</xs:choicq
</xs:group>

C.54.3 Ex

The exchang
ISO 19115.

An Exchang

>
ment name="T1” type="T1"/>
ment name="T2" type="T2"/>
ment name="T3” type="T3"/>
Mment name="T4" type="T4"/>
b >

change metadata

e metadata'types are defined in Figure C.22. The CI_Citation type is imported and reused

blMletadata shall contain information that describes the dataset. The “datasetCitation” att

ot £,

.. .

riou oot doto it ot =t rafar + ralavant aaotodot
nmrciavuatavitauuvri VULC TUOTICTO U TTICVArit 1miciauala 1

from

ibute
r the

describes th

o Ul Iyl

nator £+l Aot + Tl
NawwTn Ut Uic UdldotTlLl. TTIT atat

dataset, the “applicationSchemacCitation” refers to the application schema used, and the “configFileCitation”
describes the configuration file used. The “encodingRule” composition describes the encoding rule used to
produce the dataset. If the dataset contains attributes of code lists, it shall indicate which code lists are used
and their validity. This is done by the “codeLists” composition.

54

© 1S0O 2011 — All rights reserved

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

	1 Scope
	2 Conformance
	2.1 Introduction
	2.2 Conformance classes related to encoding rules
	2.3 Conformance classes related to encoding services

	3 Normative references
	4 Terms and definitions
	5 Symbols and abbreviated terms
	6 Fundamental concepts and assumptions
	6.1 Concepts
	6.2 Data interchange
	6.3 Application schema
	6.4 Encoding rule
	6.4.1 Concept
	6.4.2 Input data structure
	6.4.3 Output data structure
	6.4.4 Conversion rules

	6.5 Encoding service
	6.6 Transfer service

	7 Character repertoire
	8 Generic instance model
	8.1 Introduction
	8.2 Relation between UML and the instance model

	9 Encoding rules
	9.1 Introduction
	9.2 General encoding requirements
	9.2.1 Application schema and schema language
	9.2.2 Bit and byte ordering
	9.2.3 Character repertoire and encoding
	9.2.4 Exchange metadata
	9.2.5 Transfer unit
	9.2.5.1 Granularity and structure
	9.2.5.2 Object identification

	9.3 Input data structure
	9.4 Output data structure
	9.5 Conversion rules
	9.6 Examples

	10 Encoding service

