

Reference number
ISO 19118:2011(E)

© ISO 2011

INTERNATIONAL
STANDARD

ISO
19118

Second edition
2011-10-15

Geographic information — Encoding

Information géographique — Codage

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2011 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved iii

Contents Page

Foreword .. iv

Introduction ... v

1 Scope .. 1

2 Conformance ... 1
2.1 Introduction .. 1
2.2 Conformance classes related to encoding rules ... 1
2.3 Conformance classes related to encoding services ... 1

3 Normative references .. 2

4 Terms and definitions ... 2

5 Symbols and abbreviated terms .. 6

6 Fundamental concepts and assumptions ... 7
6.1 Concepts .. 7
6.2 Data interchange ... 7
6.3 Application schema ... 8
6.4 Encoding rule ... 9
6.5 Encoding service ... 10
6.6 Transfer service ... 10

7 Character repertoire .. 11

8 Generic instance model .. 11
8.1 Introduction .. 11
8.2 Relation between UML and the instance model ... 14

9 Encoding rules ... 14
9.1 Introduction .. 14
9.2 General encoding requirements .. 15
9.3 Input data structure ... 17
9.4 Output data structure .. 17
9.5 Conversion rules ... 18
9.6 Examples .. 18

10 Encoding service ... 18

Annex A (normative) XML-based encoding rule .. 20

Annex B (normative) Abstract test suit .. 21

Annex C (informative) XML-based encoding rule in use by communities .. 25

Bibliography .. 68

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

iv © ISO 2011 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 19118 was prepared by Technical Committee ISO/TC 211, Geographic information/Geomatics.

This second edition cancels and replaces the first edition (ISO 19118:2005), which has been technically
revised.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved v

Introduction

This International Standard specifies the requirements for defining encoding rules used for interchange of
geographic data within the set of International Standards known as the “ISO 19100 series”. An encoding rule
allows geographic information defined by application schemas and standardized schemas to be coded into a
system-independent data structure suitable for transport and storage. The encoding rule specifies the types of
data being coded and the syntax, structure and coding schemes used in the resulting data structure. The
resulting data structure can be stored on digital media or transferred using transfer protocols. It is intended
that the data be read and interpreted by computers, but data can be in a form that is human readable.

The choice of one encoding rule for application-independent data interchange does not exclude application
domains and individual nations from defining and using their own encoding rules that can be platform
dependent or more effective with regard to data size or processing complexity. XML is a subset of
ISO/IEC 8879 and has been chosen because it is independent of computing platform and interoperable with
the World Wide Web.

This International Standard is divided into three logical sections. The requirements for creating encoding rules
based on UML schemas are specified in Clauses 6 to 9. The requirements for creating encoding service are
specified in Clause 10, and the requirements for XML-based encoding rules are specified in Annex A.

The XML-based encoding rule is intended for use as a neutral data interchange. It relies on the Extensible
Markup Language (XML) and the ISO/IEC 10646 character set standards.

The geographic information standards are organized within the set of International Standards known as the
“ISO 19100 series”. The background and the overall structure of this series of International Standards and the
fundamental description techniques are defined in ISO 19101, ISO/TS 19103 and ISO/TS 19104.

Users of this International Standard can develop application schemas to formally describe geographic
information. An application schema is compiled by integrating elements from other standardized conceptual
schemas (e.g. ISO 19107). How this integration takes place is described in ISO 19109. The set of
International Standards known as the “ISO 19100 series” also defines a set of common services that are
available when developing geographic information applications. The common services are generally defined in
ISO 19119 and cover access to, and processing of, geographic information according to the common
information model. This International Standard covers implementation issues.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

INTERNATIONAL STANDARD ISO 19118:2011(E)

© ISO 2011 – All rights reserved 1

Geographic information — Encoding

1 Scope

This International Standard specifies the requirements for defining encoding rules for use for the interchange
of data that conform to the geographic information in the set of International Standards known as the
“ISO 19100 series”.

This International Standard specifies

 requirements for creating encoding rules based on UML schemas,

 requirements for creating encoding services, and

 requirements for XML-based encoding rules for neutral interchange of data.

This International Standard does not specify any digital media, does not define any transfer services or
transfer protocols, nor does it specify how to encode inline large images.

2 Conformance

2.1 Introduction

Two sets of conformance classes are defined for this International Standard.

2.2 Conformance classes related to encoding rules

All encoding rules shall pass all test cases of the abstract test suite in B.1. All encoding rules shall pass all test
cases of the abstract test suite in B.2 and/or B.3.

Table 1 — Conformance classes related to encoding rules

Conformance class Subclause of the
abstract test suite

All encoding rules B.1

Encoding rule with instance conversion B.2

Encoding rule with schema conversion B.3

2.3 Conformance classes related to encoding services

All encoding services shall pass all test cases of the abstract test suite in B.4. Depending on the capabilities of
the encoding service, it shall pass all test cases of additional conformance classes in accordance with Table 2.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

2 © ISO 2011 – All rights reserved

Table 2 — Conformance classes related to encoding services

Conformance class
Subclause of the

abstract test suite

All encoding services B.4

Generic encoding service B.5

Service that encodes data B.6

Service that decodes data B.7

Service that generates an output data structure schema B.8

3 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO 8601:2004, Data elements and interchange formats — Information interchange — Representation of
dates and times

ISO/IEC 10646:2011, Information technology — Universal Coded Character Set (UCS)

ISO/TS 19103:2005, Geographic information — Conceptual schema language

ISO 19109:2005, Geographic information — Rules for application schema

Extensible Markup Language (XML) 1.0, W3C Recommendation. Available at
<http://www.w3.org/TR/REC-xml>

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1
application schema
conceptual schema (4.5) for data (4.8) required by one or more applications

[ISO 19101:2002, 4.2]

NOTE An application schema describes the content, the structure and the constraints applicable to information
(4.22) in a specific application domain.

4.2
character
member of a set of elements that is used for the representation, organization, or control of data (4.8)

[ISO/IEC 2382-1:1993, 01.02.11]

4.3
code
representation of a label according to a specified scheme

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

http://www.w3.org/TR/REC-xml
https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 3

4.4
conceptual model
model (4.27) that defines concepts of a universe of discourse (4.33)

[ISO 19101:2002, 4.4]

4.5
conceptual schema
formal description of a conceptual model (4.4)

[ISO 19101:2002, 4.5]

4.6
conceptual schema language
formal language based on a conceptual formalism for the purpose of representing conceptual schemas (4.5)

[ISO 19101:2002, 4.6]

EXAMPLES UML, EXPRESS, IDEF1X.

NOTE A conceptual schema language may be lexical or graphical.

4.7
conversion rule
rule for converting instances in the input data (4.8) structure to instances in the output data structure

4.8
data
reinterpretable representation of information (4.22) in a formalized manner suitable for communication,
interpretation, or processing

[ISO/IEC 2382-1:1993, 01.01.02]

4.9
data interchange
delivery, receipt and interpretation of data (4.8)

4.10
data transfer
movement of data (4.8) from one point to another over a medium (4.26)

NOTE Transfer of information (4.22) implies transfer of data.

4.11
data type
specification of a value domain (4.34) with operations allowed on values in this domain

[ISO/TS 19103:2005, 4.1.5]

EXAMPLES Integer, Real, Boolean, String and Date.

NOTE A data type is identified by a term, e.g. Integer. Values of the data types are of the specified value domain, e.g.
all integer numbers between –65537 and 65536. The set of operations can be +, -, * and / and is semantically well defined.
A data type can be simple or complex. A simple data type defines a value domain where values are considered atomic in
a certain context, e.g. Integer. A complex data type is a collection of data types that are grouped together. A complex data
type may represent an object and can, thus, have identity.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

4 © ISO 2011 – All rights reserved

4.12
dataset
identifiable collection of data (4.8)

[ISO 19115:2003, 4.2]

4.13
encoding
conversion of data (4.8) into a series of codes (4.3)

4.14
encoding rule
identifiable collection of conversion rules (4.7) that define the encoding (4.13) for a particular data (4.8)
structure

EXAMPLES XML, ISO 10303-21, ISO/IEC 8211.

NOTE An encoding rule specifies the types of data being converted as well as the syntax, structure and codes (4.3)
used in the resulting data structure.

4.15
encoding service
software component that has an encoding rule (4.14) implemented

4.16
feature
abstraction of real world phenomena

[ISO 19101:2002, 4.11]

NOTE A feature may occur as a type or an instance. Feature type or feature instance is used when only one is meant.

4.17
file
named set of records stored or processed as a unit

[ISO/IEC 2382-1:1993, 01.08.06]

4.18
geographic data
data (4.8) with implicit or explicit reference to a location relative to the Earth

[ISO 19109:2005, 4.12]

4.19
geographic information
information (4.22) concerning phenomena implicitly or explicitly associated with a location relative to the
Earth

[ISO 19101:2002, 4.16]

4.20
identifier
linguistically independent sequence of characters (4.2) capable of uniquely and permanently identifying that
with which it is associated

[ISO 19135:2005, 4.1.5]

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 5

4.21
identification convention
set of rules for creating identifiers (4.20)

4.22
information
knowledge concerning objects, such as facts, events, things, processes, or ideas, including concepts, that
within a certain context has a particular meaning

[ISO/IEC 2382-1:1993, 01.01.01]

4.23
instance model
representation model (4.27) for storing data (4.8) according to an application schema (4.1)

4.24
interface
UML named set of operations that characterize the behaviour of an element

[ISO/IEC 19501]

4.25
interoperability
capability to communicate, execute programs, or transfer data (4.8) among various functional units in a
manner that requires the user to have little or no knowledge of the unique characteristics of those units

[ISO/IEC 2382-1:1993, 01.01.47]

4.26
medium
substance or agency for storing or transmitting data (4.8)

EXAMPLES Compact disc, internet[1], radio waves, etc.

4.27
model
abstraction of some aspects of reality

[ISO 19109:2005, 4.14]

4.28
schema
formal description of a model (4.27)

[ISO 19101:2002, 4.25]

4.29
schema model
representation model (4.27) for storing schemas (4.28)

EXAMPLE Representation model for a schema repository.

4.30
stereotype
UML new type of modelling element that extends the semantics of the metamodel

[ISO/IEC 19501]

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

6 © ISO 2011 – All rights reserved

NOTE It is necessary that stereotypes be based on certain existing types or classes in the metamodel. Stereotypes
may extend the semantics, but not the structure, of pre-existing types and classes. Certain stereotypes are predefined in
the UML, others may be user-defined. Stereotypes are one of three extensibility mechanisms in UML; the others are
constraint and tagged value.

4.31
transfer protocol
common set of rules for defining interactions between distributed systems

4.32
transfer unit
collection of data (4.8) for the purpose of a data transfer (4.10)

NOTE A transfer unit does not have to be identifiable like a dataset (4.12).

4.33
universe of discourse
view of the real or hypothetical world that includes everything of interest

[ISO 19101:2002, 4.29]

4.34
value domain
set of accepted values

[ISO/TS 19103:2005, 4.1.15]

EXAMPLE The range 3-28, all integers, any character, enumeration of all accepted values (green, blue, white).

5 Symbols and abbreviated terms

DCE Distributed computing environment

DUID Domain unique identifier

HTML Hypertext markup language

MODIS Moderate resolution imaging spectroradiometer

POSC Petroleum Open Standards Consortium

TIFF Tagged image file format

UCS Universal multiple-octet coded character set

UML Unified modelling language

UTF UCS Transfer format

UUID Universally unique identifier

XML Extensible markup language

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 7

6 Fundamental concepts and assumptions

6.1 Concepts

The purpose of the set of International Standards known as the “ISO 19100 series” is to enable interoperability
between heterogeneous geographic information systems. To achieve interoperability between heterogeneous
systems, it is necessary to determine two fundamental issues. The first issue is to define the semantics of the
content and the logical structures of geographic data. This shall be done in an application schema. The
second issue is to define a system- and platform-independent data structure that can represent data
corresponding to the application schema.

The fundamental concepts of data interchange, i.e. the procedure based on the application schema for
encoding, delivery, receipt and interpretation of geographic data, are described in 6.2 to 6.6. An overview of
the data interchange process is described in 6.2; 6.3 introduces application schemas that allow interpretation
of geographic data; 6.4 describes the importance of the encoding rule for producing system-independent data
structures; 6.5 describes a software component, called the encoding service, for executing the encoding rule;
and 6.6 describes the procedure for delivery and receipt, called the transfer service.

6.2 Data interchange

An overview of a data interchange is shown in Figure 1. System A wants to send a dataset to system B. To
ensure a successful interchange, it is necessary that A and B decide on three things: i.e. a common
application schema I, which encoding rule R to apply, and what kind of transfer protocol to use. The
application schema is the basis of a successful data transfer and defines the possible content and structure of
the transferred data, whereas the encoding rule defines the conversion rules for how to code the data into a
system-independent data structure.

Application
schema

I

Defines

Data flow

System A

Internal
database

Internal
schema

A

File
system

Transfer
services

Encoding
service
R

MAI iA

d

System B

Internal
schema

B

MIBiB

d

Data transfer

System boundary System boundary

Encoding
service

(Decoding)
R

File
system

Transfer
services

-1

Internal
database

Figure 1 — Overview of data interchange between two systems

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

8 © ISO 2011 – All rights reserved

Both systems, A and B, store data in an internal database according to an internal schema, but the schemas
are usually different, i.e. schema A is not equal to schema B. It is necessary to take the following logical steps
in order to transfer a dataset from A's internal database to B's internal database.

a) The first step for system A is to translate its internal data into a data structure that is in accordance with
the common application schema I. Here, this is done by defining a mapping from the concepts of the
internal schema to the concepts defined in the application schema and by writing appropriate mapping
software to translate the data instances. In Figure 1, this mapping is denoted as MAI. The result is an
application-schema-specific data structure, iA. The data structure is stored in memory or on an
intermediate file and is system-dependent and, thus, is not suitable for transfer.

b) The next step is to use an encoding service, which applies the encoding rule R to create a data structure
that is system independent and, therefore, suitable for transfer. This encoded dataset is called d and may
be stored in a file system or transferred using a transfer service.

c) System A then invokes a transfer service to send the encoded dataset d to system B. The transfer service
follows a transfer protocol for how to do packaging and how the actual transportation over an on-line or
off-line communication medium should take place. It is necessary that both parties agree on the transfer
protocol used.

d) The transfer service on system B receives the transferred dataset, and according to the protocol the
dataset is unpacked and stored as an encoded dataset d, e.g. on an intermediate file.

e) In order to get an application-schema-specific data structure iB, system B applies the inverse encoding
rule R1 to interpret the encoded data.

f) To use the dataset, it is necessary that B translate the application-schema-specific data structure iB into
its internal database. This is done by defining a mapping from the application schema into its internal
schema and by writing software that does the actual translation. In Figure 1 this mapping is denoted MIB.

This International Standard specifies only the requirements for creating encoding rules and the encoding
services and not the whole data interchange process. Thus, only steps b) and e) are standardized. Steps a),
c), d) and f) use general information technology services.

6.3 Application schema

An application schema is a conceptual schema for applications with similar data requirements. The application
schema is the basis of a successful data interchange and defines the possible content and structure of the
data. It is also the basis for implementing application-schema-specific data structures for local storage of data.

The application schema used for encoding in compliance with this International Standard shall be written in
the UML conceptual schema language, in accordance with ISO/TS 19103 and ISO 19109. These International
Standards specify a framework for how to write application schemas. The rules include specifications on how
to use standardized schemas to define feature types. It is necessary that both a sender and a receiver of data
have access to the application schema.

The application schema shall be accessible to both ends of a data interchange to ensure a successful result. It
is necessary that the application schema be transferred before data interchange takes place, so that both the
receiver and sender can prepare their systems by implementing mappings and data structures according to
the application schema. It may be transferred together with the dataset, or it may be stored in a public place
and referenced from the dataset.

The application schema may be interchanged by paper- or electronic-based methods.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 9

6.4 Encoding rule

6.4.1 Concept

An encoding rule is an identifiable collection of conversion rules that defines the encoding for a particular data
structure. The encoding rule specifies the data types being converted, as well as the syntax, structure and
coding schemes used in the resulting data structure. An encoding rule is applied to application-schema-
specific data structures to produce system-independent data structures suitable for transport or storage. In
order to define an encoding rule, it is necessary that three important aspects be specified: the input data
structure, the output data structure and the conversion rules between the elements of the input and the output
data structures. Both the input and output data structures are written using a conceptual schema language
and the concepts in the languages are used to define the encoding rule.

6.4.2 Input data structure

The input data structure is an application-schema-specific data structure. The data structure can be thought of
as a set of data instances, i.e. i  {i1, ..., ip}; see Figure 1. Each data instance, ik, is an instance of a concept,
Il, defined in an application schema. The application schema defines a set of concepts defined in the
application schema I  {I1, ..., Im}.

The application schema is a conceptual schema, c, written in a conceptual schema language, C. The
conceptual schema defines a set of concepts c  {c1, ..., cm} by instantiating the concepts of the conceptual
schema language C  {C1, ..., Cr}. Since the application schema is a conceptual schema, c  I.

6.4.3 Output data structure

The output data structure is defined by a schema, D  {D1, ..., Ds}. D is the schema for the output structure
and is not shown in Figure 1. The output data structure can be thought of as a set of data instances, i.e.
d  {d1, ..., dq} where each data instance, dk, is an instance of a concept, Dl.

The schema, D, defines the syntax, structure and coding schemes of the output data structure.

6.4.4 Conversion rules

A conversion rule specifies how a data instance in the input data structure shall be converted to zero, one, or
more instances in the output data structure. The conversion rules are defined and based on the concepts of
the conceptual schema language, C, and on the concepts of the output data structure schema, D. It is
necessary to specify a conversion rule, Ri, for each of the legal combinations of concepts in the conceptual
schema language. The set of conversion rules are R  {R1, ..., Rn}, where Ri is the i-th conversion rule and Ci
is the i-th legal combination of instances from the schema language. A conversion table for all possible Ci can
be set up, where each Ci maps to a production of instances in the output data structure, D. Figure 2 shows the
relationship between the input and output conceptual schema language and the encoding rule.

Conceptual
schema

language
C

Encoding
rule
R

input
concepts

output
concepts

Output data
structure
schema

language
D

Figure 2 — The encoding rule defines conversion rules from input concepts to output concepts

NOTE The conversion rules are defined based on the two schema languages and not on any particular application
schema. This is a generic approach that allows developers to write application-schema-independent encoding services,
which can be used for different application schemas as long as the schemas are defined in the same conceptual schema
language.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

10 © ISO 2011 – All rights reserved

6.5 Encoding service

An encoding service is a software component that has implemented the encoding rule and provides an
interface to encoding and decoding functionality. It is an integrated part of data interchange.

Figure 3 presents the details of an encoding service and its relationships to important specification schemas.
The encoding service shall be able to read the input data structure and convert the instances to an output data
structure and vice versa. It shall also be able to read the application schema declarations and write the
corresponding output data structure schema. The input data structure is defined by an application schema.
The application schema is defined using concepts of the conceptual schema language. The output data
structure is also described with a schema, called the data structure schema, which defines the possible
content, structure and coding schemes of the output data structure. The data structure schema is described
with a schema language. The encoding rule specifies conversion rules at two levels: the first is at the schema
level and the second is at the instance level. At the schema level, the conversion rules define a mapping for
each of the concepts defined in the application schema to corresponding concepts in the data structure
schema. At the instance level, the conversion rules define a mapping for each of the instances in the input
data structure to corresponding instances in the output data structure. The instance conversion rules are
normally deduced from the schema conversion rules.

input output

Data
structure
schema

D

Application
schema

I
Schema

Instances

Defines

Data flow

i d

Encoding
service

Figure 3 — Overview of the encoding process

An encoding service shall at least provide interfaces for encoding and decoding functionality. Examples of
such interfaces are for encoding d  encode (i, I) and for decoding i  decode (d, I). Here, i is a reference to
an application-schema-specific data structure; I is a reference to the application schema; and d is a reference
to the system independent data structure.

6.6 Transfer service

A transfer service is a software component that has implemented one or more transfer protocols that allows
data transfer between distributed information systems over off-line or on-line communication media. To
successfully transfer data between two systems, it is necessary that the sender and receiver agree on the
transfer protocol being used.

Different transfer protocols can be defined. One example is off-line transfer protocols where data are stored
on optical or magnetic media and delivered using postal services or other dedicated delivery services. Another
example is on-line transfer protocols where data are compressed and included as an email attachment,
delivered using a file transfer protocol or transferred using other distributed information technology services
which rely on an underlying network service.

This International Standard does not prescribe any preferred transfer protocols.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 11

7 Character repertoire

ISO/IEC 10646 defines an internationally recognized repertoire of characters called the Universal Character
Set (UCS) and its character-encoding schemes. The international character set standards defined in
ISO/IEC 10646 shall be used in implementing this International Standard.

The character-encoding schemes that can be supported by international profiles of this International Standard
are the following:

a) 8-bit variable size UCS Transfer Format UTF-8;

b) 16-bit variable size UCS Transfer Format UTF-16;

c) 16-bit fixed size Universal Character Set UCS-2 (deprecated);

d) 32-bit fixed size Universal Character Set UCS-4.

International encoding rules that claim conformance with this International Standard shall support one or more
of these character-encoding schemes. Within national profiles and system implementations, different
character-encoding schemes may be used. The fixed-size character-encoding schemes are often used in
database implementations and the variable-size is often used for data interchange purposes.

ISO/IEC 10646 specifies only the repertoire of characters and gives no indication of which language is actually
used.

NOTE 1 In cases where it is important to distinguish between different languages in text strings, special mechanisms to
indicate the language used can be used.

ISO/IEC 10646 defines mechanisms for creating composite characters. Composite characters are characters
produced by superimposing one or more additional characters on a base character. ISO/IEC 10646 defines a
set of precomposed characters and their defined decomposition. Since mixing composite characters with their
precomposed equivalents can lead to interpretation problems, the use of a composite character if a
precomposed character exists is deprecated, i.e. the precomposed character shall always be used.

To summarize, an encoding rule shall

 support one or more character-encoding schemes, and

 not use composite characters if equivalent precomposed characters exist.

EXAMPLE The precomposed character ö has the defined decomposition o¨.

NOTE 2 For a more detailed description of character normalization, see http://www.unicode.org/reports/tr15/
and http://www.w3.org/TR/charmod-norm/.

NOTE 3 UTF-16, UCS-2 and UCS-4 require information on how to deal with byte ordering,
see http://www.unicode.org/faq/utf_bom.html.

8 Generic instance model

8.1 Introduction

A generic instance model is defined in Clause 8. The instance model is a convenient common representation
of data when developing encoding services. The instance model is capable of representing data described by
application schemas expressed in UML. The instance model represents the application-schema-specific data
structure defined in Clause 6 (data structures iA and iB in Figure 1). The instance model consists of a dataset
(IM_Dataset) that contains a sequence of objects (IM_Object), where an object consists of a sequence of
properties (IM_Property). Properties in this context are either attributes or associations; operations are not

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

http://www.unicode.org/reports/tr15/
http://www.w3.org/TR/charmod-norm/
http://www.unicode.org/faq/utf_bom.html
https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

12 © ISO 2011 – All rights reserved

included in the general instance model. Each property is encoded according to its data type. The instance
model is shown in Figures 4 and 5.

The application schema defines a number of classes and their attributes and associations and it is the basis
for generating data representations. A data representation (dataset) contains one or more objects that are
structured and encoded according to their class definitions. Clause 8 describes the principles of how to
represent objects, their attributes and associations between objects.

The basic unit of information in a dataset is the object. An object shall be an instance of a single concrete
class. There are no instances of abstract classes and classes stereotyped as interface. Thus, properties
defined by such classes are encoded as part of concrete classes inheriting or realizing them. Each class shall
have a unique name within the application schema. The application schema may refer to or use classes
defined in standardized schemas or other application schemas. The declaration of these classes shall either
be included in the UML model that contains the application schema or accompany the application schema as
a separate file.

An object shall contain a set of property values. The object's class defines the properties and they can either
be inherited through the “class” supertypes or defined within the class itself. In order to differentiate between
the different properties, each property shall have a name that is unique within its class. The property's data
type governs the possible values and the multiplicity statement indicates the number of instances of the
attribute in an instantiated object.

An object has a corresponding class, defined in an application schema or standardized schema, which defines
the possible attributes and associations that are necessary to represent the state of the object. An IM_Object
refers to its class by the “class” attribute, it shall be identified within the context of a dataset by its unique
identifier “id”, and may be universally uniquely identified within a defined universe, application domain or name
space, by its “duid” attribute.

<<type>>
Instance Model::IM_DataSet

+ id: CharacterString
+ duid: CharacterString
+ /uuid: CharacterString
+ type: GenericName

<<type>>
Instance Model::IM_Property

+ name: GenericName
+ value: IM_Value [0..*] {ordered}

<<type>>
Instance Model::IM_Object

object

0..*

0..*property

+ id: CharacterString
+ duid: CharacterString
+ /uuid: CharacterString

0..*

constraints
{uuid = duid}

constraints
{uuid = duid}

Figure 4 — Instance model — Dataset, object and property

The attributes defined by the class and the association ends navigable from the class are mapped to a set of
properties. A property (IM_Property) represents a name with an ordered collection of values. It can represent
an attribute or association end. The property name shall correspond to the attribute name or the target role
name of an association. A value (IM_Value) represents a property value.

Null values may be given either explicitly or implicitly. An explicit null value shall be indicated by an instance of
the corresponding IM_Property with a given nilReason value. An implicit null value is indicated if the
corresponding IM_Property instance is missing.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 13

<<type>>
Instance Model::IM_Property

+ name: GenericName
+ value: IM_Value [0..*] {ordered}

0..1

0..*property

+ id: CharacterString [0..1]
+ duid: CharacterString [0..1]
+ /uuid: CharacterString [0..1]

<<type>>
Instance Model::
IM_SimpleValue

+ value: CharacterString
+ type: GenericName

<<type>>
Instance Model::IM_Reference

+ id_ref: CharacterString [0..1]
+ duid_ref: CharacterString [0..1]

<<type>>
Instance Model::

IM_StructuredValue

+ type: GenericName

<<type>>
Instance Model::IM_Value

constraints
{uuid = duid}

constraints
{id_ref->notEmpty() or duid_ref->notEmpty()}
{id->isEmpty()}
{duid>isEmpty()}

Figure 5 — Instance model — Value types

The three value types are defined as follows.

 IM_SimpleValue represents a value of simple content.

EXAMPLE An integer or a character string.

 IM_Reference represents a link or reference to a target object. The target object may be located in the
same transfer unit or another one. A unique identifier (id_ref) targets an object located within the same
transfer unit. A domain unique identifier (duid_ref) targets an object located within the context of an
application domain.

 IM_StructuredValue represents a data type value with complex content [a sequence of properties
(IM_Property)].

An object may, through its associations, be linked (or refer) to one or more objects. UML defines three
different types of associations, called association, aggregation and composition, with different semantics; see
ISO/TS 19103 for further details. There are, in general, two strategies for representing associations: either
encapsulated as a part of the objects or detached from the objects as separate association objects or
relational tables.

The encapsulated representation strategy splits an association into a source object property and a target
object property. These two link properties then each point to the other object. The link property contains
references to its target objects or, in the case of a composition, the target objects themselves. A link property
is identified by the role name close to the target class and has a corresponding multiplicity. If the role name is
missing or if the association is not navigable from the source object, then there shall be no link property. The
two link property values should be consistent in that the referential integrity constraint is enforced. That is, if a
source object is referring to another target object through a link property and the target object has a bi-
directional association to the source object, the target object shall have a corresponding link property that is
referring back to the source object. If a link property is encoded as a reference or an embedded object or not
encoded at all, it is defined by a concrete encoding rule (such as Annex A).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

14 © ISO 2011 – All rights reserved

8.2 Relation between UML and the instance model

Table 3 gives a summary of the relation between UML and the instance model.

Objects based on classes that have supertypes shall contain all the properties and association ends of their
class and of their supertypes. Thus, all attributes and association ends shall be copied from the supertypes
and are considered to be a part of the object. Attribute and association end names shall be the way of
accessing the values of the attributes and they shall therefore be unique within the class.

Operations and constraints shall not be mapped to the instance model.

Table 3 — Summary of relationship between UML and the instance model

UML concept Instance model

Package N/Aa

Class
 Stereotype
 <<Interface>>
 <<DataType>>
 <<Union>>
 <<Enumeration>>
 <<CodeList>>
 <<Type>>
 <<FeatureType>>
 NONE

 any other stereotype as defined
by the UML profile used

IM_Object
IM_SimpleValue or IM_StructuredValue
IM_StructuredValue
IM_SimpleValue
IM_SimpleValue or IM_StructuredValue
IM_Object
IM_Object
IM_Object

as defined by the encoding rule specification

Attribute IM_Property with IM_Value according to attribute type; either
IM_SimpleValue, IM_Reference or IM_StructuredValue

Association IM_Property with IM_Reference

Aggregation IM_Property with IM_Reference

Composition IM_Property with IM_Value according to target type; either
IM_Reference (target type is a class) or IM_SimpleValue or
IM_StructuredValue (target type is a data type)

Generalization The object according to the sub-class carries all the properties that
the sub-class inherits from the super-classes.

Operation N/A

Constraint N/A

a N/A stands for not applicable.

9 Encoding rules

9.1 Introduction

The requirements for specifying encoding rules are defined in 9.2 to 9.6. An encoding rule describes
conversion rules for transforming data from an input data structure to an output data structure. Schemas shall
be described for both the input and the output data structure. The schema for the input data structure is called
an application schema.

An encoding rule shall in general specify the following:

a) general encoding requirements (9.2):

1) application schemas and schema language,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 15

2) order of bits within each byte, and bytes within a word (where applicable),

3) character repertoire and encoding,

4) necessary exchange metadata,

5) dataset and object identification convention;

b) input data structure (9.3):

1) data structure used to pass data according to an application schema (data structures iA and iB in
Figure 1) to the encoding service, called the instance model,

2) how the instance model is related to the application schema;

c) output data structure used, called the exchange format (9.4);

d) conversion rules, called the mapping, for converting data in the instance model to the exchange format
(9.5):

1) conversion rules for encoding,

2) if necessary, conversion rules for decoding;

e) sufficient examples of abstract data, application of conversion rules and encoded data (9.6).

9.2 General encoding requirements

9.2.1 Application schema and schema language

The encoding rule shall specify the schema language used to define application schemas and describe how
an application schema is organized.

9.2.2 Bit and byte ordering

If the encoding rule specifies a binary encoding, it shall specify the order of the bits within each byte, and the
order and number of bytes within any multi-byte structure (word).

NOTE These are general rules that apply to text and binary encoding rules. Even text-based encodings (such as
UTF-16, UCS-2, UCS-4) require a specification of byte ordering (see http://www.unicode.org/faq/utf_bom.html).

9.2.3 Character repertoire and encoding

The character repertoire defines the characters that are allowed. The character repertoire doesn't define the
language of the data. The same character repertoire can be encoded in different ways.

If more than one language is required, the application schema shall model an attribute so that the actual
language of encoded text can be identified.

NOTE See class LocalizedCharacterString in ISO/TS 19103.

The encoding rule shall specify the character repertoire used and the encoding of the characters.

9.2.4 Exchange metadata

Exchange metadata are metadata about the encoded data structure. They may describe the originator of the
dataset, refer to metadata information about the dataset, refer to the application schema and provide
information about the encoding rule applied.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

http://www.unicode.org/faq/utf_bom.html
https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

16 © ISO 2011 – All rights reserved

The encoding rule shall specify the exchange metadata and how it accompanies the encoded data structure.

Figure 6 illustrates an example of an ExchangeMetadata class and a corresponding EncodingRule class. The
CI_Citation class is defined in ISO 19115. An exchange file normally contains one instance of the
ExchangeMetadata class. The “datasetCitation” attribute contains information about the originator of the
dataset, the “metadataCitation” attribute may contain information about where to find metadata about the
dataset, and the “applicationSchemaCitation” attribute may hold a reference to the application schema. The
EncodingRule's “encodingRuleCitation” attribute identifies the encoding rule applied and a description of how
the rule was applied in this particular case. It may also contain information about the encoding service tool
used to encode the dataset, where “toolName” and “toolVersion” indicate the name of the encoding service
tool and its version number.

Exchange Metadata::EM_ExchangeMetadata

+ datasetCitation: CI_Citation
+ metadataCitation: CI_Citation [0..1]
+ applicationSchemaCitation: CI_Citation [0..1]

Exchange Metadata::EM_EncodingRule

+ encodingRuleCitation: CI_Citation
+ toolName: CharacterString
+ toolVersion: CharacterString [0..1]

encodingRule 1

{root}

Figure 6 — Example of exchange metadata

9.2.5 Transfer unit

9.2.5.1 Granularity and structure

It is important to define the granularity and the structure of a transfer unit so that it can be encoded and
decoded efficiently. An object is here considered as the basic unit of information and it is necessary that the
different types of objects be identified. The objects in a transfer unit may be structured sequentially and/or
hierarchically. An object may be internally structured as a sequence of attributes, it may contain references to
other objects and it may also be composed of other objects in a hierarchical manner.

An object may be split into different fragments, or its properties may be merged with other objects. Whatever
changes in structure an encoding rule specifies, the instance conversion shall be unambiguously reversible.

The encoding rule shall specify the following:

 what an object is and the different types of object;

 the structure of an object;

 the structure of a dataset.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 17

9.2.5.2 Object identification

Objects may be assigned identifiers that allow their unique identification within a particular context. Two
different contexts should be considered.

a) The first context is a transfer unit. Here the object identifiers are unique within a particular unit of data
transfer. These identifiers allow objects to refer to other objects within the context of that one transfer unit.
The identifiers may be assigned to the objects when they are inserted into the transfer unit and are
transient in nature.

b) The second context is an application domain. An application domain defines a universe and an
identification convention called domain unique identifiers (DUIDs). A DUID is assigned to an object when
it is created and is stable over the entire life span of the object. A DUID of a deleted object shall not be
used again. A DUID is mostly used for implementation reasons. DUIDs are required for long term
distributed data management and for realizing update mechanisms. These identifiers are also called
persistent identifiers. A special name server may be used to resolve persistent identifiers. The identifiers
shall be unique within a well-defined, limited universe defined by an application domain.

An application domain may use additional properties to identify the real-world phenomena represented by the
object (e.g. a parcel number). These additional properties are not considered object identifiers in the scope of
this specification.

An encoding rule may change the layout of the data, for example factoring out common character strings. To
support this, types without identity, according to the application schema, may get a fragment identifier. These
fragment identifiers are in any case transient (only valid inside the transfer unit), and are never a DUID.

The encoding rules shall specify the following:

 the different object identification mechanisms used;

 their internal structure.

9.3 Input data structure

The input data structure is called the instance model and it is an instrument for reasoning about application
data, for defining conversion rules and for expressing examples. The instance model shall be capable of
representing data according to the specification in the application schema. It may be specific to a particular
application schema or capable of representing data according to any schema. It may be abstract in that it
does not have to be implemented in order to realize an encoding service.

The encoding rule shall reference the general instance model as defined in Clause 8 or specify an instance
model and its relation to the application schema.

This International Standard does not mandate a specific implementation of the instance model or how data
are passed from/to the encoding service.

9.4 Output data structure

The output data structure defines how data is structured and represented in an exchange file. A schema may
accompany the output data structure.

The encoding rule shall specify the output data structure and, if present, the output data structure schema.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

18 © ISO 2011 – All rights reserved

9.5 Conversion rules

A conversion rule specifies how a data instance in the input data structure is converted to a data instance in
the output data structure. Two sets of conversion rules may exist. The first one is the set of schema
conversion rules that define a mapping from the UML schema to the schema of the output data structure. The
second one is the set of instance conversion rules that define a mapping from instances in the instance model
to instances in the resulting data model. Figure 7 shows the different conversion rules.

Application
schema
c

Instance
model
i

Schema
conversion

rules

Instance
conversion

rules

Encoding Service Data
structure
schema

D

Data
structure

d

Schema
model

I

Application
data

Figure 7 — Conversion rules

The encoding rule shall specify the following:

 schema conversion rules;

 instance conversion rules.

9.6 Examples

Examples are important for understanding the conversion rules and for testing encoding services.

The encoding rule shall provide the following:

 examples that illustrate conversion rules;

 test data that can be used in implementation of encoding services.

10 Encoding service

An encoding service is a software component that implements the encoding rule and provides an interface to
its functionality.

An encoding service shall provide an interface to its functionality through one or more interface specifications.

An encoding service shall provide one or more of the following:

 capability to encode data according to the instance conversion rules;

 capability to decode data according to the instance conversion rules;

 capability to create an output data structure schema according to the schema conversion rules.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 19

This International Standard does not mandate a specific interface to the encoding service.

An encoding service may provide only encoding or decoding capabilities.

Figure 8 is an example of an XML-based encoding service.

NOTE Figure 8 shows an encoding service with one interface specification. It supports three operations:
generateXMLSchema, encode and decode. The “generateXMLSchema” operation can be used to generate an XML
Schema file. This operation takes a schema model as input parameter and produces an XMLStream object as a result.
The “encode” operation can be used to generate an XML document. It takes a schema model and an instance model as
input parameters and returns an XMLStream object. The “decode” operation can be used to interpret an XML document. It
takes a schema model and an XMLStream object as input and returns an instance model.

<<interface>>
Encoding Service::GenericXMLEncodingService

+ generateXMLSchema(m :SchemaModel) : XMLStream
+ decode(m :SchemaModel, d :XMLstream) : InstanceModel
+ encode(m :SchemaModel, i :InstanceModel) : XMLStream

{abstract,root,leaf}

Encoding Service::
SchemaModel

Encoding Service::
InstanceModel

Encoding Service::
XMLstream

Figure 8 — Example encoding service interface

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

20 © ISO 2011 – All rights reserved

Annex A
(normative)

XML-based encoding rule

A.1 The XML encoding in this International Standard shall be in accordance with the Extensible Markup
Language (XML) 1.0. There isn't a fixed set of encoding requirements enabling a single XML-based encoding
rule for all the schemas. As a result, this International Standard does not specify a schema conversion rule.
Every XML-based encoding rule shall

 specify or identify the input data structure, typically the profile of UML used by the encoding rule,

 specify the XML output data structure,

 specify the schema conversion rules between the input and output data structures, and

 conform to all requirements specified in this annex.

A.2 Different use cases result in different encoding rules. Currently, the set of International Standards
known as the “ISO 19100 series” specifies two XML-based encoding rules:

 ISO 19136:2007, Annex E, specifies an XML-based encoding rule for ISO 19109-conformant application
schemas that can be represented using a restricted profile of UML that allows for a conversion to XML
Schema. The encoding rule has mainly been developed for the purpose of application schemas
specifying feature types and their properties. The encoding rule uses XML Schema for the output data
structure schema.

 ISO/TS 19139 specifies an XML-based encoding rule for conceptual schemas specifying types that
describe geographic resources, e.g. metadata according to ISO 19115 and feature catalogues according
to ISO 19110. The encoding rule supports the UML profile as used in the UML models commonly used in
the standards developed by Technical Committee ISO/TC 211. The encoding rule uses XML Schema for
the output data structure schema.

A.3 Different XML-based encoding rules may be required and specified by an information community.
Examples for such requirements include, but are not limited to, the following:

 support for the XML-based encoding rule specified in Annex C (this encoding rule is in use by
communities);

 support for a different UML profile not covered by an existing XML-based encoding rule;

 support for an output data structure schema other than XML Schema (e.g. Relax NG);

 support for new XML technologies or new versions of existing XML technologies;

 support for specific conversions to optimize the use of the capabilities of XML;

 support for other XML-related requirements that are established in a community.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 21

Annex B
(normative)

Abstract test suit

B.1 Test cases for an encoding rule

B.1.1 General

All encoding rules shall pass all test cases of the abstract test suite in B.1 to B.3, according to the
conformance classes defined in clause 2.2.

B.1.2 Documentation of conversion rules

a) Test purpose: Verify that the encoding rule defines instance or schema conversion rules.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.5.

d) Test type: Basic.

B.1.3 Consistent instance and schema conversion rules

a) Test purpose: Verify that, if the encoding rule defines schema and instance conversion rules, they are
consistent.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.5.

d) Test type: Capability.

B.1.4 Bit and byte ordering

a) Test purpose: Verify that the encoding rule specifies bit and byte ordering or defines metadata to specify
it at runtime.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.2.2, 9.2.4.

d) Test type: Capability.

B.1.5 Character set and encoding

a) Test purpose: Verify that the encoding rule specifies character set and encoding or defines metadata to
specify it at runtime.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.2.3, 9.2.4.

d) Test type: Capability.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

22 © ISO 2011 – All rights reserved

B.1.6 Identification convention

a) Test purpose: Verify that the encoding rule specifies an identification convention or defines metadata to
specify it at runtime.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.2.4, 9.2.5.2.

d) Test type: Capability.

B.1.7 Encoding metadata

a) Test purpose: Verify that the encoding rule defines metadata to specify encoding aspects at runtime that
are not fixed in the encoding rule.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.2.2, 9.2.3, 9.2.4, 9.2.5.2, 9.5.

d) Test type: Capability.

B.2 Test cases for instance conversion rules

B.2.1 Documentation of instance conversion

a) Test purpose: Verify that the encoding rule defines how instances of the generic instance model are
mapped to the transfer format.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.5.

d) Test type: Capability.

B.2.2 Completeness of instance conversion

a) Test purpose: Verify that the encoding rule defines instance conversion rules for the complete generic
instance model.

b) Test method: Inspect the encoding rule documentation.

c) Reference: Clause 8 and 9.5.

d) Test type: Capability.

B.2.3 Unambiguous instance conversion

a) Test purpose: Verify that the encoding rule defines instance conversion rules that map an instance from
the generic instance model to the transfer format and back again without loss of information.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.2.5.1.

d) Test type: Capability.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 23

B.3 Test cases for schema conversion rules

B.3.1 Documentation of schema conversion

a) Test purpose: Verify that the encoding rule defines how an application schema is mapped to the transfer
format schema.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.5.

d) Test type: Capability.

B.3.2 Completeness of schema conversion

a) Test purpose: Verify that the encoding rule defines schema conversion rules for the complete UML profile
defined by ISO/TS 19103 or a profile of it.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.5.

d) Test type: Capability.

B.3.3 Unambiguous instance conversion

a) Test purpose: Verify that the encoding rule defines schema conversion rules that result in a mapping of
an instance from the generic instance model to the transfer format and back again without loss of
information.

b) Test method: Inspect the encoding rule documentation.

c) Reference: 9.2.5.1.

d) Test type: Capability.

B.4 Test cases for an encoding service

B.4.1 Documentation of service interface

a) Test purpose: Verify that the encoding service provides a documented interface.

b) Test method: Inspect the encoding service documentation.

c) Reference: Clause 10.

d) Test type: Basic.

B.4.2 Reference to encoding rule

a) Test purpose: Verify that the encoding service documentation references the encoding rule that it
implements.

b) Test method: Inspect the encoding service documentation.

c) Reference: Clause 10.

d) Test type: Basic.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

24 © ISO 2011 – All rights reserved

B.4.3 Implementation of specified encoding rule

a) Test purpose: Verify that the encoding service implements the referenced encoding rule.

b) Test method: Inspect the encoding service implementation.

c) Reference: Clause 10.

d) Test type: Capability.

B.5 Support of any application schema

a) Test purpose: Verify that the encoding service supports any application schema as specified by the UML
profile used by the encoding rule.

b) Test method: Inspect the encoding service interface to see if it supports the generic instance model.

c) Reference: Clause 8.

d) Test type: Capability.

B.6 Encoding data

a) Test purpose: Verify that the encoding service provides functionality to write data.

b) Test method: Inspect the encoding service interface to see if it provides functionality for writing data.

c) Reference: Clause 10.

d) Test type: Capability.

B.7 Decoding data

a) Test purpose: Verify that the encoding service provides functionality to read data.

b) Test method: Inspect the encoding service interface to see if it provides functionality for reading data.

c) Reference: Clause 10.

d) Test type: Capability.

B.8 Schema generation

a) Test purpose: Verify that the encoding service provides functionality to generate a format schema.

b) Test method: Inspect the encoding service interface to see if it provides format schema generation
functionality.

c) Reference: Clause 10.

d) Test type: Capability.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 25

Annex C
(informative)

XML-based encoding rule in use by communities

C.1 Introduction

This annex introduces an example of the XML-based encoding rule for neutral data interchange in some
communities. The encoding rule is compatible with the Unified Modelling Language (UML) and defines an
encoding rule based on the Extensible Markup Language (XML).

NOTE ISO 19118:2005, Annex A, specified an XML-based encoding rule. The rule has been used in some
communities. This Annex C is the revision of the rule for the communities in compliance with this International Standard.

This annex follows the requirements in Clause 9 and specifies the following:

a) the general encoding requirements in C.2;

b) the input data structure in C.3;

c) the output data structure in C.4;

d) the conversion rules in C.5 and C.6.

Examples are given in C.5.8 and C.6.4.

The conversion rules are based on the idea that the class definitions in the application schema are mapped to
type declarations in XML Schema, and that the objects in the instance model are mapped to corresponding
element structures in the XML document. Figure C.1 depicts the two types of conversion rule.

Application
schema
c

Instance
model
i

Schema
conversion

rules

Instance
conversion

rules

Encoding Service Schema
(XML Schema

| DTD)
D

XML
document

d

Schema
model

I

Application
data

Figure C.1 — XML-based conversion rules

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

26 © ISO 2011 – All rights reserved

C.2 General encoding requirements

C.2.1 Application schema

C.2.1.1 Introduction

The application schema shall be expressed in UML schema language according to the rules specified in
ISO/TS 19103 and ISO 19109. An application schema consists of application-defined concepts expressed as
classes and associations. Some of these classes may be imported from the standardized schemas in other
standards.

C.2.1.2 Class

The fundamental modelling concept in UML is the class. It is identified by a name and may have a stereotype.
The class may have attributes, operations and constraints and participate in associations. A class defines a
type that can be used as a building block to define other classes. Types are the fundamental building blocks
out of which all forms of data can be composed and encoded, e.g. numbers, coordinates, text strings, dates,
and objects. A type defines the legal value domain and the operations on values of that domain.

Two main categories of types are the simple data types and the complex data types. A type is a simple data
type if there is a canonical encoding defined for the type. This canonical encoding may define how to
represent values of the type as bits in a memory location or as characters in a textual encoding. Examples of
simple types are integer, float and string. A type is of a complex data type when there is no canonical
encoding defined for the type. Examples are object types, structured types, records, and collections. A
complex type consists of a structured collection of basic and complex attributes that can be encoded using a
combination of basic types and special structuring primitives. A third category is the external data types that
are defined outside the set of International Standards known as the “ISO 19100 series”.

a) Simple data types – Fundamental types for representing values:

1) basic data types: CharacterString, Integer, Binary, Boolean, Date, Time, etc.;

2) enumerated data types and code lists: A list of legal values, where each value is a word or a code
with associated semantics.

b) Complex data types – Types for representing more complex collections of values:

1) collection data types: Template types for representing multiple occurrences of other types – Set, Bag,
Sequence, Dictionary, etc.;

2) structured data types: Types that define attribute groups;

3) object types: Types whose instances are objects; often defined in application schemas or
standardized schemas – GM_Point, Building, etc.;

4) interfaces: Types whose instances are service components.

c) External data types – Basic or complex types with a well-defined encoding that are not defined within the
set of International Standards known as the “ISO 19100 series”; examples are image formats such as
NASA MODIS, TIFF, etc. Special referencing mechanisms shall be specified that allow references,
usually stored in separate files, to external data types.

ISO/TS 19103 defines the modelling concepts applied, including a number of simple and complex data types
together with their semantics. The application developers are free to specify user-defined data types and
object types using the stereotype extension mechanism of UML. Other International Standards within the set
of International Standards known as the “ISO 19100 series” define more specialized data types. It can
occasionally be necessary for application schema developers to use external data types. External data types
are basic or structured data types that are defined outside this series of International Standards. It is

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 27

necessary that they have a well-defined encoding; examples are image formats such as NASA MODIS and
TIFF. Objects of external data types can be stored in separate files and special referencing mechanisms that
allow references to external data types shall be specified.

The stereotypes allowed on classes are described in Table C.1.

Table C.1 — Stereotypes on classes

Stereotype Description

<<BasicType>> Defines a basic data type that has defined a canonical encoding

<<DataType>> Defines a structured data type. The instances are not considered objects and shall therefore
not have an identity

<<Union>> Defines a union data type

<<Enumeration>> Defines an enumerated data type

<<CodeList>> Defines an extendable enumerated data type, consisting of code and value pairs

<<Interface>> Defines a service interface and shall not be encoded

<<Type>> Defines an object type. Instances shall have identity

<<FeatureType>> Defines a feature type. Instances shall have identity

NONE Defines an object type. Instances shall have identity

An object is considered the fundamental unit of interchange. Only aspects that are essential for capturing an
object's state shall be considered for data interchange purposes. Attributes and associations shall be encoded.
Operations and constraints shall not be considered further. An encoding rule shall specify how instances of
classes are represented, including how attributes and associations are structured and represented.

C.2.1.3 Attributes

An attribute is identified by a name. It may have a multiplicity statement and shall always have a type. The
multiplicity statement shall indicate the number of legal value occurrences of a particular attribute.

Combinations of multiplicity and use of collection data types allows nesting of values.

There shall be mechanisms to handle null values. The type shall define how a null value is represented. See
ISO/TS 19103 for the definition of the basic and collection data types.

C.2.1.4 Associations

Associations define relationships between classes that involve connections between their instances. An
instantiation of an association is called a link. A link contains an ordered list of references to objects. UML
defines three different types of associations called association, aggregation and composition.

 Association defines general relationships between classes.

 Aggregation defines weak part-whole relationships between classes.

 Composition defines strong part-whole relationships between classes.

The three association types have different semantics. ISO/TS 19103 gives further details.

The end of an association is identified by its role name and its target class, and is further described by a
multiplicity statement. The role name shall be used to represent a link. If the role name is missing, then there
is no link.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

28 © ISO 2011 – All rights reserved

C.2.2 Exchange structure and exchange metadata

The exchange structure shall be divided into three parts. The first part is the exchange metadata, which shall
be described according to 9.2.4. The second part is the dataset that shall contain XML elements that
correspond to independent objects. The third part is optional and shall contain an update section of the update
primitives as described in C.2.5.

C.2.3 Character repertoire and language

The underlying exchange structure shall support the language and character repertoire:

 language (see C.5.6 for language tagging);

 character repertoire (see ISO/IEC 10646).

C.2.4 Dataset and object identification

The two ways of specifying object identification as described in 9.2.5.2 shall be as follows:

 unique dataset identifiers according to XML's ID mechanism;

 universal unique identifiers according to the application domain's specification.

NOTE The term “universal unique identifier” has the same meaning as “domain unique identifier”. This annex uses it
and “UUID” as its abbreviation to keep the compatibility for the communities in use. The application of UUIDs in this
International Standard is not limited to a particular mathematical basis, like ISO/IEC 11578 or ISO/IEC 9834-8. The
“universal unique identifier” is not actually qualified by application domains, in contrast to the “domain unique identifier”,
which is qualified by the application domain.

EXAMPLE An application domain can want to use a two-component identifier. The first component is the domain
name and the next component is an integer instance number. The components can be separated by a colon “:”. The
instance numbers can be encoded in hex. There are no restrictions on the size of the instance number. Examples of two
UUIDs in a domain called “example” are: “example:F23C30” and “example:FFFFFF12345A”.

C.2.5 Update mechanism

An update mechanism allows previously exchanged data to be brought up to date without the requirement for
reissuing a complete new dataset. Policies and procedures for update shall be defined by the specific
application. Three basic update primitives are usually defined: add, modify and delete. These primitives work
on the object level, but may also be defined to work on the attribute or association level. Any object that has
previously been transmitted with a UUID may be modified or deleted. An update dataset contains an ordered
sequence of update primitives. The basic primitives are described as follows.

a) add: A new object has been added to the source dataset and shall be added into the target dataset. An
add primitive shall contain information about the new object to be added and may contain information
about where it is inserted in the target dataset.

b) modify: An existing object has been modified in the source dataset and shall be modified in the target
dataset. A modify primitive shall contain information that identifies the target object and the actual
modifications. Examples of modification information could range from a complete object to just an
updated attribute.

c) delete: An existing object has been deleted in the source dataset and shall therefore be deleted in the
target dataset. The delete primitive shall contain information that identifies the target object to be deleted.

The users may extend the list of primitives.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 29

C.3 Input data structure

C.3.1 Instance model

The instance model is capable of representing data described by application schemas expressed in UML. As
the input data structure, this encoding rule uses an instance model which is based on the generic instance
model defined in Clause 8. The instance model is defined in Figures C.2 and C.3.

Figure C.2 shows IM_Dataset, IM_Object and IM_Property classes that are basically the same as the ones
defined in 8.1 and in Figure 4.

<<type>>
Instance Model::IM_DataSet

<<type>>
Instant Model::IM_Property

+ name: GenericName
+ value: IM_Value [0..*] {ordered}

0..*property

+ id: CharacterString
+ duid: CharacterString
+ /uuid: CharacterString

<<type>>
Instance Model::IM_Object

+ id: CharacterString
+ duid: CharacterString
+ /uuid: CharacterString
+ type: GenericName

{uuid = duid}

object

0..*

constraints

{uuid = duid}
constraints

0..*

Figure C.2 — Instance model — Dataset, object and property

The instance model consists of a dataset represented by IM_Dataset. A dataset contains a sequence of
objects represented by IM_Object. An object consists of a sequence of properties represented by IM_Property.

There is an additional definition of attribute uuid in IM_Dataset and IM_Object. The derived attribute uuid is
defined as the alternative name of attribute duid.

NOTE 1 The definition of attribute uuid is to keep the compatibility for the communities in use.

Value types in the instance model are defined in Figure C.3, which is based on Figure 5.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

30 © ISO 2011 – All rights reserved

<<type>>
Instance Model::IM_Value

<<type>>
Instance Model::IM_Property

+ name : GenericName
+ value: IM_Value [0..*] {ordered}

0..1

0..*property

+ id: CharacterString [0..1]
+ duid: CharacterString [0..1]
+ /uuid: CharacterString [0..1]

<<type>>
Instance Model::
IM_SimpleValue

+ value: CharacterString
+ type: GenericName

<<type>>
Instance Model::IM_Reference

+ id_ref: CharacterString [0..1]
+ duid_ref: CharacterString [0..1]

<<type>>
Instance Model::

IM_StructuredValue

+ type: GenericName

{id_ref->notEmpty() or duid_ref->notEmpty()}
{id->isEmpty()}
{duid->isEmpty()}

<<type>>
Instance Model::

IM_ObjectReference

+ /uuid_ref: CharacterString [0..1]

{uuid_ref = duid_ref}

{uuid = duid}
constraints

constraints

constraints

{leaf}

Figure C.3 — Instance model — Value types

IM_Value is the superclass of four value types defined as follows.

 IM_SimpleValue represents a value of a basic type.

EXAMPLE An integer or a character string.

 IM_Reference represents a link or reference to a target object. The target object may be located in the
same or other datasets.

 IM_ObjectReference is a subtype of IM_Reference. A unique identifier (id_ref) targets an object located
within the same dataset. A universal unique identifier (uuid_ref and duid_ref) targets an object located
within the context of an application domain.

 IM_StructuredValue represents a data type value with complex content [a sequence of properties
(IM_Property)].

The difference between this instance model and the generic instance model defined in Clause 8 is as follows.

a) IM_Value contains the derived attribute uuid as the alternative name of attribute duid.

b) IM_ObjectReference is defined and it has an additional derived attribute uuid_ref which defines the
alternative name of attribute duid_ref.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 31

Other classes defined in Figure C.3 are identical to the ones defined in 8.1 and Figure 5.

NOTE 2 The definition of the class IM_ObjectReference and the attribute uuid in IM_Value and IM_ObjectReference
are to keep the compatibility for the communities in use.

C.3.2 Relation between UML and the instance model

Tables C.2 and C.3 give a summary of the relation between UML and the instance model. Thus an abstract
class shall not be instantiated.

Objects based on classes that have supertypes shall contain all the properties, associations and compositions
of their class and of their supertypes. Thus, all attributes and associations shall be copied from the supertypes
and are considered to be a part of the object. Attribute and association names shall be the way of accessing
the values of the attributes and they shall therefore be unique within the class.

Operations and constraints shall not be mapped to the instance model.

Table C.2 — Summary of relationship between UML and the instance model

UML concept Instance model

Package N/Aa

Class
 Stereotype
 <<Interface>>
 <<BasicType>>
 <<DataType>>
 <<Union>>
 <<Enumeration>>
 <<CodeList>>
 <<Type>> or NONE
 Abstract class
 Sub-class

N/A
IM_SimpleValue
IM_StructuredValue
IM_StructuredValue
IM_SimpleValue
IM_SimpleValue
IM_Object
N/A
attributes and associations shall be copied from super-classes

Attribute IM_Property with IM_Value according to data type (either
IM_SimpleValue or IM_StructuredValue)

Association IM_Property with IM_Value of IM_ObjectReference

Aggregation IM_Property with IM_Value according to either IM_StructuredValue or
IM_ObjectReference

Composition IM_Property with IM_Value of IM_StructuredValue

Operation N/A

Constraint N/A

a N/A stands for not applicable.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

32 © ISO 2011 – All rights reserved

Table C.3 — Mapping of attributes with multiplicity and collection type

Attribute Instance model

a1 [0..*] : Integer

is the same as

a1 : Sequence<Integer>a

IM_Property with multiple value occurrences

a2 : Sequence<T> IM_Property with multiple occurrences of value type T

a3 : Dictionary<T1, T2> IM_Property with multiple occurrences of IM_StructuredValue with
two elements of value type T1 and T2

a4 [0..*] : Sequence<Integer> IM_Property with multiple occurrences of IM_StructuredValue with
integer elements

a This is also valid for any other basic type.

Attribute and association name clashes can cause problems when using inheritance. A simple way to avoid
this is to ensure that all attributes and associations shall be prefixed with their appropriate class name;
alternatively, the method of avoiding name clashes is left to the user.

Attribute and association redeclaration can also cause problems when using inheritance. Redeclaration
happens when an attribute or association declared in a supertype gets redeclared in a subtype with a new or
restricted type. Many object-oriented programming languages cannot handle redeclarations and it should be
carefully considered whether redeclarations should be deprecated.

C.3.3 Application schema and instance model — Example

C.3.3.1 Application schema

This example defines an application schema, gives some data and shows the mapping from the data into the
instance model.

Figure C.4 defines an example application schema that defines four classes and their relationships. Here,
class C0 has three attributes. Attribute “a1” has a multiplicity of zero or one, which means it is optional, and a
basic data type “Real”. Attribute “a2” has a multiplicity of zero or many. Attribute “a3” is of a structured data
type. The association between “C0” and “C1” has two role names. “role1” belongs to C0 and names the
association to C1 in the context of C0. Class C1 has an association to C0 which is called “main”. Notice that
class C2 has an attribute named “pos” with a class data type Point.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 33

1..n

0..n

+role1

C0
+ a1 [0..1] : Real
+ a2 [0..*] : CharacterString
+ a3 : Dictionary<Integer, CharacterString>

C2
+ no_items : Integer
+ pos : Point

Point
+ position : DirectPosition

C1
+ a1 : Integer

C3
+ a2 : Date

+main

+part

1

<<BasicType>>
DirectPosition

Figure C.4 — Application schema — Example

C.3.3.2 Data — Example

The example data is shown in Figure C.5 in an object diagram.

o1 : C0

a1 = 2.14
a2 = {“A”,“list of”,”strings”}
role1 = {o8, o5}
a3 = {{1,”one”}
 {2,”two”}
 {3,”three”}}

o2 : C0

o3 : C1 o4 : C2

no_items = 2
pos=

part=

a1 = 255
main = o2 p : Point

position=
{23553, 35534,
32}

o7 : C3
a1 = 20
a2 = 20000225
main = o2

o5 : C3

a1 = 25
a2 = 20000221
main = o1

o6 : C3
a1 = 30
a2 = 20001231
main = o2

o8 : C1

a1 = 2.15
a2 = {“a”,“b”,”c”}
role1 = {o3, o6, o7}
a3 = {{1024,”1KB”}
 {2048,”2KB”}}

a1 = 255
main = o1

Figure C.5 — Data — Example

C.4 Output data structure

C.4.1 XML document

This encoding rule is based on the XML Recommendation 1.0. XML is a text format and it is necessary that
the values of all data types be character encoded. Data shall be encoded using XML elements and the rules
given in the XML recommendation. The basic units of encoding in XML are XML elements. An element may
have attributes and content. This enables a hierarchical structure and combined with XML's linking facilities a

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

34 © ISO 2011 – All rights reserved

network structure can be created. The exchange structure shall consist of a sequence of elements
corresponding to the objects in the instance model.

The schema for the output data structure that governs the structure of the exchange format shall be a valid
XML Schema.

C.4.2 XML Schema

An XML Schema Document (XSD) defines a number of complex types, simple types and element declarations
that define the allowable structure and data instances of an XML document. The XML Schema conversion
rules are defined in C.5.

C.5 Schema conversion rules

C.5.1 XML Schema

The schema conversion rules define how to produce an XML Schema Document (XSD) according to an
application schema expressed in UML. The main purpose of the XSD is to ensure that XML documents
produced using the data conversion rules are valid.

The XSD shall contain type definitions and attribute and element declarations that correspond to the classes
defined in the application schema. The elements shall be organized in an exchange structure. The XSD shall
adhere to XML Schema Part 1: Structures and Part 2: Datatypes.

The XSD may physically be represented in a single schema document or divided into several separate (sub)
schema documents. Logically, it shall be referred to as a single schema utilizing the import or include
mechanisms of XML Schema. There are no restrictions on the use of namespaces in an XSD.

A number of general rules are defined in C.5.2 to C.5.8. A class shall in general be converted to a type
definition according to C.5.2, it may be converted to an element declaration according to C.5.4 and it may be a
member of the exchange structure.

Exceptions to the general rules are allowed as long as they are documented.

NOTE In the following the namespace “xs:” is used to refer to the namespace of XML Schema, which is
"http://www.w3.org/2001/XMLSchema".

C.5.2 Types

C.5.2.1 <<BasicType>>

C.5.2.1.1 General rule

A class stereotyped <<BasicType>> shall be converted to a simpleType declaration in XML Schema. Any of
the data types defined in XML Schema can be used as building blocks to define user-defined basic types. The
encoding of the basic types shall follow the canonical representation defined in XML Schema Part 2:
Datatypes.

Modelling rules for basic types are defined in ISO/TS 19103. The basic types defined in ISO/TS 19103 are
converted in C.5.2.1.2 to C.5.2.1.15.

Users are permitted to restrict the basic types further using the restriction mechanisms defined in XML
Schema.

NOTE The different types are not clearly defined in ISO/TS 19103 and neither is the <<BasicType>> stereotype used.
The following declarations, therefore, follow a subset of the data type definitions in XML Schema Part 2: Datatypes.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 35

C.5.2.1.2 Number

A Number is defined in ISO/TS 19103 as an abstract type and a supertype of Integer, Real and Decimal.
However, it is much used in the different standardized schemas. XML Schema does not define an abstract
number type, but defines decimal to be a supertype of integer.

NOTE A number data type is declared as a simple data type based on the decimal data type.

<xs:simpleType name="Number">
 <xs:restriction base="xs:decimal"/>
</xs:simpleType>

C.5.2.1.3 Integer

An Integer shall be based on the XML Schema integer data type. The value domain may be restricted.

<xs:simpleType name="Integer">
 <xs:restriction base="xs:integer"/>
</xs:simpleType>

C.5.2.1.4 Decimal and Real

The Decimal and Real types are both based on the XML Schema decimal type.

<xs:simpleType name="Decimal">
 <xs:restriction base="xs:decimal"/>
</xs:simpleType>

<xs:simpleType name="Real">
 <xs:restriction base="xs:decimal"/>
</xs:simpleType>

NOTE ISO/TS 19103 does not define the conceptual difference between a Decimal and a Real.

C.5.2.1.5 Vector

A Vector is defined as a sequence of numbers. The list construct defines a list of decimal values.

<xs:simpleType name="Vector">
 <xs:list itemType="xs:decimal"/>
</xs:simpleType>

C.5.2.1.6 Character

A Character is represented as an XML Schema string restricted to contain only one character.

<xs:simpleType name="Character">
 <xs:restriction base="xs:string">
 <xs:length value="1" fixed="true"/>
 </xs:restriction>
</xs:simpleType>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

36 © ISO 2011 – All rights reserved

C.5.2.1.7 CharacterString

CharacterString is based on XML Schema string that can represent any ISO/IEC 10646 string.

<xs:simpleType name="CharacterString">
 <xs:restriction base="xs:string"/>
</xs:simpleType>

NOTE For language identification, see C.5.6.

C.5.2.1.8 Date

Date is based on XML Schema date, which has a canonical encoding according to ISO 8601.

<xs:simpleType name="Date">
 <xs:restriction base="xs:date"/>
</xs:simpleType>

C.5.2.1.9 Time

Time is based on XML Schema time, which has a canonical encoding according to ISO 8601.

<xs:simpleType name="Time">
 <xs:restriction base="xs:time"/>
</xs:simpleType>

C.5.2.1.10 DateTime

DateTime is based on XML Schema dateTime, which has a canonical encoding according to ISO 8601.

<xs:simpleType name="DateTime">
 <xs:restriction base="xs:dateTime"/>
</xs:simpleType>

C.5.2.1.11 Boolean

Boolean is based on XML Schema boolean. The values are “0” or “false”, which represent logical false, and
“1” and “true”, which represent logical true.

<xs:simpleType name="Boolean">
 <xs:restriction base="xs:boolean"/>
</xs:simpleType>

C.5.2.1.12 Logical

Logical defines three values: true, maybe and false. It is represented as a union between XML Schema
boolean and two enumerated values, “0.5” and “maybe”, which represent the maybe value.

<xs:simpleType name="Logical">
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:boolean"/>
 </xs:simpleType>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 37

 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="maybe"/>
 <xs:enumeration value="0.5"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
</xs:simpleType>

C.5.2.1.13 Probability

Probability is a decimal number between 0 and 1.0.

<xs:simpleType name="Probability">
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="0.0"/>
 <xs:maxInclusive value="1.0"/>
 </xs:restriction>
</xs:simpleType>

C.5.2.1.14 Binary

XML Schema defines two binary data types base64Binary and hexBinary. Two types are defined that shall be
used as binary data types in UML: BinaryBase64 and BinaryHex. A special choice type called Binary is
defined that contains either a BinaryBase64 or a BinaryHex.

<xs:simpleType name="BinaryBase64">
 <xs:restriction base="xs:base64Binary"/>
 </xs:simpleType>

 xs:simpleType name="BinaryHex">
 <xs:restriction base="xs:hexBinary"/>
 </xs:simpleType>

 <xs:complexType name="Binary">
 <xs:choice>
 <xs:element name="BinaryBase64" type="BinaryBase64"/>
 <xs:element name="BinaryHex" type="BinaryHex"/>
 </xs:choice>
 </xs:complexType>

NOTE The Binary data type is not defined in ISO/TS 19103.

C.5.2.1.15 UnlimitedInteger

UnlimitedInteger is a basic type that has a value domain from 0 to infinity. The symbol “*” is defined to
represent the infinite value.

<xs:simpleType name="UnlimitedInteger">
 <xs:union>
 <xs:simpleType>
 <xs:restriction base="xs:nonNegativeInteger"/>
 </xs:simpleType>
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="*"/>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

38 © ISO 2011 – All rights reserved

 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>

C.5.2.2 <<DataType>>

C.5.2.2.1 General rule

A class stereotyped <<DataType>> shall be converted to a complexType definition in XML Schema. The
attributes and possible associations shall be declared as XML attributes or local XML elements in a sequence
construct according to C.5.3. The order of the property elements is, therefore, given in the complex type
definition.

The data types defined in ISO/TS 19103 are converted in C.5.2.2.2 and C.5.2.2.3.

NOTE The different types are not clearly defined in ISO/TS 19103 and neither are all classes that are structured data
types defined using the <<DataType>> stereotype. The declarations in C.5.2.2.2 and C.5.2.2.3, therefore, interpret the
data type definitions in ISO/TS 19103.

C.5.2.2.2 Multiplicity

A Multiplicity class is defined as a multiplicity range from lower to upper in ISO/TS 19103. Here it is interpreted
as a <<DataType>> and defined as follows.

<xs:complexType name="Multiplicity">
 <xs:sequence>
 <xs:element name="range" type="MultiplicityRange" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="MultiplicityRange">
 <xs:sequence>
 <xs:element name="lower" type="xs:nonNegativeInteger"/>
 <xs:element name="upper" type="UnlimitedInteger"/>
 </xs:sequence>
</xs:complexType>

C.5.2.2.3 Units of measure

The units of measure types defined in ISO/TS 19103 are intended for use as definitions of local and
international measurement systems. Quantities are then measured according to a unit system probably
published in a units of measure dictionary. The models are unfortunately difficult to understand, no examples
are provided and the description is vague. The POSC (Petroleum Open Standards Consortium) Units of
Measure Recommendation is an alternative to ISO/TS 19103. A UML diagram that illustrates some of the
basic ideas in the specification is shown in Figure C.6. An instance of a UnitOfMeasure defines a measure
system, gives it a name and, if necessary, provides information about how to convert quantities to a base unit
using the general formula Y  (A  BX)/(C  DX), where X is the value of the unit to be converted and Y is in the
base unit. If A  D  0 and C  1, then B becomes a conversion factor. If A  D  0, the conversion factor is
described by a fraction. Otherwise, it is described by the four parameters. An instance of a Measure is then a
decimal value with a reference to the unit of measure.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 39

+ numerator : Decimal
+ denominator : Decimal

<<DataType>>
Fraction

+ A [0..1] : Decimal
+ B : Decimal
+ C : Decimal
+ D [0..1] : Decimal

<<DataType>>
FourParameters

<<BasicType>>
Measure

Conversion
+ baseUnit : CharacterString
+ factor [0..1] : Decimal
+ fraction [0..1] : Fraction
+ formula [0..1] : FourParameters

UnitOfMeasure
+ name : CharacterString
+ measurementType[0..1] : CharacterString0..1

+uom

0..1+conversion

Figure C.6 — Units of measure

It is recommended to use the XML Schema definitions as defined in the POSC Units of Measure
Recommendations.

<<BasicType>>
Measure

<<BasicType>>
Length

<<BasicType>>
Angle

<<BasicType>>
Area

<<BasicType>>
Velocity

<<BasicType>>
MTime

<<BasicType>>
Scale

<<BasicType>>
Distance

<<BasicType>>
Volume

Figure C.7 — Measure types

The measure types defined by ISO/TS 19103 (Length, Angle, Velocity, Scale, MTime, Area and Volume) shall
be defined as follows.

<xs:complexType name="Measure">
 <xs:simpleContent>
 <xs:extension base="Decimal">
 <xs:attribute name="uom" type="URI"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

40 © ISO 2011 – All rights reserved

 <xs:complexType name="Length">
 <xs:simpleContent>
 <xs:extension base="Measure"/>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="Angle">
 <xs:simpleContent>
 <xs:extension base="Decimal"/>
 </xs:simpleContent>
 </xs:complexType>

 xs:complexType name="Scale">
 <xs:simpleContent>
 <xs:extension base="Measure"/>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="Area">
 <xs:simpleContent>
 <xs:extension base="Measure"/>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="Velocity">
 <xs:simpleContent>
 <xs:extension base="Measure"/>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="MTime">
 <xs:simpleContent>
 <xs:extension base="Measure"/>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="Distance">
 <xs:simpleContent>
 <xs:extension base="Measure"/>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="Volume">
 <xs:simpleContent>
 <xs:extension base="Measure"/>
 </xs:simpleContent>
 </xs:complexType>

C.5.2.3 <<Enumeration>>

A class stereotyped as <<enumeration>> shall be converted to a simple type that restricts a text string to a
number of enumerated values.

EXAMPLE An example is the Sign enumeration, which is based on a string and restricts its value to either “”,
“positive”, “” or “negative”.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 41

positve +
negative -

<<Enumeration>>
Sign

Figure C.8 — Example of <<Enumeration>>

<xs:simpleType name="Sign">
 <xs:restriction base="xs:string">
 <xs:enumeration value="+"/>
 <xs:enumeration value="-"/>
 <xs:enumeration value="positive"/>
 <xs:enumeration value="negative"/>
 </xs:restriction>
 </xs:simpleType>

C.5.2.4 <<CodeList>>

A class stereotyped as <<codelist>> shall not be converted to the output schema but may instead be mapped
to a dictionary that stores the code and value pairs defined in the code list. The dictionary shall be made
publicly available and its Web address shall be given as a URI.

An attribute of a code list type shall be encoded as a string value.

See also Figure C.22 for class CodeListExtraction and Figure C.27 for the representation of codelists.

EXAMPLE Figure C.9 shows a code list called BorderCL that is mapped to a dictionary in XML. Note that instead of
listing the code-value pairs as attributes to the BorderCL, a comment box is used.

<<CodeList>>
BorderCL

1 Unknown border
2 Country
3 County
5 Property

Figure C.9 — Example of <<CodeList>>

<codelist name="BorderCL">
 <codevalue code="1" value="Unknown border"/>
 <codevalue code="2" value="Country"/>
 <codevalue code="3" value="County"/>
 <codevalue code="5" value="Property"/>
</codelist>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

42 © ISO 2011 – All rights reserved

C.5.2.5 <<Union>>

A class stereotyped <<Union>> lists a number of attributes, and the semantics is that only one of the
attributes can be present at any time. It shall be converted to a complex type definition with the attributes as
elements in a choice construction.

EXAMPLE The GM_Position union is taken from ISO 19107. It is mapped to a complex type with the appropriate
local element declarations in a choice construction.

+ direct : DirectPosition
+ indirect : GM_PointRef

<<Union>>
GM_Position

Figure C.10 — Example of <<Union>>

<xs:complexType name="GM_Position">
 <xs:choice>
 <xs:element name="direct" type="DirectPosition"/>
 <xs:element name="indirect" type="GM_PointRef"/>
 </xs:choice>
</xs:complexType>

C.5.2.6 Object types

C.5.2.6.1 General rule

A class with no stereotype or stereotyped <<Type>> shall be mapped to a complex type definition with the
same name as the class. The complex type definition shall include identification attributes, either inherited
from IM_Object or through a reference to the IM_ObjectIdentificaton attribute group.

C.5.2.6.2 Record types

A few record types are defined in ISO/TS 19103. They are remodelled and interpreted in Figure C.11. The
AttributeName and TypeName are modelled as basic types based on CharacterString.

RecordSchema

+ schemaName : CharacterString

Record
+ attributes : Dictionary<AttributeName,Any>

RecordType
+ typeName : CharacterString
+ attributeTypes : Dictionary<AttributeName,TypeName>0..n

+element

1+recordType

<<BasicType>>
AttributeName

<<BasicType>>
TypeName

Figure C.11 — Record types

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 43

<xs:complexType name="RecordSchema">
 <xs:sequence>
 <xs:element name="schemaName" type="CharacterString"/>
 <xs:element name="element" type="RecordType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attributeGroup ref="IM_ObjectIdentification"/>
</xs:complexType>

<xs:complexType name="RecordType">
 <xs:sequence>
 <xs:element name="typeName" type="CharacterString"/>
 <xs:element name="attributeTypes" type="Dictionary_AttributeName_TypeName_"/>
 </xs:sequence>
 <xs:attributeGroup ref="IM_ObjectIdentification"/>
</xs:complexType>

<xs:complexType name="Record">
 <xs:sequence>
 <xs:element name="attributes" type="Dictionary_AttributeName_Any_"/>
 <xs:element name="recordType" type="ref_RecordType"/>
 </xs:sequence>
 <xs:attributeGroup ref="IM_ObjectIdentification"/>
</xs:complexType>

C.5.2.7 Bound template type

A bound template type is a type where the parameters are bound to actual argument values. ISO/TS 19103
defines five different template types: Set<T>, Bag<T>, Sequence<T>, CircularSequence<T> and
Dictionary<K,V>. The first four take one parameter whereas Dictionary takes two. These types are usually
bound in attribute declarations; see the "attributeTypes" attribute of the RecordType defined in Figure C.11.

 A bound template type shall be converted to a complex type definition that corresponds to the template
type. The type declaration shall be named. The name may be constructed by concatenating the template
name with the argument names separated with underscore “_” characters. The less-than “<”, comma “,”
and greater-than “>” characters cannot be used in the name.

 A bound Set, Bag, Sequence or CircularSequence template type shall be mapped to a complex type
definition that consists of a sequence construct of unbounded multiplicity containing one element
named and typed according to the single parameter type. If the parameter type is a basic type, then a
simple type definition may be used instead, utilizing the list construct of XML Schema.

 A bound template type of Dictionary shall be mapped to a complex type definition that consists of a
sequence construct of unbounded multiplicity with two elements named and typed according to the
two parameters.

EXAMPLE 1 The direct position data type defined in ISO 19107 is shown in Figure C.12.

+ coordinate : Sequence<Number>

<<DataType>>
DirectPosition

Figure C.12 — Example of bounded template type

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

44 © ISO 2011 – All rights reserved

The Sequence<Number> defines a bound template type and, according to the general rule, maps to the
following.

<xs:complexType name="Sequence_Number_">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="Number" type="Number"/>
 </xs:sequence>
</xs:complexType>

Since the argument type is of a basic type, it may also be mapped to the following:

<xs:simpleType name="Sequence_Number_">
 <xs:list itemType="Number"/>
</xs:simpleType>

EXAMPLE 2 The bound template types defined in Figure C.11 are mapped as follows.

<xs:complexType name="Dictionary_AttributeName_Any_">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="AttributeName" type="CharacterString"/>
 <xs:element name="Any" type="xs:anyType"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="Dictionary_AttributeName_TypeName_">
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="AttributeName" type="CharacterString"/>
 <xs:element name="TypeName" type="CharacterString"/>
 </xs:sequence>
</xs:complexType>

C.5.2.8 Inheritance

C.5.2.8.1 General

The inheritance mechanism in UML allows a subtype to inherit its supertypes' attributes and associations. In
single inheritance, a type can inherit only from a single supertype, whereas in multiple inheritance a type can
inherit from more than one type. UML allows both single and multiple inheritance. XML Schema only supports
single inheritance. Therefore, it is necessary to simulate multiple inheritance.

Inheritance shall be realized either

 by the XML Schema extension or restriction mechanism called single inheritance (C.5.2.8.2), or

 by copying attributes and associations from supertypes into the target type called multiple inheritance
(C.5.2.8.3).

In case of multiple inheritance, the attributes and associations shall be copied into the target type.

C.5.2.8.2 Single inheritance

The general rule shall be to use XML Schema's extension mechanism for complex types. But if an attribute or
association is redefined the restriction mechanism shall be used.

EXAMPLE Figure C.13 shows a supertype S1 with subtypes S2 and S3. S1 is an abstract class. S4 and S5 are
subtypes of S2. Note that S5 redefines “attr1” and that it is necessary, therefore, to use the restriction mechanism.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 45

S1
+ attr1 [0..*] : Integer

S2
+ attrA : Real

S4
+ attrX : CharacterString

S5
+ attr1 [2..8] : Integer

S3
+ attrB : Boolean

Figure C.13 — Example of single inheritance

<xs:complexType name=”S1” abstract=”true”>
 <xs:complexContent>
 <xs:extension base="IM_Object">
 <xs:sequence>
 <xs:element name=”attr1" type="Integer" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name=”S2”>
 <xs:complexContent>
 <xs:extension base="S1">
 <xs:sequence>
 <xs:element name=”attrA" type="Real"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name=”S3”>
 <xs:complexContent>
 <xs:extension base="S1">
 <xs:sequence>
 <xs:element name=”attrB" type="Boolean"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

<xs:complexType name=”S4”>
 <xs:complexContent>
 <xs:extension base="S2">
 <xs:sequence>
 <xs:element name=”attrX" type="CharacterString"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

46 © ISO 2011 – All rights reserved

<xs:complexType name=”S5”>
 <xs:complexContent>
 <xs:restriction base="S2">
 <xs:sequence>
 <xs:element name=”attr1" type="Integer" minOccurs="2" maxOccurs="8"/>
 <xs:element name="attrA" type="Real"/>
 </xs:sequence>
 </xs:restricton>
 </xs:complexContent>
</xs:complexType>

C.5.2.8.3 Multiple inheritance

The procedure for copying the attributes/associations is to start with the left supertype and copy its attributes
and associations, then continue with the next supertype to the right until the rightmost supertype is reached.
The subtype's attributes are added last. A conflict occurs if a supertype or subtype defines an attribute or
association with the same name as previously copied. In case of a name conflict, the latter attribute or
association shall take precedence and replace the previously copied one.

EXAMPLE Figure C.14 defines four types: T1, T2, T3 and T4. T4 is a subtype of T1, T2 and T3.

T1
+ attrX : S3

T2
+ attrY : Integer

T3
+ attrX : Date

T4
+ attrZ : Character

Figure C.14 — Example of multiple inheritance

<xs:complexType name=”T1”>
 <xs:sequence>
 <xs:element name=”attrX" type="S3"/>
 </xs:sequence>
 <xs:attributeGroup ref="IM_ObjectIdentification"/>
</xs:complexType>

<xs:complexType name=”T2”>
 <xs:sequence>
 <xs:element name=”attrY" type="Real"/>
 </xs:sequence>
 <xs:attributeGroup ref="IM_ObjectIdentification"/>
</xs:complexType>

<xs:complexType name=”T3”>
 <xs:sequence>
 <xs:element name=”attrX" type="Date"/>
 </xs:sequence>
 <xs:attributeGroup ref="IM_ObjectIdentification"/>
</xs:complexType>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 47

<xs:complexType name=”T4”>
 <xs:sequence>
 <xs:element name=”attrX" type="Date"/>
 <xs:element name=”attrY" type="Integer"/>
 <xs:element name=”attrZ" type="Character"/>
 </xs:sequence>
 <xs:attributeGroup ref="IM_ObjectIdentification"/>
</xs:complexType>

C.5.2.9 Substitution types

The use of a supertype as an attribute type means that an instance of the attribute can be of one of the
concrete subtypes defined by the inheritance hierarchy of the supertype. XML Schema does not support this
dynamic type mechanism directly.

Three alternative approaches may be used.

a) Declare a standard element declaration with type corresponding to the supertype. In the exchange file,
the xsi:type attribute shall be used to indicate the required type. See Example 1.

b) Define global elements with a substitution group that matches the inheritance hierarchy of the supertype.
The global element shall be referred to within an element declaration. See Example 2.

c) Define choice groups for each supertype that contains a choice of element declarations for each of the
concrete types in the inheritance hierarchy of the supertype. The choice group shall be referred to within
an element declaration. See Example 3.

If the copy mechanism described in C.5.2.8.3 is used, only approach c) shall be used.

EXAMPLE 1 Approach a): A class Ex2 defines an attribute of type S1, see Figure C.15. S1 is the abstract supertype
with an inheritance hierarchy defined in Figure C.13.

Ex2
+ use1 : S1

Figure C.15 — Example attribute of a supertype

<xs:complexType name="Ex2">
 <xs:sequence>
 <xs:element name="use1" type="S1"/>
 </xs:sequence>
</xs:complexType>

Use of xsi:type in the exchange file:

<Ex1>
 <use1 xsi:type="S3">
 <attr1>42</attr1><attr1>43</attr1><attr1>44</attr1>
 <attrB>true</attrB>
 </use1>
</Ex1>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

48 © ISO 2011 – All rights reserved

EXAMPLE 2 Approach b): Use of global substitution elements.

<xs:element name="S1" type="S1" abstract="true"/>
<xs:element name="S2" type="S2" substitutionGroup="S1"/>
<xs:element name="S3" type="S3" substitutionGroup="S1"/>
<xs:element name="S4" type="S4" substitutionGroup="S2"/>
<xs:element name="S5" type="S5" substitutionGroup="S2"/>

<xs:complexType name="Ex2">
 <xs:sequence>
 <xs:element name="use1">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="S1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

<Ex1>
 <use1>
 <S3>
 <attr1>42</attr1><attr1>43</attr1><attr1>44</attr1>
 <attrB>true</attrB>
 </S3>
 </use1>
</Ex1>

EXAMPLE 3 Approach c): Use of choice groups.

<xs:group name="S1">
 <xs:choice>
 <xs:element name="S2" type="S2"/>
 <xs:element name="S3" type="S3"/>
 <xs:element name="S4" type="S4"/>
 <xs:element name="S5" type="S5"/>
 </xs:choice>
</xs:group>

<xs:complexType name="Ex2">
 <xs:sequence>
 <xs:element name="use1">
 <xs:complexType>
 <xs:group ref="S1"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

The instance becomes exactly the same as the instance in Example 2. The benefit of this approach is that there are no
global elements.

C.5.2.10 <<Abstract>> or abstract class

An abstract class may not be represented as a complexType declaration if the copy down mechanism is used.
If single inheritance is used, an abstract class shall be converted to a complexType definition according to
C.5.2.6 that has the “abstract” attribute set to true.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 49

C.5.2.11 <<ExternalType>>

All classes stereotyped <<ExternalType>> shall either be mapped to a simple type that restricts the XML
Schema type anyURI or to a NOTATION type.

EXAMPLE

<xs:simpleType name="Modis">
 <xs:restriction base="xs:anyURI"/>
</xs:simpleType>

C.5.3 Property element declarations

C.5.3.1 Attribute

An attribute defines a characteristic of a class. An attribute shall be converted to an element declaration or an
attribute declaration in the class' complex type declaration. An element declaration is the default rule. If an
attribute is of basic type with multiplicity of zero or one it may be converted to an attribute declaration. All other
attributes shall be converted to an element declaration.

The default rule is to convert all attributes and derived attributes.

An attribute declaration defines an attribute with a name and a basic data type. The multiplicity of an attribute
shall be according to Table C.4. The default multiplicity of an attribute declaration in XML Schema is optional.

Table C.4 — Multiplicity mapping for attributes

UML Optional Necessary attribute declaration

1 (default) false optional="false"

0..1 true (default) —

An element declaration defines an element with a name and a type. The multiplicity shall be according to
Table C.5. The default values are indicated in the table, and it is not necessary that they be declared.
Alternatively, both minimum and maximum values may be given.

Table C.5 — Multiplicity mapping for content elements

UML minOccurs maxOccurs Necessary element declaration

1 (default) 1 (default) 1 (default) —

0..1 0 1 (default) minOccurs=”0”

0..* 0 unbounded minOccurs=”0” maxOccurs=”unbounded”

1..* 1 (default) unbounded maxOccurs=”unbounded”

2..8 2 8 minOccurs=”2” maxOccurs=”8”

EXAMPLE A data type Example is declared in UML. It has three attributes “title”, “number” and “subExample”, see
Figure C.16. Both the “title” and “number” attribute can be converted to an attribute declaration, whereas “subExample” is
of a complex type and it is necessary that it be mapped to an element declaration.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

50 © ISO 2011 – All rights reserved

+ title : CharacterString
+ number [0..1] : Integer
+ subExample[0..*] : Example

<<DataType>>
Example

Figure C.16 — Example attribute

The default element declaration gives the following:

<xs:complexType name=”Example” >
 <xs:sequence>
 <xs:element name="title" type="CharacterString"/>
 <xs:element name="number" type="Integer" minOccurs="0"/>
 <xs:element name="subExample" type="Example" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

Here “title” and “number” are converted according to the attribute declaration rule.

<xs:complexType name=”Example” >
 <xs:sequence>
 <xs:element name="subExample" type="Example" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="title" type="CharacterString" optional="false"/>
 <xs:attribute name="number" type="Integer"/>
</xs:complexType>

C.5.3.2 Association

An association defines a general relationship between two classes. In the following, one of the classes is
called a source class and the other is called a target class. Source objects store references to target objects
and vice versa.

 The complex type corresponding to the source class shall contain an element declaration if the
association is navigable and the target class is identified by a role name. The name of the element shall
be the role name identifying the target class, and the type shall be either IM_ObjectReference, or a type
that is based on or has the attributes defined in IM_ObjectReference. The element declaration shall have
multiplicity according to Table C.5.

 The complex type corresponding to the target class shall contain an element declaration if the association
is navigable and the source class is identified by a role name. The name of the element shall be the role
name identifying the source class, and the type shall be either IM_ObjectReference, or a type that is
based on or has the attributes defined in IM_ObjectReference. The element declaration shall have
multiplicity according to Table C.5.

EXAMPLE An association between class A and B is defined, see Figure C.17. Only A knows about B since only one
role name is defined.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 51

A B
0..*

+theB

Figure C.17 — Example association

The XML Schema declarations are as follows:

<xs:complexType name="A">
 <xs:sequence>
 <xs:element name=”theB” type=”ref_B” minOccurs=”0” maxOccurs=”unbounded”/>
 </xs:sequence>>
</xs:complexType>

<xs:complexType name="ref_B">
 <xs:attributeGroup ref="IM_ObjectReference"/>
</xs:complexType>

C.5.3.3 Aggregation

An aggregation defines a weak whole-part relationship between an aggregate (whole) and a constituent part.
The ownership is weak in that parts can be members of more than one aggregate at the same time. Thus, a
part object may be shared by more than one aggregate object. An aggregate can, therefore, in general store
references only to its parts but may, in case of complete ownership, contain the respective parts.

 The complex type corresponding to the aggregate class shall contain an element declaration where the
name corresponds to the role name identifying the part class. The multiplicity of this element shall be
according to Table C.5. The type of the element shall be based on an IM_ObjectReference and may
contain zero or one element of a type that corresponds to the part class.

 The complex type corresponding to the part class shall contain an element declaration if the association
is navigable and the target class is identified by a role name. The name of the element shall correspond
to the role name identifying the aggregate class and type shall be based on an IM_ObjectReference. The
element declaration shall have multiplicity according to Table C.5.

EXAMPLE An aggregation between the aggregate C and the part D is defined, see Figure C.18. C identifies D by
the role name “theD” and D identifies C by the role name “theC”.

DC
1..*1..*

+theD+theC

Figure C.18 — Example aggregation

<xs:complexType name="C">
 <xs:sequence>
 <xs:element name="theD" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="D" type="D" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 <xs:attributeGroup ref="IM_ObjectReference"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

52 © ISO 2011 – All rights reserved

<xs:complexType name="D">
 <xs:sequence>
 <xs:element name="theC" type="IM_ObjectReference" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

C.5.3.4 Composition

A composition defines a strong whole-part relationship between a composite (whole) and a constituent part.
The ownership is strong in that a part can be a member of exactly one composite object. A composite shall,
therefore, contain its respective parts.

 The complex type corresponding to the composite class shall contain an element declaration where the
name corresponds to the role name identifying the part class and the type corresponds to the type of the
part class. The element declaration shall have multiplicity according to Table C.5.

 The complex type corresponding to the part class shall not contain any element declaration, even if a role
name identifies the composite class. This is implicit because a part is always contained within a
composite class.

EXAMPLE A composition between classes E and F is defined, see Figure C.19. E identifies F by a target role name
“theF”.

FE
2..8

+theF

Figure C.19 — Example composition

<xs:complexType name="E">
 <xs:sequence>
 <xs:element name="theE" type="F" minOccurs="2" maxOccurs="8"/>
 </xs:sequence>
</xs:complexType>

C.5.4 Element declarations

C.5.4.1 Document structure

The GI element shall be the root element of the exchange file. It contains three elements: exchangeMetadata,
dataset and update; see Figure C.20. The dataset and update elements may have identity whereas the
exchange metadata shall not.

The attributes of the GI element are as follows:

 version: CharacterString = "1.0";

 timeStamp: DateTime;

 exchangeMode [0..1] : CharacterString.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

© ISO 2011 – All rights reserved 53

The version attribute is required to be set to “1.0”. This indicates that the exchange file conforms to this
version of this International Standard. Revised versions of this International Standard will have another
number associated with them. The timestamp attribute indicates the date and time of when the data was
encoded. That is, when the exchange file was produced. The exchangeMode attribute is user-defined and its
value may indicate the context or mode of the exchange file.

<<DataType>>
ExchangeMetadata

Dataset+ version : CharacterString = "1.0"
+ timeStamp : DateTime
+ exchangeMode [0..1] : CharacterString

<<RootElement>>
GI

0..1

+exchangeMetadata

0..1
+dataset

Update
0..1

+update

Figure C.20 — Document structure

The declaration of the GI element is as follows.

<xs:element name="GI">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="exchangeMetadata" type="ExchangeMetadata" minOccurs="0"/>
 <xs:element name="dataset" type="Dataset" minOccurs="0"/>
 <xs:element name="update" type="Update" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="version" type="CharacterString" use="required" fixed="1.0"/>
 <xs:attribute name="timeStamp" type="DateTime" use="required"/>
 <xs:attribute name="exchangeMode" type="CharacterString"/>
 </xs:complexType>
</xs:element>

C.5.4.2 Dataset and object elements

A dataset contains one or more elements that encode objects, called object elements, which shall be declared.

 All complex type definitions with identification attributes are candidates for object element declaration.
Some might not be considered as independent objects and might not, therefore, be defined.

 The name of the element shall be the same as the type name or it may be a tag name defined for this
type. An object element may be declared either as a local or as a global element. The default is as a local
element.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

ISO 19118:2011(E)

54 © ISO 2011 – All rights reserved

 All object elements shall be grouped in a choice group that may be named Object. Thus the choice group
either refers to global declared elements or declares the object elements locally. This choice group shall
be used to restrict the legal objects in a dataset.

EXAMPLE The Object group defines the object elements of the example in C.5.2.8.3. The dataset type refers to an
unbounded sequence of the object group (Figure C.21). This means that the dataset can contain only the four elements
T1, T2, T3 and T4.

Dataset

Object

1..n

Figure C.21 — Dataset contains objects

<xs:complexType name="Dataset">
 <xs:sequence maxOccurs="unbounded">
 <xs:group ref="Object"/>
 </xs:sequence>
 <xs:attributeGroup ref="IM_ObjectIdentification"/>
</xs:complexType>

<xs:group name="Object">
 <xs:choice>
 <xs:element name=”T1” type=”T1”/>
 <xs:element name=”T2” type=”T2”/>
 <xs:element name=”T3” type=”T3"/>
 <xs:element name=”T4” type=”T4"/>
 </xs:choice>
</xs:group>

C.5.4.3 Exchange metadata

The exchange metadata types are defined in Figure C.22. The CI_Citation type is imported and reused from
ISO 19115.

An ExchangeMetadata shall contain information that describes the dataset. The “datasetCitation” attribute
describes the originator of the dataset. The “metadataCitation” attribute refers to relevant metadata for the
dataset, the “applicationSchemaCitation” refers to the application schema used, and the “configFileCitation”
describes the configuration file used. The “encodingRule” composition describes the encoding rule used to
produce the dataset. If the dataset contains attributes of code lists, it shall indicate which code lists are used
and their validity. This is done by the “codeLists” composition.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 19

11
8:2

01
1

https://standardsiso.com/api/?name=67516b37101720161af5684e7b304b54

	1 Scope
	2 Conformance
	2.1 Introduction
	2.2 Conformance classes related to encoding rules
	2.3 Conformance classes related to encoding services

	3 Normative references
	4 Terms and definitions
	5 Symbols and abbreviated terms
	6 Fundamental concepts and assumptions
	6.1 Concepts
	6.2 Data interchange
	6.3 Application schema
	6.4 Encoding rule
	6.4.1 Concept
	6.4.2 Input data structure
	6.4.3 Output data structure
	6.4.4 Conversion rules

	6.5 Encoding service
	6.6 Transfer service

	7 Character repertoire
	8 Generic instance model
	8.1 Introduction
	8.2 Relation between UML and the instance model

	9 Encoding rules
	9.1 Introduction
	9.2 General encoding requirements
	9.2.1 Application schema and schema language
	9.2.2 Bit and byte ordering
	9.2.3 Character repertoire and encoding
	9.2.4 Exchange metadata
	9.2.5 Transfer unit
	9.2.5.1 Granularity and structure
	9.2.5.2 Object identification

	9.3 Input data structure
	9.4 Output data structure
	9.5 Conversion rules
	9.6 Examples

	10 Encoding service

