INTERNATIONAL ISO/IEC
STANDARD 9075-13

First edition
2002-07-01

Information technology — Database
languages — SQL —

Part 13:
SQL Routines and Types Using the Jaya™
Programming Language (SQL/JRT)

Technologies de l'informiation — Langages de base de données — SQL —

Partie 13: Routines-8t'types utilisant le langage de programmation {Java™
(SQL/JRT)

Reference number
ISO/IEC 9075-13:2002(E)

1IEC

© ISO/IEC 2002

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this

area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event

that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2002

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

Contents Page
Forggordiiio——n—73n-nHH—4—1mn—H—74""""-"-"""" " ™" """ m" """ """ """"""""""""""""""""""—
Intrpduction.
1 [Scope. ... gD
2 [Normative references N T
2.1 JTCl standards Oy
2.2 Publicly-available specifications 208
3 |Definitions, notations, and conventions C)..
3.1 Definitions e N
3.1.1 Definitions providedin Part 13 0O
3.1.2 Definitions taken from Java N
3.2 Notations A
3.3 Conventionsttt NN
3.3.1 Specification of built-in procedures6. e
3.3.2 Specification of deployment descriptor files =<\"
3.3.3 Relationships to other parts of ISO/IEC 9075,
3.3.3.1 Clause, Subclause, and Table relationships

3.4 Object identifier for Database Language SQL
4 | ComcePts. A
4.1 The Java programming languagettt
4.2 SQL-invoked routines S
4.3 Java class name resplution
4.4 SQL result sets /oy . o e
4.5 Parameter mapping e
4.6 Unhandled, Java exceptionsttt e e e e
4.7 Data typE8. . o
4.8 User-defified types ot
4.8.1 User-défined type comparison and assignment

4.8.2 Accessing static fields.
4.8.3 ““Converting objects between SQL and Java,
4.8.3.1 SERIALIZABLE e
4.8.3.2 SQL D AT A . . e
4.8.3.3 Developing for portability

© ISO/IEC 2002 - All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

4.9 Built-in procedures. 28
410 Privileges i e 29
411 JARS .o 29
4.11.1 Deployment descriptor files e 30
5 Lexical elements 31
54 toker>—and—<separsteror—r—r——1"—"7"—"7—7"7"¥“—¢7"7"—"—7F7"7"7T"""""""""""""""""""— .31
5[2 Names and identifiers el .32
6 Scalar eXpressions e A . 35
6|1 <method invocation> e INT . 35
6/2 <new specification> AT . 36
Tl Predicates37
711 <comparison predicate> WS .37
8| Additional common elements Co . 39
8|1 <Java parameter declaration list> K39
8|2 <SQLJavapath>.......... e .40
8|3 <routine invocation> AN .42
8|4 <language clause> A T e .51
85 Java routine signature determination % L . 52
9 Schema definition and manipulation. . ™., . 59
91 <table definition> e . 59
9|2 <view definition> S e . 60
9|3 <user-defined type definition> . 7. L e . 61
9(4 <attribute definition> 0. . . o . 65
95 <alter type statement>. . () e . 69
9l6 <drop data type statement>70
9|7 <SQL-invoked routifie>71
98 <alter routine statement>74
9|9 <drop routine-Statement> e .75
9[10 <user-definedordering definition>76
911 <drop uSer-defined ordering statement>78
1D AcceSscontrol79
10.1 _Zgrant privilege statement>. e .79
10,270 PrIVIlegeS> . . . o e . 80
1.3~ <revoke statement> . 81
11 Built-in procedures 83
11.1 SQLJ.INSTALL_JAR procedurettt et e et e e et e e 83
11.2 SQLJ.REPLACE_JAR procedurec.0 ittt 85
11.3 SQLJ.REMOVE_JAR procedure.ttt e e e 87
11.4 SQLJ.ALTER_JAVA_PATH procedure, 89

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

12 Java toPiCS 91

12.1 Java facilities supported by this part of ISO/IEC 9075 91

12.1.1 Package java.sql. 91

12.1.2 System Propertiesttt e 91

12.2 Deployment descriptor files e 92

13 Information Schema 95

13.1 | JAR_JAR USAGE VIeW oottt e e et N 95

13.2 | JARS VIEW . . oottt e 96

13.3 | METHOD_SPECIFICATIONS VIEWo vttt et e e INT L 917

13.4 | ROUTINE_JAR USAGE Viewttt A 98

13.5 | TYPE JAR USAGE VIeW oottt e e O e 99

13.6 | USER_DEFINED _TYPESviewciiiiiininneee by, 100
13.7 | Short name VIiews.ttt N 101
14 DPefinition Schema AT 108
14.1 | JAR_JAR USAGE base table. e e 108
142 | JARSbasetable......... i S 104
14.3 | METHOD_SPECIFICATIONS base table.O0M. 10p
14.4 | ROUTINE_JAR_USAGE base table 00 10p
145 | ROUTINES base table N e e 107
14.6 | TYPE_JAR_USAGE base table00 108
14.7 | USAGE_PRIVILEGES base table88 10p
14.8 | USER_DEFINED_TYPES base table . . &% . ..o o 11p
15 Btatus codes. T 11B
15.1 | Class and subclass values for unicatight Java exceptions 11B
15.2 | SQLSTATE. N e 11¢
16 Conformance 0 . .t 11p
16.1 | Claims of conformance)t e e 11p
Anndx A SQL Conformance Summaryc.0uiuniiunennenneenn.. 1117
Anngx B Implementation-defined elements 128
Anndx C Implementation-dependent elements 1217
Anndx'D' SQL Feature Taxonomy it iiiineiinennnen.. 129
Annex E Routines tutorial 131
E.1l Technical components. e 131
E.2 OVETVIBW . vttt et e e e e 132
E.3 Example Java methods: region and correctStates 133
EA4 Installing region and correctStates in SQL 133
E.5 Defining SQL names for region and correctStates 135
E.6 A Java method with output parameters: bestTwoEmps........................... 136
E.7 A CREATE PROCEDURE best2 for bestTwoEmps 137

© ISO/IEC 2002 - All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

vi

E.8 Calling the best2 procedure i 138
E.9 A Java method returning a result set: orderedEmps, 138
E.10 A CREATE PROCEDURE rankedEmps for orderedEmps 140
E.11 Calling the rankedEmps procedure 141
E.12 Overloading Java method names and SQL names 141
E.13 Javamain methods 143
Ef14 Java method signatures in the CREATE statements« 144
Ef15 Null argument values and the RETURNS NULL clause5)" 145
Ef16 Static variables 147
E|17 Dropping SQL names of Javamethods hHAd..... 148
E|18 Removing Java classes from SQL.o L 148
E|19 Replacing Javaclassesin SQL L N 149
E[20 Visibility. T 150
E|21 Exceptions eSS 150
E|22 Deployment descriptors (N 151
E[23 Paths AT 154
El24 Privileges N e e 156
E[25 Information Schema.............. 8. . 156
Apnex F Typestutorial 157
FQ OVEIVIEW . o ittt et et e B e 157
Fp Example Java classes. m e 157
FB Installing Address and Address2Line in an"SQL system 159
Fy CREATE TYPE for Address and Addréss2line iiuiui... 160
Fp Multiple SQL types for a single Javaclass 162
Flo Collapsing subClasses vv i e e 162
Fl7 GRANT and REVOKE statements for data types 164
F]B Deployment descriptors forelasses. e 164
Fp Using Java classes asdata types 166
F{10 SELECT, INSERT, and UPDATE e 166
FJ11 Referencing Jaya fields and methods in SQL 167
F[12 Extended visibility rules 168
F|13 Logical representation of Java instances in SQL 168
Ff14 Staticmethods e 170
FI5 Stati€fields 170
FJ16 Inmstance-update methods 171
F17 , \Subtypes in SQL/JRT data. e 173
F[18~ " References to fields and methods of null instances 174
FI9 Ordering of SQLAJRT data 175
Annex G Incompatibilities with ANSINCITS 331 177
G.1 References i 177
G.2 Incompatibilities e 177
Index. 181

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

TABLES
Tables Page
1 Clause, Subclause, and Table relationships 8
2 System Propertiest 91
3 SQLSTATE class and subclass values @ . .o 114
4 Feature taxonomy for features outside Core SQL;90. 129

© ISO/IEC 2002 — All rights reserved Vii

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the

respectife organization to deal with particular fields of technical aclivity. ISO and [EC technical com
collabordte in fields of mutual interest. Other international organizations, governmental and non-governme

liaison

ith ISO and IEC, also take part in the work. In the field of information technology, ISO and)IEQ

establishied a joint technical committee, ISO/IEC JTC 1.

Internatignal Standards are drafted in accordance with the rules given in the ISO/IEC Directivesy Part 3.

The mai
adopted
Standarg

Attention
patent rig

ISO/IEC

ittees
tal, in
have

task of the joint technical committee is to prepare International Standards. Draft.Ilnternational Stapdards

by the joint technical committee are circulated to national bodies for voting. Publication as an Intern
requires approval by at least 75 % of the national bodies casting a vote.

is drawn to the possibility that some of the elements of this part of ISO/IEC 9075 may be the sub
hts. ISO and IEC shall not be held responsible for identifying any or-all such patent rights.

9075-13 was prepared by Joint Technical Committeed ISO/IEC JTC 1, Information techn

Subcommittee SC 32, Data management and interchange.

ISO/IEC
languageé

— Part]
— Part
— Part
— Par
— Par
— Part
— Part
— Par

— Part

9075 consists of the following parts, under the general title Information technology — Da
s — SQL:

1: Framework (SQL/Framework)

2: Foundation (SQL/Foundation)

3: Call-Level Interface (SQL/CLI)

4: Persistent Stored Modules(SQL/PSM)

5: Host Language Bindings (SQL/Bindings)

9: Management of External Data (SQL/MED)

10: Object Langtage Bindings (SQL/OLB)

11: Information and definition schemas (SQL/Schemata)

13: SQL Routines and Types Using the Java™ Programming Language (SQL/JRT)

ptional

ject of

ology,

abase

Annexes

viii

A, B, C, D, E, F and G of this part of ISO/IEC 9075 are for information only.

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

Introduction

The organization of this part of ISO/IEC 9075 is as follows:

D
2)

3)

4)
5)

6)
7)
8)

9)

10)
11)

12)

13)
14)

15)
16)
17)

18)

(Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 9075.

part of ISO/IEC 9075, constitute provisions of this part of ISO/IEC 9075.

(lause 3, “Definitions, notations, and conventions”, defines the notations and convéntions used
in this part of ISO/TEC 9075.

(lause 4, “Concepts”, presents concepts used in the definition of Java routinées and types.

(Clause 5, “Lexical elements”, defines a number of lexical elements used’/in the definition of Jav
foutines and types.

(lause 6, “Scalar expressions”, defines the elements of the language that produce scalar values
(Clause 7, “Predicates”, defines the predicates of the langudge.

(lause 8, “Additional common elements”, defines additional language elements that are used in
yarious parts of the language.

(lause 9, “Schema definition and manipulation®, defines the schema definition and manipulatio
dtatements associated with the definition of\Java routines and types.

(lause 10, “Access control”, defines fagilities for controlling access to SQL-data.

(lause 11, “Built-in procedures”, defines new built-in procedures used in the definition of Java
foutines and types.

(Clause 12, “Java topics”, defines the facilities supported by implementations of this part of
ISO/IEC 9075 and the conventions used in deployment descriptor files.

(lause 13, “Information Schema”, defines viewed tables that contain schema information.

(Clause 14, “Definition Schema”, defines base tables on which the viewed tables containing
dchema information depend.

(Clause 15, “Status codes”, defines SQLSTATE values related to Java routines and types.

(Clause 16, “Conformance”, defines the criteria for conformance to this part of ISO/IEC 9075.

(lause 2, “Normative references”, identifies additional standards that, through reference iin this

P

=4

Annex A, “SQL Conformance Summary”, is an informative Annex. It summarizes the confor-
mance requirements of the SQL language.

Annex B, “Implementation-defined elements”, is an informative Annex. It lists those features
for which the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the
returned results, the effect on SQL-data and/or schemas, or any other behavior is partly or
wholly implementation-defined.

© ISO/IEC 2002 - All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002(E)

19) Annex C, “Implementation-dependent elements”, is an informative Annex. It lists those features
for which the body of this part of ISO/IEC 9075 states that the syntax, the meaning, the
returned results, the effect on SQL-data and/or schemas, or any other behavior is partly or

wholly implementation-dependent.

20) Annex D, “SQL Feature Taxonomy”, is an informative Annex. It identifies features of the SQL
language specified in this part of ISO/IEC 9075 by a numeric identifier and a short descriptive

name.—This taxonomiis used-to snecific conformance to Core SQL. and mavzbe used to d
J I J W v

other profiles involving the SQL language.

features defined in this part of ISO/IEC 9075 for defining and using SQL-invoked routine
on Java static methods.

22) Annex F, “Types tutorial”, is an informative Annex. It provides a tutorial\on using the fe

classes.

incompatibilities between this edition of this part of ISO/IEC"9075 and NCITS 331.1 and
331.2.

“Lexical elements”, through Clause 16, “Conformance?, Subclauses begin a new page. Any re
blank space is not significant.

21) Annex E, “Routines tutorial”, is an informative Annex. It provides a tutorial on using the

23) Annex G, “Incompatibilities with ANSI NCITS 3317, is an infermative Annex. It lists thle

wvelop

b based

atures

defined in this part of ISO/IEC 9075 for defining and using SQL struetured types based on Java

INCITS

In the text of this part of ISO/IEC 9075, Clauses begin ainew odd-numbered page, and in Clgquse 5,

sulting

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

INTERNATIONAL STANDARD ISO/IEC 9075-13:2002(E)

Information hnol —D lan es — SQL —

Part 13: SQL Routines and Types Using the Java™ Programming
| anguage (SQL/JRT)

1 Scope

This part of International Standard ISO/IEC 9075 specifies the ability to invoke static methpds
written in the Java™ programming language as SQL-invoked routines and to use classes defined
in the Java programming language as SQL structured user-defined types. (Java is a registerdd
trademark of Sun Microsystems, Inc.)

© ISO/IEC 2002 - All rights reserved Scope 1

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

(Blank page)

2 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions
of this part of ISO/IEC 9075. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply. However, parties to agreements based on this part of ISO/IEC 9075 are encouraged to
invgstigate the possibility ol applying the most recent editions ol the normative documents indicated below. Jor
undated references, the latest edition of the normative document referred to applies. Members of ISO and HEC
maintain registers of currently valid International Standards.

2.1 JTC 1 standards

1SO 8824-1:1998, Information technology — Abstract Syntax Notation” One
ASN.1): Specification of basic notation

ISO/IEC 9075-1:1999, Information technology — Database languages — SQL — Part 1:
Framework (SQL/Framework)

1SO/IEC 9075-2:1999, Information technology — Datebase languages — SQL — Part 2:
¥oundation (SQL/Foundation)

ISO/IEC 9075-5:1999, Information technology -<\Database languages — SQL — Part 5:
Host Language Bindings (SQL/Bindings)

1SO/IEC 9075-10:2000, Information technology — Database languages — SQL — Part 10:
QObject Language Bindings (SQL/OLB)

2.2 Publicly-available specifications

The Java Language-Specification, Second Edition, Bill Joy (Editor), Guy Steele, James Gosling
nd Gilad Bracha; Addison-Wesley, 2000, ISBN 0-201-31008-2.

he Java Virtual Machine Specification, Second Edition, Tim Lindholm and Frank Yellin,
ddison-Wesley, 1999, ISBN 0-201-43294-3.

ava 2Platform, Standard Edition, v1.2.2, API Specification,
tp:Y / web2. j ava. sun. com products/jdk/ 1.2/ docs/ api/.

Java Object Serialization Specification,
http://web2.java. sun. com products/jdk/ 1.2/ docs/guide/serialization/spec/serial TOC. doc. htni.

The JavaBeans™ 1.01 Specification,
http://java. sun. conf products/javabeans/ docs/ spec. htm .

© ISO/IEC 2002 — All rights reserved Normative references 3

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
2.2 Publicly-available specifications

JDBC™ 2.0 API, Version 1.0, Seth White & Mark Hapner, Sun Microsystems, Inc., 30 May,
1999.

JDBC 2.0 Standard Extension API, Version 1.0, Seth White & Mark Hapner, Sun Microsystems,
Inc., 7 December, 1998.

JDBC API Tutorial and Reference, Second Edition: Universal Data Access for the Java 2
Platform, Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark Hapner,

Ys 5

3C Architecture domain: Naming and Addressing (URLs),
ttp://ww. w3. or g/ Addr essi ng/ Activity. htm .

RFC 1738, Uniform Resource Locators (URL), T. Berners-Lee, L. Maxinter, M. McCghill, Decem
ber, 1994.

RFC 1808, Relative Uniform Resource Locators, R. Fielding, June, 1995.

4 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

3

ISO/IEC 9075-13:2002 (E)

Definitions, notations, and conventions

3.1 Definitions

3.1J1 Definitions provided in Part 13

[Insgrt this paragraph | For the purposes of this part of ISO/IEC 9075, the definitions given in ISO/TE(

9078-1, ISO/IEC 9075-2, ISO/IEC 9075-5, and ISO/IEC 9075-10, and the following definitions, apply.

a)

b)

c)

d)

e)

g)

h)

¢lass file: A file containing the compiled byte code for a Java class.

efault connection: a JDBC connection to the current SQL-implementation,"SQL-session, and
QL-transaction established with the data source URL ' j dbc: def aul t : conivecti on’ .

eployment descriptor: one or more SQL-statements that specify <install actions> and

remove actions> to be taken, respectively, by the SQLJ. | NSTALL, JAR and SQLJ. REMOVE_JAR
rocedures and that are contained in a deplyment descriptor file.yFor example, when a JAR

is installed, one or more <SQL-invoked routine>s that specifyf LANGUAGE JAVA and either
ROCEDURE or FUNCTION and the associated <grant privilege statement>s can be specified|

in the deployment descriptor and executed as part of the install process.

eployment descriptor file: a text file containing>deployment descriptors that is contained in
JAR, for which the JAR’s manifest entry, as deseribed by the j ava. util.jar section of Java
Platform, Standard Edition, v1.2.2, API Specification, specifies SQLIDepl oyment Descri pt or:
RUE.

xternal Java data type: an SQL usér-defined type defined with a <user-defined type defini-
ion> that specifies an <external Java'type clause>.

xternal Java routine: an external routine defined with an <SQL-invoked routine> that
pecifies LANGUAGE JAVA dnd ‘either PROCEDURE or FUNCTION, or defined with a <user-
efined type definition> that)specifies an <external Java type clause>.

nstalled JAR: a JARwhose existence has been registered with the SQL-environment and
hose contents have-been copied into that SQL-environment due to execution of one of the
rocedures SQLJ.AANSTALL_JAR and SQLJ. REPLACE JAR.

ava Archiveé (JAR): a zip formatted file, as described by the j ava. util . zi p section of Java
Platform; Standard Edition, v1.2.2, API Specification, containing zero or more Java cl ass
nd ser-files, and zero or more deployment descriptor files. JARs are a normal vehicle for
istributing Java programs and the mechanism specified by this International Standard to
rovide the implementation of external Java routines and external Java data types to an
QL-environmernt.

JVM: A Java Virtual Machine, as defined by The Java Virtual Machine Specification, Second
Edition.

ser file: A file containing representations of Java objects in the form defined in Java Object
Serialization Specification.

© ISO/IEC 2002 - All rights reserved Definitions, notations, and conventions 5

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.1 Definitions

k) subject Java class: the Java class uniquely identified by the combination of the class’s subject

Java class name and its containing JAR.

1) subject Java class name: the fully-qualified package and class name of a Java class.

m) system class: any Java class provided by a conforming implementation of this part of ISO/IEC
9075 that can be referenced by an external Java routine or an external Java data type without

that class having been included in an installed JAR.

3.1.2 Definitions taken from Java

This| part of ISO/IEC 9075 makes use of the following terms defined in The Java Language. Specifi

catidqn, Second Edition:

a) block

b) ¢lass declaration
¢) ¢lass instance

d) ¢lass variable

e) field

f) instance initializer
g) iInstance variable
h) interface

i) local variable

j) mnested class

k) package

1) static initializer
m) subpackage

3.2l Notations

| Insert this paragraph | The syntax notation used in this part of ISO/IEC 9075 is an extended version
of BNF ("Backus Normal Form" or "Backus Naur Form"). This version of BNF is fully described in

Subclause 6.1, "Notation", of ISO/IEC 9075-1.

6 SQL Routines and Types Using Java (SQL/JRT)

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

3.3 Conventions

[Insert this paragraph | Except as otherwise specified in this part of ISO/IEC 9075, the conventions
used in this part of ISO/IEC 9075 are identical to those described in ISO/IEC 9075-1 and ISO/IEC
9075-2.

3.3. necif ation g built-in proced N

Built-in procedures are specified in terms of:
— Function: A short statement of the purpose of the procedure.

— $ignature: A specification, in SQL, of the signature of the procedure. The only, purpose of
the signature is to specify the procedure name, parameter names, and parameter types. The
manner in which these built-in procedures are defined is implementation-dependent.

— Access Rules: A specification in English of rules governing the accessibility of schema objects
that must hold before the General Rules may be successfully applied.

— General Rules: A specification in English of the run-time effect*of invocation of the procedure|.
Where more than one General Rule is used to specify the effect of an element, the required
¢ffect is that which would be obtained by beginning with thie)first General Rule and applying
the Rules in numeric sequence unless a Rule is applied that specifies or implies a change in
gequence or termination of the application of the Rules.\Unless otherwise specified or implied
by a specific Rule that is applied, application of General Rules terminates when the last in the
gequence has been applied.

— Conformance Rules: A specification of how;the element must be supported for conformance tp

$QL.

The [scope of notational symbols is the Subclause in which those symbols are defined. Within a
Subg¢lause, the symbols defined in the Sighature, Access Rules, or General Rules can be referenced
in otlher rules provided that they are\défined before being referenced.

3.32 Specification of deployment descriptor files
Deployment descriptor files’ are specified in terms of:
— Function: A shert statement of the purpose of the deployment descriptor file.

— Model: A brief description of the manner in which a deployment descriptor file is identified
yithin itS\containing JAR.

— Properties: A BNF specification of the syntax of the contents of a deployment descriptor file.

— Description: A specification of the requirements and restrictions on the contents of a deploy-
ment descriptor file.

© ISO/IEC 2002 - All rights reserved Definitions, notations, and conventions 7

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

3.3.3 Relationships to other parts of ISO/IEC 9075

3.3.3.1 Clause, Subclause, and Table relationships

Table 1—Clause, Subclause, and Table relationships

this part of ISO/IEC 9075

Clause, Subclause, or Tableim]

Corresponding Clause, Sub-

—Clausec, or Labie from another

part

—Part contaiming corre- |

spondence

Cldquse 3, “Definitions, notations,
anfl conventions”

Supclause 3.1, “Definitions”

Supclause 3.1.1, “Definitions pro-
vided in Part 13”

Supclause 3.1.2, “Definitions taken
from Java”

Supclause 3.2, “Notations”
Supclause 3.3, “Conventions”

Supclause 3.3.1, “Specification of
bujlt-in procedures”

Supclause 3.3.2, “Specification of
deployment descriptor files”

Supclause 3.3.3, “Relationships to
other parts of ISO/IEC 9075”

Supclause 3.3.3.1, “Clause, Sub-
clajuse, and Table relationships”

Supclause 3.4, “Object identifier for
Database Language SQL”

Clguse 4, “Concepts”

Supclause 4.1, “The Java program-
mihg language”

Supclause 4.2, “SQL-invoked rou-
tines”

Clause 3, "Definitions, notations,
and conventions"

Subclause 3.1, "Definitions"

(none)

(none)

Subclause 3.2, "Notation"
Subclause 3.3, "Conventions"

(none)

(none)

(none)

(none)

Subclause 6.3, "Object identifier for
Database Language SQL"

Clause 4, "Concepts"

(None)

Subclause 4.23, "SQL-invoked
routines"

Supclause 4.3, “Java/class name (None) (None)
redolution”

Supclause_4:.4/“SQL result sets” (None) (None)
Supclatse 4.5, “Parameter mapping” (None) (None)
Supclause 4.6, “Unhandled Java (None) (None)

ISO/IEC 9075-2

ISO/IEC 907542

(none)

(ane)

ISO/IEC 9075-2
ISO/TEC 9075-2

(none)

(none)

(none)

(none)

ISO/IEC 9075-1

ISO/IEC 9075-2
(None)

ISO/IEC 9075-2

exceptions”

Subclause 4.7, “Data types”

Subclause 4.8, “User-defined types”

Subclause 4.1, "Data types"
Subclause 4.8, "User-defined types"

8 SQL Routines and Types Using Java (SQL/JRT)

ISO/IEC 9075-2

ISO/TEC 9075-2

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in
this part of ISO/IEC 9075

Corresponding Clause, Sub-
clause, or Table from another
part

Part containing corre-
spondence

Subclause 4.8.1, “User-defined type
comparison and assignment”

Subclause 4.8.4, "User-defined type
comparison and assignment"

ISO/IEC 9075-2

Subclause 4.8.2, “Accessing static (None) (None)
fields”

Supclause 4.8.3, “Converting objects (None) (None)
between SQL and Java”

Supclause 4.8.3.1, “SERIALIZ- (None) (None)
AHLE”

Supclause 4.8.3.2, “SQLDATA” (None) (None)
Supclause 4.8.3.3, “Developing for (None) (None)
potrtability”

Supclause 4.9, “Built-in procedures” (None) (None)
Supclause 4.10, “Privileges” Subclause 4.31.2, "Privileges" ISO/IEC 9075-2
Supclause 4.11, “JARs” (None) (None)
Supclause 4.11.1, “Deployment (None) (None)

degcriptor files”
Clguse 5, “Lexical elements”

Supclause 5.1, “<token> and <sepa-
ratlor>”

Supclause 5.2, “Names and identi-
fiers”

Cl4quse 6, “Scalar expressions”

Supclause 6.1, “<method invoca-
tioh>"

Supclause 6.2, “<new specification>”

Clquse 7, “Predicates”

Supclause 7.1, “<comparison predi-
catle>”

Clguse 8, “Additional common
elgments”

Clause 5, "Lexical elements"

Subclause 5.1, "<token> and <sepa-
rator>"

Subclause\b.1, "<token> and <sepa-
rator>!

Clause 6, "Scalar Expressions"

Subclause 6.11, "<method invoca-
tion>"

Subclause 6.24, "<new specifica-
tion>"

Clause 8, "Predicates"

Subclause 8.2, "<comparison predi-
cate>"

Clause 10, "Additional common
elements"

ISO/TEC 9075-2
ISO/IEC 9075-2

ISO/IEC 9075-2

ISO/TEC 9075-2
ISO/IEC 9075-2

ISO/IEC 9075-2

ISO/TEC 9075-2
ISO/IEC 9075-2

ISO/TEC 9075-2

Supclause=8.1, “<Java parameter (None) (None)
deglaration list>"
Subclause 8.2, "<sQL Java path> (None) (None)

Subclause 8.3, “<routine invoca-
tion>"

Subclause 8.4, “<language clause>”

© ISO/IEC 2002 — All rights reserved

Subclause 10.4, "<routine invoca-
tion>"

Subclause 10.2, "<language clause>"

ISO/TEC 9075-2

ISO/TEC 9075-2

Definitions, notations, and conventions 9

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in
this part of ISO/IEC 9075

Corresponding Clause, Sub-
clause, or Table from another
part

Part containing corre-
spondence

Subclause 8.5, “Java routine signa-
ture determination”

Clause 9, “Schema definition and

(None)

Clause 11, "Schema definition and

(None)

ISO/IEC 9075-2

m4gnipulation”
Supclause 9.1, “<table definition>"
Supclause 9.2, “<view definition>”"

Supclause 9.3, “<user-defined type
definition>"

Supclause 9.4, “<attribute defini-
tioh>”

Supclause 9.5, “<alter type state-
megnt>"

Supclause 9.6, “<drop data type
stdtement>"

Supclause 9.7, “<SQL-invoked
roytine>"

Supclause 9.8, “<alter routine state-
ment>"

Supclause 9.9, “<drop routine state-
megnt>"

Supclause 9.10, “<user-defined
ordering definition>"

Supclause 9.11, “<drop user-defined
ordering statement>"

Clquse 10, “Access control”

Supclause 10.1, “<grant privilege
stqtement>"

Supclause 10.2, “<priviléges>”

Supclause 10.3, “<revoke state-
mgnt>"

manipulation”
Subclause 11.3, "<table definition>"
Subclause 11.21, "<view definition>"

Subclause 11.40, "<user-defined type
definition>"

Subclause 11.41, "<attribute defini-
tion>"

Subclause 11.42, "<alter type state-
ment>"

Subclause 11.48, "<drop data typé
statement>"

Subclause 11.49, "<SQL-invoked
routine>"

Subclause 11.50, "<dlter routine
statement>"

Subclause 11.51,“"<drop routine
statement>”

Subclause*11.54, "<user-defined
ordering’ definition>"

Stbclause 11.55, "<drop user-
defined ordering statement>"

Clause 12, "Access control"

Subclause 12.2, "<grant privilege
statement>"

Subclause 10.5, "<privileges>"

Subclause 12.6, "<revoke state-
ment>"

ISO/IEC 9075-2
ISO/IEC 9075-2
ISO/TEC 9075-2

ISO/TECY9075-2

ISO/IEC 9075-2

ISO/IEC 9075-2

ISO/TEC 9075-2

ISO/TEC 9075-2

ISO/IEC 9075-2

ISO/IEC 9075-2

ISO/IEC 9075-2

ISO/TEC 9075-2
ISO/IEC 9075-2

ISO/IEC 9075-2
ISO/IEC 9075-2

Clause 11, “Built-in procedures” (None) (None)
Supclause 1.1, “SQLJ.INSTALL_ (None) (None)
JAR procedure”
Subclanse 11.2_ “SQI.J REPLACE_ (None) (None)
JAR procedure”
Subclause 11.3, “SQLJ.REMOVE_ (None) (None)

JAR procedure”

10 SQL Routines and Types Using Java (SQL/JRT)

© ISO/IEC 2002 — Al rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in
this part of ISO/IEC 9075

Corresponding Clause, Sub-
clause, or Table from another
part

Part containing corre-
spondence

90¥5”

tiep

Subclause 11.4, “SQLJ.ALTER_ (None) (None)
JAVA_PATH procedure”

Clause 12, “Java topics” (None) (None)
Supclause 12.1, “Java facilities (None) (None)
supported by this part of ISO/IEC

Supclause 12.1.1, “Package java.sql” (None) (None)
Supclause 12.1.2, “System proper- (None) (None)
Supclause 12.2, “Deployment de- (None) (None)

scifiptor files”
Clguse 13, “Information Schema”

Supclause 13.1, “JAR_JAR_USAGE

vigw”
Subpclause 13.2, “JARS view”

Supclause 13.3, “METHOD_
SPIECIFICATIONS view”

Supclause 13.4, “ROUTINE_JAR_
UYAGE view”

Subpclause 13.5, “TYPE_JAR_
UYAGE view”

Supclause 13.6, “USER_DEFINED_
TY|PES view”

Supclause 13.7, “Short name views”

Clquse 14, “Definition Schema’

Supclause 14.1, “JAR_JAR-USAGE
bage table”

Subpclause 14.2, “JARS base table”

Supclause 14.3, “METHOD_
SPIECIFICATIONS base table”

Supclause 4.4, “ROUTINE_JAR_
USAGE base table”

Subclanise 14 5 “ROUTINES base

Clause 20, "Information Schema"

(None)

(None)

Subclause 20.32, "METHOD_
SPECIFICATIONS view"

(None)

(None)

Subclause 20.65, "USER_
DEFINED_TYPES view"

Subclause 20.69, "Short name
views"

Clause 21, "Definition Schema"
(None)

(None)

Subclause 21.24, "METHOD_
SPECIFICATIONS base table"

(None)

Subclanse 21.33 "ROUTINES base

ISO/IEC 9075-2
(None)

(None)
ISO/IEC 9075-2

(None)

(None)

ISO/TEC 9075-2

ISO/IEC 9075-2

ISO/TIEC 9075-2
(None)

(None)
ISO/IEC 9075-2

(None)

ISOMEC 9075-2

table”

Subclause 14.6, “TYPE_JAR_
USAGE base table”

© ISO/IEC 2002 — All rights reserved

table"
(None)

(None)

Definitions, notations, and conventions 11

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.3 Conventions

Table 1—Clause, Subclause, and Table relationships (Cont.)

Clause, Subclause, or Table in
this part of ISO/IEC 9075

Corresponding Clause, Sub-
clause, or Table from another
part

Part containing corre-
spondence

Subclause 14.7, “USAGE_
PRIVILEGES base table”

Subclause 14.8, “USER_DEFINED _

Subclause 21.50, "USAGE_
PRIVILEGES base table"

Subclause 21.52, "USER_

ISO/IEC 9075-2

ISO/IEC 9075-2

ES base table”
Clguse 15, “Status codes”

Supclause 15.1, “Class and sub-
claks values for uncaught Java
ex¢eptions”

Subpclause 15.2, “SQLSTATE”
Clguse 16, “Conformance”

Supclause 16.1, “Claims of confor-
mgnce”

Anlnex A, “SQL Conformance Sum-
m ry”

Annex B, “Implementation-defined
elgments”

Annex C, “Implementation-
dependent elements”

Annex D, “SQL Feature Taxonomy”

Annex E, “Routines tutorial”
Annex F, “Types tutorial”

Annex G, “Incompatibilities with
ANSI NCITS 331”7

Taple 1, “Clause, Subclause, and
Taple relationships”

Table 2, “System properties?®

Taple 3, “SQLSTATE class and
subclass values”

Taple 4, “Featuretaxonomy for
feqtures outsidg Core SQL”

DEFINED_TYPES base table”
Clause 22, "Status codes"
(None)

Subclause 22.1, "SQLSTATE"
Clause 8, "Conformance"

Subclause 8.2.3, "Claims of confor-
mance"

Annex A, "SQL Conformance Suni-
mary"

Annex B, "Implementation‘defined
elements"

Annex C, "Implementation-
dependent elements’,

Annex F, "SQL feature and package
taxonomy"

(None)
(None)
(None)

(none)

(None)

Table 27, "SQLSTATE class and
subclass values"

Table 32, "SQL/Foundation feature
taxonomy for features outside Core
SQLII

ISO/IEC 9075-2
(None)

ISO/MIEE\9075-2
ISO/IEC 9075-1
ISO/IEC 9075-1

ISO/IEC 9075-2

ISO/TEC 9075-2

ISO/TEC 9075-2

ISO/IEC 9075-2

(None)
(None)
(None)

(none)

(None)
ISO/IEC 9075-2

ISO/TEC 9075-2

3.4 . . .

The object identifier for Database Language SQL is defined in Subclause 6.3, "Object identifier for
Database Language SQL", of ISO/IEC 9075-1 with the following additions:

12 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.4 Object identifier for Database Language SQL

Format

<i nvoked routine | anguages> ::=

' Al alternatives fromlSQ | EC9075-1
| <invoked Java>

<i nvoked Java> ::=

8 | invokedJava <l eft paren> 8 <right paren>

<Par|t

<Parit

<Par|t

<Parlt

<Par|t

<Par|t

<Parlt

<Par|t

<Par|t

<Parlt

<Parlt

<Par|t

13 yes> :: =

<Part 13 conformance>
<Part 13 routines>

<Part 13 types>

<Part 13 JAR privil eges>
<Part 13 interfaces>

13 conformance> :: =
13
| sqljrt2002 <left paren> 13 <right paren>

13 routines> ::=
<Part 13 routines no>
| <Part 13 routines yes> <routines support>

13 routines no> ::=
0 | routinesno <left paren> 0 <right paren>

13 routines yes> ::=
1| routinesyes <left paren> 1 <right paren>

13 types> ::=
<Part 13 types no>
| <Part 13 types yes> <types support>

13 types no> ::=
0 | typesno <left paren> 0.<fbght paren>

13 types yes> ::=
1| typesyes <left paren> 1 <right paren>

13 JAR privileges>_i=
<Part 13 JAR privil eges no>
| <Part 13 JAR-privileges yes> <JAR privil eges support>

13 JAR privi)eges no> ::=
0 | JARprivil egesno <left paren> 0 <right paren>

13 JARVprivileges yes> ::=
1 >-9ARprivil egesyes <left paren> 1 <right paren>

13 interfaces> ::=

<Part

<Part

<Part 13 serializable> <Part 13 sql data>

13 serializable> ::=
<Part 13 serializable no>
| <Part 13 serializable yes>

13 serializable no> ::=
0 | serializableno <left paren> 0 <right paren>

© ISO/IEC 2002 — All rights reserved Definitions, notations, and conventions

13

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.4 Object identifier for Database Language SQL

<Part 13 serializable yes> ::=
1| serializableyes <left paren> 1 <right paren>

<Part 13 sgldata> ::=
<Part 13 sql data no>
| <Part 13 sgldata yes>

<Part 13 sqldata no> ::=
0 | sqgldatano <left paren> 0 <right paren>

<Par|t 13 sgldata yes> ::=
1 | sqgldatayes <left paren> 1 <right paren>

<routines support> ::=
<routines commands> <routines depl oynent >

<routines comuands> ::=
<routi nes commands no>
| <routines comands yes>

<royti nes conmands no> ::=
0 | routinescomrandsno <l eft paren> 0 <right paren>

<rouytines commands yes> ::=
1 | routinesconmmandsyes <left paren> 1 <right parep>

<routines deploynment> ::=
<routi nes depl oynent no>
| <routines depl oynent yes>

<routines deploynment no> ::=
0 | routinesdepl oynentno <left paren>30 <right paren>

<routi nes depl oynent yes> ::=
1 | routinesdeploynmentyes <left“paren> 1 <right paren>

<types support> ::=
<types commands> <types depl oynent >

<types conmands> ::=
<types conmmands mo>
| <types conmands, y€s>

<types conmmands no>'\ &=
0 | typescetmandsno <l eft paren> 0 <right paren>

<types commands.yes> :: =
1 | #ypesconmandsyes <left paren> 1 <right paren>

<types _ deploynent> :: =

<types depl oynent no>
| <tvnes denlovnment vessS
1 J T Ll PA PA

<types depl oynent no> ::=
0 | typesdeploynentno <l eft paren> 0 <right paren>

<types depl oynent yes> ::=
1 | typesdepl oynentyes <left paren> 1 <right paren>

<JAR privil eges support> ::=

14 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.4 Object identifier for Database Language SQL

<JAR privil eges commands> <JAR privil eges depl oynent >

<JAR privil eges conmands> ::=

<JAR privil eges commands no>
| <JAR privil eges comands yes>

<JAR privil eges commands no> :: =

<JA

0 | JARprivil egesconmandsno <l eft paren> 0 <right paren>

ol l onoc conmondce oo =
Tty o

<JAR

<JAR

<JAR

1)

2)
3)

4)

5)

6)

7)

8)

9)

10)

11)

I

I

Y

|

et

|) J -
1| JARprivilegescommandsyes <left paren> 1 <right paren>
privil eges depl oynent> ::=
<JAR privil eges depl oynent no>
| <JAR privileges depl oynent yes>

privileges deploynment no> ::=
0 | JARprivil egesdepl oymentno <l eft paren> 0 <right paren>

privileges depl oyment yes> ::=
1 | JARprivilegesdepl oynentyes <left paren> 1 <right parep>

itax Rules

Insert this SR | Specification of <Part 13 yes> implies that ¢onformance to ISO/IEC 9075-13 is
laimed.

Insert this SR | If <Part 13 yes> is not specified then &invoked Java> shall not be specified.

Insert this SR | If <Part 13 conformance> specifiesisql j rt 2002, then <SQL edition> shall specify
£1999>.

Insert this SR | Specification of <Part 13 reoutines no> implies that conformance to Feature J621,
external Java routines”, is not claimed:

Insert this SR | Specification of <Part 13 routines yes> implies that conformance to Feature J621
external Java routines”, is claimed.

Insert this SR | Specificatign,of <Part 13 types no> implies that conformance to Feature J622,
external Java types”(is not claimed.

Insert this SR | SpeCification of <Part 13 types yes> implies that conformance to Feature J622,
external Javadypes”, is claimed.

Insert this SRY| Specification of <Part 13 JAR privileges no> implies that conformance to Feature
[561, “JAR privileges”, is not claimed.

Ipsertthis SR | Specification of <Part 13 JAR privileges yes> implies that conformance to Featuré

Jh61 “JAR privﬂpgpq”} is claimed

Specification of <Part 13 serializable no> implies that conformance to Feature
J541, “Serializable”, is not claimed.

Specification of <Part 13 serializable yes> implies that conformance to Feature
J541, “Serializable”, is claimed.

© ISO/IEC 2002 - All rights reserved Definitions, notations, and conventions 15

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
3.4 Object identifier for Database Language SQL

12) Specification of <routines commands no> implies that conformance to Feature
J511, “Commands”, is not claimed for Feature J621, “external Java routines”.

13) Specification of <routines commands yes> implies that conformance to Feature
J511, “Commands”, is claimed for Feature J621, “external Java routines”.

14) Specification of <types commands no> implies that conformance to Feature J511,
“Commands”, is not claimed for Feature J622, “external Java types”.

15) [|Insert this SR | Specification of <types commands yes> implies that conformance to Feature J511
Commands”, is claimed for Feature J622, “external Java types”.

16) [[insert this SR | Specification of <JAR privileges commands no> implies that conformance to"Fea-
flure J511, “Commands”, is not claimed for Feature J561, “JAR privileges”.

17) [|insert this SR | Specification of <JAR privileges commands yes> implies that confermance to
Feature J511, “Commands”, is claimed for Feature J561, “JAR privileges”.

18) [[insert this SR | Specification of <routines deployment no> implies that confé¢rmance to Feature
4531, “Deployment”, is not claimed for Feature J621, “external Java routines”.

19) [[insert this SR | Specification of <routines deployment yes> implies that conformance to Feature
4531, “Deployment”, is claimed for Feature J621, “external Java-routines”.

20) |[[insert this SR | Specification of <types deployment no> impligs-that conformance to Feature J531
Deployment”, is not claimed for Feature J622, “externakJava types”.

21) [[Insert this SR | Specification of <types deployment yes> implies that conformance to Feature J531,
‘Deployment”, is claimed for Feature J622, “external Java types”.

22) [[Insert this SR | Specification of <JAR privilege§deployment no> implies that conformance to
Feature J531, “Deployment”, is not claimed-for Feature J561, “JAR privileges”.

23) [[Insert this SR | Specification of <JAR privileges deployment yes> implies that conformance to
Feature J531, “Deployment”, is claitned for Feature J561, “JAR privileges”.

16 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

4 Concepts

4.1 The Java programming language

The Java programming language is a class-based, object-oriented language. This part of ISO/TEC
9074 uses the following Java concepts and terminology.

A clgss is the basic construct of Java programs, in that all executable Java code is contained in
a Jaja class definition. A class is declared by a class declaration that specifies a possibly empty
set donsisting of zero or more fields, zero or more methods, zero or more nested classes, zero or
mor¢ interfaces, zero or more instance initializers, zero or more static initializersyand zero or mor¢
consfructors.

The [scope of a variable is a class, an instance of the class, or a method of thé.¢lass. The scope of

a variable that is declared static is the class, and the variable is called a(class variable. The scope
of edch other variable declared in the class is instances of the class, andJsuch a variable is called

an ipstance variable. Class variables and instance variables of a class.are called fields of that clasd.
The |scope of a variable declared in a method is the block or Java,f or statement in which it is
declgred in that method, and the variable is called a local variable.

A clgss instance consists of an instance of each instance variable declared in the class and each
nce variable declared in the superclasses of the class)~Class instances are strongly typed by
the ¢lass name. The operations available on a class instance are those defined for its class.

With the exception of the class j ava. | ang. Qbj ect s\each class is declared to extend (at most)
one pther class; a class not explicitly declared:t@yextend another class implicitly extends

j avd. | ang. Qbj ect . The declared class is a direet subclass of the class that it extends; the class
that|it extends is the direct superclass of the:declared class.

Clask B is a subclass of class A if B isadirect subclass of A, or if there exists some class C such
that|B is a direct subclass of C and €_is a subclass of A. Likewise, class B is a superclass of class A
if B |is a direct superclass of A, or.f there exists some class C such that B is a direct superclass of
C ard C is a superclass of A. A-subclass has all of the fields and methods of its superclasses and an
instance of class B may be used"wherever an instance of a superclass of B is permitted.

A méthod is an executaple routine. A method can be declared static, in which case it is called a clads
method; otherwise, it-is ealled an instance method. A class method can be referenced by qualifying]
the method name with’either the class name or the name of an instance of the class. An instance
metlhod is refereniced by qualifying the method name with a Java expression that results in an
instance of the elass or, in the case of a constructor, with “new”. The method body of an instance
method can réference its class variables, instance variables, and local variables.

wn

The Hava method signature of a method consists of the method name and the number of parameter
and ftheir data types.

A package consists of zero or more classes, zero or more interfaces, and zero or more subpackages
(a subpackage is a package within a package); each package provides its own name space and
classes within a package are able to refer to other classes in the same package, including classes
not referenceable from outside the package. Every class belongs to exactly one package, either an
explicitly specified named package or the anonymous default package. A class can specify Java

i mport statements to refer to other named packages whose classes can then be referenced within
the class without package qualification.

© ISO/IEC 2002 - All rights reserved Concepts 17

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.1 The Java programming language

A class, field, or methods can be declared as public, private, or protected. A public variable or
method can be accessed by any method. A private variable or method can only be referenced by
methods in the same class. A protected variable or method can only be referenced by methods of the
same class or subclasses thereof. A method that is not declared as public, private, or protected can
only be called by methods declared by classes in the same package.

An interface is a Java construct consisting of a set of method signatures. An interface can be
implemented by zero or more classes, a class can be declared to implement zero or more interfaces,
and a class is required to have methods with the signatures specified by all of its declared interfaces.

The |Java Serializable interface, j ava. i o. Seri al i zabl e, as described in Java 2 Platform, Stan;
dard Edition, v1.2.2, API Specification, defines a transformation between a Java instance.and a
java.io. Qut put Streamor java. i o. | nput Stream as defined by the j ava. i o. Qut put St r eam’and
java.io. I nput Streamsections of Java 2 Platform, Standard Edition, v1.2.2, API Spécification,
respgctively, writing a persistent representation of an instance of a Java object and, reading a
persjstent representation of an instance of a Java object. This transformation retains sufficient
infoymation to identify the most specific class of the instance and to reconstruct the instance.

The Java SQLData interface, j ava. sql . SQLDat a, as described in Java 2 Platform, Standard Edi-
tion,|v1.2.2, API Specification, defines a transformation between a Java-instance and an SQL
userfdefined data type.

The [source for a Java class is normally stored in a Java file with-the file-type “java”, e.g., ny-
cl ags. j ava. Java is normally compiled to a byte coded instrugtion set that is portable to any
platform supporting Java. A file containing such byte code is fiormally stored in a class file with the
file-iype “class”, e.g., nycl ass. cl ass.

A se} of class files can be assembled into a Java archipéefile, or JAR (usually with a file extension gf
“jarf. A JAR is a zip formatted file containing a set of Java class files. JARs are the normal vehicle
for distributing Java programs.

4.2 SQL-invoked routines

| Insprt after 1st paragraph | An SQL-invokéd routine can be an SQL routine or an external routine. An
SQL routine is an SQL-invoked routine whose <language clause> specifies SQL. The <routine body]
of a{SQL routine is an <SQLsprocedure statement>; the <SQL procedure statement> forming the

\Y

<rodtine body> can be any SQI~statement, including an <SQL control statement>, but excluding ap
<SQIL schema statement>;<SQL connection statement>, or <SQL transaction statement>.

[Insprt after 1st paragraph-\]-An external routine is one whose <language clause> does not specify SQL.
The |<routine body>ef‘an external routine is an <external body reference> whose <external routing
name> identifies¢@-program written in some standard programming language other than SQL.

| Insprt after 1sf paragraph | External routines appear in two seemingly similar, but fundamentally dif-
fering, forms,*'where the key differentiator is whether or not the external routine’s routine descriptd
specjfies.that the body of the SQL-invoked routine is written in Java. When the body of the SQL-
invoked)routine is written in Java, the external routine is an external Java routine; some differencds
from other external routines include:

—

— For any other external routine, the executable form (such as a dynamic link library or some
run-time interpreted form) of that routine exists externally to the SQL-environment’s catalogs;
for an external Java routine, the executable form is provided by a specified subject Java routine
that exists in the SQL-environment’s catalogs in an installed JAR.

18 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.2 SQL-invoked routines

— Because an installed JAR is not required to be completely self-contained (i.e., to have no refer-
ences to Java classes outside of itself), a mechanism is provided to allow a subject Java class to
reference classes defined by class files contained in its installed JAR or in other installed JARs.
See Subclause 8.2, “<SQL Java path>".

NOTE 1 — Once an external Java routine has been created, its use in SQL statements executed by the
containing SQL-environment is similar to that of other external routines.

[Replace the lead-in paragrph of the 10th paragraph | A static SQL-invoked method, whether or not it is
an e V4 Toutinge, sati Wi Ttions:

|

[Replace the 16th paragraph | SQL-invoked routines are invoked differently depending on their form.
SQL{invoked procedures are invoked by <call statement>s. SQL-invoked regular functions are
invoked by <routine invocation>s. Instance SQL-invoked methods are invoked by <méfhod in-
vocafion>s, while SQL-invoked constructor methods are invoked by <new invocatign>s and static
SQLtinvoked methods are invoked by <static method invocation>s. An invocation of an SQL-invoked
rout]ne specifies the <routine name> of the SQL-invoked routine and supplies‘a/sequence of argu-
men} values corresponding to the <SQL parameter declaration>s of the SQL-invoked routine. A
subject routine of an invocation is an SQL-invoked routine that may be invoked by a <routine invo
catign>. After the selection of the subject routine of a <routine invocation>, the SQL arguments ar
evalfhated and the SQL-invoked routine that will be executed is selected. If the subject routine is an
instdnce SQL-invoked method that is not an external Java routife, then the SQL-invoked routine
that|is executed is selected from the set of overriding methodsof/the subject routine. (The term “sd
of ovferriding methods” is defined in the General Rules of Subclause 10.4, "<routine invocation>", in
ISOAIEC 9075-2.) The overriding method that is selected.igrthe overriding method with a subject
parameter the type designator of whose declared type precedes that of the declared type of the
subjgct parameter of every other overriding method in.the type precedence list of the most specific
type|of the value of the SQL argument that corresponds to the subject parameter. (See the General
Rulgs of Subclause 10.4, "<routine invocation>"xin ISO/IEC 9075-2.) If the instance SQL-invoked
metmod is an external Java routine, the term-“set of overriding methods” is not applicable; for sucli
metlods, the capabilities provided by overriding methods duplicate Java’s own mechanisms and th|
subjgct routine executed is the one that fould be invoked when no overriding methods are specifieq
If thie subject routine is not an SQL-invoked method, then the SQL-invoked routine executed is tha
subject routine. After the selection ‘of the SQL-invoked routine for execution, the values of the SQIL
arguments are assigned to the-dorresponding SQL parameters of the SQL-invoked routine and its
<rodtine body> is executed. Af\the SQL-invoked routine is an SQL routine, then the <routine body?
is an <SQL procedure statenient> that is executed according to the General Rules of Subclause 13.1
"<SQL procedure statement>, in ISO/IEC 9075-2. If the SQL-invoked routine is an external routing
then| the <routine body>"1dentifies a program written in some standard programming language
other than SQL that)is executed according to the rules of that programming language.

o)

blete the 13th and 14th paragraphs |

[

-+

o =

\4

[Reblace the 18thparagraph | If the SQL-invoked routine is an external routine, then an effective
SQL parameter list is constructed before the execution of the <routine body>. The effective SQL
parameter.list has different entries depending on the parameter passing style of the SQL-invoked
routine/\The value of each entry in the effective SQL parameter list is set according to the General
Rulgs of Subclause 8.3, “<routine invocation>". When the SQL-invoked routine is not an external
Java routine, the values in the effective SQL parameter list are passed to the program identified
by the <routine body> according to the rules of Subclause 13.6, "Data type correspondences", in
ISO/TEC 9075-2; when the SQL-invoked routine is an external Java routine, values in the effective
SQL parameter list are passed to the program identified by <routine body> according to the rules of
Subclause 4.5, “Parameter mapping”. After the execution of that program, if the parameter passing
style of the SQL-invoked routine is SQL, then the SQL-implementation obtains the values for
output parameters (if any), the value (if any) returned from the program, the value of the exception

© ISO/IEC 2002 - All rights reserved Concepts 19

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.2 SQL-invoked routines

data item, and the value of the message text (if any) from the values assigned by the program

to the effective SQL parameter list. If the parameter passing style of the SQL-invoked routine is
JAVA, then such values are obtained from the values assigned by the program to the effective SQL
parameter list and the uncaught Java exception (if any). If the parameter passing style of the SQL-
invoked routine is GENERAL, then such values are obtained in an implementation-defined manner.

4.3 Java class name resolution

Typikal JVMs provide a class name resolution, or search path, mechanism based on an envirgnimen|
tal vjariable called CLASSPATH. When a JVM encounters a previously unseen reference to-alelass,
the members of the list of directories and JARs appearing in the classpath are examined. in order

unti] either the class is found or the end of the list is reached. Failure to locate a refetenced class is
a ruhtime error that will often cause the application that experiences it to terminate.

When a JVM is transitioned to being effectively within an SQL environment, the problem of manag-
ing the JVM’s class name resolution continues to exist, but with a change inéenmrphasis. To allow thfe
creators of Java applications a greater degree of control over class name resolution, and the added
secufity associated with that control, a classpath-like mechanism is defined to be a property of the
JARE containing the Java applications, rather than as an environmental variable of the current
session (such as, for example, CURRENT _PATH for dynamic statements). Therefore, if, while an
external Java routine is being executed, a previously unseen clas§ reference is encountered, that
clasg is first searched for in the JAR containing the definition ofthe currently executing class, and
if it fis not found, the class will be sought in the manner specified by the SQL-Java path associated
with| that JAR (if any).

An $QL-Java path specifies how a JVM resolves a cla§s name when a class within a JAR referencds
a clgdss that is not a system class or not in the same JAR. SQLJ. ALTER JAVA PATH is used to asso-
ciatdd an SQL-Java path with a JAR. An SQL-Java path is a list of (referenced item, referenced
JAR) pairs. A referenced item can be either a“class, a package, or * to specify the entire JAR.
The |[SQL-Java path list is searched in the order the pairs are specified. For each (referenced item,
refetenced JAR) pair (RI, R.J):

— If RI is the class name, then the class must be defined in RJ. If it is not, an exception conditiof
is raised.

— 1If RI is the package of thieclass being resolved, then the class must be defined in RJ. If it is nof,
4n exception condition is-raised.

— If RI is ' and the-class is defined in RJ, then that resolution is used; otherwise, subsequent
pairs are tested.

4.4] SQLresult sets

Curgors, or SQL result sets, appear to Java applications in two forms; the first, as an object of
a class that implements the interface j ava. sql . Resul t Set as defined by JDBC in JDBC API
Tutorial and Reference, Second Edition: Universal Data Access for the Java 2 Platform, re-
ferred to as a JDBC ResultSet; the second, as an object of a class that implements the interface
sqglj.runtime. ResultSetlterator as defined by ISO/IEC 9075-10, referred to as an SQLJ Iterator.

20 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.4 SQL result sets

In ISO/IEC 9075-2, SQL-invoked procedures are declared to be able to return zero or more dynamic
result sets, referred to as result set cursors. To be a returned result set cursor, a cursor’s declaration
must specify WITH RETURN, and the cursor must be open at the point that the SQL-invoked
procedure exits. While external Java routines that are SQL-invoked procedures can likewise be
declared to return zero or more dynamic result sets, in some other respects, this part of ISO/IEC
9075’s treatment of result set cursors differs from that of ISO/IEC 9075-2.

In a Java application, all JDBC ResultSets and SQLJ Iterators are implicitly result set cursors,

that is, their underlying cursor declarations implicitly specify WITH RETURN. So, in this part of
ISONIEC 9075, to actually be a returned result set cursor it is not sufficient that the corresponding
JDBC ResultSet’s or SQLJ Iterator’s underlying cursor be open when the SQL-invoked procedure
exitd; the JDBC ResultSet or SQLJ Iterator must also have been explicitly assigned to a parameter
of tHe subject Java routine that represents an output parameter. As discussed in Subclatse 4.5,
“Parpmeter mapping”, and Subclause 8.3, “<routine invocation>”, output parameters are repre-
sentpd to a subject Java routine as the first element of a one dimensional array of a'Java data typ¢
that|can be mapped to an SQL data type. For dynamic result sets, the array must be of a class thg
implements the interface j ava. sql . Resul t Set or the interface sql j.runtime. Resul t Set|terator,
the JDBC ResultSet or SQLJ Iterator must have been explicitly assigned to, the first element of thdt
arraly, and that JDBC ResultSet or SQLJ Iterator must not have been closed.

-+

It is[important to note that this difference in how a result set cursor betomes a returned result set
curspr is invisible to the calling application. As described in Subclause 8.3, “<routine invocation>”,
the ¢alling application will be returned zero or more dynamic result sets in the order in which

the ¢ursors were opened, just as in ISO/IEC 9075-2; the order-6f the parameters in the subject Javp
routine does not impact the order in which the calling application accesses the returned result sets

4.5| Parameter mapping

Let BT be some SQL data type and let JT be sorfie Java data type.

ST gnd JT are simply mappable if and only(if ST and JT are specified respectively in the first

and jsecond columns of some row of the JIBC data type mapping table, Table 47.1, entitled “JDBC
Typgs mapped to Java Types”, in JDBCAPI Tutorial and Reference, Second Edition: Universal Datp
Acceps for the Java 2 Platform. The Java data type J7T is the corresponding Java data type of ST.

ST gnd JT are object mappable<ifiand only if ST and JT are specified respectively in the first and
second columns of some row of the JDBC object type mapping table, Table 47.3, entitled “Mapping
from JDBC Types to Java Object Types”, in JDBC API Tutorial and Reference, Second Edition:
Unidersal Data Access for.the Java 2 Platform, or if the descriptor of ST specifies that it is an
external Java data type-and the descriptor specifies J7T' as the <Java class name> in the <jar and
clasy name>.

ST dqnd JT are output mappable if and only if JT is a one dimensional array type with an element
datal type JTZ (that is, JT is “JT2[]”) and ST is either simply mappable to J72 or object mappable
to JT2.

An 3QL array type with an element data type ST and J7T are array mappable if and only if JT is

a on dmensional arrav tuyne with an element data tvne J7T2 and ST is either simnly mannable to
J J I J I j rr

JT2 or object mappable to JT2.

ST and JT are mappable if and only if ST and JT are simply mappable, object mappable, output
mappable, or array mappable.

A Java data type is mappable if and only if it is mappable to some SQL data type.

© ISO/IEC 2002 - All rights reserved Concepts 21

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.5 Parameter mapping

A Java class is result set oriented if and only if it is either:
— A class that implements the Java interface j ava. sql . Resul t Set .

— A class that implements the Java interface sql j.runtime. Result Setlterator.

NOTE 2 — These classes are generated by iterator declarations (#sql iterat or) as specified in ISO/IEC
9075-10.

A Java data type is result set mappable if and only if it is a one-dimensional array type with an
element type that is a result set oriented class.

A Jgdva method with M parameters is mappable (to SQL) if and only if, for some N, 0 (zero) <A<
M, the data types of the first V parameters are mappable, the last M—N parameters are result set
mappable, and the result type is either simply mappable, object mappable, or voi d.

A Jgva method is visible in SQL if and only if it is public and mappable. In addition) te’be visible,
Javg method must be static if used as the external Java routine of an SQL-invoked.procedure or a
SQLtinvoked regular function.

=

A Jgva class is visible in SQL if and only if it is public and mappable.

The |book JDBC API Tutorial and Reference, Second Edition: Universal_Bdta Access for the Java
2 Platform contains JDBC’s SQL to Java data type mappings defined in the JDBC type mapping
tabl¢s. If ST is an external Java data type that appears in the INFORMATION_SCHEMA . USER|
DEHINED_TYPES view, then JDBC’s data type mapping tables-ate effectively extended. A row (ST,
JT) s considered to be an additional row in Table 47.3, Mapping from JDBC Types to Java Object
Typas, and a row (JT, ST) is considered to be an additional\row in Table 47.4, Mapping from Java
Object Types to JDBC Types.

4.6) Unhandled Java exceptions

Javg exceptions that are thrown during execution of a Java method in SQL can be caught, or
led, within Java; if this is done, then_those exceptions do not affect SQL processing. All

ment will be £aised in the Java method as a Java exception that is specifically the j ava. sql . SQLExdept i on
subdlass of'the Java class j ava. | ang. Excepti on. For portability, a Java method called from SQL,
that|itsélffexecutes an SQL statement and that catches an SQLException from that inner SQL
stat¢ment, should re-throw that SQLException.

22 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.7 Data types

4,7 Data types

| Replace 16th paragraph | Each host language has its own data types, which are separate and distinct
from SQL data types, even though similar names may be used to describe the data types. Mappings
of SQL data types to data types in host languages are described in Subclause 11.49, "<SQL-invoked
routine>", in ISO/IEC 9075-2, in Clause 16, "Embedded SQL", in ISO/IEC 9075-5, and in Sub-
clause 8.1, "<embedded SQL host program>", in ISO/IEC 9075-10. Not every SQL data type has a

cor s dota 4 H L +£.]
T ESPOTTaIIIE—trata oy pCIIT CVCT - ITOS T TaiTg orag et

4.8 User-defined types

[Insprt after 1st paragraph | User-defined types appear in two seemingly similar, but fundarmentally
diffefring, forms in which the key differentiator is whether or not the create type statement for the
usertdefined type specifies an external language of “JAVA”. When an external language of JAVA is
specified, the user-defined type is an external Java data type and the create type statement defines
a m4pping of the user-defined type’s attributes and methods directly to the public attributes and
methods of a subject Java class. This is different from user-defined types(that are not external Java
datal types. The differences include:

— For every other user-defined type, there is no requirement foran-association with an underlyinig
lass; each method of a user-defined type that is not an extérnal Java data type can be written|
in a different language (for example, one method could béavritten in SQL and another written
E Fortran). Such user-defined types cannot have metheds written in Java. By contrast, all

ethods of an external Java data type must be written'in Java, (implicitly) have a parameter
gtyle of JAVA, and be defined in the associated Java-class or one of its superclasses.

— For every other user-defined type, there is nosexplicit association between a user-defined type’s
attributes and any external representation of their content. In addition, the mapping between
4 user-defined type’s methods and external methods is made over time by subsequent CREATH
METHOD statements. By contrast, for_external Java data types, the association between the
1ser-defined type’s attributes and methods and the public attributes and methods of a subject
ava class is specified by the create type statement.

or external Java data types;the mechanism used to convert the SQL-environment’s represen-
fation of an instance of a user-defined type into an instance of a Java class is specified in the
SING <interface speeification> clause. Such conversions are performed, for example, when an
¢xternal Java data type is specified as a (subject) parameter in a method or function invocation,
¢r when a Java ebject returned from a method or function invocation is stored in a column
eclared to be an external Java data type. <interface specification> can be either SERIALIZ-
ABLE, specifying the Java-defined interface j ava. i o. Seri al i zabl e (not to be confused with
the isolation level of SERTALIZABLE), or SQLDATA, specifying the JDBC-defined interface
jlava. sg=»SQLDat a. See Subclause 9.3, “<user-defined type definition>".

or-every other user-defined type, there is no explicit support of static attributes. For external

spec>s that define observer methods against specified static attributes of the subject Java class.

The scope and persistence of any modifications to static attributes made during the execution of
a Java method is implementation-dependent.

© ISO/IEC 2002 - All rights reserved Concepts 23

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.8 User-defined types

— For every other user-defined type, the implementation of every method that isn’t an SQL
routine exists externally to the SQL-environment. For external Java data types, the imple-
mentation of the methods is provided by a specified subject Java class that exists within the
SQL-environment in an installed JAR.

— External Java data types may only be structured types, not distinct types.

— Support for the specification of overriding methods is not provided for methods that are external
Java routines.

NOTE 3 — Once an external Java data type has been created, its use in SQL statements executed by the
contdining SQL-implementation is similar to that of other user-defined types.

| Replace 8th paragraph | A user-defined type is described by a user-defined type descriptor., Aduser-
defined type descriptor includes:

— The name of the user-defined type (<user-defined type name>). This is the type designator of
that type, used in type precedence lists (see Subclause 9.5, "Type precedence list determinia-
fion", in ISO/IEC 9075-2).

— An indication of whether the user-defined type is ordered.
— The ordering form for the user-defined type (EQUALS, FULL, or-NONE).
— The ordering category for the user-defined type (RELATIVE, COMPARABLE, MAP, or STATE).

— A <specific routine designator> identifying the ordering-function, depending on the ordering
ategory.

— If the user-defined type is a direct subtype of another user-defined type, then the name of that
twiser-defined type.

— An indication of whether the user-defineditype is instantiable or not instantiable.
— An indication of whether the user-defined type is final or not final.

— The transform descriptor of the.user-defined type.

— If the user-defined type is @ structured type, then:

Whether the referéncing type of the structured type has a user-defined representation, a
derived represefntation, or a system-defined representation.

If user-defined representation is specified, then the type descriptor of the representation
type of thé Teferencing type of the structured type; otherwise, if derived representation is
specified; then the list of attributes.

NOTE 4= “user-defined representation”, “derived representation”, and “system-defined representation”
f aAeference type are defined in Subclause 4.10, "Reference types", in ISO/IEC 9075-2.

- 1. e £ 1 41 41 1L 1 4 hd 4 1 1T h - 4
— ALL HITUICAUIUIL O WIICUITT LIIC USTI-UCIIIICU LYy PT IS dll TALCIIIAdl Jdavd Udld LY pPE.

| Insert following the 8th paragraph | If the user-defined type is an external Java data type, then the
user-defined type descriptor also includes:

— The <jar and class name> of the user-defined type.

— The <interface specification> of SERIALIZABLE or SQLDATA.

24 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

If thie user-defined type is not an external'Java data type, then the user-defined type descriptor also
inclydes:

An indication of whether the.user-defined type is a structured type or a distinct type.

If the representation is a_predefined data type, then the descriptor of that type; otherwise, the
Ittribute descriptor of every originally-defined attribute and every inherited attribute of the

If the <method specification list> is specified, then, for each <method specification> contained ih
+method specification list>, a method specification descriptor that includes:

ISO/IEC 9075-13:2002 (E)
4.8 User-defined types

The attribute descriptor of every originally-defined attribute and every inherited attribute of the
user-defined type.

If <method specification list> is specified, then, for each <method specification> contained in
<method specification list>, a method spec descriptor that includes:

e The <method name>.

e The <specific method name>.

The <SQL parameter declaration list>.
The <returns data type>, and indication of SELF AS RESULT.
The <result cast from type>, if any.

The package, class, and name of the Java routine corresponding to this method and, if
specified, its signature.

An indication of whether STATIC or CONSTRUCTOR is specified,
If STATIC is specified, then an indication of whether this is a static field method.

If this is a static field method, then the <Java field name3 of the static field and the <Javal
class name> of the class that declares that static field,

An indication of whether the method is deterministie

An indication of whether the method possibly swrites SQL data, possibly reads SQL data,
possibly contains SQL, or does not possibly contain SQL.

An indication of whether the method should not be invoked if any argument is the null
value, in which case the value of themethod is the null value.

ser-defined type.

The<method name>.

The <specific method name>.

e The <SQL parameter declaration list> augmented to include the implicit first parameter
with parameter name SELF.

e The <language name>.
e [If the <language name> is not SQL, then the <parameter style>.

e The <returns data type>.

© ISO/IEC 2002 - All rights reserved Concepts 25

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.8 User-defined types

e The <result cast from type>, if any.

e An indication as to whether the <method specification> is an <original method specification>

or an <overriding method specification>.

e If the <method specification> is an <original method specification>, then an indication of

whether STATIC or CONSTRUCTOR is specified.

e An indication whether the method is deterministic.

NO1
para
<orig

4.8.

An indication whether the method possibly writes SQL data, possibly reads SQL data;
possibly contains SQL, or does not possibly contain SQL.

An indication whether the method should not be invoked if any argument is the mull value
in which case the value of the method is the null value.

E 5 — The characteristics of an <overriding method specification> other than the <mgthod name>, <SQL

meter declaration list>, and <returns data type> are the same as the characteristics ffor the corresponding
inal method specification>.

1 User-defined type comparison and assignment

[Re

lace 5th paragraph | Let comparison function of a user-defined type T, be the ordering function

incly

ded in the user-defined type descriptor of the comparison-type of Ty, if any.

| Re

lace 6th paragraph | Two values VI and V2 whose most, specific types are user-defined types T'1

and
Somy
and
supe
be s

comj
MAT

4.8.

The
can
allov

SQL
STA!
actiq
<usq
ues
with|

T2 are comparable if and only if 71 and 72 are in_the same subtype family and each have

e comparison type CT'1 and CT2, respectively. CT1and CT2 constrain the comparison forms
comparison categories of 71 and T2 to be the same and to be the same as those of all their
rtypes. If the comparison category is COMPARABLE, then no comparison functions shall
pecified for 77 and 72. If the comparison eategory is either STATE or RELATIVE, then the
parison functions of 71 and T2 are constrained to be equivalent. If the comparison category is
, they are not constrained to be equivalent.

2 Accessing static fields

fields of a Java class can be defined to be either static or non-static. Static fields of a Java clags
hdditionally be specified-to be final, which makes them read-only. In Java, non-final fields are
ved to be updated.

s <user-defined~type definition> does not include a facility for specifying attributes to be
['IC. This is,(Qn-part, because of the difficulty in specifying the scope, persistence, and trans-
nal properties of static attributes in a database environment. An external Java data type’s
r-defined\type definition> does, however, provide a mechanism for read-only access to the val-
pf Java-static fields. The <static field method spec> clause defines a method name for a methogl
no_parameters; its <external variable name clause> specifies the name of a static field of the

subj

bet=Java class or a anpv‘n]neq of the mﬂ'\jpnf Java class. A static field method is invoked in

the normal manner for STATIC methods and returns the value of the specified Java static field.
Whether final or non-final, SQL provides no mechanism for updating the values of Java static fields.

26

SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.8 User-defined types

4.8.3 Converting objects between SQL and Java

While application programmers or end users manipulating Java objects in the database through
SQL statements need not be aware of the specific mechanism used to achieve that conversion,
the developer of the Java class itself needs to prepare for it in the form of implementing special
Java interfaces (i.e., java. i 0. Seri al i zabl e or j ava. sql . SQLDat a). <user-defined type definition>
introduces a clause for specifying the interface for converting object state information between the
SQL database and Java in the scope of SQL statements. As mentioned above, a conversion from
SQLJTo Java can potentially take place when an object that has been persistently stored in the
SQL] database is accessed from inside an SQL statement to retrieve attribute (or field) values, ox t
invoke a method on the object, or when the object is used as an input argument in the invoeation d
a mé¢thod. A conversion in the opposite direction, from Java to SQL, may be required when a’ newly
created or modified object, or an object that is the return value of a method invocation, needs to be
persjstently stored in the database.

=y

This| International Standard supports these options to specify object state conver§ign in the <exter
nal Java type clause>:

f the <user-defined type definition> specifies an <interface specification> of SERIALIZABLE,
hen the Java interface j ava. i 0. Seri al i zabl e is used for object state conversion.

f the <user-defined type definition> specifies an <interface specification> of SQLDATA, then the
ava interface j ava. sql . SQLDat a defined in JDBC 2.0 is used{for object state conversion.

f the <user-defined type definition> does not specify an.<interface specification>, then it is
implementation-defined whether the Java interface java:i o. Seri al i zabl e or the Java interfage
jlava. sql . SQLDat a will be used for object state conversion.

4.8.3.1 SERIALIZABLE

If thie <interface specification> of a <user-défined type definition> specifies SERIALIZABLE, then
obje¢t state communication is based on thé Java interface j ava.io. Seri al i zabl e. The Java class
refeenced in the <external Java clagss elause> of the <user-defined type definition> must specify

“i mp| enent's j ava.io. Seri al i zabl e” and must provide a niladic constructor.

In this case, the SQL object state'that is stored persistently and made available to methods of the
SQL type is defined entirely(bythe Java serialized object state. The attributes defined for the SQL
typel must correspond to public fields of the corresponding Java class, which must be listed in the

<extprnal Java attribute-elause> of each attribute. Consequently, the SQL attributes define access
to tHose portions of the object state that are intended to become visible inside SQL statements, but
might not comprisé.the complete state of the object (which may include additional fields in the Javp
clasg).

4.8.8.2< SQLDATA

If the<amterface specificationsof @ <user-defined type defimition>specifies SQEDATA, themobject
state communication is based on the Java interface j ava. sql . SQLDat a defined in JDBC 2.0. The
Java class referenced in the <external Java class clause> of the <user-defined type definition> must
specify “i npl ement s j ava. sql . SQLDat a” and must provide a niladic constructor.

© ISO/IEC 2002 - All rights reserved Concepts 27

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.8 User-defined types

In this case, only the attributes defined in the statement comprise the complete state of the SQL
object type. Additional public or private attributes defined in the Java class do not become part
of the object state defined by this part of ISO/IEC 9075. The Java object representation may be
entirely different from the SQL object attributes, if desired. For example, an SQL Point type may
define a geometric point in terms of cartesian coordinates, while the corresponding Java class
defines it using polar coordinates. The only requirement to be met by the implementor of the Java
class is that the implementations of the j ava. sql . SQLDat a methods readSQ. and writ eSQ. read
and write the attributes in the same order in which they are defined in the <user-defined type

definpttion

To iinprove portability, it is possible to also specify <external Java attribute clause>s for SQL
attriputes, even if an <interface specification> of SQLDATA is specified. However, the <extérnal
Javg attribute clause>s are ignored in this case, because they are not needed for implenfenting
attrijpute access in SQL or for converting objects between SQL and Java.

4.8.3.3 Developing for portability

The [following guidelines provide maximum portability of Java classes across.different implemen-
tatigns of this part of ISO/IEC 9075 that may not support both the SERIALIZABLE and the
SQLIDATA options:

r

— The Java class used for implementing the SQL type should iniplement both j ava. i 0. Seri al i zapl e
nd j ava. sql . SQLDat a.

— The Java class should define the complete object state that needs to become persistent or has tp
e preserved across invocations as public Java fields,

— The EXTERNAL NAMEs of the SQL attributes\should be specified.

The [<interface using clause> should be omitted in the <user-defined type definition>, so that an
implementation that does not support both,ifiterfaces can default to the interface that it supports.

4.9 Built-in procedures

Thig| part of ISO/IEC 9075 differs‘slightly from other parts of ISO/IEC 9075 in its treatment of
the $chema object introduced to’install the external Java routines and external Java data types
in ap SQL-environment -=that is, in its treatment of JARs. Rather than define new SQL-schema
stat¢gments that (for example) add or drop JARs using optional clauses to cause execution of their
conthined deployment-descriptors, this International Standard introduces a set of four built-in
procpdures and atiew schema in which those procedures are defined.

The new schema™— named SQLJ — is, like the schema named INFORMATION_SCHEMA, defined
to exist in all’eatalogs of an SQL system that implements this part of ISO/IEC 9075, and to contain
all of the built-in procedures defined in this part of ISO/IEC 9075.

Built-improcedures defined in this part of ISO/IEC 9075 are:

— SQ.J. I NSTALL_JAR — to load a set of Java classes in an SQL system.
— SQ.J. REPLACE_JAR — to supersede a set of Java classes in an SQL system.
— SQ.J. REMOVE_JAR — to delete a previously installed set of Java classes.

— SQLJ. ALTER JAVA PATH — to specify a path for name resolution within Java classes.

28 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

4.1

ISO/IEC 9075-13:2002 (E)
4.10 Privileges

0 Privileges

| Replace 1st paragraph | A privilege authorizes a given category of <action> to be performed on a

spec
type

ified base table, view, column, domain, character set, collation, transliteration, user-defined
, trigger, SQL-invoked routine, or JAR by a specified <authorization identifier>.

| Replace 2nd paragraph, 1st bullet |

— ’i‘he 1dentification ol the base table, view, column, domain, character set, collation, translitera-

ion, user-defined type, table/method pair, trigger, SQL-invoked routine module, or JAR that\t
escriptor describes.

[Re

lace 8th paragraph | A privilege descriptor with an <action> of USAGE is called a usage. privilege

desc

collgtion, transliteration, or JAR identified by the privilege descriptor.

riptor and identifies the existence of a privilege on the domain, user-defined type,‘character sef

b

[Ins

prt after 8th paragraph | The privileges for facilities defined in this part of ISQ/IEC 9075 are as

follo

‘|definer’s rights” or “invoker’s rights?>— that is, whether it executes with the user-name of the

4.1

A JAR is a zip-formatted/file containing a set of Java cl ass and ser files and optionally a deploy-

men|
exte

JAR

SQLJ
JAR
to a

JAR

]Iter its SQL-Java path. In particular, no SQL operation adds classes to a JAR, removes classes
from @ JAR, or replaces classes in a JAR. 1he reason for this ‘mo modification principie for instaited

WS:

The privileges required to invoke the SQLJ. | NSTALL_JAR, SQLJ. REPLACEZJAR, and SQ.J. REMOVE_J AR

rocedures are implementation-defined.

OTE 6 — This is similar to the implementation-defined privileges réquired for creating a schema.

nly the owner of the JAR is permitted to invoke the SQ'ALTER JAVA PATH procedure and th|
wner must also have the USAGE privilege on each JAR referenced in the path argument.

W

—

nvocations of <SQL-invoked routine> and <drop routine statement> to define and drop externd
ava routines are governed by the normal AccessRules for SQL-schema statements.

nvocations of Java methods referenced by SQL names are governed by the normal EXECUTE
rivilege on SQL routine names.

t is implementation-defined whether @ Java method called by an SQL name executes with

ser who performed the <SQL-invoked routine> or the user-name of the current user.

I JARs

b descriptor file~ Installed JARs provide the implementation of external Java routines and
'nal Java data types to an SQL-environment.

L are credated outside the SQL-environment. They are copied into the SQL-environment by the
. | NSTAER"JAR procedure. No subsequent SQL statement or procedure modifies an installed
in dny way, other than to remove it from the SQL-environment, to replace it in its entirety, oy

is that JARs are often signed, and often contain manifest data that might be invalidated by

modification of JARs by the SQL-environment.

Each installed JAR is represented by a JAR descriptor. A JAR descriptor contains:

— The catalog name, schema name, and JAR identifier of the JAR.

© ISO/IEC 2002 - All rights reserved Concepts 29

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
4.11 JARs

— The SQL-Java path of the JAR.

4.11.1 Deployment descriptor files

When a JAR is installed, one or more <SQL-invoked routine>s that define external Java routines
must be executed before the static methods of its contained Java classes can be used as SQL-
invoked routines, and one or more <user-defined type definition>s must be executed before its
contained classes can be used as user-defined tvpes. In addition, <grant privilege statement>s
may|be required to define privileges for newly created SQL-invoked routines and user-defined
typep. Later, when a JAR is removed, corresponding <drop routine statement>s, <drop data type
stat¢ment>s, and <revoke statement>s must be executed.

If a JAR is to be installed in several SQL implementations, the <SQL-invoked routine>sj Zuser-
defijed type definition>s, <user-defined ordering definition>s, <grant privilege statemiént>s, <drop
routine statement>s, <drop data type statement>s, <drop user-defined ordering statement>s, and
<revpke statement>s will often be the same for each implementation. To assist the automation
of rgpeated installations, deployment descriptor files contain the variants of/SQL-schema state-
ments defined in this part of ISO/IEC 9075. These statements are grouped, into multi-statement
instdll actions and remove actions respectively executed by SQLJ. | NSTALL\JAR and SQ.J. REMOVE_JAR
procgdures when deployment is requested. In addition, an implementation-defined implementor
block is provided to allow specification of custom install and removeractions. Since the SQL-schemg
stat¢ments refer to their containing JAR in the <SQL-invoked réutine>s and <user-defined type
definition>s, within a deployment descriptor file, the JAR name\’t hi sj ar” is used as a place holder
JAR|name for the containing JAR.

This| part of ISO/IEC 9075 provides a new mechanism to\execute its variants of SQL-schema
stat¢ments, namely by requesting deployment during~invocation of SQLJ. | NSTALL_JAR and
SQLJ. REMOVE_JAR procedures. A conforming SQL-implementation is required to support either
deplpyment descriptor based execution of its SQl=schema statements (Feature J531, “Deployment”
or another standard statement execution mechanism such as direct invocation or embedded SQL
(Feafure J511, “Commands”); a conforming«SQL-implementation is not required to support both
mechanisms.

30 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

5 Lexical elements

5.1 <token> and <separator>

Function
Spedify lexical units (tokens and separators) that participate in SQL language.

Forymat

<nor-reserved word> ::=
'l Al alternatives fromlSQ | EC9075-2

| COVPARABLE
| | NTERFACE
| JAVA

| SQLDATA

<regerved word> ::=
' Al alternatives fromlSQO | EC9075-2

| JAR
Syntax Rules

No additional Syntax Rules.

Acdess Rules

No additional Access Rules.

Gemneral Rules

No additional General Rules.

Conormance Rules

No additional Conformance Rules.

© ISO/IEC 2002 — All rights reserved Lexical elements 31

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
5.2 Names and identifiers

5.2 Names and identifiers

Function
Specify names.

Format

<j ar| name> ::=
[<schema nane> <period>] <jar id>

<jar| id> ::= <identifier>

<Javla cl ass nanme> ::=
[<packages> <period>] <class identifier>

<jar| and class nane> ::=
<jar id> <col on> <Java cl ass nane>

<qudlified Java field name> ::=
[<Java cl ass nane> <period>] <Java field nane>

<padkages> ::=
<package identifier> [<period> <package identifier>1]...

<padkage identifier> ::= <Java identifier>
<cl gss identifier> ::= <Java identifier>
<Java field name> ::= <Java identifier>
<Javla net hod name> ::= <Java ident.ifier>
<Javja identifier> ::= 1! Seethe Syntax Rul es
Syntax Rules

1) [[insert this SR | <Jaya identifier> shall be a valid identifier according to the rules of Java parsing]
i{nd lexical analysis.

OTE 7 — Theé-rlles of Java parsing and lexical analysis are specified in The Java Language Specifica
jon, Second_Edition.

2) [[insertdhis SR | The character set supported, and the maximum lengths of the <package iden-
fifiers, <class identifier>, <Java field name>, and <Java method name> are implementation-
defined.

3) [Insert after SR14) | Two <jar name>s are equivalent if and only if they have equivalent <jar id>s
and equivalent implicit or explicit <schema name>s.

32 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
5.2 Names and identifiers

Access Rules

No additional Access Rules.

General Rules

A <jar name> identifies a JAR.

D
2)
3)
4)
5)
6)
7)
8)

Conformance Rules

I
[
[
[
I
I
I

Msert s GR | A <jar 1d> represents an unqualified JAR name.

Insert this GR | A <Java class name> identifies a fully qualified Java class.
Insert this GR | A <packages> identifies a fully qualified Java package.

Insert this GR | A <package identifier> represents an unqualified Java package nafhe:
Insert this GR | A <class identifier> represents an unqualified Java class name.
Insert this GR] A <Java field name> represents the name of a field within‘aJava class.

Insert this GR | A <Java method name> represents the name of a method within a Java class.

No additional Conformance Rules.

© ISO/IEC 2002 — All rights reserved Lexical elements 33

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

(Blank page)

34 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

6 Scalar expressions

6.1 <method invocation>

Fulllction
Reference an SQL-invoked method of a user-defined type value.

Forymat

No afldi ti onal Format itens.

Syntax Rules

1) [[Insert after SR2) | If UDT is an external Java data type, then <method invocation> shall immedi/
ately contain <direct invocation>.

Acdess Rules

No additional Access Rules.

Gemneral Rules

No additional General Rules.

Conpformance Rules

No additional Conformance Rules.

© ISO/IEC 2002 — All rights reserved Scalar expressions 35

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
6.2 <new specification>

6.2 <new specification>

Function
Invoke a method on a newly-constructed value of a structured type.

Format

No afldi ti onal Format itens.

Syntax Rules

No additional Syntax Rules.

Acdess Rules

No additional Access Rules.

Gemneral Rules

No additional General Rules.

Conpformance Rules

—

1) [[Insert aiter CR1) | Without Feature J571, “NEW eperator”, the schema identified by the implicit o

Fplicit <schema name> of <routine name>'RIV immediately contained in <routine invocation>

mediately contained in <new specification> shall not contain a user-defined type whose user
efined type name is RN that is an extérnal Java data type. If Feature J571, “NEW operator”,
is not supported, then the mechanism;used to invoke a constructor of an external Java data typ
is implementation-defined.

[¢]

36 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

7 Predicates

7.1 <comparison predicate>

FII]IlctiOIl

Spedify a comparison of two row values.

Foymat

No afldi ti onal Format itens.

Syntax Rules

Acdess Rules

Gemneral Rules

D

NOTE 8 — [Replace Note 126 | The comparison form and comparison eategories included in the user-
lefined type descriptors of both UDTIand UDTZ2 are constrained td,be the same — they must be the
dame throughout a type family. If the comparison category is COMPARABLE, then no comparison
ﬂ;nctions shall be specified for T1 and 72; if the comparison category is either STATE or RELATIVE,

en the comparison functions of UDT1 and UDTZ2 are constrained to be equivalent; if the comparison
dategory is MAP, they are not constrained to be equivalent:

NOTE 9 — [Replace Note 127 | If the comparison_form is FULL, then the comparison category is con-
dtrained to be COMPARABLE, RELATIVE, or MAP; if the comparison form is EQUALS, then the
domparison category is also permitted to be STATE.

No additional Access Rules.

[| Insert after GR 1)b)iii}-and its subrules | If the comparison category of UDT, is COMPARABLE,
then:

a) The subject-SQL data type must be an external Java data type. Let JC be the subject Javs
class of\that external Java data type.

NOTE 10 — Syntax Rules in Subclause 9.10, “<user-defined ordering definition>”, require that JC
implement the Java interface j ava. | ang. Conpar abl e. The interface j ava. | ang. Conpar abl e

requires an implementing Java class to have a method named conpar eTo, whose result data type i$
Javatnt—

b) Let XJV be the value of X in the associated JVM. Let YJV be the value of Y in that associ-
ated JVM.

c) X=Y

© ISO/IEC 2002 — All rights reserved Predicates 37

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
7.1 <comparison predicate>
has the same result as if the JVM executed the Java boolean expression
XJV. compar eTo(YJV) ==
d) X<vY
has the same result as if the JVM executed the Java boolean expression

XJV. compareTo(YJV) <0

—X——Y

has the same result as if the JVM executed the Java boolean expression
XJV. compareTo(YJV) =0

) X>Y

has the same result as if the JVM executed the Java boolean expression
XJV. conmpareTo(YJV) >0

g X<=Y

has the same result as if the JVM executed the Java boolean,expression
XJV. compareTo(YJV) <=0

) X>=vY

has the same result as if the JVM executed the Java boolean expression

XJV. compareTo(YJV) >=0

Conpformance Rules

No additional Conformance Rules.

38 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

8 Additional common elements

8.1 <dJava parameter declaration list>

FII]IlctiOIl

Spedify the Java types of parameters for a Java method.

Forymat

<Javla paraneter declaration list> ::=
<left paren> [<Java paraneters>] <right paren>

<Javla paraneters> ::=
<Java data type> [{ <comma> <Java data type> }...]

<Javja data type> ::=1!! See the Syntax Rul es

Syntax Rules

1) A <Java data type> is a Java data type that is mappable or result set mappable, as specified in
Pubclause 4.5, “Parameter mapping”. The <Java.data type> names are case sensitive, and shall
be fully qualified with their package names, if any.

Acdess Rules

None.

Gemneral Rules

None.

Conformance Rules

None.

© ISO/IEC 2002 — All rights reserved Additional common elements 39

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.2 <SQL Java path>

8.2 <SQL Java path>

Function
Control the resolution of Java classes across installed JARs.

Format

<SQY Java path> ::= [<path elenment>...]

<patfh elenment> ::=
<l eft paren> <referenced cl ass> <conma> <resol ution jar> <right paren>

<reflerenced class> ::=
[<packages> <period>] <asterisk>
| [<packages> <period>] <class identifier>

<redol ution jar> ::= <jar nanme>
Syntax Rules
None.

Acdess Rules

None.

General Rules

1) hen a Java class CJ in a JAR J is-executed in an SQL-implementation, let P be the <SQL
ava path> associated with </ by ansinvocation of the SQLJ. ALTER JAVA PATH procedure.

2) Every static or dynamic reference in CoJ to a class with the name CN that is not a system class
nd is not contained in J is-¥esolved as follows.

For each <path element> PE (if any) in P, in the order in which they were specified:

4) Let RC and RJ‘be the <referenced class> and <resolution jar>, respectively, contained in
PE. Let JR bethe JAR referenced by RJ.

b) If RJ is.iot the name of an installed JAR, then an exception condition is raised: Java
execution — invalid JAR name in path.

NOTE 11 — This exception can only occur if the implementation-defined action taken for an
SQLJ. ALTER_JAVA PATH call that raised an exception results in leaving invalid <jar name>s in
the SQL-Java path.

¢) If RC is equivalent to CN, then:
i) If CN is the name of some class C in JR, then CN resolves to class C.

ii) If CN is not the name of a class in JR, then an exception condition is raised: Java
execution — unresolved class name.

40 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.2 <SQL Java path>

d) If RC simply contains <asterisk>and simply contains <packages>, then let PKG be the
specified <packages> and let CI be the <class identifier> of CN. If the <Java class name> of
CN is PKG.CI, then:

i) If CN is the name of a class C in JR, then CN resolves to class C.

ii) If CN is not the name of a class in JR, then an exception condition is raised: Java
execution — unresolved class name.

¢) If RC simply contains <asterisk> and does not simply contain <packages>, then:
i) If CN is the name of a class C in JR, then CN resolves to class C.

ii) If CN is not the name of a class in RJ, then CN is not resolved by the <path~eléement>
being considered and the next <path element> in P is considered.

3) If CN is not resolved after all <path element>s in P have been considered, thén’an exception
ondition is raised: Java execution — unresolved class name.

COI,formance Rules

ithout Feature J601, “SQL-Java paths”, conforming SQL language shall not contain an <SQIl
Java path>.

1)

© ISO/IEC 2002 — All rights reserved Additional common elements 41

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

8.3 <routine invocation>

Function
Invoke an SQL-invoked routine.

Format

No afldi ti onal Format itens.

Syntax Rules

1)

Insert before SR9) | If SR is an external Java routine, then:

a) No <SQL argument> immediately contained in <SQL argument list> shallimmediately
contain <generalized expression>.

Ib) If validation of the <Java parameter declaration list> has been inmiplementation-defined to be
performed by <routine invocation>, then the Syntax Rules of Subclause 8.5, “Java routine
signature determination”, are applied with <routine invocation>, a method specification
index of 0 (zero), and subject routine SR.

Acdess Rules

No additional Access Rules.

General Rules

1) [[Insert after GR3)a) | If R is an external Java, routine, then let CPV; be an implementation-defined
mnon-null value of declared type T;.

2) [[Insert before GR5) | If R is an external Java routine that is not a static field method, then let P be
the subject Java method of R,

NOTE 12 — The subject Jaya inethod of an external Java routine is defined in Subclause 8.5, “Java
toutine signature determination”.

3) [| Replace the first paragraph of GR5) | If R is an external routine that is not an external Java
rtoutine, then:

4) [| Replace the firstvparagraph of GR6)c)i) | If R is not a static field method, then:

5) [[Insert before) GR9)d) | If R specifies PARAMETER STYLE JAVA, then for i ranging from 1 (one) tp
PN, let the effective SQL parameter list ESPL of R be the list of values CPV; in order.

6) [| “Replace the first paragraph of GRI)ii)1) | If R is not an external Java routine and R is not an
array-returning external function, then F 1s executed with a list of IV parameters 1J; whose
parameter names are PN; and whose values are set as follows:

7) | Insert before GROiii)2) | If R is an external Java routine, then P is executed in a manner deter-

mined as follows and with a list of parameters PD; whose values are set as follows:

a) Let SRD be routine descriptor of R.

42 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

b) If SRD indicates that R is an SQL-invoked method, then let SRUDT be the user-defined
type whose descriptor contains SR’s corresponding method specification descriptor MSD and
let JCLSN be the subject Java class of SRUDT.

c¢) Case:

1) If SRD indicates that R is an SQL-invoked method and MSD indicates that R is a static

field method, then:

3) Case:

Case:

a)

b)

a)

1) Let JSF be the subject static field of R.

NOTE 13 — The “subject static field” of an SQL-invoked method is defined in Subclause’8’5,
“Java routine signature determination”.

2) Let ERT be the effective returns data type of R.

NOTE 14 — “effective returns data type” is defined in the Syntax Rules of'Subclause 10.4,
"<routine invocation>", in ISO/IEC 9075-2.

A) If ERT is a user-defined type, then

I) Let SJCE be the most specific Java class of the value of JSF, and let STU
be the user-defined type whose subject Jaya class is SJCE and whose user-
defined type is ERT or is a subclass of ERT.

II) Let UIS be the <interface specification> specified by the user-defined type
descriptor of STU.

1) If UIS is SERIALIZABLE, then:

2) If UIS is SQLDATA, then:

The subject Java class SJCE’s wri t eQbj ect () method is executed t
convert thelJava value of JSF to the SQL value SSFV of user-definefd
type STU.

The method of execution of the subject Java class’s implementation
of \writeQbj ect() is implementation-defined.

NOTE 15 — If UIS is SERIALIZABLE, then, as described in Subclause 9.3,
“<user-defined type definition>”, the descriptor’s subject Java class im-
plements the Java interface j ava.i 0. Seri al i zabl e and defines that
interface’s wri t eCbj ect () method as described by the Java 2 Platform,
Standard Edition, v1.2.2, API Specification.

The subject Java class SJCE’s method writeSQ.() is executed to
convert the Java value of JSF to the SQL value SSFV of user-definefd

b)

© ISO/IEC 2002 — All rights reserved

type STUJ

The method of execution of the subject Java class’s implementation
of witeSQL() is implementation-defined.

NOTE 16 — If UIS is SQLDATA, then, as described in Subclause 9.3,
“<user-defined type definition>”, the descriptor’s subject Java class imple-
ments the Java interface j ava. sql . SQLDat a and defines that interface’s
writeSQL() method as described by the Java 2 Platform, Standard Edi-
tion, v1.2.2, API Specification.

Additional common elements 43

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

B) Otherwise, the value of SSFV is set to the value of JSF.

4) Let the result of the <routine invocation> be the result of assigning SSFV to a target
of declared type ERT according to the rules of Subclause 9.2, "Store assignment", in
ISO/IEC 9075-2. No further General Rules of this Subclause are applied.

ii) Otherwise:

1) Let JPDL be an ordered list of the data types of the Java parameters declared for P
in the order they appear in P’s declaration.

NOTE 17 — If any Java parameter is declared to be of an array class, then JPDL reflects
that information.

2) If SRD indicates that R is an SQL-invoked method and MSD indicates that R is
an instance method or a constructor method, then prefix JPDL withithe subject
parameter as follows.

Case:
A) If JPDL contains one or more Java data types, then prefix JPDL with JCLSN.
B) Otherwise, replace JPDL with JCLSN.

3) Let JP; be the i-th data type in JPDL.

4) For i ranging from 1 (one) to EN, if JP; is of dn array class, then let JP; be the
component type of JP;.

NOTE 18 — The component type of a Javasarray is defined in The Java Language Specifi-
cation, Second Edition.

5) For i ranging from 1 (one) to ENif' ESP; is the SQL null value and if JP; is any
of bool ean, byte, short, int, | ong, fl oat, or doubl e, then an exception condition is
raised: external routine invocation exception — null value not allowed.

6) For i ranging from 1 (one)'to EN,

Case:

A) If the valué of ESP; is a user-defined type, then let the most specific type of ESH;
be U, 1let\UIS be the <interface specification> specified by the user-defined type
descriptor of U, and let SJCU be the subject Java class of U.

Case:
1) If UIS is SERIALIZABLE, then:

1) The subject Java class SJCU’s method r eadOhj ect () is executed to
convert the value of ESP; to a Java object, the value of PD;.

2) The method of execution of the subject Java class’s implementation of
readbj ect () is implementation-defined.

NOTE 19 — If UIS is SERIALIZABLE, then, as described in Subclause 9.3, “<user-

defined type definition>”, the subject Java class of U implements the Java interface

java.io. Serializabl e and defines that interface’s r eadObj ect () method as

described by the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

44 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

II) If UIS is SQLDATA, then:

1) The subject Java class SJCU’s method readSQL() is executed to convert
the value of ESP; to a Java object, the value of PD;.

2) The method of execution of the subject Java class’s implementation of
readSQ.() is implementation-defined.

NOTE 20 — If UIS is SQLDATA, then, as described in Subclause 9.3, “<user-

defined type definition>", the subject Java class of U implements the Java interfac

j ava. sql . SQLDat a and defines that interface’s readSQ.() method as described)bly
the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

B) Otherwise, the value of PD;, of the Java data type JP;, is set to the valu€ of
ESP;.

=

7) For i ranging from 1 (one) to EN, if P; is an output SQL parameter(or‘both an inpu
SQL parameter and an output SQL parameter, then:

A) Let PAD; be a Java array of length 1 (one) and data typel/P; initialized as
specified in The Java Language Specification, Second Edition.

NOTE 21 — PAD; is a Java object effectively created by execution of the Java expres-
sion new JP;[1].

B) If P; is both an input SQL parameter and anyoutput SQL parameter, then
PAD;[0] is set to PD;.

C) PD; is replaced by PAD,;.
8) Let JPEN be the number of Java data types in JPDL.

9) IfJPEN is greater than EN, then‘prepare the Java parameters for the DYNAMIC
RESULT SET parameters as follows.

For i ranging from EN+1te-JPEN:

A) Let PAD; be a Java array of length 1 (one) and data type JP; initialized as
specified in The Java Language Specification, Second Edition.

NOTE 22 +PAD; is a Java object effectively created by execution of the Java expres-
sion new JP;[1].

B) Thealte of PD; is set to the value of PAD,;.

10) LetJCLSN, JMN, and ERT be respectively the subject Java class name, the subjec
Jaya method name, and the effective returns data type of R. The subject Java
method of the subject Java class is invoked as follows.

=F

Case:

A) If R is an SQL-invoked procedure, then:

I) IfJPEN is greater than 0 (zero), then the following Java statement is effec-
tively executed:

JCLSN. JMWN (PDy, ..., PDypEN) ;

© ISO/IEC 2002 — All rights reserved Additional common elements 45

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

II) If JPEN equals 0 (zero), then the following Java statement is effectively
executed:

JCLSN.JMN () ;

B) If R is an SQL-invoked method whose routine descriptor specifies STATIC or R
is an SQL-invoked regular function, then:

I) If ERT is a user-defined type, then let SJCE and SJCEN be the subject Java

1 3141 1 T 1 Pk ok aYanl — 1
Cldass dlli uIle SUupjJeCl ddva Class 11dllle O ILivi , TSSPCCLIVELY.

II) If ERT is not a user-defined type, then let SJCEN be the Java returnsdata
type of the subject Java method.

IITI) If JPEN is greater than 0 (zero), then the following Java statement is effecH
tively executed:

SJCENtenmpU = JCLSN. IMN(PDy, ..., PDJpPEN) ;

IV) If JPEN equals O (zero), then the following Java statémient is effectively
executed:

SJCENtenmpU=JCLSN. IMN() ;
C) IfR is an SQL-invoked constructor method, thén:

I) IfJPEN is greater than 1 (one), then the following Java statement is effec-
tively executed:

JCLSNPD; = newJCLSN (PDo/ ..., PDypEN)

II) If JPEN equals 1 (one), then' the following Java statement is effectively
executed:

JCLSN PD; = newdJ€ELSN () ;

D) Otherwise:

™

I) If ERT is auser-defined type, then let SJCE and SJCEN be the subject Jav|
class and,the subject Java class name of ERT, respectively.

II) If ERT is not a user-defined type, then let SJCEN be the Java returns data
type’ of the subject Java method.

UT),~If JPEN is greater than 1 (one), then the following Java statement is effec-
tively executed:
SICENtenpU=PD; . JW(PDy, ..., PDjpEN) ;

IV) If JPEN equals 1 (one), then the following Java statement is effectively
executed:

SICENtenpU=PD; . JMWN() ;
NOTE 23 — The Java method effectively executed by either the Java statement
SICENtenpU=PD; . JW(PD;, ..., PDjpgn) ; or the Java statement SICEN
tenpU=PD; . JW () ; is determined based on the value of PD; according to
Java’s rules for overriding by instance methods, as specified in The Java Language
Specification, Second Edition.

46 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

8)

9)

10)

11)

12)

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

[Insert before GR9)NiiN4) | If R is an external Java routine, then the scope and persistence of
any modifications of class variables made before the completion of any execution of P is
implementation-dependent.

[Replace GR9)Nii)7) | If the language specifies ADA (respectively C, COBOL, FORTRAN, JAVA,
MUMPS, PASCAL, PLI) and P is not a standard-conforming Ada program (respectively C,
COBOL, Fortran, Java, MUMPS, Pascal, PL/I program), then the results of any execution of P
are implementation-dependent.

[| Insert after GRO)Nii)7) | If R is an external Java routine and the execution of P completes withan
tincaught Java exception E, then an exception condition is raised as specified in Subclause15.]
‘Class and subclass values for uncaught Java exceptions”, and no further General Rules bf'thig
Pubclause are applied.

[Replace the first paragraph of GR9)g)i) | If R is not an external Java routine, thenAfor’i varying
from 1 (one) to EN, the value of ESP; is set to the value of PD,;.

[| Insert after GR9)h))3) |If R is an external Java routine that is not a type-preserving function, the
t ERT be the effective returns data type of R. The returned value of P,\témpU, is processed ap
ollows:

=

) Case:
i) If ERT is a user-defined type, then:

1) Let SJCE be the most specific Java class of.the value of tempU, and let STU be thq
user-defined type whose subject Java class.is SJCE and whose user-defined type is
ERT or is a subclass of ERT.

2) Let UIS be the <interface specification> specified by the user-defined type descripto
of STU.

=

3) Case:
A) If UIS is SERIAIIZABLE, then:

I) The subject\Java class SJCE’s method writ eQbj ect () is executed to converf
the Javia walue of tempU to the SQL value SSFV of user-defined type STU.

II) The'ymethod of execution of the subject Java class’s implementation of

W)t eCbj ect () is implementation-defined.
NOTE 24 — If UIS is SERIALIZABLE, then, as described in Subclause 9.3, “<user-
defined type definition>”, the descriptor’s subject Java class implements the Java inter-
face j ava.i 0. Seri al i zabl e and defines that interface’s wri t eQbj ect () method as
described by the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

B) If UIS is SQLDATA, then:

I L, 1 + T 1 QO T +l o HIFEP A ol B AR W +ad + 41
L) L1IT SUupjtit gava Liaoo DI ULy O HITUIIUU VW T T TOWL(] 15 TATLULUU LU LUILVTLI L UL

Java value of tempU to the SQL value SSFV of user-defined type STU.

II) The method of execution of the subject Java class’s implementation of
witeSQ() is implementation-defined.

NOTE 25 — If UIS is SQLDATA, then as described in Subclause 9.3, “<user-defined
type definition>”, the descriptor’s subject Java class implements the Java interface

© ISO/IEC 2002 — All rights reserved Additional common elements 47

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

java. sql . SQLDat a and defines that interface’s wri t eSQL() method as described by
the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

ii) Otherwise, the value of SSFV is set to the value of tempU.
b) Let RV be SSFV.

13) [Insert after GR9)h))3) | If R is an external Java routine that is a type-preserving function, then
let ERT be the effective returns data type of R. The returned value of P, PD1, is processed as

1ouows:

) Let SJCE be the most specific Java class of the value of PDq, and let STU be the usery
defined type whose subject Java class is SJCE and whose user-defined type is ERT"or’is a
subclass of ERT.

) Let UIS be the <interface specification> specified by the user-defined type descriptor of STY.

Case:
i) If UIS is SERIALIZABLE, then:

1) The subject Java class SJCE’s method wri t eQoj ect (JJ\is executed to convert the
Java value of PD to the SQL value SSFV of userfdefined type STU.

2) The method of execution of the subject Java class’s implementation of wri t eQbj ect (|)

is implementation-defined.
NOTE 26 — If UIS is SERIALIZABLE, then as-déscribed in Subclause 9.3, “<user-defined typd
definition>”, the descriptor’s subject Java class(imiplements the Java interface j ava. i 0. Seri al i|zabl e
and defines that interface’s wri t eCbj ect (), method as described by the Java 2 Platform,
Standard Edition, v1.2.2, API Specification,:

ii) If UIS is SQLDATA, then:

1) The subject Java class SJCE’s method writeSQ.() is executed to convert the Java
value of PD; to the SQL'value SSFV of user-defined type STU.

2]

2) The method of execution of the subject Java class’s implementation of writeSQ.() 1
implementation-defined.

NOTE 27 — If-.UISis SQLDATA, then as described in Subclause 9.3, “<user-defined type defi-

nition>", the deseriptor’s subject Java class implements the Java interface j ava. sql . SQLDat a

and defines- that interface’s wri t eSQL() method as described by the Java 2 Platform, Standard

Edition,+1:2.2, API Specification).

) Let RV be'SSFV.

14) || Insertafter GR9)i)i) | If R specifies PARAMETER STYLE JAVA, then each parameter that is either
n output SQL parameter or both an input SQL parameter and an output SQL parameter is
L‘ocessed as follows:

a) Let P; be the i-th SQL parameter of R and let T; be the declared type of P;.
b) EPV; is set to the value of PD;[0].

48 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

Case:

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

i) If T; is a user-defined type, then:

1) Let SJCE be the most specific Java class of the value of EPV;, and let STU be the
user-defined type whose subject Java class is SJCE and whose user-defined type is

T; or is

a subclass of Tj;.

2) Let UIS be the <interface specification> specified by the user-defined type descriptor

of STU.

Case:

A) If UIS is SERIALIZABLE, then:

D

I

NOTE 28 — If UIS is SERIALIZABLE, then as described-in’ Subclause 9.3, “<user-
defined type definition>”, the descriptor’s subject Java(class implements the Java inter-

face
desc

B) If UIS is SQLDATA, then:

D

1D

NOTE 29 — If UIS is SQLIDATA, then as described in Subclause 9.3, “<user-defined

type

j ava. sql . SQLDat a.and defines that interface’s wit eSQ.() method as described by
the Java 2 Platform,.Standard Edition, v1.2.2, API Specification.

i1) Otherwise,

15)

Replace GR11)b) | If R is net an external Java routine, then let OPN be the actual number of

tesult set cursors declared in the body of the subject routine that remain open when control is
teturned to INV.

16)

Insert after GRILb) | If R is an external Java routine, then let RSN be a set containing the first

¢lement of each of the JPEN—EN arrays generated above for result set mappable parameters,
t RS bethe elements of RSN that are not equal to the Java null value, and let OPN be the
umber.of elements in RS.

The subject Java class SJCE’s method wri t eQbj ect () is executed to converf
the Java value of EPV; to the SQL value CPV; of the userrdefined type STU.

The method of execution of the subject Java class’s impléementation of
writeObj ect () is implementation-defined.

java.io. Serializabl e and defines that interfage’s wri t eCbj ect () method as
ribed by the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

The subject Java class SJCE’s method writeSQ.() is executed to convert thie
Java value of EPV; to the SQk(value CPV; of user-defined type STU.

The method of execution pf‘the subject Java class’s implementation of
witeSQ() is implementation-defined.

definition>”, the déseriptor’s subject Java class implements the Java interface

CPV; is-set'to EPV;.

17) |[| Insért before GR11)d) | If R is an external Java routine, then:

a)

b)

If the JDBC connection object that created any element of RS is closed, then the effect is
implementation-defined.

If any element
and SQL sessio

of RS is not an object returned by a connection to the current SQL system
n, then the effect is implementation-defined.

© ISO/IEC 2002 — All rights reserved Additional common elements 49

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.3 <routine invocation>

18) [Replace GR11)d) | If R is not an external Java routine, then let FRC be the ordered set of result
set cursors that remain open when PR returns to INV. Let FRC;, 1 (one) < i < RTN, be the i-th
cursor in FRC, let FRCN; be the <cursor name> that identifies FRC;, and let RS; be the result
set of FRC;.

19) [Insert after GR11)d) | If R is an external Java routine, then let FRC be a copy of the elements of
RS that remain open in the order that they were opened in SQL. Let FRC;, 1 (one) < i < RTN,

be the i-th cursor in FRC, let FRCN; be the <cursor name> that identifies FRC;, and let RCS;
be-the result sot of FPFL

20)

Replace GR11)h) | If R is not an external Java routine, then a completion condition is raised:
warning — dynamic result sets returned.

21) [[Insert after GR11)h) | If R is an external Java routine, then for each result set RS; in. RS; close RS;
gnd close the statement object that created RS;.

22)

Insert before GR12)h) | If R is an external Java routine, then whether the call.of-P returns updat
ounts as defined in JDBC is implementation-defined.

197

Conformance Rules

1) [[insert this CR | Without Feature J611, “References”, conforming SQL language shall not contain 4
greference expression> or a <right arrow>.

50 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.4 <language clause>

8.4 <language clause>

Function
Specify a standard programming language.

Format

<l anguage nane> ::=
'l Al alternatives froml SO | EC9075-2
| JAVA

Syntax Rules

No additional Syntax Rules.

Acdess Rules

No additional Access Rules.

Gemneral Rules

1) [[Replace GR 1) | With the exception of the language JAVA, whose standard is specified in The
Java Language Specification, Second Edition, the standard programming language specified

v the <language clause> is defined in the International Standard identified by the <language

ame> keyword. Table 17, "Standard programming languages", in ISO/IEC 9075-2 specifies th¢
telationship.

Conpformance Rules

No additional Conformance Rules:

© ISO/IEC 2002 — All rights reserved Additional common elements 51

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

8.5 Javaroutine signature determination

Function

Specify rules for how a Java method’s signature is determined if it is not explicitly specified, and
how it is validated, based either on information specified when creating an external Java routine or
external Java data type, or on contents of descriptors available when invoking an SQL routine.

Sy

1) Let CNTXT, i, and SR respectively be the syntactic element, the method specification indéx;,-an(d
he subject routine (if any) specified in an application of this Subclause.

2) Information needed by later rules of this Subclause is gathered based on the context in which
his Subclause is executed, as follows.

ase:
) If CNTXT specifies <SQL-invoked routine>, then:

i) Let JN, JCLSN, JMN, and JPDL respectively be the <jar ftaime>, <Java class name>,
<Java method name>, and <Java parameter declaration list> contained in <external
Java reference string>.

ii) Let SPDL be <SQL parameter declaration list>.
iii) If <SQL-invoked routine> contains <schema precedure>, then:

1) If DYNAMIC RESULT SETS N is specified for some N greater than 0 (zero), then
let DRSN be N.

2) Otherwise let DRSN be 0 (zero):
b) If CNTXT specifies <user-defined-type definition>, then:

i) Let UDTD be the <user-defined type definition>, let UDTB be the <user-defined type
body> immediately contained in UDTD, and let UDTN be the <schema-resolved user-
defined type nameps immediately contained in UDTB.

ii) Let JN and JELSN respectively be the <jar name> and <Java class name> contained ip
<external Javatype clause> contained in UDTB.

iii) For the{pyurposes of parameter mapping as defined in Subclause 4.5, “Parameter map-
ping”ythe remaining rules in this Subclause are performed as if the descriptor for the
ugeridefined type defined by UDTD was already available in the SQL-session. That
descriptor describes the type as having the name UDTN, being an external Java data
type, and having the <jar and class name> specified in UDTD.

1) Lot A/IQ’L. bn the 1 th «<methad S}"\oniﬁnaf{nn mn-the <method Cpﬁ{'ﬂ“ﬂﬂﬂ"‘"nh List> contained

by UDTB.

v) Let SRT be the SQL <data type> specified in the RETURNS clause of MS;.
vi) Let DRSN be 0 (zero).

52 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

vii) If MS; immediately contains <static field method spec>, then:
1) Let QJFN be the <qualified Java field name> of MS;.
2) Let FI be the <Java identifier> contained in <Java field name> contained in QJFN.

3) If QJFN specifies a <Java class name>, then let SFC be that class name; otherwise,
let SFC be JCLSN.

1) Let SPDL be the <SQL parameter deciaration Hsts
()

viii) If MS; does not immediately contain <static field method spec>, then:

1) Let JMN and JPDL respectively be the <Java method name> and <Java parametej
declaration list> contained in <Java method and parameter declardtipns> contained
in MS;.

2) Let SPDL be the augmented SQL parameter declaration list\NVPL; of MS;.
) Otherwise, descriptors are available.
i) Let SRD be the routine descriptor of SR.
ii) If SRD indicates that the SQL-invoked routine isé@n“SQL-invoked method, then:

1) Let SRUDT be the user-defined type whoge descriptor contains SR’s corresponding
method specification descriptor MSD, and let SRUDTD be the user-defined type
descriptor of SRUDT.

2) Let JN and JCLSN respectively be/the <jar name> and <Java class name> contained
by SRUDTD’s <jar and class name>.

3) Let SRT be the SQL <returns data type> specified in MSD.

4) Let DRSN be 0 (zero):

5) If MSD indicates 'that it is a static field method, then:
A) Let FLbe the <Java identifier> contained in the <Java field name> of MSD.
B) Let'\SFC be the <Java class name> of MSD.

CYy)Iet SPDL be the <SQL parameter declaration list>
()
6) If MSD indicates that it is not a static field method, then:

A) Tet JMN and JJPDI respectively be the Java method name composed of the
package, class, and name of the Java routine contained in MSD and the Java
parameter declaration list contained in the signature contained in MSD.

B) Let SPDL be the augmented SQL parameter declaration list of MSD.

© ISO/IEC 2002 — All rights reserved Additional common elements 53

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

iii) If SRD indicates that the SQL-invoked routine is an SQL-invoked procedure or an
SQL-invoked regular function, then:

1) Let JN, JCLSN, JMN, and JPDL respectively be the <jar name>, <Java class
name>, <Java method name>, and <Java parameter declaration list> contained in
<external Java reference string> contained in the <external routine name> of SRD.

2) Let SPDL be a SQL parameter declaration list composed of the SQL-invoked rou-
tine’s SQL parameters contained in SRD, specified with the descriptors list of the
<SQL parameter name>, if specified, the <data type>, the ordinal position, and an
indication of whether the SQL parameter is an input SQL parameter, an output\SQL
parameter, or both an input SQL parameter and an output SQL parameter.

3) If the SQL-invoked routine is an SQL-invoked procedure, then let DRSN ‘be the
maximum number of dynamic result sets as indicated by SRD; otherwise, let DRSN
be 0 (zero).

4) If the SQL-invoked routine is an SQL-invoked regular function,-then let SRT be th¢
SQL <returns data type> specified in MSD; otherwise, let SRTbe “voi d”.

3) Case:

4) If JMN is “mai n” and CNTXT does not specify <user-defined-type definition> or contain
<method invocation>, then:

i) If CNTXT specifies <SQL-invoked routine>, then\it shall contain <schema procedure>
and shall not contain <dynamic result set characteristic>.

i1) If CNTXT contains <routine invocation> ‘then it shall contain <call statement>.

iii) If a Java parameter declaration liste/PDL is specified, then it shall be the following:
(java.lang. String[])

iv) If a Java parameter declaration list is not specified, then let JPDL be the following:
(java.lang. String[])

v) SPDL shall specify either:

1) A single patameter that is an SQL ARRAY of CHARACTER or an ARRAY of
CHARACTER VARYING. At runtime, this parameter is passed as a Java array
of j avepl ang. Stri ng.

NOTE 30 — This <SQL parameter declaration> can only be specified if the SQL system
supports Feature S201, “SQL routines on arrays”.

2)* Zero or more parameters, each of which is CHARACTER or CHARACTER VARY-
ING. At runtime, these parameters are passed a Java array of j ava. | ang. Stri ng
(with possibly zero elements).

vi) Let JCS be the set of visible Java methods of class JCLSN in JAR JN whose method
names are “mai n” and whose Java parameter data types list is JPDL.

NOTE 31 — “visible” is defined in Subclause 4.5, “Parameter mapping”.

54 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

b) Otherwise:

i) Let SPN and JPN be, respectively, the number of <SQL parameter declaration>s in
SPDL and the number of <Java data type>s in JPDL.

ii) If JPDL specifies a <Java parameter declaration list>, then:

1) Ifi is greater than 0 (zero) and MS; specifies INSTANCE or CONSTRUCTOR or
if SRD indicates the SQL-invoked routine is an SQL-invoked method and MSD
indicates 1t 1s an instance method or a constructor, then prefix the Java parameter
declaration list JPDL with the necessary subject parameter as follows.

Case:

A) If JPDL contains one or more <Java data type>s, then prefix the list of <Java
data type>s immediately contained in <Java parameters> immediately containefl
in JPDL with

JCLSN,

B) Otherwise, replace JPDL with the <Java parameter declaration list>

(JCLSN)

2) For each <SQL parameter declaration> SP in SPRL, let ST be the <data type> of
SP and let JT be the corresponding <Java data type> in JPDL.

A) If SP specifies IN, or does not specify anyexplicit <parameter mode>, then:

I) If SP is not an SQL array, thefixdT and ST shall be simply mappable or
object mappable.

II) If SPis an SQL array, then J7 and ST shall be array mappable.

B) If SP specifies OUT ox INOUT, then J7T and ST shall be output mappable.

NOTE 32 — “simply mappable”, “object mappable”, and “array mappable” are defined in
Subclause 4.5, “Parameter mapping”.

3) Case:

A) If DRSN is greater than 0 (zero), then JPN shall be greater than SPN, and each
<Jayva'data type> in JPDL whose ordinal position is greater than SPN shall be
result’set mappable.

B) -Otherwise JPN shall be equivalent to SPN.

iii) H\a)Java parameter declaration list is not specified, then determine the first SPN
members of the Java parameter declaration list JPDL from SPDL as follows:

1) For each parameter SP of SPDL whose <parameter mode> is IN, or that does not
specify an explicit <parameter mode>, if SP is not an SQL array, then let the cor-
responding Java parameter data type of SP be the corresponding Java data type of
the <parameter type> of SP; if SP is an SQL array, then let J7 be the correspond-
ing Java data type of the <parameter type> of SP, and let the corresponding Java
parameter data type of SP be an array of J7), that is, be JT[] .

NOTE 33 — The “corresponding Java parameter data type” of SP is defined in Sub-
clause 4.5, “Parameter mapping”.

© ISO/IEC 2002 — All rights reserved Additional common elements 55

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

56

2) For each parameter SP of SPDL whose <parameter mode> is INOUT or OUT, let
JT be the corresponding Java data type of the <parameter type> of SP, and let the
corresponding Java parameter data type of SP be an array of J7T, that is, be JT[].

3) The <Java parameters> of JPDL is a list of the corresponding Java parameter data
types of SPDL.

NOTE 34 — JPDL does not specify parameter names. That is, the parameter names of the
Java method do not have to match the SQL parameter names.

iv) The subject Java field of <static field method spec>s or the set of candidate visible Javy4
methods are determined as follows:

Case:

1) If CNTXT specifies <SQL-invoked routine> or if SRD indicates that the~SQL-invoke
routine is an SQL-invoked procedure or an SQL-invoked regular function, then:

A) If DRSN is greater than 0 (zero), then:

D

1D

I11)

B) If DRSN is 0 (zero), then let JCS be the set of visible Java methods of class
JCLSN in JAR JN whoese method names are JMN, whose Java parameter datal
types list is JPDL

2) If CNTXT specifies.<user-defined type definition> or if SRD indicates that the
SQL-invoked routine is an SQL-invoked method then:

A) Ifi is greater than O (zero) and MS; contains <static field method spec>, or if
MSD-indicates that it is a static field method, then:

1)
I
I1D)
V)

[om

Let SPN and JPN be, respectively, the number of <SQL parameter declara-
tion>s in SPDL and the number of <Java data tygpe>s in JPDL.

2

If SPN is equivalent to JPN, then JPDL was(originally not specified; let JC
be the set of visible Java methods of class’ JCLSN in JAR JN whose method
names are JMN, whose first SPN parameter data types are those of JPDL,
and whose last K parameter data types, for some positive K, are result set
mappable.

If SPN is less than JPN, thennd/PDL was originally specified; let JCS be the
set of visible Java methods of class JCLSN in JAR JN whose method names
are JMN, whose Java parameter data types list is JPDL.

FI shall be the name of a field of SFC. Let JSF be that field.
JSF shall be a public static field.
Let JFT be the Java data type of JSF.

SRT and JFT shall be simply mappable or object mappable.

V)

SQL Routines and Types Using Java (SQL/JRT)

NOTE 35 — “simply mappable” and “object mappable” are defined in Subclause 4.5,
“Parameter mapping”.

JSF is the subject static field of the SQL-invoked method defined by MS;.

NOTE 36 — The subject Java class may contain fields and methods (public and
private) for which no corresponding attribute or method is specified.

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

B) Ifiis greater than 0 (zero) and MS,; does not immediately contain <static field
method spec>, or if MSD indicates that it is not a static field method, then:

D

Case:

1) Ifiis greater than 0 (zero) and MS; specifies INSTANCE or CONSTRUC-
TOR, or if MSD indicates it is an instance method or a constructor, then
JPDL contains the augmented Java parameter declaration list for this
method. Remove the subject parameter from the Java parameter decla-

4) The subject Java methedis determined as follows:

Case:

I

I11)

V)

q) If CNTXTspecifies <SQL-invoked routine> or if SRD indicates that the SQL-invoked routinfe
is an SQL:invoked procedure or an SQL-invoked regular function, then:

1)_J€S shall contain exactly one Java method. Let JM be that Java method. The SQL-
invoked routine is associated with JM.

ration list JPDL to create the unaugmented Java parameter declaration
list UAJPDL, as follows:

Case:

T

a) If JPDL contains two or more <Java data type>s, then®epy all JPD|
to UAJPDL, omitting the first <Java data type> JCESN, and its
associated “, ”.

b) Otherwise, set UAJPDL to the <Java parameter declaration list>
()
2) Otherwise copy JPDL to UAJPDL.

Using Java overloading resolution, specified by The Java Language Speci-
fication, Second Edition, let JCS be the set of visible Java methods of class
JCLSN in JAR JN or the supertypes-of that class whose method names are|
JMN and whose Java parameter data types list is UAJPDL.

NOTE 37 — “visible” is defined,ifi*Subclause 4.5, “Parameter mapping”.

If i is greater than 0 (zerqyand MS; specifies STATIC, or MSD indicates thgt
STATIC was specified, then remove from JCS any Java method that is not
static. Otherwise, rethove from JCS any static Java method.

If i is greater than 0 (zero) and MS; specifies CONSTRUCTOR, or MSD
indicates that\CONSTRUCTOR was specified, then remove from JCS any
Java methed that is not a constructor. Otherwise, remove from JCS any
Java method that is a constructor.

i IagL - 1 1 T P . B | JaP-t 13 i
1) J N IS UIIE SUDJECL JdVd IHIELII0U 06 UI1€ OSWYL-ITIVOKEU I'OULIIIC.

b) If CNTXT specifies <user-defined type definition> or if SRD indicates that the SQL-invoked
routine is an SQL-invoked method then, if i is greater than 0 (zero) and MS; does not

© ISO/IEC 2002 — All rights reserved Additional common elements 57

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
8.5 Java routine signature determination

immediately contain <static field method spec>, or if MSD indicates that it is not a static
field method then:

i) JCS shall contain exactly one Java method. Let JM be that Java method. The <Java
method name> is referred to as the corresponding Java method name of <method name>.

i) JM is the subject Java method of the SQL-invoked method.

5) The result data type of the SQL-invoked routine is validated as follows:

ase:

) If CNTXT specifies <SQL-invoked routine> or if SRD indicates that the SQL-invokéd routin
is an SQL-invoked procedure or an SQL-invoked regular function, then let JRT be the Javg
returns data type of JM.

[¢]

i) If JM is an SQL-invoked procedure, then JRT shall be voi d.

ii) IfJM is an SQL-invoked regular function, then JRT and SRT.shall be simply mappabl¢
or object mappable.

) If CNTXT specifies <user-defined type definition> or if SRD indicates that the SQL-invoked
routine is an SQL-invoked method then, if i is greater than 0 (zero) and MS; does not
immediately contain <static field method spec>, or if MiSD indicates that it is not a static
field method, then let JRT be the Java returns data.type of JM. If SELF AS RESULT is nqgt
specified then JRT and SRT shall be simply mappable or object mappable.

NOTE 38 — “simply mappable” and “object mappable” are defined in Subclause 4.5, “Parameter
mapping”.

) Otherwise, let JRT be the Java data typé&’of the subject static field. JRT and SRT shall be
simply mappable or object mappable.

58 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

9 Schema definition and manipulation

9.1 <table definition>

Fulllction

Define a persistent base table, a created local temporary table, or a global temporary table.

Forymat

No afldi ti onal Format itens.

Syntax Rules

1) [] Insert after SR 10)a) | ST shall not be an external Java data type wheSe descriptor specifies an
<interface specification> of SERIALIZABLE.

Acdess Rules

No additional Access Rules.

Gemneral Rules

No additional General Rules.

Conpformance Rules

No additional Conformance Rules.

© ISO/IEC 2002 — All rights reserved

Schema definition and manipulation 59

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.2 <view definition>

9.2 <view definition>

Function
Define a viewed table.

Format

No afldi ti onal Format itens.

Syntax Rules

1) [[Insert after SR 21)c) | ST shall not be an external Java data type whose descriptor|\specifies an
<interface specification> of SERIALIZABLE.

Acdess Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

60 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

9.3

ISO/IEC 9075-13:2002 (E)
9.3 <user-defined type definition>

<user-defined type definition>

Function

Define a user-defined type.

Format

<us€

<ext

<int

<int

<net

<met

<stgtic field method spec>::=

<stdtic nethod returns clause> ::=

<ext

r-defined type body> ::=
<user-defined type nane>
[<subtype clause>]
[<external Java type clause>]
[AS <representation>]
[<instantiable clause>]
<finality>
<reference type specification>]
<ref cast option>]
<cast option>]
<met hod specification list>]

— — ——

ernal Java type clause> ::=
<external Java cl ass cl ause>
LANGUAGE JAVA
<interface using clause>

erface using clause> ::=
[USING <interface specification>]

erface specification> ::=
SQLDATA
| SERI ALI ZABLE

hod specification> ::=
' Al alternatives froml SQ | EC9075-2
| <static field nethod spec>

hod characteristic> ::=
'l Al alternatives froml SO | EC9075-2
| <external Java nmethod' cl ause>

STATI C METHOD ,<net hod nane> <l eft paren> <right paren>
<static nmethod-returns clause>

[SPECI FI C.<speci fic nethod nane>]

<ext ernalsvari abl e nane cl ause>

RETURNS <dat a type>

ernal variabl e nane clause> ::=
EXTERNAL VARI ABIE NAME <character string litera

<ext

<ext

<Jav

ernal Java class clause> ::= EXTERNAL NAME <character string literal >
ernal Java nethod clause> ::= EXTERNAL NAME <character string literal >
a net hod and parameter declarations> ::=

<Java nethod nanme> [<Java paraneter declaration list>]

©ISO/IEC 2002 — All rights reserved Schema definition and manipulation 61

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.3 <user-defined type definition>

Syntax Rules

1) [Insert after SR 3) | If <external Java type clause> is specified, then UDT is an external Java data
type.

2) | Replace SR 6)k))) | The <supertype name> immediately contained in the <subtype clause> shall
identify the descriptor of some structured type SST. UDT is a direct subtype of SST, and SST is
a direct supertype of UDT If UDT is an external J ava data type then SST shall be an external

3) || Insert before SR 7) | If <external Java type clause> is specified, then:

q) Let VJC be the value of the <character string literal> immediately contained\in <external
Java class clause>; VJC shall conform to the Format and Syntax Rules ofyjar and class

name>. The Java class identified by <Java class name> in the JAR identified by <jar id> im
their immediately containing <jar and class name> is UDT’s subject-Java class.

NOTE 39 — The subject Java class of UDT can be the subject Java cla§s\of other external Java datja
types. Each such external Java data type is distinct from other such.data types.

) UDT’s subject Java class shall be a publ i c class and shall implement the Java interface
java.io. Serializabl e or the Java interface j ava. sql ..SQ:Dat a or both.

t) If an <interface using clause> is not explicitly specified, then an implementation-defined
<interface specification> is implicit.

d) If SERIALIZABLE is specified, then the subject Java class shall implement the Java
interface j ava.io. Seri al i zabl e. The method j ava.io. Serializable.witeObject()

is effectively used to convert a Java objeét to an SQL representation, and the method
java.io. Serializable.readObj ect () 1s effectively used to convert an SQL representation
to a Java object.

¢) If SQLDATA is specified, then the subject Java class shall implement the Java inter-
face j ava. sql . SQLDat a as defined in JDBC. The method j ava. sql . SQLDat a. writ eSQL()
is effectively used to convert a Java object to an SQL representation, and the method
java.sqgl.SQ.Dat a. readSQ.() is effectively used to convert an SQL representation to a Javp
object.

f) <overriding methed specification> shall not be specified.
) A <representation> that is a <predefined type> shall not be specified.
) SELE'AS LOCATOR shall not be specified.

i) x<loctator indication> shall not be specified.

4) | Insert before SR 7) l If <oxternal Jaug fypn n]qnsn 1‘S not Spnrﬂ"ﬁoﬂ then:

a) <method specification> shall not specify <static field method spec>.
b) <method characteristic> shall not specify <external Java method clause>.

¢) The <language clause> immediately contained in <method characteristic> shall not specify

JAVA.

62 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

5)

6)

7)
8)
9)

10)

11)

12)

13)

14)

ISO/IEC 9075-13:2002 (E)
9.3 <user-defined type definition>

[Insert after SR 7)a) | If UDT is an external Java data type, then it is implementation-defined
whether validation of the explicit or implicit <Java parameter declaration list> is performed by
<user-defined type definition> or when the corresponding SQL-invoked method is invoked.

[Insert after SR 7)b)iv.1)5) in the TC | If UDT is an external Java data type, then the <Java iden-
tifier> immediately contained in <Java method name> of MS; shall be equivalent to the <Java
identifier> immediately contained in the <class identifier> immediately contained in <jar and
class name> of UDT.

[| Insert after SR 7)b)x)4)B) | UDT shall not be an external Java data type.

[| Insert after SR 7)b)xi)3) | UDT shall not be an external Java data type.

Insert after SR 7)b)xiv) | If MS; specifies <static field method spec>, then:

1) MS; specifies a static field method.

) Let VSF be the value of the <character string literal> simply contain€d in <static field

method spec>; VSF shall conform to the Format and Syntax Rules ofqualified Java field
name>.
NOTE 40 — <static field method spec> defines a static method of theTuser-defined type that returnp
the value of the Java static field specified by the <qualified Java field name>. This is a shorthand
that provides read-only SQL access to static fields of the subject Java class or a superclass of the
subject Java class.

Replace SR 7)b)xv)1) | The <method characteristics> of M.S; shall contain at most one <language
lause>, at most one <parameter style clause>, at most one <deterministic characteristic>,

t most one <SQL-data access indication>, and at-most one <null-call clause>. If UDT is an
xternal Java data type then, with the exception of the implicit <original method specification>|
enerated for the observer and mutator functions of each attribute, the <method characteristics
f MS; shall not contain the <method characteristic>s <language clause> or <parameter style
lause> and shall contain exactly one <eXternal Java method clause>. For an external Java
ata type, both <language clause> and.<parameter style clause> implicitly specify JAVA.

V.

Insert after SR 7)b)xv)1) | If UDT is.an external Java data type, then let VMP be the value of the
<«character string literal> immediately contained in <external Java method clause>; VMP shall
onform to the Format and-Syntax Rules of <Java method and parameter declarations>.

[| Replace SR 7)b)xv)2) | IEUBPT is not an external Java data type and <language clause> is not
gpecified, then LANGUAGE SQL is implicit.

Replace SR 7)b)xv)6)B)l) | If <parameter style> is not specified and UDT is not an external Java
data type, then. PARAMETER STYLE SQL is implicit.

[| Insert after, SR 7)b)xvi) | If UDT is an external Java data type and validation of the <Java param

g¢ter declaration list> has been implementation-defined to be performed by <user-defined type

Ieﬁniti0n>, then the Syntax Rules of Subclause 8.5, “Java routine signature determination” ar¢
pplied with <user-defined type definition>, method specification index i, and no subject routing.

Access Rules

No additional Access Rules.

©ISO/IEC 2002 — All rights reserved Schema definition and manipulation 63

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.3 <user-defined type definition>

General Rules

1) | Replace GR 5)g)vi) | The explicit or implicit <parameter style> if the <language name> is SQL or
JAVA.

Conformance Rules

1) Without Feature J531, “Deployment”, conforming implementations of this part of

SO/MTEC 9075 shall not. specify a <user-defined type definition> in a <descriptor file>

2) [[Insert this CR | Without Feature J511, “Commands”, conforming implementations of this parf of
1SO/IEC 9075 shall not specify a <user-defined type definition> that specifies LANGUAGE-JAVA
utside of a <descriptor file>.

3) [[Insert this CR | Without Feature J591, “Overloading”, the <method name> of a <method specificaf
fion> shall not be equivalent to the <method name> of any other <method speg¢ification> in theg
game <user-defined type definition>.

4) [[insert this CR | Without Feature J641, “Static fields”, conforming implementdtions of this part of
1SO/IEC 9075 shall not specify a <static field method spec>.

5) [[Insert this CR | Without Feature J541, “SERIALIZABLE”, a conforming <user-defined type defini
fion> shall not specify SERIALIZABLE.

6) [[Insert this CR | Without Feature J551, “SQLDATA”, a confdeming <user-defined type definition>
ghall not specify SQLDATA.

7) [|Insert this CR] A conforming implementation of this.part of ISO/IEC 9075 shall support at least
ne of Feature J541, “SERIALIZABLE”, and Feature J551, “SQLDATA”.

8) [[Insert this CR | Without Feature J622, “external’Java types”, conforming implementations of this
part of ISO/IEC 9075 shall not specify a-<user-defined type definition> that specifies LAN-
GUAGE JAVA.

64 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

94

ISO/IEC 9075-13:2002 (E)
9.4 <attribute definition>

<attribute definition>

Function

Define an attribute of a structured type.

Format

<att

<ext

ribute definition> ::=
<attribute nane>
<data type>
[<reference scope check>]
[<attribute default>]
[<collate clause>]
[<external Java attribute clause>]

ernal Java attribute clause> ::=
EXTERNAL NAME <character string literal >

itax Rules

Insert after SR 1) | If the <attribute definition> is contained in< <user-defined type definition>

hat is not an external Java data type or is contained in,an <alter type statement>, then
rattribute definition> shall not specify an <external Jayva attribute clause>.

Insert after SR 1) | If the <attribute definition> is contained in a <user-defined type definition>

hat specifies an external Java data type whose &interface specification> is SERIALIZABLE,
hen <attribute definition> shall specify an <external Java attribute clause>.

Insert after SR 1) | If an <external Java attribute clause> is specified, then let VFN be the value

1

f the <character string literal> immediately contained in <attribute definition>; VFN shall
onform to the Format and Syntax Riules of <Java field name>. The <Java field name> value of
VFN is referred to as the corresponding Java field name of the <attribute name>.

4)

Insert after SR 1) | If <attributeydefinition> is contained in a <user-defined type definition> that

9

gpecifies an external Java/data type, then <reference scope check>, <attribute default>, and

ccollate clause> shall not be specified.

5 |

Insert after SR 1) | If €attribute definition> is contained in a <user-defined type definition> that

9

Acd

1

gpecifies an external Java data type, and if the <data type> specified in the <attribute defini-

ion> is a structured type ST, then ST shall be an external Java data type.

ess Rules

No-additional Access Rules.

General Rules

D |

Insert after GR3)g) | If the <attribute definition> contains an <external Java attribute clause>,

then the corresponding Java field name of the <attribute name>.

2) An SQL-invoked method OF is created whose signature and result data type are
as given in the descriptor of the original method specification of the observer function of A. Let
V be a value in UDT.

©ISO/IEC 2002 — All rights reserved Schema definition and manipulation 65

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.4 <attribute definition>

Case

a) If Vis the SQL null value, then the invocation V. AN() of OF returns the result of:
CAST (NULL AS DT)

b) If UDT is not an external Java data type whose descriptor’s <interface specification> speci-
fies SERIALIZABLE, then V. AN() returns the value of A in V.

0) If TTDT is an axtnrnal Taxvra data t“}rpa "1'71111013 Anonviptnr’s intarfana Spnniﬁnof;nh Spnrﬂ"ﬂnc
SERIALIZABLE, then the r eadObj ect () method of the subject Java class SJCE of V is
effectively used to obtain a Java object from the value of V, the Java field that corresponds tjo
the attribute specified in <Java field name> contained by <attribute definition> is accessed
Let JV and JCLS be respectively that Java value and its most specific Java class,

Case:
i) If DT is a user-defined type, then:

1) Let STU be the user-defined type whose subject Java class\is'"dCLS and whose
user-defined type is DT or is a subclass of DT.

=

2) Let UIS be the <interface specification> specified by the user-defined type descripto
of STU.

3) Case:
A) If UIS is SERIALIZABLE, then:

I) The subject Java class JCLS’swri t eCbj ect () method is executed to convert
the Java value JV to the SQL value SV of user-defined type STU.

II) The method of execution® of the subject Java class’s implementation of
writeQbj ect () is imiplementation-defined.

NOTE 41 — If UIS is(SERIALIZABLE, then, as described in Subclause 9.3, “<user-

defined type definition>”, the descriptor’s subject Java class implements the Java inter-

face j ava. i 0. Seri al i zabl e and defines that interface’s wri t eObj ect () method as

described by theJava 2 Platform, Standard Edition, v1.2.2, API Specification.

B) If UIS is(SQLDATA, then:

I) . The subject Java class JCLS’s wri t eSQL() method is executed to convert thie
Java value JV to the SQL value SV of user-defined type STU.

II) The method of execution of the subject Java class’s implementation of
witeSQ () is implementation-defined.

NOTE 42 — If UIS is SQLDATA, then, as described in Subclause 9.3, “<user-defined

type definition>", the descriptor’s subject Java class implements the Java interface

java. sql . SQLDat a and defines that interface’s wit eSQ.() method as described by

11 z o-p1 . r Q 7 733 7. 100 ADI O . .
UIC JaU0 <« rialjorid, stariaara Lalllort, UVl.c.z, At SpPectjicaliorn.

C) Otherwise, the value of SV is set to the value of JV.

4) V. AN() returns the value of SV.

66 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.4 <attribute definition>

3) An SQL-invoked method MF is created whose signature and result data type are
as given in the descriptor of the original method specification of the mutator function of A. Let
V be a value in UDT and let AV be a value in DT.

Case:

a) IfVis the SQL null value, then the invocation V. AN(AV) of MF raises an exception condition:
data exception — null instance used in mutator function.

fies SERIALIZABLE, then the invocation V. AN(AV) returns V2 such that V2. AN() = AVcand
for every other observer function ANX of UDT, V2. ANX() = V. ANX().

) If UDT is an external Java data type whose descriptor’s <interface specification» specifies
SERIALIZABLE, then the readbj ect () method of the subject Java class SJCE of V is

effectively used to obtain a Java object from the value of V. Let MST, JCLS, and Jtemp be
respectively the most specific type of AV, the subject Java class of MST, dnd the Java object
obtained from r eadObj ect ().

i) Case:
1) If MST is a user-defined type, then:

A) Let UIS be the <interface specification> specified by the user-defined type de-
scriptor of MST.

B) Case:
I) If UIS is SERIALIZABLE, then:

1) The subject Java clasg’JCLS’s r eadObj ect () method is executed to
convert the value of-AV to a Java object JV.

2) The method of execution of the subject Java class’s implementation of
readQbj ect()~is implementation-defined.

NOTE 43 — If\UIS is SERIALIZABLE, then, as described in Subclause 9.3, “<use1

defined typé.definition>”, the subject Java class of U implements the Java interfacsd

java.i@~Serializabl e and defines that interface’s r eadObj ect () method as

described by the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

II) H.TAS is SQLDATA, then:

1) The subject Java class JCLS’s readSQ.() method is executed to convert
the value of AV to a Java object JV.

2) The method of execution of the subject Java class’s implementation of
readSQ.() is implementation-defined.
NOTE 44 — If UIS is SQLDATA, then, as described in Subclause 9.3, “<user-

defined type definition>"_the thjnpf Java class of I imrﬂpmnnfq the Java interfacd

j ava. sql . SQLDat a and defines that interface’s r eadSQL() method as described by
the Java 2 Platform, Standard Edition, v1.2.2, API Specification.

2) Otherwise, the value of JV is set to the value of AV.

ii) The Java field of Jtemp that corresponds to the attribute specified in <Java field name>
contained by <attribute definition> is assigned the value JV.

©ISO/IEC 2002 — All rights reserved Schema definition and manipulation 67

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.4 <attribute definition>

iii) The subject Java class SJCE of V’s wri t eQoj ect () method is effectively used to obtain
a SQL value V2 from the Java value Jtemp.

iv) The invocation V. AN(AV) returns V2.

Conformance Rules

No additional Conformance Rules.

68 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.5 <alter type statement>

9.5 <alter type statement>

Function
Change the definition of a user-defined type.
Format

No afldi ti onal Format itens.

Syntax Rules

1) [[Insert after SR 1) | D shall not be an external Java data type.

Acdess Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conpformance Rules

No additional Conformance Rules.

© ISO/IEC 2002 - All rights reserved Schema definition and manipulation 69

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.6 <drop data type statement>

9.6 <drop data type statement>

Function
Destroy a user-defined type.
Format

No afldi ti onal Format itens.

Syntax Rules

No additional Syntax Rules.

Acdess Rules

No additional Access Rules.

Gemneral Rules

No additional General Rules.
Conpformance Rules

1) [|Insert this CR | Without Feature J531, “Deployment”, conforming implementations of this part of]
1SO/IEC 9075 shall not specify a <drop type §batement> in a <descriptor file>.

2) [[insert this CR | Without Feature J511, “Commands”, conforming implementations of this part
f ISO/TEC 9075 shall not specify a <drop type statement> that drops an external Java type
utside of a <descriptor file>.

3) [[insert this CR | Without Feature.J622, “external Java types”, conforming implementations of this
part of ISO/IEC 9075 shallmet specify a <drop data type statement> that drops an external
Java type.

70 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.7 <SQL-invoked routine>

9.7 <SQL-invoked routine>

Function

Define an SQL-invoked routine.

Format

<parfaneter style> ::=

<extlernal Java reference string> ::=

Syntax Rules

D

2)

3)

4)

5)

6)

7)

8)

' Al alternatives fromlSQO | EC9075-2
| JAVA

<jar and cl ass nanme> <peri od> <Java net hod nanme>
[<Java paraneter declaration list>]

Insert after SR 3) | If <SQL-invoked routine> specifies LANGUAGE JAVA| then no <SQL paramet
fer declaration> specified in <SQL-invoked function> shall specifyy RESULT.

Insert after SR 3) | If <SQL-invoked routine> specifies LANGUAGE JAVA, then neither the <re-
furns clause> contained in <SQL-invoked function> nor any/<SQL parameter declaration>
ontained in an <SQL-invoked function> or <SQL-invoked procedure> shall contain <locator
indication>.

[[Insert after SR 3) | If <SQL-invoked routine> specifies LANGUAGE JAVA, then <transform groug
gpecification> shall not be specified.

[Insert after SR 3) | The maximum value of <maximum dynamic result sets> is implementation-

defined.

[| Replace SR 4)a) | Let UDTN be the-<user-defined type name> immediately contained in <methodgl
gpecification designator>. Let UD7 be the user-defined type identified by UDTN. UDT shall no
Ibe an external Java type.

il

Replace SR 5)a) | <routiné characteristics> shall contain at most one <language clause>, at
most one <parameter(style clause>, at most one <specific name>, at most one <deterministic
¢haracteristic>, at.most one <SQL-data access indication>, at most one <null-call clause>,
and at most one <dynamic result sets characteristic>. If LANGUAGE JAVA is specified, then
+parameter style’clause> shall specify <parameter style> JAVA.

[[Replace SR'9)) | An <SQL-invoked routine> that specifies or implies LANGUAGE SQL is called
n SQLroutine; an <SQL-invoked routine> that does not specify LANGUAGE SQL is called ar
1xternal routine. An external routine that specifies LANGUAGE JAVA is called an external Javp
outine.

| Insert after SR 5)i) | If R is an external Java routine, then the <external routine name> immedi-
ately contained in <external body reference> shall specify a <character string literal>. Let V be
the value of that <character string literal>. V shall conform to the Format and Syntax Rules of
an <external Java reference string>.

NOTE 45 — R is defined by ISO/IEC 9075-2 to be the SQL-invoked routine specified by <SQL-invoked
routine>.

©ISO/IEC 2002 — All rights reserved Schema definition and manipulation 71

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.7 <SQL-invoked routine>

9) [Insert after SR 5)i) | If R is an external Java routine, then the <Java method name> is the name
of one or more Java methods in the class specified by <Java class name> in the JAR specified by
<jar name>. The combination of <Java class name> and <Java method name> represent a fully
qualified Java class name and method name. The method name can reference a method of the
class, or a method of a superclass of the class.

10) [Replace the first paragraph of SR 5)t)ii) | If R is not an external Java routine, then
Case:
11) || Replace the first paragraph of SR 19)e) | If PARAMETER STYLE GENERAL or PARAMETER

PTYLE JAVA is specified, then let the effective SQL parameter list be a list of PN paraméters
guch that, for i ranging from 1 (one) to PN, the i-th effective SQL parameter list entry-is, defined
as follows.

12)

Replace SR 19)g) | If <language clause> does not specify JAVA, then every <data-type> in an
Iffective SQL parameter list entry shall specify a data type listed in the SQILidata type column
or which the corresponding row in the host data type column is not 'None?,

13)

Insert before SR 20) |

NOTE 46 — The rules for parameter type correspondence when LANGUAGE JAVA is specified are give
in Subclause 4.5, “Parameter mapping”.

=]

14) [[Insert before SR 20) |If R is an external Java routine, then itis\implementation-defined whether
yalidation of the explicit or implicit <Java parameter declaration list> is performed by <SQL-
invoked routine> or when its SQL-invoked routine is inveked.

15) |[| Insert before SR 20) | If R is an external Java routiné) and validation of the <Java parameter
declaration list> has been implementation-defineédto be performed by <SQL-invoked routine>,
then the Syntax Rules of Subclause 8.5, “Java-routine signature determination”, are applied
yith the <SQL-invoked routine>, a method_specification index of 0 (zero), and no subject routing.

Acdess Rules

1) [[Insert after AR 1) | If R is an external Java routine, then the applicable privileges for A shall
Eclude USAGE privilege ontthe JAR referenced in the <external Java reference string>.

OTE 47 — The referenceés to R and A are defined in the Syntax Rules of Subclause 11.49, "<SQL-
invoked routine>", in ISGAEC 9075-2.

Gemneral Rules

D

Replace GR 3)m)~| If the SQL-invoked routine is an external routine, then the routine descriptor
includes an ‘indication of whether the parameter passing style is PARAMETER STYLE JAVA,
PARAMETER STYLE SQL, or PARAMETER STYLE GENERAL.

2) |[| ~Replace the introductory text of GR 6)a)i) | If R is not an external Java routine and the <SQL data
access indication> in the descriptor of R is MODIFIES SQI. DATA READS SQI. DATA or

CONTAINS SQL, then:

72 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.7 <SQL-invoked routine>

Conformance Rules

1)

2)

3)

4)

5)

6)

© ISO/IEC 2002 — All rights reserved

Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify an <SQL-invoked routine> in a <descriptor file>.

Without Feature J511, “Commands”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <user-defined type definition> that specifies LANGUAGE JAVA
outside of a <descriptor file>.

[[Insert this CR | Without Feature J581, “Output parameters”, in a conforming implementation of
this part of ISO/IEC 9075, <SQL-invoked routine> shall not specify <parameter mode> OUT)o1
INOUT.

[[Insert this CR | Without Feature J631, “Java signatures”, a <Java parameter declaration list>
ghall be equivalent to the default Java method signature as determined in Subclatse 8.5, “Java
toutine signature determination”.

[[insert this CR | The SQL data types recognized by JDBC are a superset of-thdse defined by
1SO/IEC 9075-2. Without Feature J521, “JDBC data types”, a <Java data’type> shall have
4 corresponding SQL data type.

[[insert this CR | Without Feature J621, “external Java routines”, cohforming implementations
f this part of ISO/IEC 9075 shall not specify an <SQL-invokéd Toutine> that specifies LAN-
GUAGE JAVA.

Schema definition and manipulation 73

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.8 <alter routine statement>

9.8 <alter routine statement>

Function
Alter a characteristic of an SQL-invoked routine.

Format

No afldi ti onal Format itens.

Syntax Rules

1) [[Insert after SR 1) | SR shall not be an external Java routine.
NOTE 48 — SR is defined to be the SQL-invoked routine identified by the <alter routine statement>.

Acdess Rules

NNo additional Access Rules.

Gemneral Rules

No additional General Rules.

Conpformance Rules

No additional Conformance Rules.

74 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.9 <drop routine statement>

9.9 <drop routine statement>

Function
Destroy an SQL-invoked routine.
Format

No afldi ti onal Format itens.

Syntax Rules

1) [[Insert after SR 7) | If SR is an external Java routine and <drop routine statements is' contained
in a <descriptor file>, then <drop routine statement> shall specify a <routine-type> of PROCE-
DURE or of FUNCTION.

Acdess Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

1) [[insert this CR] Without Feature J531, “Deploytdent”, conforming implementations of this part of]
1SO/IEC 9075 shall not specify a <drop reutine statement> in a <descriptor file>.

2) [[Insert this CR | Without Feature J511,(“Commands”, conforming implementations of this part of
1SO/IEC 9075 shall not specify a(<drop routine statement> that drops an external Java routing
utside of a <descriptor file>.

3) [[insert this CR | Without Featuye J621, “external Java routines”, conforming implementations of
this part of ISO/IEC 9075 shall not specify an <drop routine statement> that drops an externa
Java routine.

©ISO/IEC 2002 — All rights reserved Schema definition and manipulation 75

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.10 <user-defined ordering definition>

9.10 <user-defined ordering definition>

Function
Define a user-defined ordering for a user-defined type.

Format

<ordering category> ::=
'l Al alternatives froml SO | EC9075-2
| <conparabl e cat egory>

<conpar abl e category> :: =
RELATI VE W TH COVPARABLE | NTERFACE

Syntax Rules

1) [[Replace SR 4)] If <comparable category>, <relative category>, or <statecategory> is specified,
then UDT shall be a maximal supertype.

2)

Insert before SR 6) | If <comparable category> is specified, then, UDT shall be an external Java
data type. Let JC be the subject Java class of that external’dava data type. JC shall implemen
the Java interface j ava. | ang. Conpar abl e.

-+

3) [| Replace the introductory paragraph of SR 6)b) | If <comparable category> is not specified, then:

Acdess Rules

No additional Access Rules.

General Rules

1) [[Replace GR 3) | Case:

q) If <relative category> is\specified, then the ordering category in the user-defined type
descriptor of UDT is(set’to RELATIVE.

) if <map category>'is specified, then the ordering category in the user-defined type descriptd
of UDT is setrto-MAP.

=

) If <comparable category> is specified, then the ordering category in the user-defined type
descriptor of UDT is set to COMPARABLE.

) Otherwise, the ordering category in the user-defined type descriptor of UDT is set to
STATE.

Conformance Rules

1) Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <user-defined ordering definition> in a <descriptor file>.

2) Without Feature J622, “external Java types”, conforming implementations of this
part of ISO/IEC 9075 shall not specify a <user-defined ordering definition> that defines an
ordering for an external Java type.

76 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.10 <user-defined ordering definition>

3) Without Feature J511, “Commands”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <user-defined ordering definition> that defines an ordering for
an external Java type outside of a <deployment file>.

© ISO/IEC 2002 - All rights reserved Schema definition and manipulation 77

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
9.11 <drop user-defined ordering statement>

9.11 <drop user-defined ordering statement>

Function
Destroy a user-defined ordering method.

Format

No afldi ti onal Format itens.

Syntax Rules

No additional Syntax Rules.

Acdess Rules

No additional Access Rules.

Gemneral Rules

No additional General Rules.

Conpformance Rules

1) [|Insert this CR | Without Feature J531, “Deployment”, conforming implementations of this part of]
1SO/IEC 9075 shall not specify a <drop user-defined ordering statement> in a <descriptor file>,

2) [[insert this CR | Without Feature J622, “external Java types”, conforming implementations of this
part of ISO/TEC 9075 shall not specify-a <drop user-defined ordering statement> that drops an
rdering for an external Java type:.

3) [[insert this CR | Without Feature.J511, “Commands”, conforming implementations of this part
f ISO/TEC 9075 shall notsspecify a <drop user-defined ordering statement> that defines an
rdering for an external(Java type outside of a <deployment file>.

78 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

10

10.1 <grant privilege statement>

Access control

ISO/IEC 9075-13:2002 (E)

FII]IlctiOIl

Defi

he privileges.

Forymat

No afldi ti onal Format |tens.

Syntax Rules

No additional Syntax Rules.

Acdess Rules

No additional Access Rules.

Gemneral Rules

No additional General Rules.

Conformance Rules

1]
]

2) |
]

©

Insert this CR | Without Feature J531, “Deployment”, conforming implementations of this part of
SO/IEC 9075 shall not specify.a’ <grant privilege statement> in a <descriptor file>.

Insert this CR | Without Féature J511, “Commands”, conforming implementations of this part of
SO/IEC 9075 shall not\specify a <grant privilege statement> that grants USAGE privilege on
JAR outside of a <descriptor file>.

ISO/IEC 2002 — All rights reserved

Access control 79

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
10.2 <privileges>

10.2 <privileges>

Function
Specify privileges.
Format

<objlect nane> ::=
'l Al alternatives froml SO | EC9075-2
| JAR <jar nane>

Syntax Rules

1) [[Replace SR 3)] If <object name> specifies a <domain name>, <collation name>;<character set
mame>, <transliteration name>, <user-defined type name>, or <jar name>;then <privileges>
ghall specify USAGE. Otherwise, USAGE shall not be specified.

Acdess Rules

No additional Access Rules.

Gemneral Rules

No additional General Rules.

Conformance Rules

1) [[insert this CR] Without Feature J561, “Jar-privileges”, an <action> shall not specify USAGE on
4n <object name> that immediately eonitains a <jar name>.

80 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
10.3 <revoke statement>

10.3 <revoke statement>

Function

Destroy privileges and role authorizations.

Format

No afldi ti onal Format |tens.

Syntax Rules

1)

2)

3)

4)

5)

Acdess Rules

General Rules

D

[| Replace SR 10)a)ii)4) | P and D are both usage privilege descriptors. The action and’the identified
domain, character set, collation, transliteration, user-defined type, or JAR of R\are the same as
the action and the identified domain, character set, collation, transliteration, user-defined type
r JAR of D, respectively.

[| Insert after SR 29)b) | DT is an external Java data type and the revoke‘\deéstruction action would
tesult in A1 no longer having in its applicable privileges USAGE, on-the JAR whose <jar namey}
is contained in the <jar and class name> of the descriptor of DT}

[Insert after SR 34) | Let JR be any JAR descriptor included,in S1. JR is said to be impacted if
the revoke destruction action would result in AI no longer having in its applicable privileges
USAGE privilege on a JAR whose name is contained inh‘a <resolution jar> contained in the
PQL-Java path of JR.

[| Insert after SR 35)0) | If RD is an external Java routine, USAGE on the JAR whose <jar name> if
ontained in <external Java reference string® contained in the <external routine name> of the
descriptor of RD.

[Replace SR 37) | If RESTRICT is specified, then there shall be no abandoned privilege descrip-
fors, abandoned views, abandoned‘table constraints, abandoned assertions, abandoned domain
¢onstraints, lost domains, lost columns, lost schemas, impacted domains, impacted columns,
pacted collations, impactedicharacter sets, impacted JARs, abandoned user-defined types,
orsaken column descriptors; forsaken domain descriptors, or abandoned routine descriptors.

No additional Aceess Rules.

Inserfiafter GR 17) | If the object identified by <object name> of the <revoke statement> specifies
<jar name>, let J be the JAR identified by that <jar name>. For every impacted JAR descripto
R-and for each (quh element> PFE contained in the QQT -Java pnﬂ‘\ of JR whose immediately
contained <resolution jar> is J, the SQL-Java path of the JAR descriptor JR is modified such
that it does not contain PE.

=

© ISO/IEC 2002 — All rights reserved Access control 81

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
10.3 <revoke statement>

Conformance Rules

1) Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <revoke statement> in a <descriptor file>.

2) Without Feature J511, “Commands”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <revoke statement> that revokes USAGE privilege on a JAR
outside of a <descriptor file>.

82 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

11 Built-in procedures

11.1 SQLJ.INSTALL_JAR procedure

Futction
Install a set of Java classes into the current SQL catalog and schema.

Sighature
SQJ I NSTALL_JAR (

Whelre L is an implementation-defined integer value.

Acdess Rules

1)

Gemneral Rules

1)

2)

3)

4)

5)

6)

7)

url I'N CHARACTER VARYI NG(L),
j ar I'N CHARACTER VARYI NG(L),
depl oy I'N | NTEGER)

r

[he privileges required to invoke the SQLJ. | NSTALL_JAR procedure are implementation-defined

The SQLJ. I NSTALL_JAR procedure is subject to implementation-defined rules for executing SQL}
gchema statements within SQL-transactions. If an‘dnvocation of SQLJ. | NSTALL_JAR raises an
g¢xception condition, then the effect on the install*actions is implementation-defined.

4

[he values of the url parameter that are valid are implementation-defined, and may include
VURLs whose format is implementation-defined. If the value of the url parameter does not
onform to implementation-defined restrictions and does not identify a valid JAR, then an
xception condition is raised: Java:DDL — invalid URL.

et JJ be the value of the j ar parameter. Let T be the value of
TRIM(BOTH’ * FROMJ)

f TJ does not conform, to‘the Format and Syntax Rules of <jar name>, then an exception
ondition is raised: dava DDL — invalid JAR name.

et JN be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by
.

[\l

f there is.an installed JAR whose name is JN, then an exception condition is raised: Java DD
invalid JAR name.

he)JAR is installed and associated with the name JN. All contents of the JAR are installed,
including both visible and non-visible Java classes, and other items contained in the JAR. This
JAR becomes the associated JAR of each new class. The non-visible Java classes and other
items can be referenced by other Java methods.

A privilege descriptor is created that defines the USAGE privilege on the JAR identified by the
j ar parameter to the <authorization identifier> that owns the schema identified by the implicit
or explicit <schema name> of the j ar parameter. The grantor for the privilege descriptor is set
to the special grantor value “_ SYSTEM?”. The privilege is grantable.

© ISO/IEC 2002 — Al rights reserved Built-in procedures 83

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.1 SQLJ.INSTALL_JAR procedure

8) If the value of the depl oy parameter is not zero, and if the JAR contains one or more deploy-
ment descriptor files, then the install actions implied by those instances are performed in the
order in which the deployment descriptor files appear in the manifest.

NOTE 49 — Deployment descriptor files and their install actions are specified in Subclause 4.11.1,
“Deployment descriptor files”.

Conformance Rules

1) W

q
b

84 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.2 SQLJ.REPLACE_JAR procedure

11.2 SQLJ.REPLACE_JAR procedure

Function

Replace an installed JAR.

Signature

SQLJ. REPLACE_JAR (
ar T TN CHARACTER VARYTNG (L),
i ar IN CHARACTER VARYI NG (L))

Whepre: L is an implementation-defined integer value.

Acdess Rules

1)
2)

General Rules

1)

2)

3)

4)

5)

6)

7)

A

[he privileges required to invoke the SQLJ. REPLACE_JAR procedure are implementation-defined

r

[he current user shall be the owner of the JAR specified by the value of the j ar parameter.

he SQLJ. REPLACE_JAR procedure is subject to implementation-defined rules for executing
QL-schema statements within SQL-transactions.

he values of the url parameter that are valid are implementation-defined, and may include

RLs whose format is implementation-defined. If the value of url identifies a valid JAR, then
efer to the classes in that JAR as the new classes. If'the value of the url parameter does not
identify a valid JAR, then an exception condition_ is@aised: Java DDL — invalid URL.

et J be the value of the j ar parameter. Let Tef be the value of
TRIM(BOTH' ' FROMJ)

f TJ does not conform to the format of <jar name>, then an exception condition is raised: Javq
DL — invalid JAR name.

et JN be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by
.

f there is an installed JAR with <jar name> JN, then refer to that JAR as the old JAR. Refer
o the classes in the old)JAR as the old classes. If there is not an installed JAR with <jar name
N, then an exception condition is raised: Java DDL — attempt to replace uninstalled JAR.
quivalence of JAR names is determined by the rules for equivalence of identifiers as specified|
Subclause/.2¢ "<token> and <separator>", in ISO/IEC 9075-2.

\Y

et the miatching old classes be the old classes whose fully qualified class names are the names

f new elasses and let the matching new classes be the new classes whose fully qualified class

andesiare the names of old classes. Let the unmatched old classes be the old classes that are

ot“matching old classes and let the unmatched new classes be the new classes that are not
matching new classes.

Let the dependent SQL routines of a JAR be the routines whose descriptor’s <external routine
name> specifies an <external Java reference string> whose immediately contained <jar name>
is equivalent to the JAR name of that JAR.

© ISO/IEC 2002 — Al rights reserved Built-in procedures 85

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.2 SQLJ.REPLACE_JAR procedure

8) If any dependent SQL routine of the old JAR references a method in an unmatched old class,
then an exception condition is raised: Java DDL — invalid class deletion.
NOTE 50 — This rule prohibits deleting classes that are referenced by external Java routines. This
prohibition does not, however, prevent deletion of classes that are referenced only indirectly by other Java
classes.

9) For each dependent SQL routine of the old JAR that references a method in a matching old
class, let CS be the <SQL-invoked routine> that created the SQL routine. If CS is not a valid

ava DDL — invalid replacement.

10) Let the dependent SQL types of a JAR file be the external Java data types that have agtheir
gubject Java class a Java class contained in that JAR.
NOTE 51 — “subject Java class” is defined in Subclause 9.3, “<user-defined type definition>".

11) 1Xf there are any dependent SQL types of the specified JAR file that are unmatched old classes,
then an exception condition is raised: Java DDL — invalid class deletion.
NOTE 52 — This rule prohibits deleting classes that are referenced by externalJava data types. This
prohibition does not, however, prevent deletion of classes that are referenced only indirectly by other Javia
dlasses.

12) For each dependent SQL type, let CT be the <user-defined type definition> that created the SQL

type. If CT is not a valid <user-defined type definition> for,the corresponding new class, then
an exception condition is raised: Java DDL — invalid replacement.

13) The old JAR and all visible and non-visible old classes.contained in it are deleted.

14) The new JAR and all visible and non-visible new Classes are installed and associated with the
gpecified <jar name>. That JAR becomes the associated JAR of each new class. All contents of
the new JAR are installed, including both vi§ible and non-visible Java classes, and other itemsg|
¢ontained in the JAR. The non-visible Java-classes and other items can be referenced by other
Java methods.

15) The effect of SQLJ. REPLACE_JAR on"currently executing SQL statements that use an SQL routine
r structured type whose implementation has been replaced is implementation-dependent.

Conpformance Rules

None.

86 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.3 SQLJ.REMOVE_JAR procedure

11.3 SQLJ.REMOVE_JAR procedure

Function

Remove an installed JAR and its classes.

Signature
SQLJ. REMOVE_JAR (
ar I'N CHARACTER VARYI NG (L),
undepl oy I'N | NTEGER)

Whepre: L is an implementation-defined integer value.

Acdess Rules

1)
2)

General Rules

1)

2)

3)

4)

5)

6)

7)

The privileges required to invoke the SQLJ. REMOVE_JAR procedure are implementation-defined.

The current user shall be the owner of the JAR specified by the value of the j ar parameter.

The SQLJ. REMOVE_JAR procedure is subject to implementation-defined rules for executing SQL-
gchema statements within SQL-transactions. If an invocation of 'SQLJ. REMOVE_JAR raises an
xception condition, then the effect on the remove actions ig-ifaplementation-defined.

et J be the value of the j ar parameter. Let TJ be thewalue of
TRIM(BOTH’ * FROMJ)

f TJ does not conform to the format of <jar name>, then an exception condition is raised: Javd
DL — invalid JAR name.

et JN be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by
.

f there is an installed JAR with/<jar name> JN, then refer to that JAR as the old JAR. Refer
o the classes in the old JAR as-the old classes. If there is not an installed JAR with <jar name
N, then an exception condition is raised: Java DDL — attempt to remove uninstalled JAR.
quivalence of <jar name>s is determined by the rules for equivalence of identifiers as specifie
Subclause 5.2, "<token>' and <separator>", in ISO/IEC 9075-2.

\Y

=

f the value of the-Ufidepl oy parameter is not O (zero), and if the JAR contains one or more
eployment deseriptor files, then the remove actions implied by those instances are performed
the reverseofthe order in which the deployment descriptor files appear in the manifest.
OTE 53 =\Deployment descriptor files and their remove actions are specified in Subclause 4.11.1,
‘IDeployment descriptor files”.

OTE 54 — These actions are performed prior to examining the condition specified in the following step.

et-the dependent SQL routines of a JAR be the routines whose descriptor’s <external routine
name> specifies an <external Java reference string> whose immediately contained <jar name>
is equivalent to the name of that JAR.

If there are any dependent SQL routines of the specified JAR, then an exception condition is
raised: Java DDL — invalid class deletion.

© ISO/IEC 2002 — Al rights reserved Built-in procedures 87

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.3 SQLJ.REMOVE_JAR procedure

NOTE 55 — This rule prohibits deleting classes that are referenced by external Java routines. This
prohibition does not, however, prevent deletion of classes that are referenced only indirectly by other Java
classes.

8) Let the dependent SQL types of a JAR be the external Java data types that have as their subject
Java class a Java class contained in that JAR.

NOTE 56 — “Subject Java class” is defined in Subclause 9.3, “<user-defined type definition>".

9) If there are any dependent SQL t
ava DDL — invalid class deletion.

es of the specified JAR, then an exception condition is raised:

OTE 57 — This rule prohibits deleting classes that are referenced by external Java data types.cThis

rohibition does not, however, prevent deletion of classes that are referenced only indirectly by other Jav
lasses.

[

10) The specified JAR and all visible and non-visible classes contained in it are deleted.
11) The USAGE privilege on the specified JAR is revoked from all users that havelit.
12) The effect of SQLJ. REMOVE_JAR on currently executing SQL statements that use an SQL routing

r structured type whose implementation has been removed is implementation-dependent.

Conformance Rules

1) ithout Feature J531, “Deployment”, conforming implemertations of this part of ISO/IEC 9074

ghall not specify non-zero values of the undepl oy parameter.

88 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.4 SQLJ.ALTER_JAVA_PATH procedure

11.4 SQLJ.ALTER_JAVA_PATH procedure

Function
Alter the SQL-Java path of a JAR.
Signature
SQLJ. ALTER JAVA PATH (
ar TN CHARACTER VARYTNG (L),
pat h IN CHARACTER VARYI NG (L))

Whepre: L is an implementation-defined integer value.

Acdess Rules

1) The privileges required to invoke the SQLJ. ALTER JAVA_PATH procedure are implementation-
efined.

2) The current user must be the owner of the JAR specified by the value of the j ar parameter.

3) The current user must have the USAGE privilege on each JAR referenced in the pat h parame-
fer.

Gemneral Rules

1) The SQLJ. ALTER JAVA_ PATH procedure is subject to implementation-defined rules for executing
QL-schema statements within SQL-transactions.

2) Let J be the value of the j ar parameter. Let T/>be‘the value of
TRIM(BOTH’ * FROMJ)

f TJ does not conform to the format of <jar name>, then an exception condition is raised: Javq
DL — invalid JAR name.

3) Let JN be the explicitly or implicitly qualified <jar id> specified in the <jar name> specified by
.

4) hen the SQLJ. ALTER JAVA)PATH procedure is called, the current catalog and schema at the
ime of the call are the default for each omitted <catalog name> and <schema name> in the
resolution jar>s of the)pat h parameter. Those defaults apply to any subsequent use of the pat
arameter as specified below.

=y

5) 1If the value of;the pat h parameter does not conform to the format for <SQL Java path>, then a|
xception cendition is raised: Java DDL — invalid path name.

=)

OTE 585 The pat h parameter can be an empty or all-blank string.

6) The<value of the pat h parameter becomes the path associated with the JAR denoted by /N,
eplacing the current path (if any) associated with that JAR.

7) If an invocation of the SQLJ. ALTER JAVA PATH procedure raises an exception condition, then
effect on the path associated with the JAR is implementation-defined.

8) The effect of SQLJ. ALTER JAVA PATH on SQL statements that have already been prepared or are
currently executing is implementation-dependent.

© ISO/IEC 2002 — Al rights reserved Built-in procedures 89

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
11.4 SQLJ. ALTER_JAVA_PATH procedure

Conformance Rules

1) Without Feature J601, “SQL-Java paths”, conforming implementations of this part of ISO/IEC
9075 shall not contain invocations of the SQLJ. ALTER_JAVA_ PATH procedure.

90 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

12

12.

12.1.1 Package java.sql

SQL systems that implement this part of ISO/IEC 9075 support the package j ava. sql , whichris thle

JDB

syst¢ms that implement this part of ISO/IEC 9075 are implementation-defined.

In a
defa
follo

4

Othgr data source URLs that are supported by j ava. sl are implementation-defined.

12.1.2 System properties

SQL systems that implement this part of ISO/IEC 9075 support the following system properties for

use

The default connection is pre-allocated to provide efficient access to,the’/database.

The authorization ID of the default connection is the currernt authorization ID.

The JDBC AUTOCOMMIT setting of the default connection is false.

ISO/IEC 9075-13:2002 (E)

Java topics

1 Java facilities supported by this part of ISO/IEC 9075

IC driver, and all classes required by that package. The other Java packages supplied by SQL

h SQL system that implements this part of ISO/IEC 9075, the package j ava.sq) supports the
it connection. The default connection for a Java method invoked as an SQL Toutine has the
wing characteristics:

[he default connection is included in the current session and transaction.

by the get Property method of j ava.dang. Syst em

Table 2—System properties

Kdy Description of associated value

sq|j . def aul t connecti gnh If a Java method is executing in an SQL-implementation, then
the String "j dbc: def aul t : connect i on"!

sqlj.runtinme The class name of a runtime context class?

10therwise, the null value.

2Tlis class is‘a subclass of the class sql j . runti me. Runti meCont ext . The get Def aul t Cont ext () method of the
clags whosé\rame is returned returns the default connection described in Subclause 12.1.1, “Package java.sql”.

©

ISO/IEC 2002 — Al rights reserved Java topics 91

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
12.2 Deployment descriptor files

12.2 Deployment descriptor files

Function

Supply information for actions to be taken by the SQLJ. | NSTALL_JAR and SQLJ. REMOVE_JAR proce-
dures.

Model

A dgployment descriptor file is a text file contained in a JAR, which is specified with the following
property in the manifest for the JAR:

Nang: file_nane
SQLJIDepl oynment Descri ptor: TRUE

Prqperties

The [text contained in a deployment descriptor file must have the following form:

<deslcriptor file> ::=
SQLActions <left bracket> <right bracket> <equal sign>
{ [<doubl e quote> <action group> <doubl e quot e>
[<comma> <doubl e quot e> <action group> <doubl ecquote>]] }

<actfion group> ::=
<install actions>
| <renove actions>

<indgtall actions> ::=

BEG N | NSTALL [<conmmand> <semni col on>] . ~*JEND | NSTALL
<renpve actions> ::=

BEG N REMOVE [<conmand> <semi col on>%] ... END REMOVE
<conmand> :: =

<SQ. st atenent>
| <inplementor block>

<SQY statenent> ::= 1! See Description

<i ngl enentor bl ock> :: =
BEG N <i npl ementer nane> <SQL token>... END <inpl ementor nane>

<i mgl ement or name>~%= <identifier>

<SQY token> ::zF)V See Description

Description

2) The <command>s specified in the <install actions> (if any) and <remove actions> (if any) specify
the install actions and remove actions of the deployment descriptor file, respectively.

92 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

3)

4)

5)

6)

7)

8)

9)

ISO/IEC 9075-13:2002 (E)
12.2 Deployment descriptor files

An <SQL statement> specified in an <install actions> shall be either:

a) An <SQL-invoked routine> whose <language clause> specifies JAVA. The procedures and
functions created by those statements are called the deployed routines of the deployment
descriptor file.

b) A <grant privilege statement> that specifies the EXECUTE privilege for a deployed routine.

) A <user-defined type definition> that specifies an <external Java type clause>. The types
created by those statements are called the deployed types of the deployment descriptor file:

d) A <grant privilege statement> that specifies the USAGE privilege for a deployed type:
¢) A <user-defined ordering definition> that specifies ordering for a deployed typé:

E]hen a deployment descriptor file is executed by a call of the SQLJ. | NSTALL (JAR procedure,

if the <jar name> of any <external routine name> or an <SQL-invoked roitine> in an <in-
gtall actions> is the <jar name> “t hi sj ar”, then “t hi sj ar” is effectivelyxéplaced with the j ar
parameter of the SQLJ. | NSTALL_JAR procedure for purposes of that execution.

An <SQL statement> specified in a <remove actions> shall be either:
) A <drop routine statement> for a deployed routine.
1) A <revoke statement> for the EXECUTE privilege on a deployed routine.
) A <drop data type statement> for a deployed type.
d) A <revoke statement> for the USAGE privilege on a deployed type.
¢) A <drop user-defined ordering statement> that specifies ordering for a deployed type.

An <implementor block> specifies implementation-specific install actions (remove actions) when
gpecified in an <install actions> (<remove actions>).

An <SQL token> is an SQL lexical unit specified by the term “<token>” in Subclause 5.2,
<token> and <separator>",49n ISO/IEC 9075-2. That is, the comments, quotes, and double-
juotes in an <implementer.block> follow SQL token conventions.

An <implementor name> is an implementation-defined SQL identifier. The <implementor
name>s specified follewing the BEGIN and END keywords shall be equivalent.

ether an <implementor block> with a given <implementor name> contained in an <install a
lions> (<remove actions>) is interpreted as an install action (remove action) is implementation
defined. That is, an implementation may or may not perform install or remove actions specified
by some other implementation.

2}

NOTE'59 — The deployment descrlptor file format corresponds to the more general notion of a propertid

1mplementat10n to 1nstantlate a Java Bean having an indexed property, SQ_Act i ons. You can then
customize the resulting Java Bean instance with ordinary Java Bean tools. For example, you can change
the SQL procedures or permissions by changing the routine descriptors stored in the SQLActi ons
property. The SQL system can then use the customized Java Bean instance to generate a modified
version of the deployment descriptor file to use in a revised version of the JAR.

© ISO/IEC 2002 — Al rights reserved Java topics 93

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

(Blank page)

94 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

13 Information Schema

13.1 JAR JAR USAGE view

Fuj:ction
Idenitify each JAR owned by a given user or role on which JARs defined in this catalog are depen-
dent

Defiinition

CREATE VI EW JAR JAR USAGE AS
SELECT SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI FI C_NAME,
JAR CATALOG, JAR SCHEMA, JAR NAVE
FROM (DEFI NI TI ON_SCHEMA. JAR JAR USAGE JJU
JON
DEFI NI TI ON_SCHEMA. JARS J
USING (JAR CATALOG, JAR SCHEMA, JAR NAME))
JON
DEFI NI TI ON_SCHEMA. SCHEMATA S
ON ((JJU.PATH JAR CATALOG JJU. PATH JAR SCHEMAJ
= (S.CATALOG NAME, S.SCHEMA NAMVE))
VHERE (SCHEMA OMNER = CURRENT USER
R
SCHEMA OARER | N
(SELECT ROLE_NAME
FROM ENABLED ROLES))
AND
JAR CATALOG =
(SELECT CATALOG NAVE
FROM | NFORVATI ON_SCHEMA _CATALOG NAME) ;

GRANT SELECT ON TABLE JAR_JAR USAGE
TO PUBLI C W TH GRANT CPTI ON,

COI,formance Rules

1) VWithout Feature J652, “SQL/JRT Usage tables”, conforming SQL language shall not reference

INFORMATION_SCHEMA.JAR_JAR USAGE.

© ISO/IEC 2002 — All rights reserved Information Schema 95

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
13.2 JARS view

13.2 JARS view

Function
Identify the installed JARs defined in this catalog that are accessible to the current user.

Definition

CREATE VI EW JARS AS
SELECT JAR CATALOG, JAR SCHEMVR, JAR NAVE
FROM DEFI NI TI ON_SCHEMA. JARS
WHERE (JAR CATALOG, JAR SCHEMA, JAR NAME, ' JAR) IN
(SELECT OBJECT CATALOG, OBJECT SCHEMA, OBJECT NAME, OBJECT TYPE
FROM DEFI NI TI ON_SCHEMA. USAGE_PRI VI LEGES
WHERE GRANTEE | N
(" PUBLIC, CURRENT USER)
R
GRANTEE | N
(SELECT ROLE_NAME
FROM ENABLED ROLES))

AND
JAR_CATALOG =
(SELECT CATALOG NAME
FROM | NFORMATI ON_SCHEMA_CATALOG _NAME) ;

GRANT SELECT ON TABLE JARS
TO PUBLI C W TH GRANT OPTI ON,

COI,formance Rules

1) ithout Feature J651, “SQL/JRT Information Schema”, conforming SQL language shall not

teference INFORMATION _SCHEMA.JARS.

96 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
13.3 METHOD_SPECIFICATIONS view

13.3 METHOD_SPECIFICATIONS view

Function
Identify the methods in the catalog that are accessible to a given user or role.

Definition

Add columns EXTERNAL NAME and IS _FIELD in ISO/IEC 9075-2 | Add “. EXTERNAL_NAME, 1S FIELD”
to tHe end of the outermost <select list> of the <view definition>.

Conpformance Rules

1) [[insert this CR | Without Feature J651, “SQL/JRT Information Schema”, conforming SQI.languag
ghall not reference INFORMATION_SCHEMA . METHOD_SPECIFICATIONS . EXTERNAL_
NAME or INFORMATION_SCHEMA . METHOD_SPECIFICATIONS . IS_FIELD.

W

© ISO/IEC 2002 — Al rights reserved Information Schema 97

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
13.4 ROUTINE_JAR_USAGE view

13.4 ROUTINE_JAR_USAGE view

Function

Identify the JARs owned by a given user or role on which external Java routines defined in this
catalog are dependent.

Definition

CREATE VI EW ROUTI NE_JAR USAGE AS
SELECT SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI FI C_NAME,
JAR CATALOG, JAR SCHEMA, JAR NAVE
FROM (DEFI NI TI ON_SCHEMA. ROUTI NE_JAR USAGE
JON
DEFI NI TI ON_SCHEMA. ROUTI NES
USI NG (SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI FI C_NAME))
JON
DEFI NI TI ON_SCHEMA. SCHEMATA S
ON ((JAR CATALOG, JAR SCHEMA) =
(S.CATALOG NAME, S. SCHEMA NAME))
WHERE (SCHEMA OWNER = CURRENT_USER
OR
SCHEMA_OWKER | N
(SELECT ROLE_NAME
FROM ENABLED ROLES))

AND
SPECI FI C_CATALOG =
(SELECT CATALOG NAMVE
FROM | NFORVATI ON_SCHEMA CATALOG NAME)<

GRANT SELECT ON TABLE ROUTI NE_JAR_USAGE
TO PUBLI C W TH GRANT OPTI ON,

COI,formance Rules

1) Without Feature J652, “SQL/JRT Usagé.tables”, conforming SQL language shall not reference

INFORMATION_SCHEMA.ROUTINE-JAR_USAGE.

98 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
13.5 TYPE_JAR_USAGE view

13.5 TYPE JAR USAGE view

Function

Identify the JARs owned by a given user or role on which external Java types defined in this catalog
are dependent.

Definition

CREATE VI EW TYPE_JAR USAGE AS
SELECT USER DEFI NED_TYPE_CATALOG AS UDT_CATALOG,
USER_DEFI NED_TYPE_SCHEMA AS UDT_SCHEMA,
USER_DEFI NED_TYPE_NAME AS UDT_NAME,
JAR CATALOG, JAR SCHEMA, JAR NAVE
FROM (DEFI NI TI ON_SCHEMA. TYPE_JAR USAGE
JON
DEFI NI TI ON_SCHEMA. TYPES
USI NG (USER DEFI NED_TYPE_CATALOG, USER DEFI NED TYPE_ SCHEMA,
USER_DEFI NED_TYPE_NAME))

JON
DEFI NI TI ON_SCHEMA. SCHEMATA S
ON ((JAR CATALOG JAR SCHEMA) =
(S.CATALOG NAMVE, S. SCHEMA NAME))
WHERE (SCHEMA OWKNER = CURRENT USER
R
SCHEMA_ OWKER | N
(SELECT ROLE_NAME
FROM ENABLED ROLES))
AND
USER DEFI NED_TYPE_CATALCG =
(SELECT CATALOG NAVE
FROM | NFORVATI ON_SCHEMA CATALOG NAVE) ;

GRANT SELECT ON TABLE TYPE_JAR USAGE
TO PUBLI C W TH GRANT OPTI ON,

COI,formance Rules

1) ithout Feature J652, “SQL/JRT. Usage tables”, conforming SQL language shall not reference

INFORMATION_SCHEMA.TYPE_JAR_USAGE.

© ISO/IEC 2002 — All rights reserved Information Schema 99

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
13.6 USER_DEFINED_TYPES view

13.6 USER_DEFINED_TYPES view

Function

Identify the user-defined types defined in this catalog that are accessible to a given user or role.

Definition

| Add columns EXTERNAL NAME, EXTERNAL LANGUAGE, and JAVA INTERFACE in ISO/IEC 9075-2 |
Add|“, EXTERNAL_NAME, EXTERNAL_LANGUAGE, JAVA | NTERFACE” to the end of the outermost <select
list>] of the <view definition>.

Conpformance Rules

1) [|Insert this CR | Without Feature J651, “SQL/JRT Information Schema”, conforming SQL languag

[
ghall not reference INFORMATION_SCHEMA . UDT_S . EXTERNAL_NAME, INFORMATION|
q
|

[

SCHEMA . UDT_S . EXTERNAL_LANGUAGE, or INFORMATION_SCHEMAy:»-UDT_S . JAVA|
NTERFACE.

100 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
13.7 Short name views

13.7 Short name views

Function

Provide alternative views that use only identifiers that do not require Feature F391, “Long identi-

fiers’

4

Definition

Replace view METHOD_SPECS in ISO/IEC 9075-2 |

CREA

(

SELECT

TE VI EW METHOD_SPECS

FROM | NFORVATI ONSCHEVA. METHOD_SPECI FI CATI ONS;

SPECI FI C_CATALGG, SPECI FI C_SCHEMA, SPECI FI C_NAME,

UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
METHCOD_NAME, I S_STATI C, I'S_OVERRI DI NG,
| S_CONSTRUCTOR, DATA_TYPE, CHAR_VAX_LENGTH,

CHAR OCTET LENGTH, CHAR SET CATALOG, CHAR SET_SCHEMA,
CHARACTER SET_NAVE, COLLATI ON CATALOG, ~ COLLATI ON_SCHEMA,

COLLATI ON_NAME, NUMERI C_PRECI SI ON, NUMERI C_PREC_RADI X%;
NUVERI C_SCALE, DATETI ME_PRECI SI ON, | NTERVAL_TYPE,

| NTERVAL_PRECI SI ON, RETURN_UDT_CATALOG, RETURN UDT_SCHENA/
RETURN_UDT_NAME, SCOPE_CATALOG, SCOPE_SCHEMA,
SCOPE_NAME, MAX_CARDI NALI TY, DTD_| DENTI FCER
METHOD_LANGUAGE, PARAMVETER STYLE, |'S_DETERM. NKSTI C,
SQL_DATA ACCESS, 'S NULL_CALL, TO SQL_SPEC CAT,

TO SQL_SPEC SCHEMA, TO SQL_SPEC NAME, AS_LOCATOR
EXTERNAL_ NANE, I'S_FIELD, CREATED,

LAST ALTERED) AS

SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI EIXC NAME,
USER_DEFI NED_TYPE_CATALOG, USER DEFI NED.FYPE_SCHEMA, USER DEFI NED TYPE_NAMH,
METHOD_NAME, |'S_STATIC, |'S_OVERRI DI NG

| S CONSTRUCTOR, DATA TYPE, CHARACTER.MAXI MUM LENGTH,

CHARACTER OCTET_LENGTH, CHARACTER.SET CATALOG, CHARACTER SET_ SCHEMA,
CHARACTER _SET_NAME, COLLATI ON CATALOG, COLLATI ON_SCHEMA,

COLLATI ON_NAME, NUMVERI C_PRECI SKON, NUMERI C_PRECI SI ON_RADI X,

NUVER! C_SCALE, DATETI ME_PREGNSI ON, | NTERVAL_TYPE,

| NTERVAL_PREC! S| ON, RETURN UDT_CATALOG, RETURN UDT_ SCHEMA,
RETURN_UDT_NAME, SCOPE..CATALOG, SCOPE_SCHEMA,

SCOPE_NAME, MAXI MUM GARBI NALI TY, DTD_I DENTI FI ER,

METHOD LANGUAGE, PARAVETER STYLE, |S_DETERM NI STIC,

SQL_DATA ACCESS, |'S.NULL_CALL, TO SQL_SPECI FI C_CATALOG,

TO SQL_SPECI FI C/SGHEMA, TO SQL_SPECI FI C NAVE, AS_LOCATOR,
EXTERNAL_NANME/~['S FI ELD, CREATED,

LAST_ALTERED

pplace view UDT_S inISO/IEC 9075-2 |

© ISO/IEC 2002 — Al rights reserved Information Schema 101

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
13.7 Short name views

CREATE VI EW UDT_S

(UDT_CATALOG, UDT_SCHEMA, UDT_NAME,
UDT_CATEGORY, |'S_TNSTANTI ABLE, I'S_FI NAL,
ORDERI NG_FORM ORDERI NG_CATEGORY, ORDERI NG _ROUT_CAT,
ORDERI NG_ROUT_SCH, ORDERI NG_ROUT_NAME, REFERENCE_TYPE,
DATA TYPE, CHAR MAX_LENGTH, CHAR_OCTET_LENGTH,
CHAR SET_CATALOG, CHAR SET_SCHEMA, CHARACTER SET_NAME,

COLLATI ON_CATALOG, COLLATI ON_SCHEMA, COLLATI ON_NAME,
NUMERI C_PRECI SI ON, NUMERI C_PREC _RADI X, NUMVERI C_SCALE,
DATETI ME_PRECI SI ON, | NTERVAL_TYPE, | NTERVAL_PREC! SI ON,
SUURLUE_DID_TD, REF_DID T DENITTFIER, EXTERNAL_NAVE,
EXTERNAL_LANGUAGE, JAVA | NTERFACE) AS

SELECT USER DEFI NED_TYPE_CATALOG, USER DEFI NED TYPE_SCHEMA, USER DEFI NED TYPECNAVH,
CATEGORY, |'S_I NSTANTI ABLE, |'S_FI NAL,
ORDERI NG FORM ORDERI NG _CATEGORY, ORDERI NG ROUTI NE_CATALOG,
ORDERI NG_ROUTI NE_SCHEMA, ORDERI NG ROUTI NE_NAME, REFERENCE_TYPE,
DATA TYPE, CHARACTER MAXI MUM LENGTH, CHARACTER OCTET LENGTH,
CHARACTER SET_CATALOG, CHARACTER SET_SCHEMA, CHARACTER SET_NANE)
COLLATI ON_CATALOG, COLLATI ON_SCHEMA, COLLATI ON_NAME,
NUVERI C_PRECI S| ON, NUMERI C_PRECI SI ON_RADI X, NUVERI C_SCALE
DATETI ME_PRECI SI ON, | NTERVAL_TYPE, | NTERVAL_PRECI SI ON,
SOURCE_DTD | DENTI FI ER, REF_DTD_| DENTI FI ER, EXTERNAL_NAME,
EXTERNAL_LANGUAGE, JAVA | NTERFACE

FROM | NFORMATI ON_SCHEMA. USER DEFI NED_TYPES;

Conpformance Rules

1) [[Insert this CR | Without Feature J651, “SQL/JRT Information ‘Schema”, conforming SQL languag
hall not reference INFORMATION_SCHEMA . METHQD_SPECS . EXTERNAL_NAME, IN-

[
FORMATION_SCHEMA . METHOD_SPECS . IS_FIEED, INFORMATION_SCHEMA . UDT_
q
|

W

5 . EXTERNAL_NAME, INFORMATION_SCHEMAO. UDT_S . EXTERNAL_LANGUAGE, or
NFORMATION_SCHEMA . UDT_S . JAVA_INTERFACE.

102 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

14 Definition Schema

14.1 JAR_JAR_USAGE base table

FII]IlctiOIl

The JAR_JAR_USAGE table has one row for each JAR included in the SQL-Java path of a JAR.
Deflinition
CREATE TABLE JAR JAR USAGE (

JAR CATALOG | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,
JAR_SCHEMA | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,
JAR_NANE | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,
PATH_JAR CATALOG | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,
PATH_JAR_SCHEMA | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,
PATH_JAR_NANE | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,

CONSTRAI NT JAR JAR USAGE_PRI MARY_KEY
PRI MARY KEY (JAR CATALOG JAR SCHEMA, JAR NAME,
PATH JAR CATALOG, PATH JAR SCHEMA, PATH JAR NAME),

CONSTRAI NT JAR JAR USAGE_CHECK_REFERENCES_JARS
CHECK (PATH_JAR CATALOG NOT I N
(SELECT CATALOG NAVE
FROM SCHEMATA)
R
(PATH_JAR CATALOG, PATH JAR SGHEMA, PATH JAR NAME) IN
(SELECT JAR CATALOG, JAR SCHEMA, JAR NAVE
FROM JARS)),

CONSTRAI NT JAR JAR USAGE_FOREI GN_KEY JARS
FOREI GN KEY (JAR CATALOG, JARLSCHEMA, JAR NAME)
REFERENCES JARS

)
Description

1) The JAR_JAR_USAGE table has one row for each JAR JP identified by a <jar name> containedl
in an <SQL Java path>)associated with JAR /.

2) The values of JARHNCATALOG, JAR_SCHEMA, and JAR_NAME are the <catalog name>, <un-
ualified schema/name>, and <jar id>, respectively, of the <jar name> of the JAR (J) being
escribed.

3) The values of PATH_JAR_CATALOG, PATH_JAR _SCHEMA, and PATH_JAR _NAME are the
cataleg name>, <unqualified schema name>, and <jar id>, respectively, of the <jar name> of 3
AR, (JP) that is in the <SQL Java path> associated with JAR /.

© ISO/IEC 2002 — All rights reserved Definition Schema 103

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
14.2 JARS base table

14.2 JARS base table

Function

The JARS table has one row for each installed JAR.

Definition

CREATE TABLE JARS (
JAR CATALOG TNFORVATT ON_SCHEVR. SQL_T DENTT FTER,
JAR_SCHEMA I NFORMATI ON_SCHENA. SQL_I DENTI FI ER,
JAR_NANVE | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,

CONSTRAI NT JARS_PRI MARY_KEY
PRI MARY KEY (JAR CATALOG, JAR SCHEMA, JAR NAME),

CONSTRAI NT JAR_FOREI GN_KEY_SCHEMATA
FOREI GN KEY (JAR CATALOG, JAR SCHEMA)
REFERENCES SCHEMATA

)
Degcription

1) The values of JAR_CATALOG, JAR_SCHEMA, and JAR_NAME arethe <catalog name>, <un-
qualified schema name>, and <jar id> of the <jar name> of the JAR being described.

104 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
14.3 METHOD_SPECIFICATIONS base table

14.3 METHOD SPECIFICATIONS base table

Function
The METHOD_SPECIFICATIONS base table has one row for each method specification.
Definition

Replace CONSTRAINT METHOD SPECIFICATIONS LANGUAGE CHECK in ISO/IEC 9075-2

CONSTRAI NT METHOD_SPECI FI CATI ONS_LANGUAGE_CHECK
CHECK (METHOD_LANGUAGE | N
("SQ’, 'ADA, 'C, 'COBOL',

"FORTRAN , ' MUMPS', ' PASCAL’,’ PLI’, "JAVA))

Add two columns and two constraints in ISO/IEC 9075-2 | Add the following <table element>s to the

<tablle element list> of the METHOD_SPECIFICATIONS base table:

EXTERNAL_NAVE I NFORVATI ON_SCHENMA. CHARACTER_DATA,
I'S_FIELD | NFORVATI ON_SCHENMA. CHARACTER_DATA

CONSTRAI NT METHOD_SPECI FI CATI ONS_I S_FI ELD_CHECK
CHECK (IS FIELD IN ("YES, "NO)),

CONSTRAI NT METHOD_SPECI FI CATI ONS_MVETHOD_COVBI NATI ONS
CHECK (((METHOD LANGUAGE = ' JAVA)

Desgcription

1)

2)

CONSTRAI NT METHOD_SPECI FI CATI ONS_FI ELRYCEOVBI NATI ONS
CHECK (IS _FIELD = "'NO OR | S_STATFC = ' YES)

AND
(EXTERNAL_NAVE, |'S FIELD) IS NOT NULD)V)
R
((METHOD_LANGUAGE <> ' JAVA')
AND
((EXTERNAL_NAME, IS FIELD)
IS NULL))),

Insert this Description | Case:

q)

1)

)

If the method being deséribed is an external Java routine, then the value of EXTERNAL_
NAME is the <Java miethod and parameter declarations> specified in the <external Java
method clause> for.that external Java data type.

If the method.-being described is a static field of an external Java type, then the value of
EXTERNAL~NAME is the <qualified Java field name> specified in the <static field method
spec> of the'method.

Otherwise, the value of EXTERNAL_NAME is the null value.

Insért this Description | Case:

)

Tfthe method being described isa static fietd of anm extermal Java type, them the vatue of
IS_FIELD is 'YES'.

b) If the method being described is an external Java type, then the value of IS_FIELD is 'NO’.

© ISO/IEC 2002 — All rights reserved

¢) Otherwise, the value of IS_FIELD is the null value.

Definition Schema 105

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

14.4

ROUTINE _JAR_USAGE base table

14.4 ROUTINE JAR _USAGE base table

Function

The ROUTINE_JAR_USAGE table has one row for each external Java routine that names a JAR in

an <external Java reference string>.

Definition

CREATE TABLE ROUTI NE_JAR USAGE (
SPECI FI C_CATALCG | NFORMATI ON_SCHENA. SQL_I DENTI FI ER,
SPECI FI C_SCHENA | NFORMATI ON_SCHENA. SQL_ | DENTI FI ER,
SPECI FI C_NAME | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,
JAR CATALOG | NFORMATI ON_SCHENA. SQL_ | DENTI FI ER,
JAR_SCHEMA | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,
JAR NAME | NFORMATI ON_SCHENA. SQL_ | DENTI FI ER,

Description

1

Y

2)

3)]

1

CONSTRAI NT ROUTI NE_JAR USAGE_PRI MARY_KEY
PRI MARY KEY (SPECI FI C_CATALOG, SPECI FI C_SCHEMA, SPECI FI C_NAVE{
JAR CATALOG, JAR SCHEMA, JAR NAME),

CONSTRAI NT JAR JAR USAGE_CHECK_REFERENCES JARS
CHECK (JAR CATALOG NOT I N

(SELECT CATALOG NAMVE

FROM SCHEMATA)
R

(JAR CATALOG, JAR SCHEMA, JAR NAME) IN

(SELECT JAR CATALOG, JAR SCHEMA, JAR NANE
FROM JARS)),

CONSTRAI NT JAR JAR_USAGE_FOREI GN_KEY_ROUTI NES
FOREI GN KEY (SPECI FI C_CATALOG, SPECI FI C_SGHEMA, SPECI FI C_NAME)
REFERENCES ROUTI NES

)

[he ROUTINE_JAR_USAGE table has one row for each external Java routine that names a
AR in an <external Java referemce.string>.

[he values of SPECIFIC_CATALOG, SPECIFIC_SCHEMA, and SPECIFIC_NAME are the
Fcatalog name>, <unqualified schema name>, and <qualified identifier>, respectively, of the
cspecific name> of the ekxtérnal Java routine being described.

[he values of JAR (€ATALOG, JAR_SCHEMA, and JAR_NAME are the <catalog name>,
runqualified schéma name>, and <jar id>, respectively, of the <jar name> of the JAR being
eferenced inthe/external Java routine’s <external Java reference string>.

106

SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

14.5 ROUTINES base table

Function
The ROUTINES table has one row for each SQL-invoked routine.

Definition

ISO/IEC 9075-13:2002 (E)
14.5 ROUTINES base table

| Replace CONSTRAINT EXTERNAL LANGUAGE CHECK in ISO/IEC 9075-2

| Add ¢, ' JAVA' ” to the <in

Valur list> of valid EXTERNAL LANGUAGE values.

Description

No additional Descriptions.

© ISO/IEC 2002 — All rights reserved

Definition Schema 107

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
14.6 TYPE _JAR_USAGE base table

14.6 TYPE JAR USAGE base table

Function

The TYPE_JAR_USAGE table has one row for each external Java type.

Definition

CREATE TABLE TYPE JAR USACE (
USER DEFTNED_TYPE CATALOG T NFORVATT ON_SCHEVA. SQL_T DENTT FTER,
USER_DEFI NED_TYPE_SCHENA | NFORMATI ON_SCHENMA. SQL_I DENTI FI ER,
USER_DEFI NED_TYPE_NANME | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,
JAR_CATALOG | NFORMATI ON_SCHENA. SQL_I DENTI FI ER,
JAR_SCHEMA | NFORMATI ON_SCHEMA. SQL_I DENTI FI ER,
JAR_NAME | NFORMATI ON_SCHENA. SQL_I DENTI FI ER,

CONSTRAI NT TYPE_JAR USAGE_PRI MARY_KEY
PRI MARY KEY (USER DEFI NED_TYPE CATALOG, USER DEFI NED TYPE_SCHEMA,
USER_DEFI NED_TYPE_NAME, JAR CATALOG JAR SCHEMA, JAR-NAME),

CONSTRAI NT TYPE_JAR USAGE_CHECK_REFERENCES_JARS
CHECK (JAR CATALOG NOT | N

(SELECT CATALOG NAMVE

FROM SCHEMATA)
R

(JAR CATALOG JAR SCHEMA, JAR NAME) IN

(SELECT JAR CATALOG, JAR SCHEMA, JAR NANE
FROM JARS)),

CONSTRAI NT TYPE_JAR_USAGE_FOREI GN_KEY_USER DEEILNED TYPES
FOREI GN KEY (USER_DEFI NED TYPE CATALOG, USER“DEFI NED TYPE_SCHEMA,
USER _DEFI NED_TYPE_NAME) REEERENCES USER DEFI NED TYPES

)
Desgcription
1) The TYPE_JAR_USAGE table has one #ow for each external Java type.

2) The values of USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME are the <catalog name>, <unqualified schema name>, and
<qualified identifier>, respectively, of the <user-defined type name> of the external Java type
being described.

3) The values of JAR_CATALOG, JAR_SCHEMA, and JAR_NAME are the <catalog name>,
funqualified schem@a name>, and <jar id>, respectively, of the <jar name> of the JAR being
teferenced in thetexternal Java type’s <external Java class clause>.

108 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
14.7 USAGE_PRIVILEGES base table

14.7 USAGE_PRIVILEGES base table

Function

The USAGE_PRIVILEGES table has one row for each usage privilege descriptor. It effectively
contains a representation of the usage privilege descriptors.

Definition
| Replace CONSTRAINT USAGE_PRIVILEGES_OBJECT_TYPE_CHECK in ISO/IEC 9075-2 |Add ¢, " IAR T
to thHe <in value list> of valid OBJECT TYPE values.
| Replace CONSTRAINT USAGE_PRIVILEGES_CHECK_REFERENCES_OBJECT in ISO/IEC 9075-2 FAdd
the following to the end of the <query expression> contained in the <in predicate>:
UNI ON

SELECT JAR CATALOG JAR SCHEMA, JAR NAME, ' JAR

FROM JARS
Description

1) [| Augment Description 4) |

JAR The object to which the privilege applies is a JAR.

© ISO/IEC 2002 — All rights reserved Definition Schema 109

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
14.8 USER_DEFINED_TYPES base table

14.8 USER_DEFINED TYPES base table

Function
The USER_DEFINED_TYPES table has one row for each user-defined type.
Definition

| Add three columns and and one constraint__]

Add|the following <table element>s to the <table element list> of the USER_DEFINED_TYPES
base| table:

EXTERNAL_NANE | NFORVATI ON_SCHEMA. CHARACTER DATA,
EXTERNAL_L ANGUAGE | NFORVATI ON_SCHEMA. CHARACTER_DATA
CONSTRAI NT USER_DEFI NED_TYPE_EXTERNAL_LANGUAGE_CHECK
CHECK (EXTERNAL_LANGUAGE IN (' JAVA)),
JAVA_| NTERFACE | NFORVATI ON_SCHEMA. CHARACTER DATA
CONSTRAI NT USER DEFI NED_TYPE_JAVA_| NTERFACE_CHECK
CHECK (JAVA I NTERFACE IN (' SERIALI ZABLE' , ' SQLDATA)),

CONSTRAI NT USER _DEFI NED_TYPES_COVBI NATI ONS
CHECK (((EXTERNAL_LANGUAGE = ' JAVA') AND
(EXTERNAL_NAVE, JAVA | NTERFACE) IS NOT NULL)™)

OR
((EXTERNAL_LANGUAGE, EXTERNAL_NAME, JAVA J-NTERFACE)
'S NULL))

| Augment CONSTRAINT USER_DEFINED_TYPES_ORDERING_CATEGORY_CHECK in ISO/IEC 9075-2
Add|“, ' COWARABLE ” to the <in value list> of valid ORDERING_CATEGORY values.
Degcription

1) [| Augment Description 7) |

OMPARABLE Two values of this‘type may be compared with j ava. | ang. Conpar abl e’s
conpar eTo(,) Amethod.

2) [[Insert this Description | Case:

4) If the user-defined type-being described is an external Java data type, then the value
of EXTERNAL_NAME; 1S the <jar and class name> specified in the <external Java class
clause> for that external Java data type.

) Otherwise, the-value of EXTERNAL_NAME is the null value.

3) [[Insert this Description | Case:

4) If the'user-defined type being described is an external Java data type, then the value of
EXTERNAL_LANGUAGE is 'JAVA’.

b)_Otherwise, the value of EXTERNAL_LANGUAGE is the null value.

4) [Insert this Description | Case:

a) If the user-defined type being described is an external Java data type, then the value of
JAVA_INTERFACE is the <interface specification> specified for that external Java data

type.

110 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
14.8 USER_DEFINED_TYPES base table

b) Otherwise, the value of JAVA_INTERFACE is the null value.

© ISO/IEC 2002 — Al rights reserved Definition Schema 111

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

(Blank page)

112 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — Al rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

15 Status codes

15.1 Class and subclass values for uncaught Java exceptions

Wh
1)
2)
3)

4)

© ISO/IEC 2002 — All rights reserved

(

Ib) If the class of E is not j ava. sql . SQLExcept i on, then let C be ’38’ (corresponding to external

the execution of a Java method completes with an uncaught Java exception E, then:
et EM be the result of the Java method call E. get Message() .
M is the message text associated with the SQL exception.
ase:

) If the class of E is j ava. sql . SQLExcept i on, then let SS be the result, ¢f the Java method
call E. getSQLState():

i) If the length of SS is 5 or more, and the first two charactersCef SS are 38 (correspondini
to external routine exception), and the third, fourth, and fifth characters are not ’000’,
then let C be ’38’ (corresponding to external routine exception) and let SC be the third,
fourth, and fifth characters of SS.

ii) Otherwise, let C be ’39’ (corresponding to external routine invocation exception) and SC
be ’001’ (corresponding to invalid SQLSTATE"returned).
routine exception) and SC be 000’ (correspdnding to no subclass).

[and SC are the class and subclass of the SQLSTATE for the SQL exception.

Status codes 113

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
15.2 SQLSTATE

15.2 SQLSTATE

Table 3—SQLSTATE class and subclass values

Category| Condition Class Subcondition Subclass
All alternatives from ISO/IEC
JU/D-Z
X Java DDL! 46 (no subclass) 000
invalid URL 001
invalid JAR name 002
invalid class deletion 003
invalid replacement 005
attempt to replace uninstalled"JAR 00A
attempt to remove uninstalled JAR 00B
X Java execution! 46 (no subclass) 000
invalid JAR nameyn path 102
unresolved,cldss name 103
IThe Condition names “Java DDL” and “Java execution” are given the sathe Class code given to Condition name
“OLB-specific error” in ISO/IEC 9075-10; there is no conflict with Subcondition values for the Class code.

114 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

16

16.

Conformance

1 Claims of conformance

ISO/IEC 9075-13:2002 (E)

| Insg

ities
thos

b capabilities specified as being optional that it also implements.

[Insg

1)

4

hich of the following may be specified for <language clause> in an
— ADA

— C

— COBOL

— FORTRAN

— MUMPS

— PASCAL

— PLI

— SQL

— JAVA
\t least one of these shall be specified.

2) Which of the following features is supported:

4

L Feature J621, “external Java routines”

— Feature J622-“external Java types”

\t least one of these shall be specified.

3) Whetheror not Feature J561, “JAR privileges”, is supported.

4) 1

L ~Teature J621 . “oxternal Java routines”

rt this paragraph | An implementation of this standard is conformant if it implements all capalil-
specified in this standard that are not specified as being optional, and if it identifies whieh of

rt this paragraph | In addition to the requirements of Subclause 8.2.3, "Claims of conformance", in
ISO]:,EC 9075-1, a claim of conformance to this part of ISO/IEC 9075 shall state:

for each of the following features that the implementation supports:

<SQL-invoked routine>:

— Feature J622, “external Java types”

— Feature J561, “JAR privileges”

specify in which of the following manners the feature is supported:

— Feature J511, “Commands”

©

ISO/IEC 2002 — All rights reserved

Conformance 115

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
16.1 Claims of conformance

— Feature J531, “Deployment”

For each of Feature J621, “external Java routines”, Feature J622, “external Java types”, and
Feature J561, “JAR privileges”, at least one of Feature J511, “Commands” and Feature J531,

“Deployment” shall be specified.
5) Which of the following features is supported:
— Feature J541, “SERIALIZABLE”

+ Feature J551, “SQLDATA”
At least one of these shall be specified.

6) Which, if any, of the following features are supported:
+ Feature J521, “JDBC data types”

+ Feature J571, “NEW operator”

1+ Feature J581, “Output parameters”

+ Feature J591, “Overloading”

+ Feature J601, “SQL-Java paths”

4+ Feature J611, “References”

+ Feature J621, “external Java routines”

1+ Feature J622, “external Java types”

+ Feature J631, “Java signatures”

4+ Feature J641, “Static fields”

+ Feature J651, “SQL/JRT Information Schema”
1+ Feature J652, “SQL/JRT Usdge tables”

116 SQL Routines and Types Using Java (SQL/JRT)

© ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

Annex A
(nformative)
SQL Conformance Summary
| Refjlicated paragraph | The contents of this Annex summarizes all Conformance Rulés, ordered by
Featjure ID and by Subclause.
1) $pecifications for Feature J511, “Commands”:
4) Subclause 9.3, “<user-defined type definition>":
i) Without Feature J511, “Commands”, conforming implementations of this part of ISO/IE(C
9075 shall not specify a <user-defined type definition> that specifies LANGUAGE JAVA
outside of a <descriptor file>.
Ib) Subclause 9.6, “<drop data type statement>":
1) Without Feature J511, “Commands”, corforming implementations of this part of ISO/IEC
9075 shall not specify a <drop type statement> that drops an external Java type outsidp
of a <descriptor file>.
) Subclause 9.7, “<SQL-invoked routine>":
i) Without Feature J511, “Coamhmands”, conforming implementations of this part of ISO/IEC
9075 shall not specifyta <user-defined type definition> that specifies LANGUAGE JAVA
outside of a <descriptor file>.
d) Subclause 9.9, “<drop Toutine statement>":
1) Without Feature J511, “Commands”, conforming implementations of this part of ISO/IEC
9075 shall*not specify a <drop routine statement> that drops an external Java routine
outside-of a <descriptor file>.
¢) Subclause 9.10, “<user-defined ordering definition>":
1) ' Without Feature J511, “Commands”, conforming implementations of this part of ISO/IEC
9075 shall not specify a <user-defined ordering definition> that defines an ordering for
an external Java type outside of a <deployment file>.
f) Subclause 9.11, “<drop user-defined ordering statement>":

© ISO/IEC 2002 — All rights reserved

1) Without Feature J511, “Commands”, conforming implementations of this part of ISO/IEC
9075 shall not specify a <drop user-defined ordering statement> that defines an ordering
for an external Java type outside of a <deployment file>.

SQL Conformance Summary 117

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

g) Subclause 10.1, “<grant privilege statement>":

1) Without Feature J511, “Commands”, conforming implementations of this part of ISO/IEC
9075 shall not specify a <grant privilege statement> that grants USAGE privilege on a
JAR outside of a <descriptor file>.

h) Subclause 10.3, “<revoke statement>":

i) Without Feature J511, “Commands”, conforming implementations of this part of ISO/IEC
9075 shall not specify a <revoke statement> that revokes USAGE privilege on a JAR
outside of a <descriptor file>.

2) $pecifications for Feature J521, “JDBC data types”:
4) Subclause 9.7, “<SQL-invoked routine>":

i) The SQL data types recognized by JDBC are a superset of those defiied' by ISO/IEC
9075-2. Without Feature J521, “JDBC data types”, a <Java data type> shall have a
corresponding SQL data type.

3) Ppecifications for Feature J531, “Deployment”:
4) Subclause 9.3, “<user-defined type definition>":

i) Without Feature J531, “Deployment”, conformingAmplementations of this part of
ISO/IEC 9075 shall not specify a <user-defined.type definition> in a <descriptor file>.

Ib) Subclause 9.6, “<drop data type statement>":

i) Without Feature J531, “Deployment’conforming implementations of this part of
ISO/IEC 9075 shall not specify a <drop type statement> in a <descriptor file>.

) Subclause 9.7, “<SQL-invoked routine>":

i) Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall net specify an <SQL-invoked routine> in a <descriptor file>.

d) Subclause 9.9, “<drop- routine statement>":

i) Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <drop routine statement> in a <descriptor file>.

¢) Subclaudse'9.10, “<user-defined ordering definition>":

1)._“Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/TEC 9075 shall not specify a <user-defined ordering definition> in a <descriptor
file>.

f) Subclause 9.11, “<drop user-defined ordering statement>":

i) Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <drop user-defined ordering statement> in a <de-
scriptor file>.

118 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

4)

5)

6)

7)

ISO/IEC 9075-13:2002 (E)

g) Subclause 10.1, “<grant privilege statement>":

i) Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <grant privilege statement> in a <descriptor file>.

h) Subclause 10.3, “<revoke statement>":

i) Without Feature J531, “Deployment”, conforming implementations of this part of
ISO/IEC 9075 shall not specify a <revoke statement> in a <descriptor file>.

i) Subclause 11.1, “SQLJ.INSTALL_JAR procedure”:

i) Without Feature J531, “Deployment”, conforming implementations of this part’of
ISO/TEC 9075 shall not specify non-zero values of the depl oy parameter.

) Subclause 11.3, “SQLJ.REMOVE_JAR procedure”:

1) Without Feature J531, “Deployment”, conforming implementations, of this part of
ISO/IEC 9075 shall not specify non-zero values of the undepl oy\parameter.

Ppecifications for Feature J541, “SERIALIZABLE”:
4) Subclause 9.3, “<user-defined type definition>":

i) Without Feature J541, “SERIALIZABLE”, a conforming <user-defined type definition>
shall not specify SERIALIZABLE.

Ib) Subclause 9.3, “<user-defined type definition>7:

i) A conforming implementation of this part of ISO/IEC 9075 shall support at least one of
Feature J541, “SERIALIZABLE”, and Feature J551, “SQLDATA”.

Ppecifications for Feature J551, “SQLIDATA”:
4) Subclause 9.3, “<user-defined type definition>":

i) Without Feature J551,¥SQLDATA”, a conforming <user-defined type definition> shall
not specify SQLDATA.

Ppecifications for Feature J561, “Jar privileges”:

4) Subclause 10(2;) “<privileges>":

1) Withoat Feature J561, “Jar privileges”, an <action> shall not specify USAGE on an
<gbject name> that immediately contains a <jar name>.

Ppecifications for Feature J571, “NEW operator”:

4) ~“Subclanse 6 2 “<new qppriﬁrnfinn>”'

i) Without Feature J571, “NEW operator”, the schema identified by the implicit or explicit
<schema name> of <routine name> RN immediately contained in <routine invocation>
immediately contained in <new specification> shall not contain a user-defined type
whose user-defined type name is RN that is an external Java data type. If Feature J571,
“NEW operator”, is not supported, then the mechanism used to invoke a constructor of
an external Java data type is implementation-defined.

© ISO/IEC 2002 - All rights reserved SQL Conformance Summary 119

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

8) Specifications for Feature J581, “Output parameters”:

9)

10)

11)

12)

13)

a) Subclause 9.7, “<SQL-invoked routine>":

i) Without Feature J581, “Output parameters”, in a conforming implementation of this
part of ISO/IEC 9075, <SQL-invoked routine> shall not specify <parameter mode> OUT
or INOUT.

Specifications for Feature J591, “Overloading”

:1) Subclause 9.3, “<user-defined type definition>":

q
N

[¢
N

[«
N

bpecifications for Feature J601, “SQL-Java paths™

4) Subclause 8.2, “<SQL Java path>":

) Subclause 11.4, “SQLJ.ALTER_JAVA_PATH procedure”:

bpecifications for Feature J611, “References”

4) Subclause 8.3, “<routine invocation>":

bpecifications for Feature J621, ‘external Java routines”:

4) Subclause 9.7, “<SQL-invoked routine>":

) Subclause-9.9, “<drop routine statement>":

1) Without Feature J591, “Overloading”, the <method name> of a <method specifieation>
shall not be equivalent to the <method name> of any other <method specification> in
the same <user-defined type definition>.

1) Without Feature J601, “SQL-Java paths”, conforming SQL language shall not contain ap
<SQL Java path>.

i) Without Feature J601, “SQL-Java paths”, conforming implementations of this part of
ISO/TEC 9075 shall not contain invocations of the' SQLJ. ALTER JAVA PATH procedure.

i) Without Feature J611, “References”, conforming SQL language shall not contain a <ref:
erence expression> or a <right arrow>.

[

i) Without Feature(J621, “external Java routines”, conforming implementations of this pat
of ISO/IEC 9075 shall not specify an <SQL-invoked routine> that specifies LANGUAGH
JAVA.

=

i) Without Feature J621, “external Java routines”, conforming implementations of this pat
off ISO/IEC 9075 shall not specify an <drop routine statement> that drops an external
Java routine.

fadsYs M43 »

\l 18 43 £ n 4 T 4 11 £
OPCLIIICatIiUInS TUT T Catul C o0z, CATCIITaroava oy pesS—.

a) Subclause 9.3, “<user-defined type definition>":

i) Without Feature J622, “external Java types”, conforming implementations of this part
of ISO/TEC 9075 shall not specify a <user-defined type definition> that specifies LAN-
GUAGE JAVA.

120 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

14)

15)

16)

ISO/IEC 9075-13:2002 (E)

b) Subclause 9.6, “<drop data type statement>":

1) Without Feature J622, “external Java types”, conforming implementations of this part
of ISO/TEC 9075 shall not specify a <drop data type statement> that drops an external
Java type.

¢) Subclause 9.10, “<user-defined ordering definition>":

i) Without Feature J622, “external Java types”, conforming implementations of this part
of ISO/IEC 9075 shall not specify a <user-defined ordering definition> that defines an
ordering for an external Java type.

d) Subclause 9.11, “<drop user-defined ordering statement>":

i) Without Feature J622, “external Java types”, conforming implementationsiof this part ¢f
ISO/TEC 9075 shall not specify a <drop user-defined ordering statement> ‘that drops an
ordering for an external Java type.

Ppecifications for Feature J631, “Java signatures”
4) Subclause 9.7, “<SQL-invoked routine>":

1) Without Feature J631, “Java signatures”, a <Java parameter declaration list> shall be
equivalent to the default Java method signature as determined in Subclause 8.5, “Javal
routine signature determination”.

Ppecifications for Feature J641, “Static fields”:
) Subclause 9.3, “<user-defined type definition>%:

i) Without Feature J641, “Static fields”;conforming implementations of this part of
ISO/IEC 9075 shall not specify a <static field method spec>.

Ppecifications for Feature J651, “SQLAIRT Information Schema”:
4) Subclause 13.2, “JARS view”:

i) Without Feature J651,“SQL/JRT Information Schema”, conforming SQL language shall|
not reference INEFORMATION_SCHEMA.JARS.

B) Subclause 13.3, SMETHOD_SPECIFICATIONS view”:

1) Without-Feature J651, “SQL/JRT Information Schema”, conforming SQL language shal]
not reference INFORMATION_SCHEMA . METHOD_SPECIFICATIONS . EXTERNAL|
NAME or INFORMATION_SCHEMA . METHOD_SPECIFICATIONS . IS_FIELD.

) Subctause 13.6, “USER_DEFINED_TYPES view”:

i) Without Feature J651, “SQL/JRT Information Schema”, conforming SQL language shall|
—rmtTefereTceI'NF‘O‘R'MﬁTTON_SbanA UDT mm
TION_SCHEMA . UDT_S . EXTERNAL_LANGUAGE, or INFORMATION_SCHEMA .
UDT_S . JAVA_INTERFACE.

d) Subclause 13.7, “Short name views”:

i) Without Feature J651, “SQL/JRT Information Schema”, conforming SQL language shall
not reference INFORMATION_SCHEMA . METHOD_SPECS . EXTERNAL_NAME,

© ISO/IEC 2002 — All rights reserved SQL Conformance Summary 121

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

INFORMATION_SCHEMA . METHOD_SPECS . IS_FIELD, INFORMATION_SCHEMA
. UDT_S . EXTERNAL_NAME, INFORMATION_SCHEMA . UDT_S . EXTERNAL_
LANGUAGE, or INFORMATION_SCHEMA . UDT_S . JAVA_INTERFACE.

17) Specifications for Feature J652, “SQL/JRT Usage tables™
a) Subclause 13.1, “JAR_JAR_USAGE view™:

i) Without Feature J652, “SQL/JRT Usage tables”, conforming SQL language shall not
reference INFORMATION_SCHEMA . JAR_JAR_USAGE.

b) Subclause 13.4, “ROUTINE_JAR_USAGE view”:

i) Without Feature J652, “SQL/JRT Usage tables”, conforming SQL language shall not
reference INFORMATION_SCHEMA . ROUTINE_JAR_USAGE.

t) Subclause 13.5, “TYPE_JAR_USAGE view”:

1) Without Feature J652, “SQL/JRT Usage tables”, conforming SQEAanguage shall not
reference INFORMATION_SCHEMA . TYPE_JAR_USAGE.

122 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

Annex B

(Informative)

Implementation-defined elements

| Insgrt this paragraph | This Annex references those features that are identified in thebody of this part
of IO/IEC 9075 as implementation-defined.

| Insgrt this paragraph | The term implementation-defined is used to identify characteristics that may
diffejr between implementations, but that shall be defined for each particular implementation.

1) Pubclause 4.8.3, “Converting objects between SQL and Java”:

4) If the <user-defined type definition> does not specify an <interface specification>, then it
is implementation-defined whether the Java interface ava. i o. Seri al i zabl e or the Java
interface j ava. sql . SQLDat a will be used for object.state conversion.

2) $ubclause 4.10, “Privileges™:

4) The privileges required to invoke the SQLJ: FNSTALL_JAR, SQLJ. REPLACE JAR, and SQLJ. REMQVE_JAR
procedures are implementation-defined.
NOTE 60 — This is similar to the implementation-defined privileges required for creating a schemd.

Ib) Invocations of Java methods referenced by SQL names are governed by the normal EX-
ECUTE privilege on SQL routine names. It is implementation-defined whether a Java
method called by an SQLmame executes with “definer’s rights” or “invoker’s rights” — thatf
is, whether it executeswith the user-name of the user who performed the <SQLinvoked
routine> or the user{name of the current user.

3) $ubclause 4.11.1, “Deployment descriptor files™:

) An impleméntation-defined implementor block can be provided in a deployment descriptor
file to alley-specification of custom install and remove actions.

4) $ubclause b.2, “Names and identifiers”:

), -"The character set supported, and the maximum lengths of the <package identifier>, <class
| identifier>, <Java field name>, and <Java method name> are implementation-defined.

5) Subclause 6.2, “<new specification>":

a) If Feature J571, “NEW operator”, is not supported, then the mechanism used to invoke a
constructor of an external Java data type is implementation-defined.

© ISO/IEC 2002 — All rights reserved Implementation-deﬁned elements 123

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

6) Subclause 8.3, “<routine invocation>":

a) Ifvalidation of the <Java parameter declaration list> has been implementation-defined to be
performed by <routine invocation>, then the Syntax Rules of Subclause 8.5, “Java routine
signature determination”, are applied with <routine invocation>, a method specification
index of 0 (zero), and subject routine SR.

b) For an external Java routine, let CPV; be an implementation-defined non-null value of
declared type T;.

) The method of execution of a subject Java class’s implementation of writ eCbj ect () td
convert a Java value to an SQL value is implementation-defined.

) The method of execution of a subject Java class’s implementation of wri t eSQL() "to convert,
a Java value to an SQL value is implementation-defined.

-+

¢) The method of execution of a subject Java class’s implementation of r eadCbhj)éct () to convey
an SQL value to a Java object is implementation-defined.

f) The method of execution of a subject Java class’s implementation/of\r eadSQ.() to convert
an SQL value to a Java object is implementation-defined.

¢) If R is an external Java routine, then if the JDBC connection object that created any ele-
ment of RS is closed, then the effect is implementation.defined.

) If R is an external Java routine, if any element of RS is not an object returned by a connec
tion to the current SQL system and SQL session,then the effect is implementation-defined

i) If R is an external Java routine, then whether the call of P returns update counts as defined
in JDBC is implementation-defined.

7) Pubclause 9.3, “<user-defined type definition>":

4) If an <interface using clause>is not explicitly specified, then an implementation-defined
<interface specification> is implicit.

) If UDT is an external Java data type, then it is implementation-defined whether validatior
of the explicit or impli¢it <Java parameter declaration list> is performed by <user-defined
type definition> or when the corresponding SQL-invoked method is invoked.

8) S$ubclause 9.4, “<attribute definition>":

4) The method of execution of a subject Java class’s implementation of writeCbject() to
convert,a Java value to an SQL value is implementation-defined.

Ib) The-method of execution of a subject Java class’s implementation of witeSQ.() to convert
aJava value to an SQL value is implementation-defined.

¢) The method of execution of a subject Java class’s implementation of r eadCbj ect () to convert
an SQL value to a Java object is implementation-defined.

d) The method of execution of a subject Java class’s implementation of r eadSQ.() to convert
an SQL value to a Java object is implementation-defined.

124 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

9) Subclause 9.7, “<SQL-invoked routine>":

10)

11)

12)

a)

b)

The maximum value of <maximum dynamic result sets> is implementation-defined.

If R is an external Java routine, then it is implementation-defined whether validation of
the explicit or implicit <Java parameter declaration list> is performed by <SQL-invoked
routine> or when its SQL-invoked routine is invoked.

Subclause 11.1, “SQLJ.INSTALL_JAR procedure”:

b

1)

a)

1)

a)

)

$ubclause 11.2, “SQLJ.REPLACE_JAR procedure”:

Pubclause 1193;-“SQLJ.REMOVE_JAR procedure”:

The maximum length for the CHARACTER VARYING parameters is an implementation-
defined integer value.

The privileges required to invoke the SQLJ. | NSTALL_JAR procedure are implementation-
defined.

The SQLJ. I NSTALL_JAR procedure is subject to implementation-defined rules’for executing
SQL-schema statements within SQL-transactions.

If an invocation of SQLJ. | NSTALL_JAR raises an exception condition,\then the effect on the
install actions is implementation-defined.

The values of the ur| parameter that are valid are implementation-defined, and may include
URLs whose format is implementation-defined. If the valde of the url parameter does not
conform to implementation-defined restrictions and deesvnot identify a valid JAR, then an
exception condition is raised: Java DDL — invalid \URL.

The maximum length for the CHARACTER\VARYING parameters is an implementation-
defined integer value.

The privileges required to invoke thé-SQ.J. REPLACE_JAR procedure are implementation-
defined.

The SQLJ. REPLACE_JAR procedure is subject to implementation-defined rules for executing
SQL-schema statements within SQL-transactions.

The values of the ur |"parameter that are valid are implementation-defined, and may include
URLs whose format 1§ implementation-defined. If the value of the url parameter does not
conform to implénieéntation-defined restrictions and does not identify a valid JAR, then an
exception condition is raised: Java DDL — invalid URL.

The maximum length for the CHARACTER VARYING parameters is an implementation-
défined integer value.

The privileges required to invoke the SOLJ. REMOVE JAR procedure are implementation-

c)

d)

defined.

The SQLJ. REMOVE_JAR procedure is subject to implementation-defined rules for executing
SQL-schema statements within SQL-transactions.

If an invocation of SQLJ. REMOVE_JAR raises an exception condition, then the effect on the
remove actions is implementation-defined.

© ISO/IEC 2002 — All rights reserved Implementation-deﬁned elements 125

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

13) Subclause 11.4, “SQLJ.ALTER_JAVA_PATH procedure”:

a) The maximum length for the CHARACTER VARYING parameters is an implementation-
defined integer value.

b) The privileges required to invoke the SQLJ. ALTER JAVA PATH procedure are implementation-
defined.

¢) The SQLJ. ALTER JAVA PATH procedure is subject to implementation-defined rules for execut-
ing SQL-schema statements within SQL-transactions.

d) If an invocation of the SQLJ. ALTER JAVA PATH procedure raises an exception condition, then
effect on the path associated with the JAR is implementation-defined.

14) $ubclause 12.1.1, “Package java.sql™:

4) SQL systems that implement this part of ISO/IEC 9075 support the package j ava. sql ,

which is the JDBC driver, and all classes required by that package. Thejother Java pack-
ages supplied by SQL systems that implement this part of ISO/IEC 9075 are implementation-
defined.

) In an SQL system that implements this part of ISO/IEC 9075, the package j ava. sql sup-
ports the default connection. Other data source URLs that are supported by j ava. sql are
implementation-defined.

15) S$ubclause 12.2, “Deployment descriptor files”:
1) An <implementor name> is an implementation-defined SQL identifier.

) Whether an <implementor block> with a gien <implementor name> contained in an <in-
stall actions> (<remove actions>) is interpreted as an install action (remove action) is
implementation-defined. That is, an implementation may or may not perform install or
remove actions specified by some other implementation.

126 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

Annex C

(Informative)

Implementation-dependent elements

| Insgrt this paragraph | This Annex references those places where this part of ISO/IEC 9075 states

explicitly that the actions of a conforming implementation are implementationtdépendent.

| Insgrt this paragraph | The term implementation-dependent is used to identify.characteristics that may

differ between implementations, but that are not necessarily specified forrany particular implement
tatign.

1)

2)

3)

4)

5)

Pubclause 3.3.1, “Specification of built-in procedures”:

4) The manner in which built-in procedures are defined i§ implementation-dependent.
Pubclause 4.8, “User-defined types”:

4) The scope and persistence of any modifications to static attributes made during the execu-
tion of a Java method is implementation-dependent.

Pubclause 8.3, “<routine invocation>":

4) If R is an external Java routine,hen the scope and persistence of any modifications of class
variables made before the completion of any execution of P is implementation-dependent.

Ib) If the language specifiestADA (respectively C, COBOL, FORTRAN, JAVA, MUMPS, PAS-
CAL, PLI) and P is not_a standard-conforming Ada program (respectively C, COBOL, For-
tran, Java, MUMPS,-Pascal, PL/I program), then the results of any execution of P are
implementation-dependent.

$ubclause 11.2,<SQLJ.REPLACE_JAR procedure”:

4) The effect of SQLJ. REPLACE_JAR on currently executing SQL statements that use an SQL
routifie)or structured type whose implementation has been replaced is implementation-
dependent.

$ubclause 11.3, “SQLJ.REMOVE_JAR procedure”:

a) The effect of SQLJ. REMOVE_JAR on currently executing SQL statements that use an SQL
routine or structured type whose implementation has been removed is implementation-
dependent.

© ISO/IEC 2002 — All rights reserved Implementation-dependent elements 127

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

6) Subclause 11.4, “SQLJ.ALTER_JAVA_PATH procedure”:

a) The effect of SQLJ. ALTER JAVA PATH on SQL statements that have already been prepared or
are currently executing is implementation-dependent.

128 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

Annex D

(informative)

SQL Feature Taxonomy

This| Annex describes a taxonomy of features defined in this part of ISO/IEC 9075,

Tablg 4, “Feature taxonomy for features outside Core SQL”, contains a taxomomy of the features of
the $QL language that are specified in this part of ISO/IEC 9075.

In this table, the first column contains a counter that may be used to.quickly locate rows of the
tabl¢; these values otherwise have no use and are not stable — that-is, they are subject to change
in fyture editions of or even Technical Corrigenda to ISO/IEC 9075 without notice.

The [‘Feature ID” column of Table 4, “Feature taxonomy for féatures outside Core SQL”, specifies
the formal identification of each feature and each subfeature.contained in the table. The Feature ID
is stpble and can be depended on to remain constant. A Feature ID value comprises either a letter
and [three digits or a letter, three digits, a hyphen, and<one or two additional digits. Feature ID
valups containing a hyphen and additional digits indicate “subfeatures” that help to define complet]
featyres, which are in turn indicated by Feature ID"values without a hyphen. Only entire features
are fised to specify the contents of Core SQL and various packages.

[}

Table 4—Feature taxgnomy for features outside Core SQL

Feature
ID Feature Nameé
1 J511 Commands

Supports at least one of the following features as SQL statements:
FeatureJ621, “external Java routines”

Féature J622, “external Java types”

Feature J561, “JAR privileges”

2 J521 JDBC data types
Subclause 9.7, “<SQL-invoked routine>”, specifies JDBC data type clauses for <SQL-
invoked routine> whose <language clause> specifies JAVA.

3 J531 Deployment

Supports at least one of the following features as SQL statements that can be
specified in <deployment file>g:

Feature J621, “external Java routines”

Feature J622, “external Java types”

Feature J561, “JAR privileges”

4 J541 SERIALIZABLE
Subclause 9.3, “<user-defined type definition>", specifies SERIALIZABLE

© ISO/IEC 2002 — Al rights reserved SQL Feature Taxonomy 129

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

Table 4—Feature taxonomy for features outside Core SQL (Cont.)

Feature
ID Feature Name
5 J551 SQLDATA
Subclause 9.3, “<user-defined type definition>”, specifies SQLDATA
6 J561 JAR privileges

Subclause 10.1, “<grant privilege statement>”, specifies GRANT for JARs

Subclause 10.3, “<revoke statement>", specifies REVOKE for JARs

Subclause 10.2, “<privileges>”, defines a JAR form of <object name> for granting and
revoking USAGE on installed JARs

7 J571 NEW operator
Subclause 6.2, “<new specification>", specifies NEW

8 J581 Output parameters
Subclause 9.7, “<SQL-invoked routine>”, specifies output parameter clauses for an
external Java routine

9 J591 Overloading

Subclause 9.3, “<user-defined type definition>”, specifies ‘one or more <method
specification>s whose <method name>s are equivalent\to/other <method name>s
specified by the same <user-defined type definition>

10 J601 SQL-Java paths
Subclause 8.2, “<SQL Java path>”,
Subclause 11.4, “SQLJ.ALTER_JAVA_PATH procedure”

11 J611 References
Subclause 8.3, “<routine invocation>2¢specifies a <reference expression>;
Subclause 9.3, “<user-defined type definition>”, specifies a reference type clause

12 J621 external Java routines
Subclause 9.7, “<SQL-invoked routine>”, specifying LANGUAVE JAVA and Sub-
clause 9.9, “<drop routiné.statement>”, for an external Java routine.

13 J622 external Java types

Subclause 9.3, “<tser-defined type definition>”, specifying LANGUAGE JAVA, Sub-
clause 9.6, “<drop data type statement>”, for an external Java type, Subclause 9.10,
“<user-defined ordering definition>”, for an external Java type, and Subclause 9.11,
“<drop useridefined ordering statement>”, for an external Java type.

14 J631 Java-signatures
Subclause 9.7, “<SQL-invoked routine>”, specifies an external Java routine with
<Java parameter declaration list>.

15 J641 Static fields
Subclause 9.3, “<user-defined type definition>”, specifies static field methods
16 J651 SQL/JRT Information Schema

Subclause 13.2, “JARS view”, Subclause 13.3, “METHOD_SPECIFICATIONS view”,
Subclause 13.6, “USER_DEFINED_TYPES view”, Subclause 13.7, “Short name
views”,

17 J652 SQL/JRT Usage tables
Subclause 13.1, “JAR_JAR _USAGE view”, Subclause 13.4, “ROUTINE_JAR_USAGE
view”, Subclause 13.5, “TYPE_JAR_USAGE view”

130 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)

Annex E

(informative)

Routines tutorial

E.1 Technical components

This| part of ISO/IEC 9075 includes the following:

— New built-in procedures.

SQLJ. I NSTALL_JAR — to load a set of Java classes in an SQL system.

SQLJ. REPLACE_JAR — to supersede a set of Java classe§ in an SQL system.

SQLJ. REMOVE_JAR — to delete a previously installed set of Java classes.

SQLJ. ALTER JAVA PATH — to specify a path for'name resolution within Java classes.

— New built-in schema.

'.

[he built-in schema named SQLJ is assumed to be in all catalogs of an SQL system that im-
ﬂ)lements the SQL/JRT facility, and toteontain all of the built-in procedures of the SQL/JRT
acility.

— KExtensions of the following SQL ‘statements:

CREATE PROCEDURE/FUNCTION — to specify an SQL name for a Java method.
DROP PROCEDURE/FUNCTION — to delete the SQL name of a Java method.
CREATE TYPE — to specify an SQL name for a Java class.

DROP_TY¥PE — to delete the SQL name of a Java class.

GRANT — to grant the USAGE privilege on Java JARs.

REVOKE — to revoke the USAGE privilege on Java JARs.

— Conventions for returning values of OUT and INOUT parameters, and for returning SQL result
sets.

— New forms of reference: Qualified references to the fields and methods of columns whose data
types are defined on Java classes.

© ISO/IEC 2002 — Al rights reserved Routines tutorial 131

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.1 Technical components

— Additional views and columns in the Information Schema.

E.2 Overview

This tutorial shows a series of example Java classes, indicates how they can be installed, and shows
how their static, public methods can be referenced with SQL/JRT facilities in an SQL-environment.

The |example Java methods assume an SQL table named EMPS, with the following columns:
— NAME — the employee’s name.
— 1D — the employee’s identification.

— $PTATE — the state in which the employee is located.

[«

— PALES — the amount of the employee’s sales.
— JOBCODE — the job code of the employee.

The [table definition is:

CREATE TABLE enps (

name VARCHAR(50) ,
id CHARACTER(5) ,
state CHARACTER(20),
sal es DECI MAL (6, 2),
j obcode | NTEGER);

The [example classes and methods are:

— Routinesl. regi on — A Java method that-maps a US state code to a region number. This
ethod doesn’t use SQL internally.

— Routinesl.correct States — A Java’method that performs an SQL UPDATE statement to
orrect the spelling of state codesi._The old and new spellings are specified by input-mode paran
ters.

— Routi nes2. best TwoEnps,~~-A Java method that determines the top two employees by their
ales, and returns the-columns of those two employee rows as output-mode parameter values.
his method createscan’ SQL result set and processes it internally.

— Rout i nes3. or denedEnps — A Java method that creates an SQL result set consisting of selected
mployee rows-erdered by the sales column, and returns that result set to the client.

— Qverl.is@d and Over2.i s0dd — Contrived Java methods to illustrate overloading rules.

— Rout'ines4. j obl and Routi nes5. j ob2 — Java methods that return a string value correspondin{
o-an integer jobcode value. These methods illustrate the treatment of null arguments.

oS

— Routines6. j ob3 — Another Java method that returns a string value corresponding to an integer
jobcode value. This method illustrates the behavior of static Java variables.

Unless otherwise noted, the methods that invoke SQL use JDBC. One of the methods is shown
in both a version using JDBC and a version using SQL/OLB. The others could also be coded with
SQL/OLB.

132 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.2 Overview

It is assumed that the import statements i nport java.sqgl.*; and j ava. mat h. *; have been in-
cluded in all classes.

E.3 Example Java methods: region and correctStates

This clause shows an example Java class, Rout i nes1, with two simple methods.

invalid states. This method will be called as a function in SQL.

— The voi d method correct St at es updates the EMPS table to correct spelling errors irf the state
olumn. This method will be called as a procedure in SQL.

publlic class Routinesl {

[/fAn int nethod that will be called as a function
public static int region(String s) throws SQException {

if (s.equals("MN') || s.equals("VT") || s.equals("NH")) return 1;
else if (s.equals("FL") || s.equals("GA") || s.equals("AC%)) return 2;
else if (s.equals("CA") || s.equals("AZ") || s.equal s(¢NV")) return 3;
el se throw new SQLException("Invalid state code", "38001");

/1|A void method that will be called as a stored procedure
public static void correctStates (String ol dSpellivig, String newSpelling)
t hrows SQLException {

Connecti on conn = Driver Manager . get Connection ("j dbc: defaul t: connection");
Prepar edSt at enent stnt = conn. prepar eSt at\enent
("UPDATE enps SET state = ? WHERE sfate = ?");
stnt.setString(l, newSpelling);
stnt.setString(2, oldSpelling);
st nt . execut eUpdat e() ;
stnt.close();
conn. cl ose();
return;

E.4 Installing region and correctStates in SQL

The [source code for-Java classes such as Rout i nesl will normally be in one or more Java files
(i.e.,|files with-file type “java”). When you compile them (using the j avac compile command), the
resu]ting codevwill be in one or more class files (i.e., files with file type “class”). You then typically
collefct a set-of class files into a Java JAR, which is a ZIP-coded collection of files.

T

To upedava classes in SQL, you load a JAR containing them into the SQL system by calling the SQ
SQLJ. I NSTALL_JAR procedure. The SQLJ. | NSTALL_JAR procedure is a new built-in SQL procedure
that makes the collection of Java classes contained in a specified JAR available for use in the
current SQL catalog. For example, assume that you have assembled the above Routi nesl class into
a JAR with local file name “~/ cl asses/ Routi nes1.jar™:

SQLJ. I NSTALL_JAR('file:~/classes/Routinesl.jar’, 'routinesl_jar’, 0)

© ISO/IEC 2002 — Al rights reserved Routines tutorial 133

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.4 Installing region and correctStates in SQL

— The first parameter of the SQLJ. | NSTALL_JAR procedure is a character string specifying the URL
of the given JAR. This parameter is never folded to upper case.

— The second parameter of the SQLJ. | NSTALL_JAR procedure is a character string that will be
used as the name of the JAR in the SQL system. The JAR name is an SQL qualified name, and
follows SQL conventions for qualified names.

The JAR name that you specify as the second parameter of the SQLJ. | NSTALL_JAR procedure
identifies the JAR within the SQL system. That is, the JAR name that you specify is used only

SQL, and has nothing to do with the contents ot the JAR 1tselt. The JAR name 1S used 1n _thle
ollowing contexts, which are described in later clauses:

As a parameter of the SQLJ. REMOVE_JAR and SQLJ. REPLACE_JAR procedures.
As a qualifier of Java class names in SQL CREATE PROCEDURE/FUNCTION-statements
As an operand of the extended SQL GRANT and REVOKE statements.

As a qualifier of Java class names in SQL CREATE TYPE statements.

A

[he JAR name may also be used in follow-on facilities for downloading JARs from the SQL
gystem.

— JARs can also contain deployment descriptors, which specifyimplicit actions to be taken

y the SQLJ. I NSTALL_JAR and SQLJ. REMOVE_JAR procedures.\The third parameter of the

QLJ. | NSTALL_JAR procedure is an integer that specifies Whether you do or do not (indicated
y non-zero or zero values, respectively) want the SQLJI'NSTALL_JAR procedure to execute the
ctions specified by a deployment descriptor in the JAR. Deployment descriptors are further
escribed in Subclause 12.2, “Deployment descriptor-files”.

The jname of the INSTALL_JAR procedure is qualified with the schema name SQLJ. All built-in
procgdures of the SQL/JRT facility are defined-to be contained in that built-in schema. The SQLJ
schema is assumed to be present in each catalog of an SQL system that implements the SQL/JRT
faciljty.

The [first two parameters of SQLJ. | NSTALL_JAR are character strings, so if you specify them as
literpls, you will use single quotes, not the double quotes used for SQL delimited identifiers.

The [actions of the SQLJ. | NSTACL,"JAR procedure are as follows:

— Obtain the JAR desigmated by the first parameter.

— Extract the class/files that it contains and install them into the current SQL schema.
— Retain a copy.6f'the JAR itself, and associate it with the value of the second parameter.

— If the third/parameter is non-zero, then perform the actions specified by the deployment descriy
for ofithe JAR.

Aftef you install a JAR with the SQLJ. | NSTALL JAR procedure, you can reference the static methodss
of the classes contained in that JAR in the CREATE PROCEDURE/FUNCTION statement, as we
will describe in the next Subclause.

134 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.5 Defining SQL names for region and correctState

E.5 Defining SQL names for region and correctStates

Befo
new

re you can call a Java method in SQL, you must define an SQL name for it. You do this with
options on the SQL CREATE PROCEDURE/FUNCTION statement. For example:

CREATE PROCEDURE correct_states(old CHARACTER(20), new CHARACTER(20))
MODI FI ES SQ. DATA

LANGUAGE JAVA PARAMETER STYLE JAVA

B

(EERMAL NANMN=_ ’

S

CREA
NG
LA
EX

The

the
SQL

£ 4 =Y £ 1 + O o4 .
T\ Tw v routT eSS ar . noutr eSS o T cttToratrcsS—,

TE FUNCTI ON regi on_of (state CHARACTER(20)) RETURNS | NTEGER
SQL

INGUAGE JAVA PARAMETER STYLE JAVA

[TERNAL NAME 'routinesl_jar:Routinesl.region’;

CREATE PROCEDURE and CREATE FUNCTION statements specify SQL names)and Java

metifd signatures for the Java methods specified in the EXTERNAL NAME clauses. 'The format d

ethod names in the external name clause consists of the JAR name that was’specified in the
. I NSTALL_JAR procedure followed by the Java method name, fully qualified#with the package

namk(s) (if any) and class name.

The
indi
tabld
Javg

Othg¢
Javg
CON
read|

You
DUE

SELE
FRON
VWHER

CALL
You

CREA
M
LA
EX

CREA
LA
EX

The

CREATE PROCEDURE for correct _st at es specifies the clause MODIFIES SQL DATA. This
ates that the specified Java method modifies (via INSERT, UPDATE, or DELETE) data in SQ
bs. The CREATE FUNCTION for r egi on_of specifies NO SQL. This indicates that the specifie
method performs no SQL operations.

r clauses that you can specify are READS SQL DATAwhich indicates that the specified
method reads (through SELECT) data in SQL tables,’but does not modify SQL data, and
[TAINS SQL, which indicates that the specified méthod invokes SQL operations, but neither

s nor modifies SQL data. The alternative CONTAINS SQL is the default.

use the SQL procedure and function nameshat you define with such CREATE PROCE-
L E/FUNCTION statements as normal SQIiprocedure and function names:

CT nane, region_of(state) AS region
I enps
E regi on_of (state) = 3;
correct_states ('GEO, "A.);
can define multiple SQL names for the same Java method:

TE PROCEDURE st at escorrection(ol d CHARACTER(20), new CHARACTER(20))
Dl FI ES SQL DATA

INGUAGE JAVA PARANMETER STYLE JAVA

[TERNAL NAME rOutinesl jar:Routinesl.correctStates’;

TE FUNCTI ON¢st at e_regi on(state CHARACTER(20)) RETURNS | NTEGER
INGUAGE JAVA™ PARAMETER STYLE JAVA
[TERNAL \NAME ' routinesl_jar: Routinesl.region’;

various SQL function and procedure names for a Java method can be used equivalently:

SELH

=T

CT-nane, state region(state) AS region

FROM enps
WHERE regi on_of (state) = 2;

CALL state_correction ("ORE', "OR);

The SQL names are normal 3-part SQL names, and the first two parts of the 3-part names are
defaulted as defined in SQL for CREATE PROCEDURE and CREATE FUNCTION statements.

© ISO/IEC 2002 — Al rights reserved Routines tutorial 135

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.5 Defining SQL names for region and correctStates

There are other considerations for the CREATE PROCEDURE/FUNCTION statement, dealing with
parameter data types, overloaded names, and privileges, which we will discuss in later Subclauses.

E.6 A Java method with output parameters: bestTwoEmps

The parameters of the regi on and correct St at es methods are all input-only parameters. This is
the normal Java parameter convention.

SQL
dire
for
calle
arra
whe
valu
As W
is vi
nor
scal

The

metlhod, best TwoEnps, returns the nane, i d, r egi on, and sal es_of‘the two employees that have the

high
8 pal
The

publ
pu

tly have a notion of output parameters. SQL/JRT therefore uses arrays to return output valuds
arameters of Java methods. That is, if you want an | nt eger parameter to return a value\to thle
r, you specify the type of that parameter to be I nteger[1, i.e. an array of | nt eger, (Such an
y will contain only one element: the input value of the parameter is contained in that element
h the method is called, and the method sets the value of that element to the desiréd output

a)
C.

procedures also support parameters with mode OUT and INOUT. The Java language does noﬂ

e will see in the following clauses, this use of arrays for output parameter§ in the Java methods
sible only to the Java method. When you call such a method as an SQL. procedure, you supplyj]
al scalar data items as parameters. The SQL system performs the mapping between those
r data items and Java arrays implicitly.

following Java method illustrates the way that you code output)parameters in Java. This

est sal es in the regions with numbers higher than a paraméter value. That is, each of the firgt
rameters is an OUT parameter, and is therefore declared to be an array of the given type.

following version of the best TwoEnps method uses SQL/OLB for statements that access SQL:

ic class Routines2 {
blic static void best TwoEnps (
String[] nl, String[] idl, int[]<, BigDecimal[] s1,
String[] n2, String[] id2, int[_]™r2, BigDecimal[] s2,
int regionParm throws SQ.Exception {
#sql iterator ByNanes (String nade, String id, int region, BigDecinal sales);

n1[0]= n****u; n2[0]= n****u; |d1[0]= un; |d2[0]= nn;
ri1[0] =0; r2[0]=0; s1[0]= new Bi'gDeci nal (0); s2[0]= new Bi gDeci mal (0);
ByNanes r;
try {

#sqgl r = {SELECT namey id, region_of(state) AS region, sales

FROM epp

VWHERE.- r.egi on_of (state) > :regionParm
AND_sal es |'S NOT NULL

ORBER BY sal es DESC};

if (r.next/y)) {
nl[0] \=-r. nane();
idif0) = r.id();
 I1.0] r.region();
sd[0] r.sales();

}

136

glse roturn:
7

if (r.next()) {
n2[0] = r.nane();
id2[0] =r.id();
r2[0] r.region();
s2[0] r.sales();

el sereturn;

SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.6 A Java method with output parameters: bestTwoEmps

} finally r.close();

}

Note that since the above Java method uses SQL/OLB for SQL operations, it does not have to
explicitly obtain a connection to the SQL system. By default, SQL/OLB executes any SQL contained
in a routine in the context of the SQL statement invoking that routine.

For comparison, here’s a version of the best TwoEnps method using JDBC instead of SQL/OLB:

publfic class Routines2 {

public static void best TwoEnps (

String[] nl, String[] idl, int[] rl, BigDecimal[] s1,
String[] n2, String[] id2, int[] r2, BigDecimal[] s2,
int regionParm throws SQLException {

N1[0] = "#*=*=*=*". n2[0]= "#*=*=*=*". jdi[0]= ""; id2[0]="";
ri1[0] =0; r2[0]=0; s1[0]= new Bi gDeci nal (0); s2[0]= new Bi gDeci mal (Q)
try {

Connection conn = DriverManager. get Connecti on
("j dbc: defaul t:connection");
java. sql . PreparedStatenment stnt = conn. prepar eSt at enent
("SELECT nane, id, region_of(state) AS region, sales
FROM enp
VWHERE r egi on_of (state) > ?
AND sal es 1S NOT NULL
ORDER BY sal es DESC');

stnt.setlnt(1, regionParm
Resul tSet r = stnt.executeQuery();

if (r.next()) {
nl[0] = r.getString("nane");
idl[0] = r.getString("id");
ri[0] = r.getInt("region");
s1[0] = r.getBi gDeci mal ("sal es')y

el sereturn;

if (r.next()) {
n2[0] = r.getString("nane");
id2[0] = r.getStringtird");
r2[0] r.getlnt("kegion");
s2[0] r.getBi gbe¢i mal ("sal es");

el se return;

} finally { st close() };

E.7 cA CREATE PROCEDURE best2 for bestTwoEmps

Assume that you call the SQLJ. | NSTALL_JAR procedure for a JAR containing the Rout i nes2 class
with the best TwoEnps method:

SQLJ. I NSTALL_JAR (' file:~/classes/Routines2.jar’, 'routines2_jar’', 0)

© ISO/IEC 2002 — Al rights reserved Routines tutorial 137

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.7 A CREATE PROCEDURE best2 for bestTwoEmps

As indicated previously, in order to call a method such as best TwoEnps in SQL, you must define an
SQL name for it, using the CREATE PROCEDURE statement:

CREATE PROCEDURE best 2 (

QUT nl CHARACTER VARYI NG 50), OUT idl CHARACTER VARYI NG 5), OUT r1 | NTEGER,
OUT s1 DECI MAL(6, 2),
QUT n2 CHARACTER VARYI NG 50), OUT id2 CHARACTER VARYI NG 5), OUT r2 | NTEGER,
QUT s2 DECI MAL(6, 2), region | NTEGER)

READS SQ. DATA

LANGUAGE JAVA PARAVETER STYLE JAVA

ENTERNAL NAME 'routines2_jar: Routines2. best TwoEnps’ ;

For parameters that are specified to be OUT or INOUT, the corresponding Java parameter must’ b¢
an ajrray of the corresponding data type.

E.§ Calling the best2 procedure

Aftef you have installed the Routi nes2 class in an SQL system and executed the CREATE PROCH
DURE for best 2, you can call the best TwoEnps method as if it were an SQI. stered procedure, with
normal conventions for OUT parameters. Such a call could be written with‘embedded SQL, CLI,
ODBHC, or JDBC. The following is an example of such a call using JDBE:

javy. sql . Cal | abl eSt atement stnt = conn. prepareCal | (
"{call best2(?,?,2,2,2,2,2,2,2)}");

stfnt . regi st er Qut Paraneter (1, java.sql.Types. STRI NG¢
st|mt . regi ster Qut Paraneter (2, java.sql.Types. STRI NG,;
st|nt . regi st er Qut Paraneter (3, java.sql.Types. | NTEGER);
stfnt . regi st er Qut Paraneter (4, java.sql.Types. DEC VAL);
st|nt . regi st er Qut Par aneter (5, java.sql.Types.STRI NG ;
stint . regi st er Qut Paraneter (6, java.sql.Types. STRING ;
st|nt . regi ster Qut Paraneter (7, java.sql.Types.|NTECGER);
stfnt . regi st er Qut Paraneter (8, java.sql.Types. DECI MAL) ;
stnt . setInt (9, 3);

stint . execut eUpdat e() ;

Stfring n1 = stnt.getString(l);

Stfring idl = stnt.getString(2)}

it rl = stnt.getlnt(3);

BilgDeci mal s1 = stnt.get BigbDeci mal (4);
Stfring n2 = stnt.getString(5);

Stfring id2 = stnt.getStwing(6);

int r2 = stnt.getlnt(7);

BilgDeci mal s2 = stpt) get Bi gDeci mal (8);

E.9 A Javaimethod returning a result set: orderedEmps

feer

SQL storéd~procedures can generate SQL result sets as their output. An SQL result set (as defined
in JPBCand SQL) is an ordered sequence of SQL rows. SQL result sets aren’t processed as norma

func 100 result vq]nnc, but are instead bound to caller cpﬂniﬁnﬂ iterators or CUrsSors, which are

—

subsequently used to process the rows of the result set.

The following Java method, or der edEnps, generates an SQL result set and then returns that result
set to the client. Note that the or der edEnps method internally generates the result set in the same
way as the best TwoEnps method. However, the best TwoEnps method processes the result set within
the best TwoEnps method itself, whereas this or der edEnps method returns the result set to the
client as an SQL result set.

138 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.9 A Java method returning a result set: orderedEmps

To write a Java method that returns a result set to the client, you specify the method to have an
additional parameter that is a single-element array of either the Java Resul t Set class or a class
generated by an SQL/OLB iterator declaration (“#sql iterator...”).

The following version of the or der edEnps procedure uses SQL/OLB to access the SQL server, and
returns the result set as an SQL/OLB iterator, Sal esReport :

/1 #sql public iterator Sal esReport (String name, int region, BigDecinmal sales);

public class Routines3 {

public static void orderedEnps (int regionParm Sal esReport[] rs)
throws SQLException {
#sqgl rs[0] = { SELECT nane, region_of (state) AS region, sales
FROM enp
WHERE regi on_of (state) > :regionParm
AND sal es |'S NOT NULL
ORDER BY sal es DESC };

return;

The |Sal esReport iterator class could be a public static inner class of Routi nes3. However, the abovie
example presumes existence of an “*. sql j ” file, named Sal esRepor ty5ql j , in the same package as
Rout|i nes3, containing the public definition of the Sal esReport iterator. That is, Sal esReport. sql j
conthins:

#sql| public iterator SalesReport (String name, int r£egion, BigDecinmal sales);

Assuyme, for this example, that both class Routi nes3 amd the iterator Sal esReport are defined in 4
package named cl asses.

For fomparison, the following shows or der edEnps’written using JDBC instead of SQL/OLB.

publjic class Routines3 {

public static void orderedEnmps(int\lregionParm ResultSet[] rs)
t hrows SQLException {

Connection conn = DriverManager. get Connection ("jdbc: default: connection");
j ava. sql . PreparedSt at enent, stnt = conn. prepar eSt at enent
(" SELECT nane, regi-onof (state) AS region, sales
FROM enp WHERE /regi on_of (state) > ?
AND sal es | S_NOT NULL
ORDER BY sal'es) DESC') ;

st nt . setlnt (17.negionParm;
rs[0] = stntexecuteQuery();

return;
The [method sets the first element of the Resul t Set [] parameter to reference the Java Resul t Set
conthirinethe-SQl—resultsetto-bereturned—The-method-doesnotelose—either the returned-Re

sul t Set object or the Java statement object that generated the result set. The SQL system will
implicitly close both of those objects.

You can call a method such as or der edEnps in Java in the normal manner, supplying explicit
arguments for both parameters. You can also call it in SQL, as a stored procedure that generates a
result set to be processed in the SQL manner. We illustrate how this is done in the following two
clauses.

© ISO/IEC 2002 — Al rights reserved Routines tutorial 139

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.9 A Java method returning a result set: orderedEmps

Each of the above or der edEnps examples has a single result set parameter, rs, in which you can
only return a single result set. You can also specify multiple result set parameters. See Sub-
clause 9.7, “<SQL-invoked routine>”.

Note that, in comparison to the prior examples of best TwoEnps, there is no try...final |y block
to close the SQL/OLB iterator or Resul t Set, rs[0], or the JDBC PreparedStatement, stnt. For a
result set to be returned from a stored procedure it must not be explicitly closed, which means, in
the case of JDBC, that the statement executed to generate the result set also must not be explicitly
closed.

E.10 A CREATE PROCEDURE rankedEmps for orderedEmps

Assyme that you call the SQLJ. | NSTALL_JAR procedure for a JAR containing the Rout j nes3 class
with| the or der edEnps method:

SQLJ. I NSTALL_JAR('file:~/classes/Routines3.jar’, '"routines3_ jar’', 0)

As with previous methods, you will now need to define an SQL name for the order edEnps method
before you can call it as an SQL procedure. As above, you will do this with~a CREATE PRO-
CEDNURE statement that specifies an EXTERNAL...LANGUAGE JAVArclause to reference the

or dgr edEnps method. The following is an example CREATE PROCEDURE..DYNAMIC RESULT
SETP for the above or der edEnps method:

CREATE PROCEDURE ranked_enps (regi on | NTEGER)

READS SQL DATA

DYNAM C RESULT SETS 1

LANGUAGE JAVA PARAMETER STYLE JAVA

EXTERNAL NAME 'routines3_jar:classes. Routi neS3. or der edEnps’ ;

A CREATE PROCEDURE statement for a Java method that generates SQL result sets has the
folloving characteristics:

he DYNAMIC RESULT SETS clause indicates that the procedure generates one or more result
ets. The integer specified in the DYNAMIC RESULT SETS clause is the maximum number of
esult sets that the procedure will'generate. If an execution generates more than this number
f result sets, a warning will be issued, and only the specified number of result sets will be
eturned.

he SQL signature specifies’only the parameters that the caller explicitly supplies.

he specified Java method actually has one or more additional, trailing parameters, whose
ata types must be\a Java array of either j ava. sql . Resul t Set or an implementation of
gqlj.runtime.Resul tSetlterator.

The labove CREATE PROCEDURE statement could be used to reference either an SQL/OLB-based
or JDBC-based version of Rout i nes3. or der edEnps. When it is necessary to choose a particular
implementation, the Java method signature of the desired Java method must be explicitly stated.
For the SQL/OLB-based or der edEnps:

CREATE PROCEDURE ranked_enps (regi on | NTEGER)
READS SQL DATA
DYNAM C RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NANE
"routines3_jar:classes. Routines3. orderedEnps(int, classes. Sal esReport[])’;

140 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.10 A CREATE PROCEDURE rankedEmps for orderedEmps

And, for the JDBC-based orderedEmps:

CREATE PROCEDURE ranked_enps (regi on | NTEGER)
READS SQL DATA
DYNAM C RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME
"routines3_jar:classes. Routines3. orderedEnps(int, java.sql.ResultSet[])’

The only dlfference in the above CREATE PROCEDURE ranked_enps statements 1s in the J ava

clasg name is prov1ded for, respectively, the SQL/OLB iterator (remember that Sal esReport is in.thie
package named cl asses) and the JDBC result set.

The next clause will show an example invocation of this procedure.
E.11 Calling the ranked Emps procedure

After you have installed the Routi nes3 class in an SQL system and executedsthe CREATE PROCHE
DURE for r ankedEnps, you can call the r ankedEnps procedure as if it were-an' SQL stored procedurg.
Such) a call could be written with any facility that defines mechanisms@er‘processing SQL result
sets [— that is, SQL/CLI, JDBC, and SQL/OLB. The following is an éxample of such a call using
JDBC:

javd. sql . Cal | abl eStatenent stnt = conn. prepareCall("{c¢all ranked_enps(?)}");
stfmt . setInt (1, 3);
Resul t Set rs = stnt. executeQuery();
while (rs.next()) {

String name = rs.getString(1);

int region = rs.getlnt(2);

Bi gDeci nal sal es = rs. getBi gDeci nal (3);

Systemout.print("Nane = " + nane);
Systemout.print("Region =" + region);
Systemout.print("Sales = " + sal es))

System out. println();
}

Notg that the call of the r anked_enps-procedure supplies only the single parameter that was de-

clar¢d in the CREATE PROCEDURE statement. The SQL system then implicitly supplies, as appl
cablg, a parameter that is an émipty array of Resul t Set or an empty array of cl asses. Sal esReport],
and fcalls the Java method. That Java method assigns the output result set or iterator to the array
parameter. And, when the Java method completes, the SQL system returns the result set or iteratg
in that output array element as an SQL result set.

=

E.12 Overloading Java method names and SQL names

When you-use CREATE PROCEDURE/FUNCTION statements to specify SQL names for Java

methods; the SQL names can be overloaded. That is, you can specify the same SQL name in multi}
ple zléREATE PROCEDURE/FUNCTION statements. Note that support for such SQL overloading ik

an optional feature.

Consider the following Java classes and methods. These are contrived routines intended only to
illustrate overloading, and we won’t show the routine bodies.

© ISO/IEC 2002 — Al rights reserved Routines tutorial 141

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.12 Overloading Java method names and SQL names

public class Overl {
public static int isGdd (int i) {...};
public static int isCQdd (float f) {...};
public static int testOdd (double d) {...};
}

public class Over2 {
public static int isCQdd (java.sql.Timestamp t) {...};
public static int oddDateTime (java.sql.Date d) {...};
public static int oddDateTine (java.sql.Tine t) {...};
}

Notg that the i sOdd method name is overloaded in the Over 1 class, and the oddDat eTi me method
namk is overloaded in the Over 2 class.

Assyme that the above classes are in a JAR ~/ cl asses/ Over. j ar, which you install:
SQLJ. I NSTALL_JAR (' file:~/classes/Over.jar’, 'over_jar', 0)

To r¢ference these methods in SQL, you will of course need to specify SQL namés/for them with

CRHATE FUNCTION statements. These CREATE FUNCTION statements cah specify SQL names
that|are overloaded. The overloading of the SQL names is completely separate’from the overloadinig
in the Java names. This is illustrated in the following.

Recdll that you can specify the same Java method in multiple CREATE-PROCEDURE/FUNCTION
stat¢ments.

CREATE FUNCTI ON odd (I NTEGER) RETURNS | NTEGER
LANGUAGE JAVA PARANMVETER STYLE JAVA
ENTERNAL NAME 'over _jar: Overl.isCOdd’;
CREATE FUNCTI ON odd (REAL) RETURNS | NTEGER
LANGUAGE JAVA PARANMVETER STYLE JAVA
ENTERNAL NAME 'over _jar: Overl.isOdd’;
CREATE FUNCTI ON odd (DOUBLE PRECI SI ON) RETURNS | NTEGER
LANGUAGEJAVA PARAMETER STYLE JAVA
EXNTERNAL NAME 'over jar: Overl.testQdd ;
CREATE FUNCTI ON odd (TI MESTAMP) RETURNSY NTEGER
LANGUAGE JAVA PARANMVETER STYLE JAVA
ENTERNAL NAME ' over _jar: Over2.isQdd;
CREATE FUNCTI ON odd (DATE) RETURNS\I NTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME ' over _j ar: Oven2.’'oddDat eTi ne’ ;
CREATE FUNCTI ON odd (Tl ME) A/RETURNS | NTEGER
LANGUAGE JAVA PARANVETER-SFYLE JAVA
EXTERNAL NAME ' over _jar+=Over 2. oddDat eTi e’ ;
CREATE FUNCTI ON i s_odd\ (I NTEGER) RETURNS | NTEGER
LANGUAGE JAVA PARANVETER STYLE JAVA
ENTERNAL NAME ' ovér jar:Overl.isQdd ;
CREATE FUNCTI ON-~test _odd (REAL) RETURNS | NTEGER
LANGUAGE JAVACPARANVETER STYLE JAVA
ENTERNAL NAME ' over _jar: Overl.isOdd’;

Notqg the following characteristics of these CREATE FUNCTION statements:
— The)SQL name odd is defined on the two i sOdd methods and the t est 0dd method of Over 1, and

also the 1 sOdd method and two oddDat eTi me methods ot Over 2. That 1s, the SQL name odd
spans both overloaded and non-overloaded Java names.

— The SQL names i s_odd and t est _odd are defined on the two i sOdd methods of Over 1. That is,
those two different SQL names are defined on the same Java name.

142 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.12 Overloading Java method names and SQL names

The rules governing overloading are those of the SQL language as defined in Subclause 11.49, "SQL-
invoked routine", in ISO/IEC 9075-2, and in Subclause 10.4, "<routine invocation>", in ISO/IEC
9075-2. This includes:

— Rules governing what parameter combinations can be overloaded. That is, the legality (or not)
of the following CREATE statements is determined by SQL language rules:

CREATE FUNCTI ON i s_odd (I NTEGER) RETURNS | NTEGER. . .
CREATE FUNCTION i s odd (SMALLINT) RETURNS | NTEGER ..
TE PROCEDURE is_odd (SMALLINT) ...

— Rules governing the resolution of calls using overloaded SQL names. That is, the determuna-
ion of which Java method is called by “odd(x)” for some data item “x” is determined by SQL
nguage rules.

The [EXTERNAL NAME clauses of the above CREATE FUNCTION statements speeify only the JAR
namke and method name of the Java method. For example:

CREATE FUNCTI ON odd (I NTEGER) RETURNS | NTEGER
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'over_jar: Overl.isCQdd’;

You fan also include the Java method signature (i.e., a list of the parameter data types) of a method
in the EXTERNAL NAME clause. For example:

CREATE FUNCTI ON odd (I NTEGER) RETURNS | NTEGER
LANGUAGE JAVA PARAVETER STYLE JAVA
ENTERNAL NAME 'over jar:Overl.isOdd (int)’;

The |group of eight example CREATE FUNCTION stdatements, shown earlier in this clause, do

not tequire Java method signatures, but you can ixiclude them for clarity. Subclause E.14, “Java
method signatures in the CREATE statements™, describes cases where the Java method signature i
requifired.

[77]

E.13 Java main methods

The Java Language Specification places special requirements on any method named mai n. A method
namied nai n is required to have the following Java method signature:

publjic static void maip~(String[]);

If yqu specify a Java meéethod named main in an SQL CREATE PROCEDURE...EXTERNAL state-
men}, then that Java-method must have the above Java method signature. The signature of the
SQL procedure can-either be:

— A single<parameter that is an array of CHARACTER or CHARACTER VARYING. That array i
assed.to the Java method as the String array parameter. Note: This SQL method signature
1}an only be used in SQL systems that support array data types in SQL.

— Zero or more parameters, each of which 1s CHARACTER or CHARACTER VARYING. Those
parameters are passed to the Java method as a single N element array of String.

© ISO/IEC 2002 — Al rights reserved Routines tutorial 143

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.14 Java method signatures in the CREATE statements

E.14 Java method signatures in the CREATE statements

Consider the following method, j ob1, which has an integer parameter and returns a String with
the job corresponding with a jobcode value:

public class Routines4 {
/1A String nethod that will be called as a function
public static String jobl (Integer jc) throws SQ.Exception {

T t——==—"=) ettt > 101 Bu s

else if (jc == 2) return "Sal es";
else if (jc == 3) return "C erk";
elsgif (jc == null) return null;

el se return "unknown jobcode";

}
}

Notg¢ that we suffix the method name with a “1” in anticipation of subsequent variants of the
metlod.

Assyme that you install this class in SQL:
SQLJ[. I NSTALL_JAR (' file:~/classes/Routines4.jar’, 'routines4_jar- O0)
You might want to specify an SQL function j ob_of 1 defined on the j-0bl method:

CREATE FUNCTI ON j ob_of 1(j ¢ | NTEGER) RETURNS CHARACTER VARY! NG 20)
LANGUAGE JAVA PARAVETER STYLE JAVA
EXTERNAL NAME 'routines4_jar: Routines4.jobl’;

However, as written above, this CREATE statement is not-valid. Note that the data type of the
parameter of the Java method j obl is Java I nt eger (which is short for j ava. | ang. I nt eger), and wle
havq specified the SQL data type INTEGER for the, corresponding parameter of the SQL j ob_of 1
function. However, the detailed rules (see Subclause 9.7, “<SQL-invoked routine>” for the externall
Javg form of the SQL CREATE PROCEDURE/FUNCTION statement specifies that the default
Javg parameter data type for an SQL INTEGER parameter is the Java i nt data type, not the
Javg | nt eger data type. Subclause E.15,¢Null argument values and the RETURNS NULL clause?,
describes some reasons why you may,swant to specify Java | nt eger rather than Java int.

If ygqu want to specify an SQL CREATE PROCEDURE/FUNCTION statement for a Java method
whoge parameter data types include Java types differing from their default Java types, then you
specjfy those data types in a~Java method signature in the CREATE statement. This Java method
signfiture is written after,the-Java method name in the EXTERNAL NAME clause. For example,
the above CREATE statement for the j obl method would be written as:

CREATE FUNCTI ON j,ob”of 1(j c | NTEGER) RETURNS CHARACTER VARY! NG 20)
LANGUAGE JAVA-PARAVETER STYLE JAVA
EXTERNAL NAME<{'Toutines4_j ar: Routines4.jobl(java.lang.|nteger)’;

If yqu specifyndata types in the Java method signature of a CREATE statement that specifies
DYNAMIG-RESULT SETS, then you must include the implicit trailing result set or iterator pa-
rametersiin that Java method signature. You do not, however, include those trailing parameters
in the SQI. signature For example you would write the CREATE of Subclanse .10, “A CREATE
PROCEDURE rankedEmps for orderedEmps”, as follows:

CREATE PROCEDURE ranked_enps (region | NTEGER)
READS SQL DATA
DYNAM C RESULT SETS 1
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines3_jar: Routines3.orderedEnps (int, java.sql.ResultSet[]);

See Subclause 9.7, “<SQL-invoked routine>”.

144 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.15 Null argument values and the RETURNS NULL clause

E.15 Null argument values and the RETURNS NULL clause

Consider the Java method j obl and the corresponding SQL function j ob_of 1, which we defined in
Subclause E.14, “Java method signatures in the CREATE statements”.

You can call the SQL function j ob_of 1 in SQL statements such as the following:

SELECT nane, job_of 1(j obcode)
FROM-enps
WHERE j ob_of 1(j obcode) <> 'Admin’;

Suppose that a row of the EMPS table has a null value in the JOBCODE column. Note that\the
Javg data type of the parameter of the j obl method is Java I nt eger (that is, j ava. | ang. hnt'€ger)
The [Java | nt eger data type is a class, rather than a scalar data type, so its values include both
numieric values, and also the null reference value. When an SQL null value is passed as an ar-
gumpnt to a Java parameter whose data type is a Java class, the null SQL value is,passed as a
Javg null reference. Such a null reference can be tested within the Java method;)as shown in
Routfi nes4. j obl.

Now| consider the following similar method, which specifies its parameterdata type to be the Java
scalar data type i nt, rather than the Java class I nt eger.

publjic class Routines5 {
[1|JA String nethod that will be called as a function
public static String job2 (int jc)

t hrows SQLException {

if (jc == 1) return "Adm n";
else if (jc == 2) return "Sal es";
else if (jc == 3) return "C erk";

el se return "unknown jobcode";

}
Assyme that you install this class in SQL:

SQLJ. I NSTALL_JAR('file:~/classes/yRoutines5.jar’, 'routines5_jar’', 0)

CREATE FUNCTION job_of2 (jc INTEGER) RETURNS CHARACTER VARYI NG 20)
LANGUAGE JAVA PARAVETER STYEE JAVA
EXTERNAL NAME ' routi nesb\jar: Routines5.job2’;

You fan then call the SQL function j ob_of 2 in SQL statements such as the following:

SELHCT nane, job_of2\(] obcode)
FRONI enps
WHERE j ob_of 2(jiobtode) <> ' Admin’;

When this SELECT statement encounters a row of the EMPS table in which the JOBCODE colum}
is nyll, theweffect of the null value on the call(s) of the j ob_of 2 function is different than for the
previous j'\0b_of function. The j ob_of 2 function is defined on the method Rout i nes5. j ob2, whose
parameter has the scalar data type i nt, rather than the class data type j ava. | ang. I nt eger. The
JavaTnt data type (and other Java scalar data types) has no null reference value, and no other
representation of a null value. Therefore, if the j ob2 method is invoked with a null SQL value, then
an exception condition is raised.

=]

To summarize:

— The following Java data types have null reference values, and can accommodate SQL arguments
that are null:

© ISO/IEC 2002 — Al rights reserved Routines tutorial 145

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.15 Null argument values and the RETURNS NULL clause

java.lang. String, java. mat h. Bi gDeci mal , byte[], java. sql.Date, java.sql.Tine,
java. sql . Ti mest anp, j ava. | ang. Doubl e, j ava. | ang. Fl oat, j ava. | ang. | nt eger, j ava. | ang. Short,
java. |l ang. Long, j ava. | ang. Bool ean

— The following Java data types are scalar data types that cannot accommodate nulls. An ex-
ception condition will be raised if an argument value passed as such a parameter data type is
null:

bool ean, byte, short,int,|ong, fl oat, doubl e

The |exception condition that is raised when you attempt to pass a null argument to a Java pardm
eter [that is a non-nullable data type is analogous to the traditional SQL exception condition. that is
rais¢d when you attempt to FETCH or SELECT a null column value into a host variable for iwhich
you fid not specify a null indicator variable. In both cases, the “receiving” parameter or’variable is
unable to accommodate the actual run-time null value, so an exception condition is raiséd.

When you code Java methods specifically for use in SQL, you will probably tendto-specify Java
parameter data types that are the nullable Java data types. You may, however, also want to use
Javg methods in SQL that were not coded for use in SQL, and that are moréAiKely to specify Java
parameter data types that are the scalar (non-nullable) Java data types.

You fan call such functions in contexts where null values will occur by.invoking them conditionally
e.g.,lin CASE expressions. For example:

P

SELHCT nane,
CASE
WHEN j obcode |'S NOT NULL THEN j ob_of 2 (j obcade)
ELSE NULL
END
FRONI enps
VWHERE CASE
WHEN j obcode IS NOT NULL THEN job_of2" (j obcode)
ELSE NULL

END <> * Admi ni strator’;

You fan also make such CASE expression$.implicit, by specifying the RETURNS NULL ON NULL
INPUT option in the CREATE FUNCTION statement:

CREATE FUNCTI ON job_of 22 (jc INTEGER) RETURNS CHARACTER VARYI N& 20)
RHTURNS NULL ON NULL | NPUT
LANGUAGE JAVA PARAVETER STYLE JAVA
EXNTERNAL NAME ’'routines5;)jar: Routines5.job2’;

When an SQL function is\called whose CREATE FUNCTION statement specifies RETURNS NULIL
ON NULL INPUT, then-if the runtime value of any argument is null, the result of the function call
is set to null, and the<function itself is not invoked.

The [following SELECT statement invokes the j ob_of 22 function.

SELHCT nan®e).vj ob_of 22(j obcode)
FROMI enps
VWHERE .j ob' of 22(j obcode) <> ' Admini strator’;

This-SEEECT isequivatent to the previous SEEECT thatinvokes the job—of 2 furnctiom withim CAS
expressions. That is, the RETURNS NULL ON NULL INPUT clause in the CREATE FUNCTION
statement for j ob_of 22 makes the null-testing CASE expressions implicit.

The RETURNS NULL ON NULL INPUT option applies to all of the parameters of the function, not
just to the parameters whose Java data type is not nullable.

146 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.15 Null argument values and the RETURNS NULL clause

The convention that the RETURNS NULL ON NULL INPUT option defines for a function is the
same convention that is followed for most built-in SQL functions and operators: if any operand is
null, then the value of the operation is null.

The alternative to the RETURNS NULL ON NULL INPUT clause is CALLED ON NULL INPUT,
which is the default.

You can specify the same Java method in multiple CREATE FUNCTION statements (i.e., defin-
ing SQL synonyms), and those CREATE FUNCTION statements can either specify RETURNS

NUI L _OMNANIITI _INDLIM CATLITI T I AONNIITIL _INDLIT +11 P 41 L, |
1L \UJIN INU L 1IN UL ULl UL UIN INU L 1IN U J., [et) uxuem. aucu U‘y UlIT aAvuUve j UIJ UI L alll
j ob_|of 22.

If ydu create multiple SQL functions named j ob_of 22 (with different numbers and/or types)of
parameters), you can specify (or default to) CALLED ON NULL INPUT in some of the CREATE
FUNCTION j ob_of 22 statements, and specify RETURNS NULL ON NULL INPUT in others. Th
actigns of the RETURNS NULL ON NULL INPUT clause are taken after overloadifig-resolution
has peen done and a particular CREATE FUNCTION statement has been identified.

The RETURNS NULL ON NULL INPUT and CALLED ON NULL INPUT clauses can only be
specjfied in CREATE FUNCTION statements, that is, not in CREATE PROCEDURE statements.
This| is because there is no equivalent conditional treatment of proceduré calls that would be as
gendrally useful.

9%

E.16 Static variables

Javg static methods can be contained in Java classes that have static variables, and, in Java, stati
methods can both reference and set static variables. Fox example:

2

publjic class Routines6 {
stlatic String jobs;
public static void setJobs (String js) throws SQ.Exception {jobs=js;}
public static String job3(int jc) throws SQLException {
if (jc<1]|| jc* 5 >Ilength(jobs)+1) return "Invalid jobcode";
el se return jobs.substring(5*(j¢ddl), 5*%jc);
}
}

Assyme that you install this clagstin an SQL system:
SQLJ. I NSTALL_JAR(' fil e: ~/rclrasses/ Routines6.jar’, 'routines6_jar’', 0);

The |class Rout i nes6 has(a static variable j obs, which is set by the static method set Jobs and
refeenced by the staticmethod j ob3. A class such as Routi nes6 that dynamically modifies the
valups of static variables is well-defined in Java, and can be useful. However, when such a class
is inftalled in an’SQL system, and the methods set Jobs and j ob3 are defined as SQL procedures
and [functions (XSQL-invoked routine>), the scope of the assignments to the static variable j obs is
implementation-dependent. That is, the scope of that variable is not specified, and is likely to diffe
acrops implementations (and possibly across the releases of a given implementation).

=

For gxample:

CREATE PROCEDURE set _j obs (js CHARACTER VARYI NG 100))
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines6_jar: Routines6. setJobs’;

CREATE FUNCTION job_of3 (jc integer) RETURNS CHARACTER VARYI NG 20)
RETURNS NULL ON NULL | NPUT
LANGUAGE JAVA PARAMETER STYLE JAVA
EXTERNAL NAME 'routines6_jar: Routines6.job3’;

© ISO/IEC 2002 — Al rights reserved Routines tutorial 147

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.16 Static variables

CALL set_jobs (' Adm nSal esC erk’);

SELECT nane, job_of3 (jobcode)
FROM enps
VWHERE j ob_of 3(j obcode) <> ' Adnin’;

This appears to be a straightforward use of the Routi nes6 class in SQL. The call of set _j obs
specifies a list of job code values, which a user might reasonably assume is “cached” by the SQL-
environment and used in subsequent calls of j ob_of 3. However, since the scope of the static
variable j obs in the SQL environment is implementation-dependent, the answers to the follow-
ing questions regarding the values passed to the set_j obs procedure are likely to differ across
impllementations:

— s the set _j obs value visible only to the current session? Or also to concurrent sessions.and td
ter non-concurrent sessions?

— Does the set _j obs value persist across a COMMIT? Is it reset by a ROLLBACK?

The [implication of this uncertainty is that you should not use classes that ass€ign to static vari-
ables in SQL. Note, however, that such assignments will not (necessarily) bedetected by the SQL
implementation, either when you CREATE PROCEDURE/FUNCTION or{when you call a routine.

You fan prevent assignments to static variables in Java by declaring them with the fi nal property.

E.17 Dropping SQL names of Java methods

-

After you have created SQL procedure or function nameés for Java methods, you can drop those SQ
namks with a normal SQL DROP statement:

DRCOH FUNCTI ON regi on RESTRI CT;

A DROP statement has no effect on the Java-method (or class) on which the SQL name was defined.
Dropping an SQL procedure or function implicitly revokes any granted privileges for that routine.

E.18 Removing Java classes from SQL

You pan completely uninstall-a-JAR with the SQLJ. REMOVE_JAR procedure. For example:
SQLJ. REMOVE_JAR (' routines_jar’', 0);

As njoted earlier, JARs.ean contain deployment descriptors, which specify implicit actions to be takepn
by the SQLJ. I NSTALL) JAR and SQLJ. REMOVE_JAR procedures. The second parameter is an integer
that|specifies whether you do or do not (indicated by non-zero or zero values, respectively) want th
SQLJ. REMOVE/JAR procedure to execute the actions specified by a deployment descriptor in the JAR
Deployment-dé&scriptors are further described in Subclause 12.2, “Deployment descriptor files”.

8%

After the, SQLJ. REMOVE_JAR procedure performs any actions specified by the JAR’s deployment
descriptor file(s), there must be no remaining SQL procedure or function whose external name
references any method of any class in the specified JAR. Any such remaining SQL procedures or
functions must be explicitly dropped before the SQLJ. REMOVE_JAR procedure will be able to complete
successfully.

148 SQL Routines and Types Using Java (SQL/JRT) © ISO/IEC 2002 — All rights reserved

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

ISO/IEC 9075-13:2002 (E)
E.19 Replacing Java classes in SQL

E.19 Replacing Java classes in SQL

Assume that you have installed a Java JAR in SQL, and you want to replace some or all of the
contained classes, e.g., to correct or improve them. You can do this by using the SQLJ. REMOVE_JAR
procedure to remove the current JAR, and then using the SQLJ. | NSTALL_JAR procedure to install
the new version. However, you will probably have executed one or more SQL DDL statements that
depend on the methods of the classes that you want to replace. That is, you may have executed one

£o11 2 DL 4+
Oor MPre—oTr—tReToTowW TS DT OpPCTatIorrsS.

— CREATE PROCEDURE/FUNCTION statements referencing the classes.
— (GRANT statements referencing those SQL procedures and functions.

— CREATE PROCEDURE/FUNCTION statements for SQL procedures and function$.that invoke
hose SQL procedures and functions.

— CREATE VIEW/TABLE statements for SQL views and tables that invoke’those SQL procedure
nd functions.

192}

The jrules for the SQLJ. REMOVE_JAR procedure require that you drop all"SQL procedure/functions
that|directly reference methods of a class before you can remove the-JAR containing the class. And,
SQLj rules for RESTRICT, as specified in the SQL <drop routine §tatement>, require that you drop
all SQL objects (tables, views, SQL-server modules, and routines)whose bodies are written in SQL
that|invoke a procedure/function before you drop the procedure/function.

Thus, if you use the SQLJ. REMOVE_JAR and SQLJ. | NSTALLXJAR procedures to replace a JAR, you will
havq to drop the SQL objects that directly or indirectly‘depend on the methods of the classes in the¢
JAR] and then re-create those items.

The [SQLJ. REPLACE_JAR procedure avoids this requirement, by performing an instantaneous remouve
and fnstall, with suitable validity checks. You can therefore call the SQLJ. REPLACE_JAR procedure
withlout first dropping the dependent SQL, dbjects.

For gxample, in Subclause E.4, “Installing region and correctStates in SQL”, we installed the class
of Rqut i nes1 with the following statemlent:

SQLJ. I NSTALL_JAR('file:~/classes/Routinesl.jar’, 'routinesl jar', 0)
You fan replace that JAR witha statement such as:
SQLJ. REPLACE _JAR('fid'e.~/revised_classes/Routinesl.jar’, 'routinesl jar’)

Notd that the JAR name must be the same. It identifies the existing JAR, and will subsequently
identify the replaeemient JAR. The URL of the replacement JAR can be the same as or different
from the URL of.the original JAR.

In the generalvcase, there will be classes in the old JAR that are not in the new JAR, classes that
are In both~JARSs, and classes that are in the new JAR and not in the old JAR. These are referred
to rgspectively as unmatched old classes, matching old/new classes, and unmatched new classes.

The validity requirements on the replacement JAR are:

— There must be no SQL procedure or function whose routine descriptor’s <external routine
name> specified an <external Java reference string> that references any method of any un-
matched old class (since all unmatched old classes will be removed).

— Any CREATE PROCEDURE/FUNCTION statement that references a method of a matching
class must be a valid statement for the new class.

© ISO/IEC 2002 — Al rights reserved Routines tutorial 149

https://standardsiso.com/api/?name=7185f32a83135a45aacb22c1495568aa

