

Reference number
ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009

TECHNICAL
REPORT

ISO/IEC
TR

15938-8
First edition
2002-12-15

AMENDMENT 4
2009-11-15

Information technology — Multimedia
content description interface —
Part 8:
Extraction and use of MPEG-7
descriptions

AMENDMENT 4: Extraction of audio
features from compressed formats

Technologies de l'information — Interface de description du contenu
multimédia —

Partie 8: Extraction et utilisation des descriptions MPEG-7

AMENDEMENT 4: Extraction de caractéristiques audio à partir de
formats compressés

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2009
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2009 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report
of one of the following types:

⎯ type 1, when the required support cannot be obtained for the publication of an International Standard,
despite repeated efforts;

⎯ type 2, when the subject is still under technical development or where for any other reason there is the
future but not immediate possibility of an agreement on an International Standard;

⎯ type 3, when the joint technical committee has collected data of a different kind from that which is
normally published as an International Standard (“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three years of publication, to decide whether
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to
be reviewed until the data they provide are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 4 to ISO/IEC TR 15938-8:2002 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia
information.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved 1

Information technology — Multimedia content description
interface —

Part 8:
Extraction and use of MPEG-7 descriptions

AMENDMENT 4: Extraction of audio features from compressed
formats

After 4.8.2.2.6, add Clause 5:

5 Direct audio feature extraction from the compressed domain

5.1 Introduction

Due to efficient MPEG audio compression technologies, such as MPEG 1 – Layer III (MP3), [AMD4-1] or
MPEG-2/-4 AAC, (AAC), [AMD4-2, AMD4-3] the number of personal and institutional music stored in archives
grew significantly during the last years. At the same time, the need for automatic search and retrieval
capabilities for music increased in order to manage these databases. These search and retrieval applications
base on low-level features (e.g. described in the MPEG-7 standard [AMD4-4]) which are extracted from the
digital audio content. In order to efficiently search in large archives, there is need to perform a faster low-level
feature extraction. This technical report describes a method, which allows an extraction of MPEG-7 low-level
features [AMD4-4] directly from the compressed domain, by transforming the frequency representation of
MPEG compressed audio files into the DFT domain for feature extraction.

5.2 Conventional feature extraction

The conventional approach to obtain MPEG-7 features from compressed audio data is to decode it first and
then to generate the MPEG-7 features based on the decoded time signal. But especially when searching large
libraries of compressed audio files this approach can become computationally very expensive. Several works
deal with the conversion between subband domain representations, especially in the field of image and video
coding. In [AMD4-5], [AMD4-6] the conversion between different sizes of DCT transforms is given, having the
drawback that they are restricted to non-lapped transforms. The patent in [AMD4-7] proposes a conversion
method between the MDCT and the DFT domain. It is restricted to MDCT and DFT and therewith not suitable
for our purposes, since we want to include also hybrid filter banks, an integral part of MP3. The architecture
presented in [AMD4-8] is not restricted to the type of filter banks used. Unfortunately, the number of subbands
of the different filterbanks have to be multiples of each other and this is again unsuitable for our needs.
However, this paper serves as the basis for a general conversion method proposed in [AMD4-9], which can be
applied to any maximally-decimated filter bank without condition on their sizes. Here, a conversion matrix is
generated by multiplying the analysis with a synthesis filter bank. Principally, the same is done in this technical
report, though, a universal mathematical description is used, the polyphase description introduced in
[AMD4-10]. Additionally, the described method is extended by applying it to arbitrary resolution translations
between synthesis and analysis filter banks in a practical way. Furthermore, it is adjusted to MP3 and AAC,
and exploits some special properties of the so-called conversion matrix which is explained in the next section.
In [AMD4-11] the problem of generating a complex from a real valued spectral representation is picked up
from the reverse side. Therein it is said that a desired frequency response can be approximated by means of

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

2 © ISO/IEC 2009 – All rights reserved

a linear combination with constant weighting factors. This approach only allows a coarse approximation,
nonetheless, having a very small computational complexity load. This approach gave the inspiration for the
issue termed as spectral approximation. A completely different approach is worth mentioning here which
works directly on the compressed domain. It uses the MDCT coefficients as the basis for the low level feature
extraction [AMD4-12]. Since there is no conversion into the DFT domain applied, this approach is restricted to
the time/frequency resolution provided by the used codec. It is hence not compatible to existing MPEG-7
feature databases.

5.3 Direct feature extraction

5.3.1 System overview

In order to extract audio features from the compressed domain, we designed a conversion system which
directly converts the given time-frequency representations of MPEG-1 Layer III and MPEG-2/-4 AAC into the
time-frequency representation needed for calculating MPEG-7 compliant features. After applying the
conversion method, the resulting complex-valued spectral coefficients are fed to the feature extraction
algorithm.

Before we elaborate on the direct feature extraction system, it is important to know some details about how
the conventional approach works and how it deals with compressed audio input material. Figure AMD4.1
shows the basic building blocks of the conventional feature extraction process.

Figure AMD4.1 — Basic building blocks of the conventional feature extraction process

First, the compressed input audio material needs to be decoded to PCM audio data. Then, the feature
extraction process, which consists of an analysis and a feature calculation stage, applies a window function to
the PCM input samples followed by an FFT prior to the feature calculation. Our goal is to substitute the bulk of
the computational amount needed for decoding and analyzing by one direct conversion process. In this
context the bulk of the computational amount of the decoding process comprises basically the synthesis filter
bank of the particular decoder. For MP3 additionally reordering and anti-aliasing operations take place.

We now take a look at Figure AMD4.2. The synthesis filter bank of the decoder having a transfer function and
the analysis filter bank of the feature extraction process having another transfer function exhibit different
numbers of subbands, K and L respectively.

Figure AMD4.2 — Synthesis filter bank with K subbands followed by an analysis filter bank with L
subbands. Both filter banks are maximally decimated and linear time-invariant

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved 3

Yk(m) denotes the subband coefficient of the compressed bitstream of subband K at block m, x(n) is the
decoded time audio signal at time n, and yi(m) is the subband signal of the desired domain of subband I at
block m.

However, a more efficient and useful representation of maximally-decimated filter banks is the so-called
polyphase description introduced by Vaidyanathan [AMD4-1]. The main advantage of the polyphase
description is its mathematical compactness, so that a filter bank can be fully described by a polyphase filter
matrix. The filtering process then reduces to a multiplication of a z-transformed signal vector with a polyphase
filter matrix. Furthermore, a concatenation of different filter banks can be achieved by using only one
polyphase matrix, which can be obtained by multiplying the individual polyphase matrices of these filter banks.
This property enables the construction of a conversion matrix T(z) of size M * M as shown in Figure AMD4.3.

Polyphase
Matrix

Polyphase
Matrix

Synthesis Analysis

Direct Conversion System

)(zG)(zH
)(zY)(ˆ zX)(ˆ zY

Polyphase Conversion
Matrix

)(ˆ zY)(zY
ˆ ˆ() () ()z z z=T G H

MM ×

LL ×KK ×

Figure AMD4.3 — Block diagram of the conventional transcoding of the direct conversion method

It is evident, that M2 multiplications are necessary to calculate the desired spectral values when using an M*M
conversion matrix. That is equivalent to a complexity of O(N2) and, unfortunately, much more complex than
deploying the conventional method, since the latter uses efficient implementations of the MDCT and FFT
featuring an overall complexity of O(N log(N)). We found, that only a fraction of the values inside a conversion
matrix is necessary for the calculation of audio features, which still guarantee a successful identification of the
underlying audio material. This is possible, since the most significant values of a conversion matrix are evenly
spread along the main diagonal, and they decrease quickly the further we move away from it. The most
important characteristic of a conversion matrix T(z) is that it exhibits a strong similarity to diagonal and
therefore sparse matrices. For instance, Figure AMD4.4 shows an example of such a polyphase conversion
matrix, where the white areas corresponds to zeros in the matrix. Observe that three images of matrices can
be used, because each corresponds to the coefficients of a different power of z of the polyphase matrix. The
analysis time window is set to 30 ms because it is suitable for many tasks of music information retrieval. The
sampling frequency is chosen to be 44,1 kHz (generally it is arbitrary), hence the matrix generates
1024 complex Fourier coefficients as output, whereas it takes 576 (the content of one MP3 granule) real
valued input samples.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

4 © ISO/IEC 2009 – All rights reserved

Figure AMD4.4 — Exemplary complex polyphase conversion matrix for MP3 converting
one granule of 576 real valued subbands into 1024 DFT coefficients. The figure only
shows absolute values.

It can be seen in Figure AMD4.4 that the most significant values are evenly spread along the main diagonal. If
only the coefficients necessary for the desired accuracy are kept, the sparse matrix shown in Figure AMD4.5
is obtained. For clarification, Figure AMD4.5 shows an exemplary STFT spectrum and its approximation using
sparse matrices for direct conversion. For this example a conversion complexity of about 0,07 % in contrast to
a fully populated matrix was used. This property permits to approximate a desired spectral representation by
only using the strongest diagonals while omitting the less important ones. Exploiting this property leads, in
general, to a reduction of the computational complexity to O(N). To determine the least working complexity,
we show identification results of tests performed on a large audio library with different levels of conversion
complexities in a further section of this document. These tests further show that an audio feature extraction
system can deal with very coarse spectral approximations.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved 5

�

Figure AMD4.5 — Sparse polyphase matrix obtained from the conversion matrix shown in
Figure AMD4.4. Only the biggest diagonal values are maintained.

5.3.2 Creation of a conversion matrix

As said before, the conversion matrix T(z) is of size M*M, which is different from those of G(Z) and H(z). But if
K=L, the solution is trivial, because the size of the conversion matrix results to K=L=M. The solution for K != L
is more complex, since we cannot simply multiply G(z) and H(z). This requires to extend the sizes of G(z) and
H(z) to their least common multiple M. pg = M/K and ph = M/L, indicating how many times a matrix fits into its
expanded version. For instance, given a non-overlapping synthesis filter bank, its polyphase matrix G is not a
function of z. Thus, G is simply obtained using the formula

where denotes the Kronecker matrix product and I(pg x pg) the identity matrix of size pg x pg. However, this
equation only holds for matrices having scalar entries, or likewise the maximum degree of O. In other words,
the filter bank, represented by the polyphase matrix exhibits no overlap to consecutive blocks. For instance,
this is the case for a non-overlapping DFT as used for the analysis of the feature extraction process. A general
polyphase matrix, e.g. G(z) is composed according to

where J is the degree of the polynomials within G(z) and G(j) represents one set of coefficients of the
polynomial matrix G(z) for a specific z-j. Since we have an MDCT and even a QMF with different amounts of
overlap on the decoder side, we need to define a more general method.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

6 © ISO/IEC 2009 – All rights reserved

S(z) is a shift matrix that advances a block or vector by one entry (see next matrix):

Observe, if you multiply a row vector from the left then the first entry will be shifted to the second place, the
second entry to the third place, and the last entry to the first place but multiplied with z-1, which means it is
from the previous block. Note, that S0(z) is defined as the identity matrix I. The general extension rule in
G maps the coefficients of different powers of z corresponding to different time instances, i.e. different blocks
of samples, to different matrix entries and vice versa. It can be seen as some kind of unfolding a polyphase
matrix to be able to operate on larger block sizes. To demonstrate this, we assume a given K*K polyphase
matrix G(z) having 50% overlap (analog to next equation).

It processes two successive blocks of size K. We now want to extend this matrix in a way, that it is able to
process blocks of size 2K, where each new block consists of two concatenated blocks of size K. It is important
to recognize, that the extended version G(z) now provides an overlap within the 2K-sized blocks and to one
half to a succeeding one. Using the K*K or the 2K*2K polyphase matrix for calculation delivers the same
results, however, the only difference is that G(z) processes blocks of twice the length. According to the rule
given in G - we from now on call it extension rule – G(z) has the following shape:

Most filter banks used in today's audio coders feature adaptive window switching between windows of
different lengths. In MP3 and AAC two different window lengths are used, a long and a short window. In
general, long windows provide a better frequency resolution and hence a higher coding gain but can produce
pre-echoes in case of occurring transient-like signal portions. These pre-echoes can be reduced and mostly
avoided by using shorter block lengths. Specifically, the MP3 windows cover 12 and 36 samples, those of
AAC 256 and 2048 samples, respectively. The sizes of the MP3 windows are very small compared to those of
AAC. They result from cascading a 6/18-channel MDCT to each channel of a time-invariant 32-channel QMF
filter bank using a fixed size window of 512 coefficients.

Two special windows - a start and a stop window - are required to realize transitions between long (L) and
short blocks (S) and vice versa. The filter banks and consequently our conversion matrices can be switched
between four different possible states: long to long (LL), long to short (LS), short to short (SS) and short to
long (SL). Unlike MP3, AAC uses Kaiser Bessel Derived (KBD) windows in addition to sine-shaped windows,
where the long blocks usually use KBD-windows and the short blocks sine-windows.

We now consider a time-varying synthesis filter bank, whose polyphase matrix has time-varying coefficients.
To express this time dependency, the additional parameter m, denoting the time instance as block index, is
introduced. Thus, G(z) becomes G(z, m, and the time signal X(z) is now obtained using the formula

The matrix for time instance m+1 is obtained according to the following equation.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved 7

T(z,m) then can be obtained by combining G(z,m) of different time instances. This procedure also holds for
obtaining H(z,m). Another interpretation is, that for every time instance of m represents another time-invariant
polyphase matrix. To simplify matters, we use GLL(z), GLS(z), GSL(z) and GSS(z) as those matrices which
replace G(z,m) at a specific time instance m. An in-depth description how to obtain G(z,m) for MP3 and AAC,
is given in the following publications [AMD4-13][AMD4-12].

5.3.3 Performance

The performance of the direct feature extraction compared to the conventional feature extraction is evaluated
on the task of Audio Identification. Audio Identification is possible with the MPEG-7 compliant descriptor
AudioSpectrumEnvelope. Therefore, the MPEG-7 AudioSpectrumEnvelope feature has been extracted twice:
Once with the conventional method by decoding the MP3 or AAC file to wav and than performing an FFT and
calculating the AudioSpectrumEnvelope feature. The second feature consisted of a direct extraction of the
FFT coefficients as previously described and an estimation of the AudioSpectrumEnvelope features based on
the resulting coefficients. In a first test, a suitable conversion matrix has been selected. The conversion matrix
can have a scalable complexity, from very low, which enables a very fast feature extraction to very high,
enabling a slower feature extraction. Therefore, 26 different complexity matrixes has been chosen, varying
from 0.001% up to 0.1%, compared to a fully populated conversion matrix, were used.

Then, 6 sets of the same 775 music files dividable into 10 genres were created. The 6 sets contained the
sample rates 32, 44.1 and 48 kHz and the codecs AAC and MP3 were used. The MPEG-7
AudioSpectrumEnvelope features were extracted from all files, using all complexity matrices. Then, all
extracted features were fed to an audio identification algorithm, as described e.g. in
ISO/IEC 15938-4:2002/Amd.2:2006 and [AMD4-18], and the identification rates were estimated. The outputs
of the identification system are an index of the song having the highest similarity, and a value we call
confidence, indicating the reliability of the result. The confidence is a heuristic of the system and is given in
percent. In our experience a confidence above 50% indicates a correctly identified song. Figure AMD4.6
shows the results for MP3 with the sample rate of 44.1 kHz. As seen, a conversion matrix with a complexity of
0.03 % of the original conversion matrix size allows a reliable audio identification. The results for MP3 and
AAC with different samplerates can be seen in [AMD4-18].

Figure AMD4.6 — Results after classification for MP3 at a sampling rate of 44.1 kHz, confidence vs.
conversion complexity for the test set of 100 items.

The final extraction speed can be seen in Table AMD4.1. It shows the duration for the extraction of the whole
set of music files with the direct method and with the conventional method.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

8 © ISO/IEC 2009 – All rights reserved

Table AMD4.1 — Duration for the extraction of the whole set of music files in seconds

As seen in the table, the average speed improvement for feature extraction from MP3 files in approx. 66 %.
The speed improvement for AAC is approx. 35 %.

5.4 Implementation

5.4.1 Implementation Details

The practical implementation of the direct feature extraction system is explained in this section. It is useful to
initially define the conditions under which we aim to operate our system. We want to be able to process MP3
as well as AAC files having the most common sampling rates, i.e. 32, 44.1 and 48 kHz. Further, the analysis
of the feature extraction should use frames of 10 ms. Following the demands described in ISO/IEC 15938-4,
we use a Hamming window function and calculate the FFT by means of zero padding in order to obtain an
FFT size of the power of two. For instance, we round a given time-frame size of L = 320 to its next larger size
of the power of two, which is particularly L=512. However, these processing steps are covered by a time-
invariant polyphase matrix H(z) whose entries are furthermore scalar, since we have no overlap between
consecutive blocks, i.e. the degree of the polynomials is actually 0 and H(z) reduces to H. Due to the
symmetry property of the FFT we discard one half of the values. To be precisely, we need to keep L/2 + 1 FFT
coefficients, but due to the negligible effect of omitting one coefficient and to stay inside sizes of the power of
two, we only keep L/2 coefficients. This results in a matrix H of size L * L/2.

How to obtain the time varying synthesis matrices G(z,m) for MP3 and AAC, was shown in the previous
section. The final conversion matrix T(z,m) is calculated following the method described in last sections using
equations G and T. But due to the time-variance, the matrix G(z,m) can be composed of coefficients from
different G(z). The bigger G(z,m) gets, the more combinations of the matrices GLL(z), GLS(z), GSL(z) and GSS(z)
are thinkable. Thus, one universal conversion matrix T(z,m) meeting our specific requirements is not
realizable. Obviously even without time-variance, such a conversion matrix can become very large. The next
table exemplarily lists the sizes of the time-invariant decoder synthesis polyphase matrix G(z), the feature
extractor analysis matrix H and the final conversion matrix T(z) for MP3 using a 10 ms analysis window length.
It is important to keep in mind, that each matrix entry of T(z) contains a complex-valued polynomial of z-2.
Thus, in a real implementation we need to allocate memory of three times the numbers given in the next table.
For instance, T(z) at a sampling rate of 44.1 kHz using a 10 ms analysis time window would consume
3 * 28224 * 16384 = 1387266048 complex numbers. If we use float precision for computation its size would
reach around 10.34 GB.

Table AMD4.2 — Extraction matrix sizes for the different sample rates

The memory consumptions of G(z), H(z) and T(z) for different sampling rates for MP3 are given in
Table AMD4.3.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved 9

Table AMD4.3 — Memory consumption of G(z), H(z) and T(z) for different sampling rates for MP3

To avoid the memory consumption problem, we have to split the calculation process of T(z) into several parts.
We therefore calculate sub-matrices of the size L*L, which we define as T(z). The following Figure AMD4.7
shows the expanded two matrices G(z) and H for a given sampling frequency of f = 32 kHz and an analysis
window length of t = 10 ms. You can see five unfolded synthesis matrices G(z). The coefficients of the first
one represent the LL state, followed by coefficients for the LS state, and so on.

Figure AMD4.7 — G(z) and H, sampling frequency f = 32 kHz, analysis window length t = 10 ms.
As can be seen, G(z) was obtained using the unfolding rule given in G

However, this is only an example. In general, many constellations of different states of G(z) are thinkable. To
calculate the desired sub-matrices, G(z) is partitioned into nine L*L matrices as depicted in Figure AMD4.8.
But to make use of them, the input data Y(z) containing K samples needs to be reshaped, so that each block
of data will contain L samples. This is simply realized using an intermediate buffer.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

10 © ISO/IEC 2009 – All rights reserved

ˆ ()zG

0
0zG 1

1z
−G 2

2z−G 3
3z−G 4

4z−G 5
5z−G 6

6z−G

0
0 zG 1

1z
−G 2

2z−G 3
3z−G 4

4z−G 5
5z−G 6

6z−G

0
0zG 1

1z
−G 2

2z−G 3
3z−G 4

4z−G 5
5z−G 6

6z−G

6
6z−G

0
0zG1

1z−G 2
2z−G 3

3z−G 4
4z−G 5

5z−G 6
6z−G

2
2z−G 3

3z−G 4
4z−G 5

5z−G 6
6z−G

3
3z−G 4

4z−G 5
5z−G 6

6z−G

4
4z−G 5

5z−G 6
6z−G

5
5z−G 6

6z−G

0
0 zG 1

1z−G 2
2z−G 3

3z−G 4
4z−G 5

5z−G

0
0 zG 1

1z
−G 2

2z−G 3
3z−G 4

4z−G

0
0 zG 1

1z
−G 2

2z−G 3
3z−G

0
0 zG 1

1z
−G 2

2z−G

0
0 zG 1

1z−G

Figure AMD4.8 — Partitioning of G(z) into L*L matrices with a polynomial of at maximum z^{-6}

On closer inspection of Figure AMD4.8 one can notice, that one cycle through G(z) is completed after ph = 9
sub-matrices. It can be also interpreted as the number of how many shifted constellations inside G(z) need to
be calculated. In this manner we can calculate the whole set of matrices T(z) representing coefficients for
different window types. Unlike with its big brother T(z), we can realize a time-variant implementation T(z,m).

5.4.2 Example source code

The following code shows the Matlab sources, which enable a direct feature extraction from the compressed
domain. The example describes the direct extraction from MP3 audio files into the FFT domain with an
analysis window size of 10 milliseconds. The software has been setup as shown in Figure AMD4.9

Figure AMD4.9 — Overview of the software structure for the direct feature extractor

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved 11

The file main.m is the main file to be called for the direct feature extraction. The parameters of the analysis
window length, sampling frequency, format and accuracy has to be given with the start of the file. The
software estimates the name of the direct conversion matrix file, which needs to be situated in the same
directly. For space reasons, one binary conversion matrix is appended at the end of this file. This file is called
V_mp3_441_3.0e-004.bin and is destined for a sample rate of 44.1 kHz, a complexity of 0.03 % and a sample
rate of 10 milliseconds.

The file decode.m performs the function call to an adapted (reference) MP3 decoder, which provides the
MDCT coefficients for decoding.

Mp3decoder.exe.provides a partial MP3 decoding and returns files containing MDCT coefficients and auxiliary
information. The file mp3decoder.c shows the source code of this file and its modifications. The files needed
for compiling can be downloaded at [AMD4-19].

MTX_convert.m performs the actual direct feature extraction, which relies on the conversion matrix file:
V_mp3_441_3.0e-004.bin. It is available together with this document.

main.m

% USAGE:
% Set the following variables to the desired values and run the script.
% t analysis window length in seconds for the feature
% extraction algorithm [float]
% fs sampling frequency in Hertz [integer]
% format source format, 'mp3' or 'aac' [string]
% accuracy vector containing threshold values used for the matrix
% generation process... tuning parameter for accuracy resp.
% complexity [float vector]
% input_path folder wherein the audio source material is stored
% [string]
% codec describes the codec, e.g. 'Fraunhofer' or 'Lame' [string]
% bit_rate bit rate [string]
%
%%%
%% user input
clear;
t = 0.01; % analysis size [s], e.g. 0.01 or 0.03
fs = 44100; % sampling frequency [Hz]
format = 'mp3'; % file format, 'MP3' or 'AAC'
accuracy = 0.0001; % in percent
input_path = '../input'; % folder containing encoded files
matrix_path = '../MATLAB_matrices'; % folder containing matrix files
output_path = '../output'; % destination folder for results
codec = 'Fraunhofer';
overlap = 0;

%%%
%% INIT
pExt = '000%';
if (overlap == 1)
 pExt = '050%';
end

% load ancillary data
load([matrix_path '/' upper(format) '/' num2str(round(fs * t)) ...
 '/' pExt '/' format '_' num2str(round(fs * t)) '_ancillary_data']);

% get files to convert
file_names = getFileNames(input_path, format);

%%%
%% conversion
disp(['... conversion started at ' datestr(now)]);
disp('');

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

12 © ISO/IEC 2009 – All rights reserved

for k = 1:length(file_names) % for each file
 disp(['converting ' file_names{k} ' to ' num2str(ancillary_data.M) ...
 ' DFT resolution ...']);

 % decoding
 disp(['decoding ' format ' file ...'])
 decode(file_names{k}, format, input_path, output_path);
 % add extension if none
 [fPath fName fExt] = fileparts(file_names{k});
 % output folder
 out_folder = [output_path '/' upper(format) '/' fName];
 % read MDCT coefficients & side information
 % MDCT coeffs
 disp(['getting MDCT coefficients & side information ...']);
 fid = fopen([out_folder '/mdct_coeffs.bin'], 'rb');
 MDCT_coeffs = fread(fid, [ancillary_data.L inf], 'single');
 nr_blocks = size(MDCT_coeffs, 2);

 % side info
 fid = fopen([out_folder '/SI.bin'], 'rb');
 %SI = fread(fid,[1 inf], 'int');
 SI = fread(fid,[2 inf], 'uint');
 SI = SI(:, 1:nr_blocks);
 fclose(fid);

 % read samples
 samples = wavread([input_path '/' file_names{k} '.wav']);

 if ~exist([out_folder '/' num2str(ancillary_data.M)])
 mkdir([out_folder '/' num2str(ancillary_data.M)]);
 end

%%%
%% brute force method

 disp('calculating DFT via brute force method...');
 tic;
 X = samples;
 nzeros = ancillary_data.M - mod(numel(X), ancillary_data.M);
 if (nzeros > 0)
 X = [reshape(X, 1, []) zeros(1, nzeros)];
 end
 X = reshape(X, ancillary_data.M, []);
 win = hamming(ancillary_data.M);
 WIN = diag(win);
 X_win = WIN * X;
 clear X win WIN;
 Y_bruteforce = zeros(ancillary_data.n_fft/2, size(X_win, 2));
 for m = 1:size(X_win, 2)
 temp = fft(X_win(:,m), ancillary_data.n_fft);
 Y_bruteforce(:,m) = temp(1:ancillary_data.n_fft/2);
 end
 eval(['save(''' out_folder '/' num2str(ancillary_data.M) '/' file_names{k} ...
 '_bruteforce.mat'', ''Y_bruteforce'');']);
 clear temp Y_bruteforce;
 s = toc;
 disp(sprintf('duration: %02d:%02d', floor(s/60), ...
 round(mod(s/60, 1)*60)));

%%%
%% approximated direct conversion

 for m = 1:length(accuracy)
 ext = sprintf('%06d', round(accuracy(m)*100000));
 disp(['converting to DFT via direct conversion method ' ext '...']);
 tic;
 eval(['Y_approx_' ext ' = ' ...

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved 13

 'MTX_convert(MDCT_coeffs, SI, [matrix_path ''/'' ' ...
 'upper(format) ''/'' num2str(ancillary_data.M)], ' ...
 'accuracy(m), lower(format), ancillary_data.M, overlap);']);
 eval(['save(''' out_folder '/' num2str(ancillary_data.M) '/' ...
 fName '_accuracy_' num2str(accuracy(m), '%.1e') '.mat'', ' ...
 '''Y_approx_' ext ''');']);
 eval(['clear Y_approx_' ext ';']);
 s = toc;
 disp(sprintf('duration: %02d:%02d', floor(s/60), ...
 round(mod(s/60, 1)*60)));
 end

%%%
 MTX_writebinary([out_folder '/' num2str(ancillary_data.M)], ...
 codec, bit_rate, format)
end
disp(['... conversion ended at ' datestr(now)]);
disp('');

decode.m
% USAGE:
% decode(file_name, format, source_folder, destination_folder)
% file_name file name of the file to decode [string]
% source_folder the folder, where the file is located [string]
% destination_folder ... the folder, subbands and the side information are
% stored [string]
%%%

function decode(file_name, format, source_folder, destination_folder)

% add extension if none
[file_path file_name file_ext] = fileparts(file_name);

if ~exist([destination_folder '/' upper(format) '/' file_name])
 mkdir([destination_folder '/' upper(format)], file_name);
end

% decode
cd([lower(format) 'decoder']);
cmd = [lower(format) 'decoder.exe "../' source_folder '/' file_name ...
 file_ext '" "../' destination_folder '/' upper(format) ...
 '/' file_name '/mdct_coeffs.bin" "../' destination_folder '/' ...
 upper(format) '/' file_name '/SI.bin"'];

w = mysystem(cmd);

cd('..');

end % end of function

%%%
function w = mysystem(cmd)
 % run system command; report error; strip all but last line
 [s w] = system(cmd);

 if (s ~= 0)
 error(['unable to execute ' cmd ' (' w ')']);
 end

 % keep just final line
 w = w((1 + max([0, findstr(w, 10)])):end);
end

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

14 © ISO/IEC 2009 – All rights reserved

MTX_convert.m
% USAGE:
% Y = MTX_convert(X, w, matrix_folder, approximation)
% Y output matrix containing coefficients of the desired
% domain [(complex) single matrix]
% X input matrix containing coefficients from the source
% domain [string]
% w window type information [integer vector]
% matrix_folder ... contains the conversion matrices [string]
% accuracy ... defines the degree of accuracy [integer]
%%%

function Y = MTX_convert(X, SI, matrix_folder, accuracy, format, M, overlap)

%%%
%% init
pExt = '000%';
if (overlap == 1)
 pExt = '050%';
end

n_b = size(X, 2); % # of blocks

% load ancillary data
load([matrix_folder '/' pExt '/' lower(format) '_' num2str(M) ...
 '_ancillary_data']);

% open file containing conversion matrix coefficients
fid = fopen([matrix_folder '/' pExt '/V_' lower(format) '_' num2str(M) ...
 '_' num2str(accuracy, '%.1e') '.bin'], 'r');

% read conversion matrix coefficients
global Matrix;
while 1
 postfix = fread(fid, 10, '*char')';
 if isempty(postfix)
 break;
 end
 n_s = fread(fid, 1, 'int32');
 eval(['Matrix.V_' postfix ' = struct(' ...
 '''s_real_' postfix ''', fread(fid, n_s, ''single''), ' ...
 '''s_imag_' postfix ''', fread(fid, n_s, ''single''), ' ...
 '''row_idx'', fread(fid, n_s, ''int16''), ' ...
 '''col_idx'', fread(fid, n_s, ''int16''));']);
end
fclose(fid); % close file
clear postfix;

%%%
%% main
global Params;

Params.idx_buf = [0 0];
Params.idx_data = [0 0];
Params.cum = 0;
Params.fXchange = 0;
Params.shift = 0; % block shift in coefficients
Params.part = 0; % subpart of destination matrix

% Z is the coefficient memory
Params.Z = zeros(ancillary_data.z_M*ancillary_data.n_fft/2, 1);

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved 15

Params.TEMP = zeros(ancillary_data.z_M * ancillary_data.n_fft/2, 1);
Y = []; % output matrix containing coefficients of the desired domain

Params.rest = mod(ancillary_data.M, ancillary_data.L);

if (ancillary_data.M > ancillary_data.L)
 temp = ancillary_data.L;
 ancillary_data.L = ancillary_data.M;
 ancillary_data.M = temp;
 Params.fXchange = 1;
end

Params.len = min(ancillary_data.M, ancillary_data.L);
Params.ancillary_data = ancillary_data;

% main loop
offset = 0;
%if (ancillary_data.M > ancillary_data.L)
 offset = 0;
%end

Params.block = 1;
while (Params.block < n_b - offset)
 clc; disp([num2str(round(Params.block/(n_b - offset)*100), '%03.0f') '%']);
 OUT = '';
 while (isempty(OUT))
 OUT = convert(X(:, Params.block), SI(:, Params.block + offset));
 end
 Y = [Y OUT];
end
end

%%%
%% convert
function Y = convert(Coeff, SI)
global Matrix;
global Params;

Y = '';
% disp('calculating indices and cumulated sum...');
Params.idx_data(1) = mod(Params.idx_data(2) + 1, Params.ancillary_data.L);
Params.idx_data(2) = min(Params.idx_data(1) + Params.len - 1, ...
 Params.ancillary_data.L) - mod(Params.cum, Params.ancillary_data.L);
Params.cum = mod(Params.cum + diff(Params.idx_data) + 1, ...
 Params.ancillary_data.M);

Params.idx_buf(1) = mod(Params.idx_buf(2) + 1, Params.ancillary_data.M);
if (Params.cum == 0)
 Params.idx_buf(2) = Params.ancillary_data.M;
else
 Params.idx_buf(2) = min(Params.idx_buf(1) + Params.cum - 1, ...
 Params.ancillary_data.M);
end

% select matrix
postfix = sprintf('%02.2d_%02.2d_%04.4d', ...
 SI(1) + 1, Params.part + 1, Params.shift + 1);
% calculation
try % if matrix exists
 % set variables

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

16 © ISO/IEC 2009 – All rights reserved

 s = eval(['Matrix.V_' postfix '.s_real_' postfix ' + i*Matrix.V_' ...
 postfix '.s_imag_' postfix ';']);
 row_idx = eval(['Matrix.V_' postfix '.row_idx;']);
 col_idx = eval(['Matrix.V_' postfix '.col_idx;']);

 % calculate
 if (~Params.fXchange)
 idx_start = Params.idx_data(1);
 else
 idx_start = Params.idx_buf(1);
 end

% disp(['Coeffs: ' num2str(Coeff(idx_start - 1 + row_idx(1:5))')]);
 for k = 1:length(s)
 Params.TEMP(col_idx(k)) = Params.TEMP(col_idx(k)) + s(k) * Coeff(idx_start -
1 + row_idx(k));
 end
% disp(['postfix: ' postfix]);
end

Params.part = Params.part + 1;
if (((Params.idx_buf(2) == Params.ancillary_data.M) && (~Params.fXchange)) ||
((Params.idx_data(2) == Params.ancillary_data.L) && (Params.fXchange)))
 % write out
 % updating memory (adding past samples)
 for z = 1:Params.ancillary_data.z_M-1
 Params.Z((1:Params.ancillary_data.n_fft/2) + (z-
1)*Params.ancillary_data.n_fft/2) = ...
 Params.TEMP((1:Params.ancillary_data.n_fft/2) + (z-
1)*Params.ancillary_data.n_fft/2) ...
 + Params.Z((1:Params.ancillary_data.n_fft/2) +
z*Params.ancillary_data.n_fft/2);
 end

 Params.Z((1:Params.ancillary_data.n_fft/2) + ...
 (Params.ancillary_data.z_M-1)*Params.ancillary_data.n_fft/2) = ...
 Params.TEMP((1:Params.ancillary_data.n_fft/2) + ...
 (Params.ancillary_data.z_M-1)*Params.ancillary_data.n_fft/2);

 % output
 Y = Params.Z(1:Params.ancillary_data.n_fft/2);

 % set TEMP to zero
 Params.TEMP = zeros(Params.ancillary_data.z_M*Params.ancillary_data.n_fft/2,1);

 Params.shift = mod(Params.shift + Params.rest/ ...
 Params.ancillary_data.s_shift, Params.ancillary_data.n_shift);

 Params.part = 0;
end

if (((Params.idx_data(2) == Params.ancillary_data.L) && (~Params.fXchange)) ||
((Params.idx_buf(2) == Params.ancillary_data.M) && (Params.fXchange)))
 Params.block = Params.block + 1;
end

end
%EOF

mp3datadecoder.c

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved 17

/**
Copyright (c) 1991 MPEG/audio software simulation group, All Rights Reserved

mp3datadecoder.c
**/

#include <stdio.h>
#include <io.h>
#include <stdlib.h>

#include "decoderlib/common.h"
#include "decoderlib/decoder.h"

/**
*
* This part contains the MPEG I decoder for Layers I & II.
*
***/

/**
*
* For MS-DOS user (Turbo c) change all instance of malloc
* to _farmalloc and free to _farfree. Compiler model hugh
* Also make sure all the pointer specified are changed to far.
*
***/

/***
*
* Core of the Layer II decoder. Default layer is Layer II.
*
***/

/* Global variable definitions for "musicout.c" */

char *programName;
int main_data_slots();
int side_info_slots();

/* Implementations */

main(argc, argv)
int argc;
char **argv;
{
/*typedef short PCM[2][3][SBLIMIT];*/
typedef short PCM[2][SSLIMIT][SBLIMIT];
 PCM FAR *pcm_sample;
typedef unsigned int SAM[2][3][SBLIMIT];
 SAM FAR *sample;
typedef double FRA[2][3][SBLIMIT];
 FRA FAR *fraction;
typedef double VE[2][HAN_SIZE];
 VE FAR *w;

 Bit_stream_struc bs;
 frame_params fr_ps;
 layer info;
 unsigned long sample_frames;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

18 © ISO/IEC 2009 – All rights reserved

 int i, j, k, stereo, clip, sync;
 int done = FALSE;
 int error_protection, crc_error_count, total_error_count;
 unsigned int old_crc, new_crc;
 unsigned int bit_alloc[2][SBLIMIT], scfsi[2][SBLIMIT],
 scale_index[2][3][SBLIMIT];
 unsigned long bitsPerSlot, samplesPerFrame, frameNum = 0;
 unsigned long frameBits, gotBits = 0;
 IFF_AIFF pcm_aiff_data;
 char encoded_file_name[MAX_NAME_SIZE];
 char decoded_file_name[MAX_NAME_SIZE];
 char SI_file_name[MAX_NAME_SIZE];
 char t[50];
 int need_aiff;
 int need_esps; /* MI */
 int topSb = 0;
 FILE* musicout = NULL;
 FILE* pMDCT = NULL;
 FILE* pSI = NULL;

III_scalefac_t III_scalefac;
III_side_info_t III_side_info;

#ifdef MACINTOSH
 console_options.nrows = MAC_WINDOW_SIZE;
 argc = ccommand(&argv);
#endif

 /* Most large variables are declared dynamically to ensure
 compatibility with smaller machines */

 pcm_sample = (PCM FAR *) mem_alloc((long) sizeof(PCM), "PCM Samp");
 sample = (SAM FAR *) mem_alloc((long) sizeof(SAM), "Sample");
 fraction = (FRA FAR *) mem_alloc((long) sizeof(FRA), "fraction");
 w = (VE FAR *) mem_alloc((long) sizeof(VE), "w");

 fr_ps.header = &info;
 fr_ps.tab_num = -1; /* no table loaded */
 fr_ps.alloc = NULL;
 for (i=0;i<HAN_SIZE;i++) for (j=0;j<2;j++) (*w)[j][i] = 0.0;

 programName = argv[0];
 if(argc==1) { /* no command line args -> interact */
 do {
 printf ("Enter encoded file name <required>: ");
 gets (encoded_file_name);
 if (encoded_file_name[0] == NULL_CHAR)
 printf ("Encoded file name is required. \n");
 } while (encoded_file_name[0] == NULL_CHAR);
 printf (">>> Encoded file name is: %s \n", encoded_file_name);
#ifdef MS_DOS
 printf ("Enter MPEG decoded file name <%s>: ",
 new_ext(encoded_file_name, DFLT_OPEXT)); /* 92-08-19 shn */
#else
 printf ("Enter MPEG decoded file name <%s%s>: ", encoded_file_name,
 DFLT_OPEXT);
#endif
 gets (decoded_file_name);
 if (decoded_file_name[0] == NULL_CHAR) {
#ifdef MS_DOS

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009 – All rights reserved 19

 /* replace old extension with new one, 92-08-19 shn */
 strcpy(decoded_file_name,new_ext(encoded_file_name, DFLT_OPEXT));
#else
 strcat (strcpy(decoded_file_name, encoded_file_name), DFLT_OPEXT);
#endif
 }
 printf (">>> MPEG decoded file name is: %s \n", decoded_file_name);

 printf(
 "Do you wish to write an AIFF compatible sound file ? (y/<n>) : ");
 gets(t);
 if (*t == 'y' || *t == 'Y') need_aiff = TRUE;
 else need_aiff = FALSE;
 if (need_aiff)
 printf(">>> An AIFF compatible sound file will be written\n");
 else printf(">>> A non-headered PCM sound file will be written\n");

 printf(
 "Do you wish to exit (last chance before decoding) ? (y/<n>) : ");
 gets(t);
 if (*t == 'y' || *t == 'Y') exit(0);
 }
 else { /* interpret CL Args */
 int i=0, err=0;

 need_aiff = FALSE;
 need_esps = FALSE; /* MI */
 encoded_file_name[0] = '\0';
 decoded_file_name[0] = '\0';
 SI_file_name[0] = '\0';

 while(++i<argc && err == 0) {
 char c, *token, *arg, *nextArg;
 int argUsed;

 token = argv[i];
 if(*token++ == '-') {
 if(i+1 < argc) nextArg = argv[i+1];
 else nextArg = "";
 argUsed = 0;
 while(c = *token++) {
 if(*token /* NumericQ(token) */) arg = token;
 else arg = nextArg;
 switch(c) {
 case 's': topSb = atoi(arg); argUsed = 1;
 if(topSb<1 || topSb>SBLIMIT) {
 fprintf(stderr, "%s: -s band %s not %d..%d\n",
 programName, arg, 1, SBLIMIT);
 err = 1;
 }
 break;
 case 'A': need_aiff = TRUE; break;
 case 'E': need_esps = TRUE; break; /* MI */
 default: fprintf(stderr,"%s: unrecognized option %c\n",
 programName, c);
 err = 1; break;
 }
 if(argUsed) {
 if(arg == token) token = ""; /* no more from token */
 else ++i; /* skip arg we used */

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

20 © ISO/IEC 2009 – All rights reserved

 arg = ""; argUsed = 0;
 }
 }
 }
 else {
 if(encoded_file_name[0] == '\0')
 strcpy(encoded_file_name, argv[i]);
 else
 if(decoded_file_name[0] == '\0')
 strcpy(decoded_file_name, argv[i]);
 else
 if(SI_file_name[0] == '\0')
 strcpy(SI_file_name, argv[i]);
 else {
 fprintf(stderr,
 "%s: excess arg %s\n", programName, argv[i]);
 err = 1;
 }
 }
 }

 if(err || encoded_file_name[0] == '\0') usage(); /* never returns */

 if(decoded_file_name[0] == '\0') {
 strcpy(decoded_file_name, encoded_file_name);
 strcat(decoded_file_name, DFLT_OPEXT);
 }

 }
 /* report results of dialog / command line */
 printf("Input file = '%s' output file = '%s'\n",
 encoded_file_name, decoded_file_name);
 if(need_aiff) printf("Output file written in AIFF format\n");
 if(need_esps) printf("Output file written in ESPS format\n"); /* MI */

 if ((pMDCT = fopen(decoded_file_name, "wb")) == NULL) {
 printf ("Could not create \"%s\".\n", decoded_file_name);
 exit(1);
 }

 if ((pSI = fopen(SI_file_name, "wb")) == NULL) {
 printf ("Could not create \"%s\".\n", decoded_file_name);
 exit(1);
 }

 open_bit_stream_r(&bs, encoded_file_name, BUFFER_SIZE);

 if (need_aiff)
 if (aiff_seek_to_sound_data(musicout) == -1) {
 printf("Could not seek to PCM sound data in \"%s\".\n",
 decoded_file_name);
 exit(1);
 }

 sample_frames = 0;

 while (!end_bs(&bs)) {

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 15
93

8-8
:20

02
/Amd 4

:20
09

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

	After 4.8.2.2.6, add Clause 5:
	5 Direct audio feature extraction from the compressed domain
	5.1 Introduction
	5.2 Conventional feature extraction
	5.3 Direct feature extraction
	5.3.1 System overview
	5.3.2 Creation of a conversion matrix
	5.3.3 Performance

	5.4 Implementation
	5.4.1 Implementation Details
	5.4.2 Example source code

	5.5 Conclusions
	Add the following to Bibliography:

