TECHNICAL ISO/IEC
REPORT TR
15938-8

First edition
2002-12-15

AMENDMENT 4

2009-11-15

Information technology — Multimedia
content description interface —

Part 8:
Extraction and use of MPEG-7
descriptions

AMENDMENT4: Extraction of audio
features from compressed formats

Technologles de l'information — Interface de description du contenu
multimédia —

Partie 8: Extraction et utilisation des descriptions MPEG-7

AMENDEMENT 4: Extraction de caractéristiques audio a partir de
formats compressés

Reference number
ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

© ISO/IEC 2009

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe-is-a-trademark-of Adobes. Q\Jleh:mc Int\r\rrr_\r\rafnrl

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2009

Allrights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or

1ISUS Themper DOy rthe country or tne requestier.
ISO copyright office
Case postale 56 ¢ CH-1211 Geneva 20
Tel. +412274901 11
Fax + 4122749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members)of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO~and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, gavernmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field \of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

In exceptional circumstances, the joint technical committee may propose the publication of a Technical Report
of one of the following types:

— type 1, when the required support cannot be obtained for_the publication of an International Standard,
despite repeated efforts;

— type 2, when the subject is still under technical dévelopment or where for any other reason there is the
future but not immediate possibility of an agreement on an International Standard;

— type 3, when the joint technical committeé"has collected data of a different kind from that which is
normally published as an International Standard (“state of the art”, for example).

Technical Reports of types 1 and 2 are.subject to review within three years of publication, to decide whether
they can be transformed into International Standards. Technical Reports of type 3 do not necessarily have to
be reviewed until the data they provide are considered to be no longer valid or useful.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shallnotbe held responsible for identifying any or all such patent rights.

Amendment 4 to ISOAEC TR 15938-8:2002 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia
information.

© ISO/IEC 2009 — All rights reserved iii

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

Information technology — Multimedia content description

interrace —

Part 8:
Extraction and use of MPEG-7 descriptions

AMENDMENT 4: Extraction of audio features from compressed
formats

After 4.8.2.2.6, add Clause 5:

5 Direct audio feature extraction from the compressed domain

5.1 Introduction

Due to efficient MPEG audio compression technglogies, such as MPEG 1 — Layer Il (MP3), [AMDA4-1] or
MPEG-2/-4 AAC, (AAC), [AMD4-2, AMDA4-3] the.number of personal and institutional music stored in archives
grew significantly during the last years. At ¢he'same time, the need for automatic search and retrieval
capabilities for music increased in order to manage these databases. These search and retrieval applications
base on low-level features (e.g. described\.in the MPEG-7 standard [AMDA4-4]) which are extracted from the
digital audio content. In order to efficiently search in large archives, there is need to perform a faster low-level
feature extraction. This technical repért describes a method, which allows an extraction of MPEG-7 low-level
features [AMD4-4] directly from the compressed domain, by transforming the frequency representation of
MPEG compressed audio files inte'the DFT domain for feature extraction.

5.2 Conventional feature extraction

The conventional approach to obtain MPEG-7 features from compressed audio data is to decode it first and
then to generate-the’ MPEG-7 features based on the decoded time signal. But especially when searching large
libraries of compressed audio files this approach can become computationally very expensive. Several works
deal with the\conversion between subband domain representations, especially in the field of image and video
coding. In\[AMD4-5], [AMDA4-6] the conversion between different sizes of DCT transforms is given, having the
drawbaeck’that they are restricted to non-lapped transforms. The patent in [AMD4-7] proposes a conversion
method between the MDCT and the DFT domain. It is restricted to MDCT and DFT and therewith not suitable
forn/our purposes, since we want to include also hybrid filter banks, an integral part of MP3. The architecture
presented in [AMD4-8] is not restricted to the type of filter banks used. Unfortunately, the number of subbands
of the different filterbanks have to be multiples of each other and this is again unsuitable for our needs.
However, this paper serves as the basis for a general conversion method proposed in [AMD4-9], which can be
applied to any maximally-decimated filter bank without condition on their sizes. Here, a conversion matrix is

generated by multiplying the analysis with a synthesis filter bank. Principally, the same is done in this technical
report, though, a universal mathematical description is used, the polyphase description introduced in
[AMD4-10]. Additionally, the described method is extended by applying it to arbitrary resolution translations
between synthesis and analysis filter banks in a practical way. Furthermore, it is adjusted to MP3 and AAC,
and exploits some special properties of the so-called conversion matrix which is explained in the next section.
In [AMD4-11] the problem of generating a complex from a real valued spectral representation is picked up
from the reverse side. Therein it is said that a desired frequency response can be approximated by means of

© ISO/IEC 2009 — All rights reserved 1

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

a linear combination with constant weighting factors. This approach only allows a coarse approximation,
nonetheless, having a very small computational complexity load. This approach gave the inspiration for the
issue termed as spectral approximation. A completely different approach is worth mentioning here which
works directly on the compressed domain. It uses the MDCT coefficients as the basis for the low level feature
extraction [AMD4-12]. Since there is no conversion into the DFT domain applied, this approach is restricted to
the time/frequency resolution provided by the used codec. It is hence not compatible to existing MPEG-7

feature databases.
5.3 Direct feature extraction

5.3.1 System overview

In order to extract audio features from the compressed domain, we designed a conversion system which
directly converts the given time-frequency representations of MPEG-1 Layer lll and MPEG-2/-4 AAC into the
time-frequency representation needed for calculating MPEG-7 compliant features. After’ applying the
conversion method, the resulting complex-valued spectral coefficients are fed to the feature extraction
algorithm.

Before we elaborate on the direct feature extraction system, it is important to know.seme details about how

the conventional approach works and how it deals with compressed audio input material. Figure AMD4.1
shows the basic building blocks of the conventional feature extraction process.

Feature Extraction Rrocess

compressed | 1y . [PCM Analysis DFT Feature feature
audio audio FFT coefficients” | Calculation data

Figure AMD4.1 — Basic building blocks. of the conventional feature extraction process

First, the compressed input audio material needs to be decoded to PCM audio data. Then, the feature
extraction process, which consists of an\analysis and a feature calculation stage, applies a window function to
the PCM input samples followed by anFFT prior to the feature calculation. Our goal is to substitute the bulk of
the computational amount needed for decoding and analyzing by one direct conversion process. In this
context the bulk of the computatiohal amount of the decoding process comprises basically the synthesis filter
bank of the particular decoder»For MP3 additionally reordering and anti-aliasing operations take place.

We now take a look at kigure AMD4.2. The synthesis filter bank of the decoder having a transfer function and
the analysis filter bank of the feature extraction process having another transfer function exhibit different
numbers of subbands, K and L respectively.

_TL_go(n)_ _ho(n)_“\/'—

Y(2) : >+&>_ : Y(2)

] TL —1gn4(N) — hy_4(n) — iM —

Figure AMD4.2 — Synthesis filter bank with K subbands followed by an analysis filter bank with L
subbands. Both filter banks are maximally decimated and linear time-invariant

2 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

Y«(m) denotes the subband coefficient of the compressed bitstream of subband K at block m, x(n) is the
decoded time audio signal at time n, and y,(m) is the subband signal of the desired domain of subband | at
block m.

However, a more efficient and useful representation of maximally-decimated filter banks is the so-called
polyphase description introduced by Vaidyanathan [AMDA4-1]. The main advantage of the polyphase

description is its mathematical compactness, so that a filter bank can be fully described by a polyphase filter
matrix. The filtering process then reduces to a multiplication of a z-transformed signal vector with a polyphase
filter matrix. Furthermore, a concatenation of different filter banks can be achieved by using only,‘ene
polyphase matrix, which can be obtained by multiplying the individual polyphase matrices of these filterbanks.
This property enables the construction of a conversion matrix T(z) of size M * M as shown in Figure AMD4.3.

Synthesis Analysis

Polyphase < Polyphase Y
M» Matrix &» Matrix iz)»
G(2) H(z)
KxK LxL

N J
Y

Direct Conversion System

Y(z2) Polypha;;afr(i))l(lversion \A((2)

T(z) = G(z)H()

MxM

Figure AMD4.3 — Block diagram of the convéntional transcoding of the direct conversion method

It is evident, that M? multiplications are necessary to calculate the desired spectral values when using an M*M
conversion matrix. That is equivalent to, a-<complexity of O(N2) and, unfortunately, much more complex than
deploying the conventional method, since the latter uses efficient implementations of the MDCT and FFT
featuring an overall complexity of O(N7og(N)). We found, that only a fraction of the values inside a conversion
matrix is necessary for the calculation of audio features, which still guarantee a successful identification of the
underlying audio material. This_is’possible, since the most significant values of a conversion matrix are evenly
spread along the main diagonal, and they decrease quickly the further we move away from it. The most
important characteristic (of)a conversion matrix T(z) is that it exhibits a strong similarity to diagonal and
therefore sparse matrices. For instance, Figure AMD4.4 shows an example of such a polyphase conversion
matrix, where the white areas corresponds to zeros in the matrix. Observe that three images of matrices can
be used, because each corresponds to the coefficients of a different power of z of the polyphase matrix. The
analysis time-winhdow is set to 30 ms because it is suitable for many tasks of music information retrieval. The
sampling frequency is chosen to be 44,1 kHz (generally it is arbitrary), hence the matrix generates
1024 complex Fourier coefficients as output, whereas it takes 576 (the content of one MP3 granule) real
valued input samples.

© ISO/IEC 2009 — All rights reserved 3

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

zZ y4 z
50F 50F
100f 100f 100f
150f 150f 150F
£ 200 2 200f 2 200
() () ()
E 250 @ 250}F E 250}
(] (] (]
S 300 S 300 S 300
— — —
Y 350t & 350¢ Y 350 ;
s = =
400} 400 400}
450 450 450}f
500f 500 500}
550} 550 550f

200 400 600 800 1000
Fourier Coefficients

200 400 600 800 1000
Fourier Coefficients

200 400 600 800 1000
Fourier Coefficients

Figure AMD4.4 — Exemplary complex polyphase conversion matrix for MP3 converting
one granule of 576 real valued subbands into 1024 DFT coefficients. The figure only

shows absolute values.

It can be seen in Figure AMDA4.4 that the most significant values are evenly spread along the main diagonal. If
only the coefficients necessary for the desired accuracy are kept, the sparse matrix shown in Figure AMD4.5
is obtained. For clarification, Figure AMD4.5 shows-an exemplary STFT spectrum and its approximation using
sparse matrices for direct conversion. For this-€xample a conversion complexity of about 0,07 % in contrast to
a fully populated matrix was used. This propérty permits to approximate a desired spectral representation by
only using the strongest diagonals while-omitting the less important ones. Exploiting this property leads, in
general, to a reduction of the computatienal complexity to O(N). To determine the least working complexity,
we show identification results of tests performed on a large audio library with different levels of conversion
complexities in a further section(of\this document. These tests further show that an audio feature extraction
system can deal with very coarse spectral approximations.

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

Z Z V4
50f \ 50t s0f
100f 100 100}
1500\ 150 150t
2 200f \ 2 200} 2 200
c \ c c
S 250 S 250 S 250
o - \ L L
E \ b= £
S 300 \ S 300} S 300}
| \ | |
G \] G
3 350} 3 350t 8 350}
400} \\ 400} 400f
450} \ 450} 450}
500} 500} 500}
\
550 550 550

200 400 600 800 1000
Fourier Coefficients

200 400 600 800 1000
Fourier Coefficients

200 400 600 800 1000
Fourier Coefficients

Figure AMD4.5 — Sparse polyphase matrix obtained from the conversion matrix shown in
Figure AMDA4.4. Only the biggest diagonal values_are maintained.

5.3.2 Creation of a conversion matrix

As said before, the conversion matrix T(z).is/ef size M*M, which is different from those of G(Z) and H(z). But if
K=L, the solution is trivial, because the size of the conversion matrix results to K=L=M. The solution for K != L
is more complex, since we cannot simply multiply G(z) and H(z). This requires to extend the sizes of G(z) and
H(z) to their least common multiple M. py = M/K and p, = M/L, indicating how many times a matrix fits into its
expanded version. For instance, given a non-overlapping synthesis filter bank, its polyphase matrix G is not a
function of z. Thus, G is simply obtained using the formula

~

G=1I

(Pg =pg) @G,

where “denotes ‘the Kronecker matrix product and I(pg X pg) the identity matrix of size pgy x pg. However, this
equation only_helds for matrices having scalar entries, or likewise the maximum degree of O. In other words,
the filter bank, represented by the polyphase matrix exhibits no overlap to consecutive blocks. For instance,
this is the‘case for a non-overlapping DFT as used for the analysis of the feature extraction process. A general
polyphase’ matrix, e.g. G(z) is composed according to

G2~

4
¥

ML“

G (2)

0

ity
II

whara | ic tha daaraa of tha nalvnamiale within G(z) and G ranresaents one-sat of coefficiente—of tha
wWHere——Is—the—aegree—or—the—poryRorias—WhHiHh—otZaha—s{jFepreseits—ohe—Set+—o—coeHHcieits—o+—tne

polynomial matrix G(z) for a specific z'. Since we have an MDCT and even a QMF with different amounts of
overlap on the decoder side, we need to define a more general method.

© ISO/IEC 2009 — All rights reserved 5

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

S(z) is a shift matrix that advances a block or vector by one entry (see next matrix):

o 10 --- 0
0 0 1
(=1 -
Ll S L U
0 : 1
=L 00 0
- S pxp

Observe, if you multiply a row vector from the left then the first entry will be shifted to the second place, the
second entry to the third place, and the last entry to the first place but multiplied with z", which means it is
from the previous block. Note, that So(z) is defined as the identity matrix 1. The general exten§ion rule in
G maps the coefficients of different powers of z corresponding to different time instances, i.e. different blocks
of samples, to different matrix entries and vice versa. It can be seen as some kind of unfolding”a polyphase
matrix to be able to operate on larger block sizes. To demonstrate this, we assume a given K*K polyphase
matrix G(z) having 50% overlap (analog to next equation).

G Il“JI = ':':'[::fl:] + Cw‘rl.‘.‘_l

It processes two successive blocks of size K. We now want to extend this ‘matrix in a way, that it is able to
process blocks of size 2K, where each new block consists of two concatepated blocks of size K. It is important
to recognize, that the extended version G(z) now provides an overlap(within the 2K-sized blocks and to one
half to a succeeding one. Using the K*K or the 2K*2K polyphase.matrix for calculation delivers the same
results, however, the only difference is that G(z) processes blocks. of twice the length. According to the rule
given in G - we from now on call it extension rule — G(z) has the following shape:

o TGy G]SO0 0]
C‘W:[0 G.l]]*LJf[D Gl]*l

Most filter banks used in today's audio coders“feature adaptive window switching between windows of
different lengths. In MP3 and AAC two different window lengths are used, a long and a short window. In
general, long windows provide a better frequency resolution and hence a higher coding gain but can produce
pre-echoes in case of occurring transientslike signal portions. These pre-echoes can be reduced and mostly
avoided by using shorter block lengths. Specifically, the MP3 windows cover 12 and 36 samples, those of
AAC 256 and 2048 samples, respeetively. The sizes of the MP3 windows are very small compared to those of
AAC. They result from cascading_a 6/18-channel MDCT to each channel of a time-invariant 32-channel QMF
filter bank using a fixed size window of 512 coefficients.

Two special windows -(a start and a stop window - are required to realize transitions between long (L) and
short blocks (S) and~vice versa. The filter banks and consequently our conversion matrices can be switched
between four different’ possible states: long to long (LL), long to short (LS), short to short (SS) and short to
long (SL). Unlike-MP3, AAC uses Kaiser Bessel Derived (KBD) windows in addition to sine-shaped windows,
where the long blocks usually use KBD-windows and the short blocks sine-windows.

We now-consider a time-varying synthesis filter bank, whose polyphase matrix has time-varying coefficients.
To express this time dependency, the additional parameter m, denoting the time instance as block index, is
introduced. Thus, G(z) becomes G(z, m, and the time signal X(z) is now obtained using the formula

Aiz)=X (z)G(z.m)

The matrix for time instance m+1 is obtained according to the following equation.

Gz.m+1)=Go(z,m+1) "+ G(z,m)=""

6 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

T(z,m) then can be obtained by combining G(z,m) of different time instances. This procedure also holds for
obtaining H(z,m). Another interpretation is, that for every time instance of m represents another time-invariant
polyphase matrix. To simplify matters, we use G, (z), G.s(z), Gs.(z) and Ggs(z) as those matrices which
replace G(z,m) at a specific time instance m. An in-depth description how to obtain G(z,m) for MP3 and AAC,
is given in the following publications [AMD4-13][AMD4-12].

5.3.3 Performance

The performance of the direct feature extraction compared to the conventional feature extraction is evaluated
on the task of Audio Identification. Audio Identification is possible with the MPEG-7 compliant descriptor
AudioSpectrumEnvelope. Therefore, the MPEG-7 AudioSpectrumEnvelope feature has been extra¢ted twice:
Once with the conventional method by decoding the MP3 or AAC file to wav and than performing.an FFT and
calculating the AudioSpectrumEnvelope feature. The second feature consisted of a directextraction of the
FFT coefficients as previously described and an estimation of the AudioSpectrumEnvelopg. features based on
the resulting coefficients. In a first test, a suitable conversion matrix has been selected. he conversion matrix
can have a scalable complexity, from very low, which enables a very fast featureCextraction to very high,
enabling a slower feature extraction. Therefore, 26 different complexity matrixeschas been chosen, varying
from 0.001% up to 0.1%, compared to a fully populated conversion matrix, werecdsed.

Then, 6 sets of the same 775 music files dividable into 10 genres were~created. The 6 sets contained the
sample rates 32, 44.1 and 48 kHz and the codecs AAC and “MP3 were used. The MPEG-7
AudioSpectrumEnvelope features were extracted from all files, using all complexity matrices. Then, all
extracted features were fed to an audio identification ~algorithm, as described e.g. in
ISO/IEC 15938-4:2002/Amd.2:2006 and [AMD4-18], and the identification rates were estimated. The outputs
of the identification system are an index of the song having-the highest similarity, and a value we call
confidence, indicating the reliability of the result. The confidence is a heuristic of the system and is given in
percent. In our experience a confidence above 50% indicates a correctly identified song. Figure AMD4.6
shows the results for MP3 with the sample rate of 44,1°KHz. As seen, a conversion matrix with a complexity of
0.03 % of the original conversion matrix size allows\a reliable audio identification. The results for MP3 and
AAC with different samplerates can be seen in [AMD4-18].

100 ‘
—_ 80 :: . 0‘03% minimum
9 ; : . ;) |
= = = = Mmaximum :
8 60F v N average :
c - :
k7 |
T 40 -
< .
O .
U 20 ..
0 L i i i |

0 0.02 0.04 0.06 0.08 0.1

Complexity [%]

Figure AMD4.6 — Results after classification for MP3 at a sampling rate of 44.1 kHz, confidence vs.
conversion complexity for the test set of 100 items.

The final extraction speed can be seen in Table AMDA4.1. It shows the duration for the extraction of the whole
set of music files with the direct method and with the conventional method.

© ISO/IEC 2009 — All rights reserved 7

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

Table AMD4.1 — Duration for the extraction of the whole set of music files in seconds

MFP3 AAT
2 kKH: | MIKHz [45Kz | 30 kHe | 441 KHz | 45 kHz
Dirzct Method [mm:ss] 1449 14: 3% 1357 1 21:23 21 5h 2106
Comventional Method [mm:ss] | 35 : 09 44 ¢ A7 4628 | 3302 33:12 33:13
Lnproverment 0] IR P FEVENTY TE T T ETz R

As seen in the table, the average speed improvement for feature extraction from MP3 files in approx. 66 %!
The speed improvement for AAC is approx. 35 %.

5.4 Implementation

5.4.1 Implementation Details

The practical implementation of the direct feature extraction system is explained in this section. It is useful to
initially define the conditions under which we aim to operate our system. We want to be’able to process MP3
as well as AAC files having the most common sampling rates, i.e. 32, 44.1 and 48 kHz. Further, the analysis
of the feature extraction should use frames of 10 ms. Following the demands deseribed in ISO/IEC 15938-4,
we use a Hamming window function and calculate the FFT by means of zero padding in order to obtain an
FFT size of the power of two. For instance, we round a given time-frame sjze of L = 320 to its next larger size
of the power of two, which is particularly L=512. However, these processing steps are covered by a time-
invariant polyphase matrix H(z) whose entries are furthermore scalat, since we have no overlap between
consecutive blocks, i.e. the degree of the polynomials is actually-0 and H(z) reduces to H. Due to the
symmetry property of the FFT we discard one half of the values. Ta\be precisely, we need to keep L/2 + 1 FFT
coefficients, but due to the negligible effect of omitting one coefficient and to stay inside sizes of the power of
two, we only keep L/2 coefficients. This results in a matrix Hof\size L * L/2.

How to obtain the time varying synthesis matrices G(z;m) for MP3 and AAC, was shown in the previous
section. The final conversion matrix T(z,m) is calculated following the method described in last sections using
equations G and T. But due to the time-variancesthe matrix G(z,m) can be composed of coefficients from
different G(z). The bigger G(z,m) gets, the moreicombinations of the matrices G, (z), G.s(z), Gs.(z) and Gss(z)
are thinkable. Thus, one universal conversion matrix T(z,m) meeting our specific requirements is not
realizable. Obviously even without time-variance, such a conversion matrix can become very large. The next
table exemplarily lists the sizes of the,time-invariant decoder synthesis polyphase matrix G(z), the feature
extractor analysis matrix H and the final conversion matrix T(z) for MP3 using a 10 ms analysis window length.
It is important to keep in mind, that-each matrix entry of T(z) contains a complex-valued polynomial of z°.
Thus, in a real implementation we_nheed to allocate memory of three times the numbers given in the next table.
For instance, T(z) at a sampling rate of 44.1 kHz using a 10 ms analysis time window would consume
3* 28224 * 16384 = 1387266048 complex numbers. If we use float precision for computation its size would
reach around 10.34 GB

Table AMD4.2 — Extraction matrix sizes for the different sample rates

T EH: [HIEH: [I5 FH:
iz 56 = 576
H 320 = 258 M1 = I58 50 = 156
T(z) | 2880 = 2304 | 28724 =« 16384 | Z880 = 1536

The memory consumptions of G(z), H(z) and T(z) for different sampling rates for MP3 are given in
Table AMDA4.3.

8 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

Table AMD4.3 — Memory consumption of G(z), H(z) and T(z) for different sampling rates for MP3

Nk [{1 | Sk
Gz i MB

H 065 MB 056 MB 0.94 MBE
Tiz) [13188 MB | 1034 GB | 101.25 MB

To avoid the memory consumption problem, we have to split the calculation process of T(z) into several‘parts.
We therefore calculate sub-matrices of the size L*L, which we define as T(z). The following Figure AMDA4.7
shows the expanded two matrices G(z) and H for a given sampling frequency of f = 32 kHz and anranalysis
window length of t = 10 ms. You can see five unfolded synthesis matrices G(z). The coefficients*of the first
one represent the LL state, followed by coefficients for the LS state, and so on.

Eiz) H
I 280 i 230 i
[576 576 37 76 e - TEE | I | 256 | 156 | 15 | 156 | 2R
E G | Gt | G
LL L 11 R |EH
e G, Gt Coat =} H
5 15 =
s} H
- GGt et A H
35 =5 35
=] H
BGar e 5 .
L 5L =
A H
& Gz G [-
| LL L 1 H B

Figure AMD4.7 — G(z) and H, sampling frequency f = 32 kHz, analysis window length t = 10 ms.
As can be seen, G(z) was obtained using the unfolding rule given in G

However, this is only an example.ln general, many constellations of different states of G(z) are thinkable. To
calculate the desired sub-matrices, G(z) is partitioned into nine L*L matrices as depicted in Figure AMDA4.8.
But to make use of them, the-input data Y(z) containing K samples needs to be reshaped, so that each block
of data will contain L samples. This is simply realized using an intermediate buffer.

© ISO/IEC 2009 — All rights reserved 9

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

G(2)
f 2880
320 576320
Gz’ Gz : G277 Gz Gzt Gzl Gz
5 Gy’ Gz Gy Gz Gt Gt G
I ; 0 -1 -2 -3 -4 -5 -
Q Gyz - Gz G,z” Gz G,z Gz Gz
Gz* Gz’ Gz 1Gr? Gz VGt G
2 s - -1 -2 3 4
= Gz Gz Gz Gz G,z Gyz G,z
Gz Gz Gzt Gz Gz Gz Gyt
Gz7 1 Gzt Gzt Gt Gz’ Gzl Gz
Gz Gz Gzt Gz Gt G2’ Gz
Gzl G? » Gyz? Gzt Gz Gt Gz’

Figure AMD4.8 — Partitioning of G(z) into L*L matrices with*a-polynomial of at maximum z*{-6}

On closer inspection of Figure AMD4.8 one can notice, that*one cycle through G(z) is completed after p, =9
sub-matrices. It can be also interpreted as the number aof how many shifted constellations inside G(z) need to
be calculated. In this manner we can calculate the whole set of matrices T(z) representing coefficients for
different window types. Unlike with its big brother T(z), we can realize a time-variant implementation T(z,m).

5.4.2 Example source code

The following code shows the Matlab squrces, which enable a direct feature extraction from the compressed
domain. The example describes the direct extraction from MP3 audio files into the FFT domain with an
analysis window size of 10 millisecofds. The software has been setup as shown in Figure AMD4.9

main.m

Main file for theydirect and the
conventional‘conversion of
mp3 files'tolthe FFT domain

calls

calls

decode.m

Calling the mp3 decoder and
receive information like
MDCT coefficients

function call

MTX_convert.m

Compute the direct
conversion

based on

mp3datadecoder.exe

Extracting MDCT coefficients
from mp3 file

V_mp3_441_3.0e-
004.bin

Direct conversion matrix

Figure AMD4.9 — Overview of the software structure for the direct feature extractor

10

© ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

The file main.m is the main file to be called for the direct feature extraction. The parameters of the analysis
window length, sampling frequency, format and accuracy has to be given with the start of the file. The
software estimates the name of the direct conversion matrix file, which needs to be situated in the same
directly. For space reasons, one binary conversion matrix is appended at the end of this file. This file is called
V_mp3_441_3.0e-004.bin and is destined for a sample rate of 44.1 kHz, a complexity of 0.03 % and a sample
rate of 10 milliseconds.

The file decode.m performs the function call to an adapted (reference) MP3 decoder, which provides._the
MDCT coefficients for decoding.

Mp3decoder.exe.provides a partial MP3 decoding and returns files containing MDCT coefficients and,auxiliary
information. The file mp3decoder.c shows the source code of this file and its modifications. The{iles needed
for compiling can be downloaded at [AMD4-19].

MTX _convert.m performs the actual direct feature extraction, which relies on the cenversion matrix file:
V_mp3_441_3.0e-004.bin. It is available together with this document.

main.m

oe

USAGE:
Set the following variables to the desired values andlrun the script.

oe

I o analysis window length in seconds for thé\feature

% extraction algorithm [float]
% fs sampling frequency in Hertz [integer]
% format source format, 'mp3' or 'aac' [string]
% accuracy vector containing threshold values-used for the matrix

% generation process... tuning parameter for accuracy resp.
% complexity [float wvector]
% input_path folder wherein the audio sotrce material is stored

% [string]
% codec describes the codec, e.g. YFraunhofer' or 'Lame' [string]
% bit_rate bit rate [string]

oe

5555555555555 5%5%5%%5%5%5%%%%%88555%5%%%%53%%%%%%%%%%%%%%%%%%%%%%%%%%

%% user input

clear;

t = 0.01; % analysis size [s], e.g. 0.01 or 0.03
fs = 44100; % sampling frequency [Hz]

format = 'mp3'; % file format, 'MP3' or 'AAC'
accuracy = 0.0001; % in percent

input_path = '../input/(; % folder containing encoded files
matrix_path = '../MAPLAB matrices'; % folder containing matrix files
output_path = '../output'; % destination folder for results
codec = 'Fraunhofer';

overlap = 07

pExt = 000%';

if (owerlap == 1)
pExtE/= '050%"'

end

2" load ancillary data
load([matrix_path '/' upper (format) '/' num2str (round(fs * t))
'/'" pExt '/' format '_' num2str(round(fs * t)) '_ancillary data']);

% get files to convert
file_names = getFileNames (input_path, format) ;

S50 5 355585553555 8%5558%5558%5553%5553%5%53%5%53%5%53%555355%3%5%595%%5%%5%%5%%5%%%
%% conversion

disp(['... conversion started at ' datestr (now)]);

disp('');

© ISO/IEC 2009 — Al rights reserved 11

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

for k = 1l:length(file_names) % for each file
disp(['converting ' file_names{k} ' to ' num2str(ancillary_data.M)
' DFT resolution ...'1l);
% decoding
disp(['decoding ' format ' file ...'])

decode(file namegs{k} format ﬁnpnf_rafh autput path) .

% add extension if none

[fPath fName fExt] = fileparts(file_names{k}) ;

% output folder

out_folder = [output_path '/' upper (format) '/' fName];
% read MDCT coefficients & side information

% MDCT coeffs

disp(['getting MDCT coefficients & side information ...']);
fid = fopen([out_folder '/mdct_coeffs.bin']l, 'rb');
MDCT_coeffs = fread(fid, [ancillary data.L inf], 'single');
nr_blocks = size (MDCT coeffs, 2);

side info

id = fopen([out_folder '/SI.bin'], 'rb');
SI = fread(fid, [1 inf], 'int');

I = fread(fid, [2 inf], ‘'uint');

ST = SI(:, l:nr_blocks);

fclose(£fid) ;

Hh 0P

oP

n

[}

% read samples
samples = wavread([input_path '/' file_names{k} '.wav']);

if ~exist([out_folder '/' num2str (ancillary_data.M)])

mkdir ([out_folder '/' num2str(ancillary data.M)]);
end

disp('calculating DFT via brute force method...');

tiep
X = samples;
nzeros = ancillary data.M - mod(numel’(X), ancillary_data.M) ;
if (nzeros > 0)
X = [reshape(X, 1, []) zeros(l, nzeros)];
end

X = reshape (X, ancillary_ dataM, []1);

win = hamming (ancillary_data™M) ;

WIN = diag(win) ;

X win = WIN * X;

clear X win WIN;

Y _bruteforce = zeros(ancillary data.n_fft/2, size(X_win, 2));

for m = l:size(X _win, 2)
temp = fft(Xwin(:,m), ancillary data.n_£fft);
Y_bruteforce(): ,m) = temp(l:ancillary data.n_fft/2);

end

eval (['savel''' out_folder '/' num2str (ancillary_data.M) '/' file_names{k}
'“bruteforce.mat'', ''Y bruteforce'');']);

clear~ttemp Y_bruteforce;

s =\toc;

désp (sprintf ('duration: %02d:%02d', floor(s/60),
round (mod (s/60, 1)*60)));

o

TUUUUUUUU UU U U U U U T U T UTUT
TTCC000C00000000000000000000000V0O00000000CO0000O0C0000000000000000000000000 0

o
% approximated direct conversion

o0

for m = 1:1length(accuracy)
ext = sprintf('%06d', round(accuracy (m)*100000)) ;
disp(['converting to DFT via direct conversion method ' ext '...']l);
tiep
eval (['Y_approx_' ext ' = '

12 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

'MTX_convert (MDCT_ coeffs,
'upper (format) ''/"'"'

lower (format) ,
|/|

'accuracy (m) ,
eval(['save(''' out_folder
fName '_accuracy '
'''Y approx_' ext

TNl A

S,
num2str (ancillary data.M)],

num2str (ancillary_data.M)
num2str (accuracy (m

[matrix_path ''/"'"

ancillary data.M, overlap);'l);

|/|
'.mat'',

), '%.1le') !

evartictear
s = toc;
disp (sprintf ('duration: %$02d:%02d'

round (mod (s/60,

Y appTro eXC 7 17

end

o~

conversion ended at

floor(s/60),

’

1)*60)));

datestr (now)]) ;

USAGE:

decode (file_name,
file name
source_folder
destination_folder

format, source
file name
the folde
the folde
stored

000000000000000
0060000060006

function decode(file_name, format,

add extension if none
file_path file _name file_ext]

£

%
[

I/I
I/l

if ~exist([destination_folder
mkdir ([destination_folder
end

__folder, destinations folder)
of the file to dectde [string]
r, where the filefis located [string]
r, subbands and{the side information are
[string]

0909000
500060

oP

source, folder, destination_ folder)

ileparts (file_name) ;

upper (format) '/' file_namel)
upper (format)], file name) ;

% decode
cd([lower (format) 'decoder']) ;
cmd = [lower (format) Adecoder.exe "../' source_folder '/' file_name
file_ext '" \N7/' destination_folder '/' upper (format)
'/' file name '/mdct_coeffs.bin" "../' destination_folder '/'
upper (format) '/' file_name '/SI.bin"'];
w = mysystemn (emd) ;
cd('..")G
end . % end of function
B 5255355525538 5%%339352%%3935%%55333%%%5%393%%%5%%93%%%%
fUnction w = mysystem (cmd)
% run system command; report error; strip all but last line
[s w] = system(cmd) ;
if (s ~= 0)
error (['unable to execute ' cmd ' (' w ')']l);
end
% keep just final line
w = w((l + max ([0, findstr(w, 10)1)) :end);
end

© ISO/IEC 2009 — All rights reserved

13

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

MTX_convert.m

% USAGE:

% Y = MTX_convert (X, w, matrix_ folder, approximation)

Y00...... OUtput matrix containing coefficients of the desired

% domain [(complex) single matrix]
X viiiiiieaa..... input matrix containing coefficients from the source

% domain [string]
B W e e window type information [integer vector]
% matrix_folder ... contains the conversion matrices [string]

defines the degree of accuracy

function Y = MTX_convert (X, SI, matrix_folder, accuracy, format, M, overlap

pExt = '000%';

if (overlap == 1)
pExt = '050%"';

end

n_b = size(X, 2); % # of blocks

% load ancillary data
load([matrix_folder '/' pExt '/' lower (format) '_' num2str (M) ...
'_ancillary_data' 1);

% open file containing conversion matrix coefficients
fid = fopen([matrix folder '/' pExt '/V_' lower(format) '_' num2str (M) ...
'_' num2str (accuracy, '%$.le') '¢bin']l, 'r');

% read conversion matrix coefficients
global Matrix;
while 1
postfix = fread(fid, 10, '*chax® ';
if isempty (postfix)

break;

end

n s = fread(fid, 1, 'int32');

eval (['Matrix.V_' poStfix ' = struct(' ...
'''s real_ ' postfix ''', fread(fid, n_s, ''single''), ' ...
'''s_imag <& \postfix ''', fread(fid, n_s, ''single''), ' ...
"'"'"row_idx}', fread(fid, n_s, ''intlé6''), ' ...
'"''col_idx'', fread(fid, n_s, ''intl6''));'1l);

end
fclose(fid); ¥ ¢close file
clear postfix;

global Params;

Params.idx_ buf 0 0]

~.

Params . 10x_daca
Params.cum
Params . fXchange
Params.shift
Params.part =

U UJl7;

~.

% block shift in coefficients
% subpart of destination matrix

~.

I}
O O O O —

~.

% Z is the coefficient memory
Params.Z = zeros(ancillary_data.z_M*ancillary data.n_fft/2, 1);

14 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

Params.TEMP = zeros(ancillary data.z_ M * ancillary data.n_fft/2, 1);

(o)

Y = []; % output matrix containing coefficients of the desired domain

Params.rest = mod(ancillary data.M, ancillary data.L);

1f (ancillary data . M ancillary data T.)

temp = ancillary data.L;
ancillary_data.L = ancillary_ data.M;
ancillary_data.M = temp;

Params. fXchange = 1;

Params.len = min(ancillary_data.M, ancillary data.L);
Params.ancillary data = ancillary_data;

offset = 0;

%if (ancillary _data.M > ancillary_data.L)
offset = 0;

$end

Params.block = 1;
while (Params.block < n_b - offset)

clc; disp([num2str (round (Params.block/(n_b - offset)*100), '%03.0f') '$']1);
our = '';
while (isempty (OUT))
OUT = convert(X(:, Params.block), SI(:,-Params.block + offset));
end
Y = [Y OUT];
end
end

%% convert

function Y = convert (Coeff, ,ST)
global Matrix;

global Params;

Y o= s
% disp('calculating gndices and cumulated sum...');

Params.idx_data(l)., = mod(Params.idx_data(2) + 1, Params.ancillary_ data.L) ;
Params.idx_datd?) = min(Params.idx _data(l) + Params.len - 1,

Paramshtancillary data.L) - mod(Params.cum, Params.ancillary data.L);
Params.cum. =-mod (Params.cum + diff (Params.idx data) + 1,
Params.ancillary data.M) ;
Params ~1dx_buf (1) = mod(Params.idx_buf(2) + 1, Params.ancillary_ data.M) ;
if ((Params.cum == 0)
Params.idx_buf (2)

Params.ancillary data.M;

else
Params.idx _buf (2) = min(Params.idx_buf(l) + Params.cum - 1,
Params.ancillary_data.M) ;
end

% select matrix

postfix = sprintf('%02.2d_%02.2d_%04.44d',
SI(l) + 1, Params.part + 1, Params.shift + 1);

(o)

% calculation
try % if matrix exists

% set variables

© ISO/IEC 2009 — All rights reserved

15

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

s = eval (['Matrix.V_' postfix '.s_real ' postfix ' + i*Matrix.V_'
postfix '.s_imag_ ' postfix ';']l);

row_idx = eval(['Matrix.V_' postfix '.row_idx;']);

col_idx = eval(['Matrix.V_' postfix '.col_idx;']);

% calculate

if (~Params.fXchange)
idx_start = Params.idx_data(l) ;
else
idx_start = Params.idx_buf (1) ;
end
% disp(['Coeffs: ' num2str (Coeff (idx_start - 1 + row_idx(1:5))"')1);
for k = 1:1length(s)
Params.TEMP (col_idx(k)) = Params.TEMP (col_idx(k)) + s(k) * Coeff (idx) start -
1 + row_idx(k));
end
% disp(['postfix: ' postfix]);
end
Params.part = Params.part + 1;
if (((Params.idx_buf (2) == Params.ancillary data.M) && (~Params.fXchange)) ||
((Params.i1dx_data(2) == Params.ancillary data.L) && (Params.fXchange)))

% write out

% updating memory (adding past samples)
for z = 1:Params.ancillary data.z_M-1
Params.Z((l:Params.ancillary data.n_fft/2) + fz-
1) *Params.ancillary_data.n_£fft/2) =
Params.TEMP ((1:Params.ancillary data.n_f£fty2) + (z-
1) *Params.ancillary_data.n_fft/2)
+ Params.Z((l:Params.ancillary data.nofft/2) +
z*Params.ancillary data.n_fft/2);
end

Params.Z((l:Params.ancillary datasn_ fft/2) +
(Params.ancillary _data.z_Mi1) *Params.ancillary data.n_fft/2) =

Params.TEMP ((1:Params.ancillary_data.n_fft/2) +
(Params.ancillary datarz”M-1) *Params.ancillary data.n_fft/2);

% output
Y = Params.Z(l:Params'.ancillary data.n_fft/2);

% set TEMP to zero
Params.TEMP = _ze¥os (Params.ancillary data.z_M*Params.ancillary data.n_fft/2,1);

Params.shift~= mod(Params.shift + Params.rest/
Params.ancillary data.s_shift, Params.ancillary data.n_shift);

Params~part = 0;

end

if\ (((Params.idx_data(2) == Params.ancillary data.L) && (~Params.fXchange)) ||

(lParams.idx buf (2) == Params.ancillary data.M) && (Params.fXchange)))
Params.block = Params.block + 1;

end

end

SEOF

mp3datadecoder.c

16 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

/~k~k~k~k~k~k~k~k~k~k~k~k~k***

Copyright (c) 1991 MPEG/audio software simulation group, All Rights Reserved

mp3datadecoder. c

**/

#include stdio h

#include <io.h>
#include <stdlib.h>

#include "decoderlib/common.h"
#include "decoderlib/decoder.h"

EE R I b S P S R R I I b I b I S I S R b b S b b I S S I R R I b R S S R S b b b b S S R S e 4
/

*

& This part contains the MPEG I decoder for Layers I & II.

*

~k'k'k'k'k'k'k'k'k'k'k'k'k**********************/

/~k~k~k~k~k~k~k~k~k~k~k~k~k***

*

2 For MS-DOS user (Turbo c) change all instance“0f malloc

& to _farmalloc and free to _farfree. Compiler model hugh

2 Also make sure all the pointer specified/axre changed to far.
*
*

~k'k'k'k'k'k'k'k'k***********************/

/***
*

* Core of the Layer II decoder. Default)layer is Layer IT.

*

~k'k**'k'k'k'k'k'k'k'k'k**********************/

/* Global variable definitions, For "musicout.c" */

char *programName;
int main_data_slots() ;
int side_info_slots() ;

/* Implementations{ *)/

main (argc, argy)

int argc;

char **args;

{

/*typedef” short PCM[2] [3] [SBLIMIT]; */

typedef’ short PCM[2] [SSLIMIT] [SBLIMIT] ;
PCM FAR *pcm_sample;

typedef unsigned int SAM[2] [3] [SBLIMIT] ;
SAM FAR *sample;

typedef double FRA[2][3] [SBLIMIT];
FRA FAR *fraction;

typedef double VE[2] [HAN SIZE];

VE FAR *w;

Bit_stream_struc bs;

frame_params fr_ps;
layer info;
unsigned long sample_frames;

© ISO/IEC 2009 — All rights reserved

17

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

int i, j, k, stereo, clip, sync;

int done = FALSE;

int error_protection, crc_error_count, total_error_count;

unsigned int old_crc, new_crc;

unsigned int bit_alloc[2] [SBLIMIT], scfsi[2] [SBLIMIT],
scale index[2][3] [SRT.TMTT] ;

unsigned long bitsPerSlot, samplesPerFrame, frameNum = 0;

unsigned long frameBits, gotBits = 0;

IFF_AIFF pcm_aiff_data;

char encoded_file_name[MAX NAME_SIZE] ;

char decoded_file name[MAX NAME_SIZE] ;

char SI file name[MAX NAME SIZE];

char t[50];

int need_aiff;

int need_esps; /* MI */

int topSb = 0;

FILE* musicout = NULL;
FILE* pMDCT = NULL;
FILE* pSI = NULL;

IIT _scalefac_t III_scalefac;
III side_info_t III _side_info;

#ifdef MACINTOSH
console_options.nrows = MAC_WINDOW_SIZE;
argc = ccommand (&argv) ;

#endif

/* Most large variables are declared dynamically to ensure
compatibility with smaller machines %/

pcm_sample = (PCM FAR *) mem_alloc((kong) sizeof (PCM), "PCM Samp") ;
sample = (SAM FAR *) mem_alloc((lerlg) sizeof (SAM), "Sample");
fraction = (FRA FAR *) mem _alloc¢ (Mlong) sizeof (FRA), "fraction");
w = (VE FAR *) mem_alloc((long)ssizeof (VE), "w");

fr_ps.header = &info;

fr_ps.tab_num = -1; /* no table loaded */

fr ps.alloc = NULL;

for (i=0;1<HAN_SIZE;G@+#+) for (j=0;3j<2;j++) (*w)[j]l[i] = 0.0;

programName = argw[0];
if (arge==1) { /* no command line args -> interact */
do {
printft / ("Enter encoded file name <required>: ");
gets~(encoded_file_name) ;
if/encoded_file name[0] == NULL_CHAR)
printf ("Encoded file name is required. \n");
}>while (encoded _file name[0] == NULL_CHAR) ;
printf (">>> Encoded file name is: %s \n", encoded_file_name) ;
#ifidef MS_DOS
printf ("Enter MPEG decoded file name <%s>: ",
new_ext (encoded_file_name, DFLT_OPEXT)); /* 92-08-19 shn */

#else
printf ("Enter MPEG decoded file name <%s%s>: ", encoded_file_name,
DFLT_OPEXT) ;
#endif
gets (decoded_file_name) ;
if (decoded_file _name[0] == NULL_CHAR) {
#ifdef MS_DOS

18 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

/* replace old extension with new one, 92-08-19 shn */
strcpy (decoded_file_name,new_ext (encoded_file_name, DFLT_OPEXT)) ;

#else
strcat (strcpy(decoded_file_name, encoded_file_name), DFLT_ OPEXT) ;
|#endif
)
printf (">>> MPEG decoded file name is: %s \n", decoded_file_ name) ;
printf (
"Do you wish to write an AIFF compatible sound file ? (y/<n>) : ")x»
gets(t) ;
if (*t == 'y' || *t == 'Y') need aiff = TRUE;
else need_aiff = FALSE;
if (need_aiff)
printf (">>> An AIFF compatible sound file will be writtén\n") ;
else printf (">>> A non-headered PCM sound file will be wnmitten\n");
printf (
"Do you wish to exit (last chance before decoding)’ ? (y/<n>) : ");
gets(t) ;
if (*t == 'y' || *t == 'Y') exit(0);
}
else { /* interpret CL Args */

int i=0, err=0;

need_aiff = FALSE;
need_esps = FALSE; /* MI */

encoded_file_name[0] = '"\0';
decoded_file_name[0] = '\O';
SI_file name[0] = '\0O';

while (++i<argc && err == 0) \{

char ¢, *token, *arg,. ffhextArg;
int argUsed;

token = argv([i];
if (*token++ ==¢4-"') {
if (i+l1 <.ardc) nextArg argv[i+1];
else nextArg = "";
argUseédy'= 0;
whilé(c = *token++) {
if (*token /* NumericQ (token) */) arg
else arg
switch(c) {
case 's': topSb = atoi(arg); argUsed = 1;
if (topSb<l || topSb>SBLIMIT) {
fprintf (stderr, "%s: -s band %s not %d..%d\n",
programName, arg, 1, SBLIMIT) ;
err = 1;

token;
nextArg;

}
break;
case 'A': need_aiff = TRUE; break;
case 'E': need_esps = TRUE; break; /* MI */

default: fprintf (stderr, "%s: unrecognized option %c\n",
programName, c);
err = 1; break;
}
if (argUsed) {
if (arg == token) token = ""; /* no more from token */
else ++i; /* skip arg we used */

© ISO/IEC 2009 — All rights reserved 19

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

ISO/IEC TR 15938-8:2002/Amd.4:2009(E)

arg = ""; argUsed = 0;
}
}
}
else {
if (encoded file name[0] == '\0"')
strcpy (encoded_file_name, argv[il]) ;
else
if (decoded_file name[0] == '"\0"'")
strcpy (decoded_file_name, argv[il]) ;
else
1f(SI_file name[0] == '\0"')
strcpy (SI_file _name, argv([i]);
else {
fprintf (stderr,
"%s: excess arg %s\n", programName, argv[id).;
err = 1;
}
}
}
if (err || encoded_file_name[0] == '\0') usage(); /* never returns */
if (decoded_file _name[0] == '\0') {

strcpy (decoded_file_name, encoded_file_name));
strcat (decoded_file_name, DFLT_OPEXT) ;

}
}
/* report results of dialog / command l%%ne */
printf ("Input file = '%s' output filey= '%s'\n",

encoded_file name, decoded_ filé& name) ;
if (need_aiff) printf ("Output fileswr¥itten in AIFF format\n") ;

if (need_esps) printf ("Output filevwritten in ESPS format\n"); /* MI */
if ((pMDCT = fopen(decoded_file_name, "wb")) == NULL) {
printf ("Could not create \"%s\".\n", decoded_file_name) ;
exit (1) ;
}
if ((pSI = fopen(SI_.file_name, "wb")) == NULL) {
printf ("Coul&@-riot create \"%s\".\n", decoded_file_name) ;
exit (1) ;
}

open_bit.stream r (&bs, encoded_file_name, BUFFER_SIZE) ;

if (deed_aiff)
ife (aiff_seek_ to_sound data(musicout) == -1) {
printf ("Could not seek to PCM sound data in \"%$s\".\n",
decoded_file name) ;
exit (1) ;
}

sample_frames = 0;

while (!end_bs (&bs)) {

20 © ISO/IEC 2009 — All rights reserved

https://standardsiso.com/api/?name=6287b7ddbba7ff2e8bd57b145fe735da

	After 4.8.2.2.6, add Clause 5:
	5 Direct audio feature extraction from the compressed domain
	5.1 Introduction
	5.2 Conventional feature extraction
	5.3 Direct feature extraction
	5.3.1 System overview
	5.3.2 Creation of a conversion matrix
	5.3.3 Performance

	5.4 Implementation
	5.4.1 Implementation Details
	5.4.2 Example source code

	5.5 Conclusions
	Add the following to Bibliography:

