

AEROSPACE MATERIAL SPECIFICATION

SAE,

AMS 6305D

Issued Revised Reaffirmed MAY 1973 SEP 2002 FEB 2007

Superseding AMS 6305C

(R)

Steel, Heat-Resistant, Bars, Forgings, and Tubing 0.95Cr - 0.55Mo - 0.30V (0.40 - 0.50C) Vacuum Arc Remelted

(Composition similar to UNS K14675)

RATIONALE

This document has been reaffirmed to comply with the SAE Five Year Review policy.

1. SCOPE:

1.1 Form:

This specification covers a premium aircraft-quality, low-affoy, heat-resistant steel in the form of bars, forgings, mechanical tubing, and forging stock.

1.2 Application:

These products have been used typically for parts, such as compressor discs, turbine discs, shafts, and fasteners, for use in service up to 1000 °F (538 °C) and subject to stringent magnetic particle inspection standards, but usage is not limited to such applications.

2. APPLICABLE DOCUMENTS:

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

2.1 SAE Publications

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001 or www.sae.org.

AMS 2251 Tolerances, Low-Alloy Steel Bars

MAM 2251 Tolerances, Metric, Low-Alloy Steel Bars AMS 2253 Tolerances, Carbon and Alloy Steel Tubing

MAM 2253 Tolerances, Metric, Carbon and Alloy Steel Tubing

AMS 2259 Chemical Check Analysis Limits, Wrought Low-Alloy and Carbon Steels

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2007 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)

Tel: 724-776-4970 (outside USA)

ax: 724-776-0790

Email: CustomerService@sae.org

SAE WEB ADDRESS: http://www.sae.org

2.1 (Continued):

AMS 2300	Steel Cleanliness, Premium Aircraft-Quality Magnetic Particle Inspection Procedure
MAM 2300	Steel Cleanliness, Premium Aircraft-Quality Magnetic Particle Inspection Procedure,
	Metric (SI) Measurement
AMS 2370	Quality Assurance Sampling and Testing, Carbon and Low-Alloy Steel Wrought
	Products and Forging Stock
AMS 2372	Quality Assurance Sampling and Testing, Carbon and Low-Alloy Steel Forgings
AMS 2806	Identification, Bars, Wire, Mechanical Tubing, and Extrusions, Carbon and Alloy Steels
	and Corrosion and Heat-Resistant Steels and Alloys
AMS 2808	Identification, Forgings
AS1182	Standard Machining Allowance, Aircraft-Quality and Premium Aircraft-Quality Steel
	Bars and Mechanical Tubing

2.2 ASTM Publications:

Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 or www.astm.org.

	Mechanical Testing of Steel Products
ASTM A 604	Macrotech Testing of Consumable Electrode Remelted Steel Bars and Billets

ASTM E112 Determining Average Grain Size

ASTM E 350 Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron

ASTM E 384 Microindentation Hardness of Materials

3. TECHNICAL REQUIREMENTS:

3.1 Composition:

Shall conform to the percentages by weight shown in Table 1, determined by wet chemical methods in accordance with ASTM E 350, by spectrochemical methods, or by other analytical methods acceptable to purchaser.

TABLE 1 - Composition

Element	min	max
Carbon	0.40	0.50
Manganese	0.40	0.70
Silicon	0.15	0.35
Phosphorus		0.015
Sulfur		0.015
Chromium	0.80	1.10
Molybdenum	0.45	0.65
Vanadium	0.25	0.35
Nickel		0.25
Copper		0.35
Lead		0.001 (10 ppm)

- 3.1.1 Check Analysis: Composition variations shall meet the applicable requirements of AMS 2259.
- 3.2 Melting Practice:

Steel shall be multiple melted using consumable electrode vacuum practice (VAR) in the remelt cycle.

3.3 Condition:

The product shall be supplied in the following condition; hardness and tensile strength shall be determined in accordance with ASTM A 370:

- 3.3.1 Bars:
- 3.3.1.1 Bars 0.500 Inch (12.70 mm) and Under in Nominal Diameter or Least Distance Between Parallel Sides: Cold finished having tensile strength not higher than 125 ksi (862 MPa) or hardness not higher than 27 HRC.
- 3.3.1.2 Bars Over 0.500 Inch (12.70 mm) in Nominal Diameter or Least Distance Between Parallel Sides: Hot finished and annealed, unless otherwise ordered, having hardness not higher than 229 HB, or equivalent (See 8.2). Bars ordered cold finished may have hardness as high as 248 HB, or equivalent (See 8.2).
- 3.3.2 Forgings: Annealed having hardness not higher than 248 HB, or equivalent (See 8.2).
- 3.3.3 Mechanical Tubing: Cold finished, unless otherwise ordered, having hardness not higher than 25 HRC, or equivalent (See 8.2). Tubing ordered hot finished and annealed shall have hardness not higher than 99 HRB, or equivalent (See 8.2).
- 3.3.4 Forging Stock: As ordered by the forging manufacturer.
- 3.4 Properties:

The product shall conform to the following requirements; hardness testing shall be performed in accordance with ASTM A 370:

3.4.1 Macrostructure: Visual examination of transverse full cross-sections from bars, billets, tube rounds, and forging stock, etched in hot hydrochloric acid in accordance with ASTM A 604, shall show no pipe or cracks. Porosity, segregation, inclusions, and other imperfections for product 36 square inches (232 cm²) and under in nominal cross-sectional area shall be no worse than the macrographs of ASTM A 604 shown in Table 2.

TABLE 2 - Macrostructure Limits

Class	Condition	Severity
1	Freckles	А
2	White Spots	Α
3	Radial Segregation	В
4	Ring Pattern	В

- 3.4.2 Average Grain Size: Shall be ASTM No. 5 or finer, determined in accordance with ASTM E 112.
- 3.4.3 Decarburization:
- 3.4.3.1 Bars and tubing ordered ground, turned, or polished shall be free from decarburization on the ground, turned, or polished surfaces.
- 3.4.3.2 Allowable decarburization of bars, billets, and tube rounds ordered for redrawing or forging or to specified microstructural requirements shall be as agreed upon by purchaser and vendor.
- 3.4.3.3 Decarburization of bars to which 3.4.3.1 or 3.4.3.2 is not applicable shall be not greater than shown in Table 3.

TABLE 3A - Maximum Decarburization, Inch/Pound Units

	3.	
	Iominal Diameter or Distance	Total Depth of
	Between Parallel Sides	Decarburization
	Inches	Inch
	Up to 0.375, incl	0.015
	Over 0.375 to 0.500, incl	0.017
	Over 0.500 to 0.625, incl	0.019
	Over 0.625 to 1.000, incl	0.022
	Over 1.000 to 1.500, incl	0.025
	Over 1.500 to 2.000, incl	0.030
1	Over 2.000 to 2.500, incl	0.035
DV.	Over 2.500 to 3.000, incl	0.040
ゔ゚゙	Over 3.000 to 4.000, incl	0.045

TABLE 3B - Maximum Decarburization, SI Units

Nominal Diamete	er or Distance	Total Depth of	
Between Parallel Sides		Decarburization	
Millimeters		Millimeters	
Up to	9.52, incl	0.38	
Over 9.52 to	12.70, incl	0.43	
Over 12.70 to	15.88, incl	0.48	
Over 15.88 to	25.40, incl	0.56	į
Over 25.40 to	38.10, incl	0.64	Ç
Over 38.10 to	50.80, incl	0.76	,
Over 50.80 to	63.50, incl	0.89	
Over 63.50 to	76.20, incl	1.02	
Over 76.20 to	101.60, incl	1.14	

3.4.3.4 Decarburization of tubing to which 3.4.3.1 or 3.4.3.2 is not applicable shall be not greater than shown in Table 4.

TABLE 4A - Maximum Decarburization, Inch/Pound Units

Nominal Wall Thickness	Total Depth	Total Depth
Inches	ID	OD
*0	Inch	Inch
Up to 0.109, incl	0.008	0.020
Over 0.109 to 0.203, incl	0.010	0.025
Over 0.203 to 0.400, incl	0.012	0.030
Over 0.400 to 0.600, incl	0.015	0.035
Over 0.600 to 1.000, incl	0.017	0.040
Over 1.000	0.020	0.045

TABLE 4B - Maximum Decarburization, SI Units

	Total Depth	Total Depth
Nominal Wall Thickness	ID	OD
Millimeters	Millimeter	Millimeter
Up to 2.77, incl	0.20	0.51
Over 2.77 to 5.16, incl	0.25	0.64
Over 5.16 to 10.16, incl	0.30	0.76
Over 10.16 to 15.24, incl	0.38	0.89
Over 15.24 to 25.40, incl	0.43	1.02
Over 25.40	0.51	1.14

- 3.4.3.5 Decarburization shall be measured by the metallographic method, by the HR30N scale hardness testing method, or by a traverse method using microhardness testing in accordance with ASTM E 384. The hardness method(s) shall be conducted on a hardened but untempered specimen protected during heat treatment to prevent changes in surface carbon content. Depth of decarburization, when measured by a hardness method, is defined as the perpendicular distance from the surface to the depth under that surface below which there is no further increase in hardness. Such measurements shall be far enough away from any adjacent surface to be uninfluenced by any decarburization on the adjacent surface. In case of dispute, the depth of decarburization determined using the microhardness traverse method shall govern.
- 3.4.3.5.1 When determining the depth of decarburization, it is permissible to disregard local areas provided the decarburization of such areas does not exceed the above limits by more than 0.005 inch (0.13 mm) and the width is 0.065 inch (1.65 mm) or less.
- 3.5 Quality:

The product, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the product.

- 3.5.1 Steel shall be premium aircraft-quality conforming to AMS 2300 or MAM 2300.
- 3.5.2 Bars and mechanical tubing ordered hot rolled or cold drawn or ground, turned, or polished shall, after removal of the standard machining allowance in accordance with AS1182, be free from seams, laps, tears, and cracks open to the ground, turned, or polished surface.
- 3.5.3 Grain flow of die forgings, except in areas which contain flash-line end grain, shall follow the general contour of the forgings showing no evidence of re entrant grain flow.
- 3.6 Tolerances:

Shall be as follows:

- 3.6.1 Bars: In accordance with AMS 2251 or MAM 2251.
- 3.6.2 Mechanical Tubing: In accordance with AMS 2253 or MAM 2253.
- 4. QUALITY ASSURANCE PROVISIONS:
- 4.1 Responsibility for Inspection:

The vendor of the product shall supply all samples for vendor's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the product conforms to specified requirements.

- 4.2 Classification of Tests:
- 4.2.1 Acceptance Tests: Composition (3.1), condition (3.3), macrostructure rating (3.4.1), average grain size (3.4.2), decarburization (3.4.3), and tolerances (3.6) are acceptance tests and shall be performed on each heat or lot as applicable.
- 4.2.2 Periodic Tests: Frequency-severity cleanliness rating (3.5.1) and grain flow of die forgings (3.5.3) are periodic tests and shall be performed at a frequency selected by the vendor unless frequency of testing is specified by purchaser.
- 4.3 Sampling and Testing:

Shall be as follows:

- 4.3.1 Bars, Mechanical Tubing, and Forging Stock: In accordance with AMS 2370.
- 4.3.2 Forgings: In accordance with AMS 2372.
- 4.4 Reports:

The vendor of the product shall furnish with each shipment a report showing the results of tests for composition and macrostructure of each heat and for condition and average grain size of each lot, and stating that the product conforms to the other technical requirements. This report shall include the purchase order number, heat and lot numbers, AMS 6305D, size, and quantity. If forgings are supplied, the size and melt source of stock used to make the forgings shall also be included.

4.5 Resampling and Retesting:

Shall be as follows:

- 4.5.1 Bars, Mechanical Tubing, and Forging Stock: In accordance with AMS 2370.
- 4.5.2 Forgings: In accordance with AMS 2372.
- 5. PREPARATION FOR DELIVERY:
- 5.1 Sizes:

Except when exact lengths or multiples of exact lengths are ordered, straight bars and tubing will be acceptable in mill lengths of 6 to 20 feet (1.8 to 6.1 m) but not more than 10% of any shipment shall be supplied in lengths shorter than 10 feet (3 m).

5.2 Identification:

Shall be as follows:

5.2.1 Bars and Mechanical Tubing: In accordance with AMS 2806.