

A Product of the Cooperative Engineering Program

SAE J267 DEC83

Wheels/Rims —
Trucks — Test
Procedures and
Performance

SAE Recommended Practice Revised December 1983

Requirements

S.A.E. LIBRARY

an American National Standard

*ENORM. OM. Click to

o view the full PDF of 1267 1989.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

Copyright 1987 Society of Automotive Engineers, Inc.

TRUCK AND BUS PRACTICE

SAE J267

400 COMMONWEALTH DRIVE, WARRENDALE, PA 15096

Issued Sept. 1971 Revised Dec. 1983

Supersedes J267 SEP71

an American National Standard

Ø WHEELS/RIMS - TRUCKS - TEST PROCEDURES AND PERFORMANCE REQUIREMENTS

1. SCOPE: This SAE Recommended Practice provides uniform laboratory procedures for fatigue testing certain production disc wheels, wheels for demountable rims, and demountable rims intended for normal highway use on trucks, buses, truck-trailers, and multipurpose passenger vehicles. Standardized fatigue tests are yet to be developed for wheels and rims not covered in this recommended practice.

2. REFERENCES:

SAE J393 - Nomenclature - Wheels, Hubs, and Rims for Commercial Vehicles
ISO 3894 - Road Vehicles - Commercial Vehicles - Wheels/Rims - Test Methods

3. TEST PROCEDURES:

- 3.1 Wheels/Rims for Test: Use only fully processed wheels/rims which are representative of production parts intended for vehicle application. New separate wheels/rims and new related components of multipiece rims will be used for each test.
- 3.2 Cornering Fatigue Test, Disc Wheels: The cornering fatigue test shall be conducted by one of the following methods as specified by the wheel manufacturer.

NOTE: Both test methods have been proved valid; however, there is not necessarily a correlation between the two tests in number of cycles and/or load.

SAE Technical Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

- 3.2.1 Cornering Fatigue 40 Deg Loading Method:
- 3.2.1.1 Equipment: The test machine shall be such that either the wheel rotates under the influence of a stationary bending moment and axial load, or the stationary wheel is subjected to an axial load and rotating bending moment (See Fig. 1).

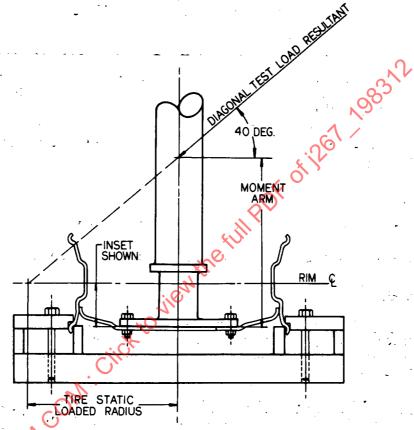


FIG. CORNERING FATIGUE, 40 DEG LOADING METHOD

Procedure: The rim shall be clamped securely to the test device. A rigid load arm shaft with a test adaptor with a mounting surface representative of production hubs shall be attached to the mounting surface of the wheel, using studs and nuts representative of those specified for the wheel. These wheel nuts shall be torqued to the torque limits specified in Table A-l of the Appendix for the stud size and type of nut. The mating surfaces of the test adaptor and wheel shall be free of excessive buildup of paint, dirt, or foreign material. The final clamped position of the wheel without load shall not exceed an eccentricity of 0.010 in (0.254 mm) total indicator reading, normal to the point of loading. The load system shall maintain the specified load within +3%. The nominal angle of the test load resultant will be 40 deg from a plane through the center of the rim as shown in Fig. 1.

3.2.1.3 <u>Test Load and Moment Arm Determination</u>: The test load and moment arm are determined as follows:

D = (S)L

where: D = diagonal test load resultant, lb force (N)

L = load rating of the wheel as specified by the wheel

manufacturer, lb force (N)
S = accelerated test factor
Moment arm = slr tan 40 deg + d

where:

slr = static loaded radius of the largest tire to be used on the wheel as specified by the vehicle or wheel manufacturer, in (mm). Refer to Table A-2 of the

Appendix for static loaded radius

tan 40 deg = tangent of 40 deg = 0.84

d = inset or outset (positive for cinset, negative for outset) of the wheel, in (min). If wheel may be used as inset or outset, use inset (See SAE J393).

3.2.1.4 Test Load Factors and Cycle Requirements: See Table 1.

TABLE 1 - TEST LOAD FACTORS AND CYCLE REQUIREMENTS FOR CORNERING FATIGUE TEST,
40 DEG LOADING METHOD

Disc Wheel Description					Performance Requirements		
	Rim Diameter Size Code		* . /	Accelerated	Min		
Material	in	nm	in	mm	Inset/ Outset	Test Factor	Cycle Life
Ferrous	Less than	Less than 285.75	16 and greater ^c	406 and greater ^c	A11	1.6	20 000
Ferrousa	8.75	222.25	15	380	A11	1.6	20 000
Ferrous	All except 8.75	All except 222.25	Less than 16	Less than 406	A11	b	b
Ferrous	11.25 and greater	285.75 and greater	All ^c	Allc	A11	1.9	30 000

aWheels used for low platform trailers.

bUse 90 deq loading method, paragraph 3.2.2.

CExclude 17.5 in (444.5 mm) diameter and larger with rim width of 10.50 in (266.7 mm) and wider (wide-base truck-bus wheels).

- 3.2.2 Cornering Fatigue 90 Deg Loading Method:
- 3.2.2.1 Equipment: The test machine shall be such that either the wheel rotates under the influence of a stationary bending moment, or the stationary wheel is subjected to a rotating bending moment. (See Fig. 2.)

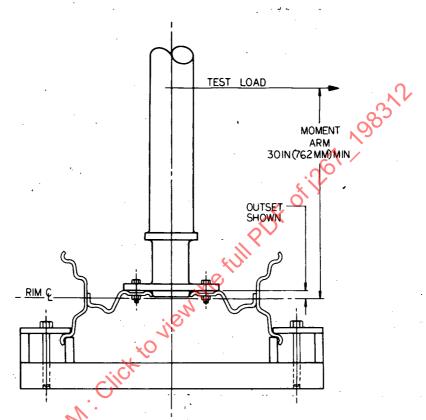


FIG. 2 - CORNERING FATIGUE, 90 DEG LOADING METHOD

Procedure: The rim shall be clamped securely to the test device. A rigid load arm shaft with a test adaptor with a mounting surface representative of production hubs shall be attached to the mounting surface of the wheel, using studs and nuts representative of those specified for the wheel. These wheel nuts shall be torqued to the torque limits specified in Table A-l of the Appendix for the stud size and the type of nut. The mating surfaces of the test adaptor and wheel shall be free of excessive buildup of paint, dirt, or foreign matter. The final clamped position of the wheel without load should not exceed an eccentricity of 0.010 in (0.254 mm) total indicator reading normal to the shaft axis at the point of loading. The load system shall maintain the specified load within +3%. The application of the test load will be parallel to a plane through the center of the rim as shown in Fig. 2.

3.2.2.3 <u>Test Load and Bending Moment Determination</u>: The test load is determined by:

Test load =
$$\frac{M}{Moment arm}$$
 (See Fig. 2)

M is determined by the formula:

$$M = [\mu(slr) + d] (S) L$$

where:

M = bending moment, lbf-in (N·m)

L = load rating of the wheel as specified by the wheel

manufacturer, lb force (N)

slr = static loaded radius of the largest tire to be used on the wheel as specified by the vehicle or wheel manufacturer, in (mm x 10⁻³). Refer to Table A-2 of the Appendix for static loaded radius.

 μ = coefficient of friction developed between tire and road

(0.7)

d = inset or outset (positive for inset, negative for outset) of the wheel, in (mm). If wheel may be used as inset or outset, use inset (See SAL J393).

S = accelerated test factor \(\)

3.2.2.4 Test Load Factors and Cycle Requirements: See Table 2.

TABLE 2 - TEST LOAD FACTORS AND CYCLE REQUIREMENTS FOR CORNERING FATIGUE TEST, 90 DEG LOADING METHOD

Disc Whee Description					Performance Requirements		
		Rim Diameter Size Code		Inset/Outset		Accel- erated	Min
Material	Bolt Circle	2Min	nm	in	mm	Test Factor	Cycle Life
Ferrous	Alk	13, 14, 15	330, 356, 381	Less than	Less than	1.60	18 000
Ferrous	Ali	16 and larger ^a	406 and larger ^a	Less than	Less than	1.45	30 000
Ferrous	All	Alĭa	Alĭa	4 or more	101.6 or more	1.10 1.30	60 000 40 000
Aluminum	All	20 and larger ^a	508 and larger ^a	A11	All	1.35	250 000

^aExclude 17.5 in (444.5 mm) diameter and larger with rim width of 10.50 in (266.7 mm) and wider (wide-base truck-bus wheels).

3.2.3 Test Termination Definition:

- (a) Inability of wheel to sustain load.
- (b) A visually detected fatigue crack penetrating through a section.
- 3.3 Radial Fatigue Test, Disc Wheels and Demountable Rims:
- 3.3.1 Equipment: The test machine shall be one with a driven, rotatable drum which presents a smooth surface wider than the loaded test tire section width. The suggested diameter of the drum is 67.23 in (1707.6 mm) which results in 300 revolutions/mile (186 revolutions/km). The test wheel (single application) and tire fixture must provide loading normal to the surface of the drum and in line radially with the center of the test wheel and the drum. The axes of the drum and the test wheel must be parallel.
- 3.3.2 Procedure: Tires selected for this test shall be representative of a size and construction approved by the Tire and Rim Association and the wheel/rim manufacture for the wheel/rim under test. For disc wheels, the test adaptor shall be representative of production hubs using studs and nuts representative of those specified for the wheel. For demountable rims, the test adaptor shall be representative of production spoke wheels using studs, nuts, and clamps representative of those specified for the rim. The wheel nuts shall be torqued to the torque limits specified in Table A-l of the Appendix for stud size and type of nut used. The test load and the inflation pressure are based on wheel/rim ratings. Test inflation pressure should be selected in accordance with Table 3.

The selected-test inflation pressure and load shall both be maintained within $\pm 3\%$.

TABLE 3 - TEST INFLATION PRESSURES

Max. Inflation Pressure Ra	ing
psi kPa	Test Pressure, Minimum
0 through 45 0 through Over 45 Over 310	310 65 psi (450 kPa) 1.2 x Max. Inflation Pressure Rating

3.3.3 Radial Load Determination: The radial load is determined as follows:

$$R = (S)L$$

where: R = radial load, 1b force (N)

L = load rating of the wheel/rim as specified by the wheel/rim

manufacturer, 1b force (N)

S = accelerated test factor

3.3.4 Test Load Factors and Cycle Requirements: See Table 4.

TABLE 4 - TEST LOAD FACTORS AND CYCLE REQUIREMENTS FOR RADIAL FATIGUE TEST

					Perf	mance
	<u> </u>	Wheel/Rim Desci	ription		Requi	irements
		Rim Diamete	r Size Code		Accel- erated	Min.
	Bolt			Inset/	Test	Cycle
Material	Circle	in	mm	Outset ^b	Factor	Life
Ferrous	A11	13, 14, 15, 16, 16.5 ^a 17.5 ^a Full Drop Center 15, 16 Semi Drop Center	330, 336, 381, 406, 419 ^a 444 ^a Full Drop Center 381, 406 Semi Drop Center	A11	2. 2 1. 8	500 000 1 000 000
Ferrous	A11	15, 17, 18, 20, 22, 24 Flat Base 17.5HC, 19.5, 22.5, 24.5 Drop Center	381, 432, 457, 508, 559 610 Flat Base 444HC, 495, 572, 622 Drop Center	A11	2.0 1.9 1.8 1.7 1.6	500 000 600 000 700 000 850 000 1 000 000
Aluminum	All	20 and larger	508 and larger	All	2.8 2.0	100 000 1 000 000

a9.75 in (248 mm) rim width and narrower.

3.3.5 <u>Test Termination Definition</u>:

- (a) Inability of wheel/rim to sustain load or contain air.
- (b) A visually detected fatigue crack penetrating through a section.
- 3.4 Cornering Katigue Test, Wheels for Demountable Rims:
- 3.4.1 Equipment: The test machine shall be such that either the wheel rotates under the influence of a stationary bending moment, or the stationary wheel is subjected to a rotating bending moment. (See Fig. 3.)

 $^{^{\}mathrm{b}}\mathrm{Offset}$ for demountable rims.

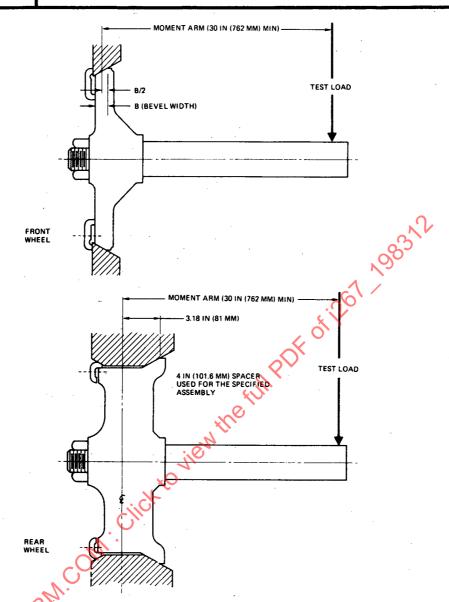


FIG. 3 - CORNERING FATIGUE, 90 DEG LOADING METHOD

3.4.2 Procedure: The wheel shall be clamped securely to the test device using study and/or bolts and nuts representative of those specified for the wheel assembly. The rim clamp nuts shall be torqued to the torque limits specified in Table A-l of the Appendix for the stud or bolt size listed for spoke wheels. The mating surfaces of the test adaptor and wheel shall be free of excessive buildup of paint, dirt, or foreign material. A rigid load arm shaft with a test hub adaptor shall be attached to the hub of the wheel. The final clamped position of the wheel without load shall not exceed an eccentricity of 0.010 in (0.254 mm) total indicator reading normal to the shaft axis at the point of loading. The load system must maintain the specified test load within +5%.

NOTE: If the wheel application is always used with a brake drum/rotor, the wheel may be tested with a brake drum/rotor attached. If the wheel application is ever to be used without a brake drum/rotor, the wheel must be tested without a brake drum/rotor attached.

3.4.3 <u>Test Load and Bending Moment Determination</u>: The test load is determined by:

Test load =
$$\frac{M}{Moment arm}$$
 (See Fig. 3)

M is determined by the formula:

$$M = \mu (slr) (S)L$$

where:

M = bending moment, 1bf-in (N·m)

L = load rating of the wheel as specified by the wheel

manufacturer, 1b force (N)

slr = static loaded radius of the largest tire to be used on the wheel as specified by the vehicle or wheel manufacturer, in $(mn \times 10^{-3})$. Refer to Table A-2 of the Appendix for

static loaded radius. μ = coefficient of friction developed between tire and road

(0.7)

S = accelerated test factor

3.4.4 Test Load Factors and Cycle Requirements: See Table 5.

TABLE 5 - TEST LOAD FACTORS AND CYCLE REQUIREMENTS FOR CORNERING FATIGUE TEST, WHEELS FOR DEMOUNTABLE RIMS

Material	Accelerated Test Factor	Min Cycle Life
Ferrous	cjict 1.90	35 000
	1.50	100 000

3.4.5 Test Termination Definition:

- (a) Inability of wheel to sustain load.
- (b) A visually detected fatigue crack penetrating through a section.